1
|
Giovanni A, Shi YZ, Wang PC, Tsai MA, Chen SC. Recombinant C5a Peptidase and Formalin-Killed Cell: A Synergistic Vaccine Against Streptococcus iniae in Four-Finger Threadfin Fish (Eleutheronema tetradactylum). JOURNAL OF FISH DISEASES 2025:e14154. [PMID: 40420522 DOI: 10.1111/jfd.14154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/13/2025] [Accepted: 05/18/2025] [Indexed: 05/28/2025]
Abstract
Streptococcus iniae is a pathogenic bacterium that causes severe infections and high mortality rates in threadfin fish farms. Recurrent streptococcosis outbreaks underscore the urgent need for effective vaccination strategies. This study investigates an innovative recombinant protein vaccine incorporating a recombinant C5a peptidase encoding 1780 bp from S. iniae to enhance the immune response of the four-finger threadfin fish (Eleutheronema tetradactylum). Vaccine efficacy was assessed by evaluating specific antibody titres, lysozyme activity and the immune-related gene expression in a challenge test. The results demonstrated that fish immunised with C5a, FKC and C5a + FKC showed significantly higher specific antibody titres and lysozyme activity than the control group. Notably, rC5a + FKC displayed the highest IgM levels against the C5a antigen at 28 dpv expression. The rC5a-based vaccine significantly increased TNFα, IL-10 and IL-12 one day after immunisation, correlating with elevated serum antibody levels and the upregulated immune-related genes (C2, CD8). Fish immunised with the rC5a + FKC vaccine exhibited a stronger immune response and greater protective efficacy against the highly virulent S. iniae strain, with a relative survival rate of 97.5%. The combination rC5a + FKC RPS results are higher than those of the single antigens FKC (87.5%) and rC5a (30%), highlighting the potential of the rC5a and FKC vaccine combination as a promising method for preventing and treating S. iniae infections in threadfin fish, supporting healthier fish stocks and sustainable aquaculture practices.
Collapse
Affiliation(s)
- Andre Giovanni
- International Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yin-Ze Shi
- Department of Agricultural Biotechnology, College of Agriculture, National Chiayi University, Chiayi, Taiwan
| | - Pei-Chi Wang
- International Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ming-An Tsai
- International Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- International Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- General Research Service Centre, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
2
|
Khoi LM, Erickson VI, Dung TT. Evaluating the effectiveness of an autogenous vaccine to prevent motile Aeromonas septicaemia in striped catfish (Pangasianodon hypophthalmus) formulated by using DNA fingerprints for bacterial inclusion. FISH & SHELLFISH IMMUNOLOGY 2024; 155:110013. [PMID: 39510430 DOI: 10.1016/j.fsi.2024.110013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Many Aeromonas species are infecting striped catfish in the Mekong Delta in Vietnam. This study aimed to evaluate the effectiveness of autogenous vaccines developed by analysing the genetic diversity through DNA fingerprint analysis. A total of 38 Aeromonas strains isolated from 2017 to 2022 were analysed for phenotypic differences using the repetitive element sequence PCR (rep-PCR) with the (GTG)5 single-primer. The vaccines were water-in-oil emulsion whole-cell inactivated with two monovalent vaccines containing antigens of Aeromonas VH31 (VC-VH31), or Aeromonas VH74 (VC-VH74) and a bivalent vaccine with both Aeromonas VH31 and VH74 (VC-VH31/74). The experiment lasted for 60 days in water at 28 °C and was performed in triplicates. Blood samples were taken at 0, 15, 30, 45 and 60 day post vaccination (dpv) to collect the serum. The challenge infection was performed as a co-infection immersion challenge of two homologous strains of Aeromonas VH31 and Aeromonas VH74 at dose LD60 value 0,55 × 107 cfu/mL and 0,47 × 108 cfu/mL, respectively. The highest relative percent of survival (RPS) of the VC-VH31/74 bivalent vaccine was 100 % and the fish displayed no clinical signs of disease. At 30 dpv, the concentration of total leukocytes, lymphocytes, monocytes and granulocytes was highest in the group receiving the dual vaccine. Additionally, the results showed that the difference between the vaccines was significant when ELISA analysis of IgM-specific antibodies in serum, and the result was highest in VC-VH31/74 bivalent vaccine after 30 days (p < 0.05) and remained stable until 60 dpv. The vaccine showed good immunogenicity and high protective efficacy against Aeromonas spp. in catfish. Thereby demonstrating the potential of Aeromonas autogenous vaccine use.
Collapse
Affiliation(s)
- Le Minh Khoi
- College of Aquaculture and Fisheries, Can Tho University, Viet Nam
| | - Vera Irene Erickson
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Tu Thanh Dung
- College of Aquaculture and Fisheries, Can Tho University, Viet Nam.
| |
Collapse
|
3
|
Shi YZ, Giovanni A, Cheng LW, Huang WR, Wang PC, Chen SC. Immune response and protection efficacy of formalin-killed vaccines against Streptococcus iniae in four-finger threadfin Eleutheronema tetradactylum. JOURNAL OF FISH DISEASES 2024; 47:e14009. [PMID: 39207865 DOI: 10.1111/jfd.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Four-finger threadfin, Eleutheronema tetradactylum farming in southern Taiwan has been facing disease problems caused by Streptococcus iniae since 2018. The development of a vaccine against infectious S. iniae in the cultured threadfin industry is necessary. Thus, this study aimed to examine the efficacy of threadfin immunized formalin-killed cells (FKC) from S. iniae GSI-111 for 42 days post-vaccination (dpv) using two doses of FKC alone (a booster at 14 dpv) as group A, and FKC mixed with ISA763A adjuvant using a single dose as group B or double doses as group C. Immunoglobulin (Ig)-M was purified from threadfin, and rabbit anti-threadfin IgM polyclonal antibodies were used to detect antibody level in immunized fish; the vaccinated group A displayed higher levels at 3 dpv and all vaccinated treatments demonstrated high antibody levels between 14 and 42 dpv. All vaccine groups showed significantly higher values of lysozyme activity at 42 dpv compared with the control group; the vaccinated A group peaked at 14 dpv. The expression profiles of pro-inflammatory and immune-related genes, TNF-α, IL-12A, and C2 were upregulated at 3 dpv, while CD8A and chemokine receptor CXCR4 were upregulated at 42 dpv. Finally, the threadfins were challenged with S. iniae at 42 dpv. The average relative percent survival was 96% for vaccination A and B treatments, and 100% for vaccination C treatment. In summary, this study demonstrated that FKC vaccines whether formulated with an adjuvant could stimulate immune response and effective protect threadfins against S. iniae infection.
Collapse
Affiliation(s)
- Yin-Ze Shi
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| | - Andre Giovanni
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| | - Li-Wu Cheng
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| | - Wen-Rou Huang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
- General Research Service Center, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| |
Collapse
|
4
|
Xu FF, Deng ZY, Sheng JJ, Zhu B. The HSP70 and IL-1β of Nile tilapia as molecular adjuvants can enhance the immune protection of DNA vaccine against Streptococcus agalactiae infection. JOURNAL OF FISH DISEASES 2024; 47:e14002. [PMID: 39075840 DOI: 10.1111/jfd.14002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Globally, streptococcal disease caused by Streptococcus agalactiae is known for its high mortality rate, which severely limits the development of the tilapia breeding industry. As a third-generation vaccine, DNA vaccines have shown great application prospects in the prevention and control of aquatic diseases, but their low immunogenicity limits their development. The combination of DNA vaccines and molecular adjuvants proved to be an effective method for inducing protective immunity. This study constructed recombinant plasmids encoding tilapia HSP70 and IL-1β genes (pcHSP70 and pcIL-1β) to verify their effectiveness as molecular adjuvants for S. agalactiae DNA vaccine (pcSIP) in the immunized tilapia model. The results revealed that serum-specific IgM production, enzyme activities, and immune-related gene expression in tilapia immunized with pcSIP plus pcHSP70 or pcIL-1β were significantly higher than those in tilapia immunized with pcSIP alone. It is worth noting that combination with molecular adjuvants improved the immune protection of DNA vaccines, with a relative percentage survival (RPS) of 51.72% (pcSIP plus pcHSP70) and 44.83% (pcSIP plus pcIL-1β), respectively, compared with that of pcSIP alone (24.14%). Thus, our study indicated that HSP70 and IL-1β in tilapia are promising molecular adjuvants of the DNA vaccine in controlling S. agalactiae infection.
Collapse
Affiliation(s)
- Fei-Fan Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhu-Yang Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jun-Jie Sheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Jiang X, Gao M, Ding Y, Wang J, Song Y, Xiao H, Kong X. Interleukin-17B in common carp (Cyprinus carpio L.): Molecular cloning and immune effects as immune adjuvant of Aeromonas veronii formalin-killed vaccine. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109832. [PMID: 39147176 DOI: 10.1016/j.fsi.2024.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
The interleukin-17 (IL-17) family of cytokines is critical for host defense responses and mediates different pro- or anti-inflammatory mediators through different signaling pathways. However, the function of the related family member, IL-17B, in teleosts is poorly understood. In the present study, an IL-17B homolog (CcIL-17B) in common carp (Cyprinus carpio) was identified, and sequence analysis showed that CcIL-17B had eight conserved cysteine residues, four of which could form two pairs of disulfide bonds, which in turn formed a ring structure composed of nine amino acids (aa). The deduced aa sequences of CcIL-17B shared 35.79-92.93 % identify with known homologs. The expression patterns were characterized in healthy and bacteria-infected carp. In healthy carp, IL-17B mRNA was highly expressed in the spleen, whereas Aeromonas veronii effectively induced CcIL-17B expression in the liver, head, kidney, gills, and intestine. The recombinant protein rCcIL-17B could regulate the expression levels of inflammatory cytokines (such as IL-1β, IL-6, TNF-α, and IFN-γ) in primary cultured head kidney leukocytes in vitro. As an adjuvant for the formalin-killed A. veronii (FKA) vaccine, rCcIL-17B induced the production of specific antibodies more rapidly and effectively than Freund's complete adjuvant (FCA). The results of the challenge experiments showed that the relative percent survival (RPS) after vaccination with rCcIL-17B was 78.13 %. This percentage was significantly elevated compared to that observed in the alternative experimental groups (62.5 % and 37.5 %, respectively). Additionally, the bacterial loads in the spleen of the rCcIL-17B + FKA group were significantly lower than those in the control group from 12 h to 48 h after bacterial infection. Furthermore, histological analysis showed that the epithelial cells were largely intact, and the striated border structure was complete in the intestine of rCcIL-17B + FKA group. Collectively, our results demonstrate that CcIL-17B plays a crucial role in eliciting immune responses and evokes a higher RPS against A. veronii challenge compared to the traditional adjuvant FCA, indicating that rCcIL-17B is a promising vaccine adjuvant for controlling A. veronii infection.
Collapse
Affiliation(s)
- Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Mengjie Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yi Ding
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yunjie Song
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Hehe Xiao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
6
|
de Queiróz GA, Silva TMFE, Leal CAG. Duration of Protection and Humoral Immune Response in Nile Tilapia ( Oreochromis niloticus L.) Vaccinated against Streptococcus agalactiae. Animals (Basel) 2024; 14:1744. [PMID: 38929363 PMCID: PMC11200441 DOI: 10.3390/ani14121744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Streptococcosis caused by Streptococcus agalactiae (S. agalactiae) is a major bacterial disease affecting the production of Nile tilapia (Oreochromis niloticus L.), causing significant economic losses due to mortality in the growing phase. Vaccination is the most effective method for preventing streptococcosis on Nile tilapia farms. In Brazil, the major tilapia-producing regions have long production cycles (6-10 months) and harvest tilapias weighing over 900 g for fillet production. Thus, data on the duration of the humoral immune response and protection in farmed tilapia have not been reported or are poorly described. Furthermore, the efficiency of serological testing for the long-term monitoring of immune responses induced by vaccination against S. agalactiae has never been addressed. This study evaluated the duration of protection and humoral immune response induced in Nile tilapia vaccinated against S. agalactiae until 300 days post-vaccination (dpv). The immunization trial was composed of two groups: vaccinated (Vac), vaccinated intraperitoneally with a commercial vaccine, and unvaccinated (NonVac) group, injected fish with sterile saline solution. At 15, 30, 150, 180, 210, and 300 dpv, blood sampling was conducted to detect anti-S. agalactiae IgM antibodies using indirect Enzyme-Linked Immunosorbent Assay (ELISA), and the fish were challenged with pathogenic S. agalactiae to determine the duration of vaccine protection through relative percentage survival (RPS). Spearman's rank correlation was performed between the ELISA optical density (OD) of vaccinated tilapia and the duration of vaccine protection (RPS). The mean cumulative mortality in NonVac and Vac groups ranged from 65 to 90% and less than 35%, respectively. The average RPS was 71, 93, 94, 70, 86, and 67% at 15, 30, 150, 180, 210, and 300 dpv, respectively. RPS revealed that the vaccine provided protection from 15 to 300 dpv. The specific anti-S. agalactiae IgM antibody levels were significantly higher in the Vac group than that non-Vac group up to 180 dpv. The vaccinated fish exhibited significant protection for up to 10 months after vaccination. There was a positive correlation between the antibody response and RPS. This study revealed that a single dose of commercial vaccine administered to Nile tilapia can confer long-term protection against S. agalactiae and that indirect ELISA can monitor the duration of the humoral immune response for up to six months following vaccination. Finally, vaccine protection over six months can be associated with other components of the fish immune system beyond the humoral immune response by IgM antibodies.
Collapse
Affiliation(s)
| | | | - Carlos Augusto Gomes Leal
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (G.A.d.Q.); (T.M.F.e.S.)
| |
Collapse
|
7
|
Wong KY, Megat Mazhar Khair MH, Song AAL, Masarudin MJ, Loh JY, Chong CM, Beardall J, Teo MYM, In LLA. Recombinant lactococcal-based oral vaccine for protection against Streptococcus agalactiae infections in tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 149:109572. [PMID: 38636739 DOI: 10.1016/j.fsi.2024.109572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Streptococcosis outbreaks caused by Streptococcus agalactiae infection in tilapia aquaculture have been consistently reported and associated with high mortality and morbidity leading to significant economic losses. Existing vaccine candidates against Streptococcus spp. are designed for intraperitoneal injections that are not practical and labor-intensive which have prompted farmers to protect aquatic animals with antibiotics, thus encouraging the emergence of multidrug resistant bacteria. In this study, a live recombinant L. lactis vaccine expressing a 1403 bp surface immunogenic protein (SIP) and a 1100 bp truncated SIP (tSIP) gene was developed and evaluated against S. agalactiae infection in tilapia. Both SIP and tSIP sequences were cloned and transformed into L. lactis. The recombinant L.lactis vaccine was orally administered to juvenile tilapia for a month. Detection of SIP-specific serum IgM in vaccinated groups compared to control groups indicated that recombinant proteins expressed from L. lactis could elicit immunogenic reactions in tilapia. Fish immunized with the tSIP vaccine also showed the highest level of protection compared to other test groups, and the mortality rate was significantly reduced compared to both control groups. The relative percentage of survival (RPS) against S. agalactiae for both SIP and tSIP-vaccinated groups was 50 % and 89 %, respectively, at 14 days post-challenge. Significant up-regulation of IgM, IL-1β, IL-10, TNF-α and IFN-γ were observed at day 34 between the vaccinated and control groups. These results indicated that the recombinant lactococcal tSIP vaccine can elicit both cell-mediated and humoral responses and is recommended as a potential oral vaccine against S. agalactiae infection. Future work will include further in vivo challenge assessments of this vaccine candidate fused with adjuvants to boost immunogenicity levels in tilapia.
Collapse
Affiliation(s)
- Kuan Yee Wong
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Megat Hamzah Megat Mazhar Khair
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Adelene Ai Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Selangor, Malaysia; Nanomaterials Synthesis and Characterisation Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Selangor, Malaysia
| | - Jiun Yan Loh
- Tropical Futures Institute (TFI), James Cook University Singapore, 149 Sims Drive, 387380, Singapore
| | - Chou Min Chong
- Laboratory of Sustainable Aquaculture (AquaLab), International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Michelle Yee Mun Teo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
de Freitas LVP, Silveira JGF, Damaceno MA, Campanharo SC, da Silva AFB, Jonas Joaquim Mangabeira DS, Portela ACV, de Jesus RB, Sasanya JJ, Pilarski F, Rath S, Paschoal JAR. Evaluating the persistence of malachite green residues in tilapia and pacu fish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104382. [PMID: 38325623 DOI: 10.1016/j.etap.2024.104382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/16/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Although banned in food-producing animals, residues of malachite green (MG) and its primary metabolite, leucomalachite green (LMG), have been found in fish due to illegal use in aquaculture and the release of industrial wastewater, which represent a serious risk to food and environmental securities. This study aimed to investigate the residue depletion profile of MG and LMG in edible tissues of Nile tilapia (Oreochromis niloticus) and pacu (Piaractus mesopotamicus) cultured simultaneously under the same environmental conditions to support control measures in case of abuse. An analytical method involving QuEChERS sample preparation and liquid chromatography coupled to tandem mass spectrometry was developed, validated, and applied to quantify MG and LMG residues in fish fillets from two depletion experiments after treatment by immersion bath (MG at 0.10 mg L-1 for 60 min). During the experiment, the average water temperature was 30 ºC, while the pH was 6.9. The method is selective, precise (CV = 0.4 - 22%) and accurate (recovery 92 - 114%). The limits of detection and quantification are 0.15 and 0.5 ng g-1, respectively. In both species, the sum of MG and LMG residues were quantified up to the 32nd day post-exposure, and the concentrations were significantly higher in the pacu fillets (up to 3284 ng g-1) than in Nile tilapia (up to 432 ng g-1). The sums of MG and LMG residues were below 2 ng g-1 at 44 days and 342 days for Nile tilapia and pacu, respectively - the Minimum Required Performance Limit (MRPL) for analytical methods intended to monitor forbidden substances in food according to old European Commission guidelines. The persistence of MG residues in pacu may be attributed to its higher lipid content, which favors the accumulation of the non-polar metabolite LMG. These results provide insights into the concern about human, animal, and environmental health risks resulting from unauthorized use or aquatic contamination by industrial wastewater containing MG residues.
Collapse
Affiliation(s)
- Lucas Victor Pereira de Freitas
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Biomolecular Sciences, University of São Paulo (USP), Ribeirao Preto, SP 14040-900, Brazil
| | - Juliana Grell Fernandes Silveira
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Biomolecular Sciences, University of São Paulo (USP), Ribeirao Preto, SP 14040-900, Brazil
| | - Marina Alves Damaceno
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Biomolecular Sciences, University of São Paulo (USP), Ribeirao Preto, SP 14040-900, Brazil
| | - Sarah Chagas Campanharo
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Biomolecular Sciences, University of São Paulo (USP), Ribeirao Preto, SP 14040-900, Brazil
| | - Agnaldo Fernando Baldo da Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Biomolecular Sciences, University of São Paulo (USP), Ribeirao Preto, SP 14040-900, Brazil
| | - da Silva Jonas Joaquim Mangabeira
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Biomolecular Sciences, University of São Paulo (USP), Ribeirao Preto, SP 14040-900, Brazil
| | - Ana Carolina Vellosa Portela
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Biomolecular Sciences, University of São Paulo (USP), Ribeirao Preto, SP 14040-900, Brazil
| | - Raphael Barbetta de Jesus
- Laboratory of Microbiology and Parasitology of Aquatic Organisms, Sao Paulo State University (Unesp), Aquaculture Center of Unesp, Jaboticabal, SP 14884-900, Brazil
| | | | - Fabiana Pilarski
- Laboratory of Microbiology and Parasitology of Aquatic Organisms, Sao Paulo State University (Unesp), Aquaculture Center of Unesp, Jaboticabal, SP 14884-900, Brazil
| | - Susanne Rath
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Jonas Augusto Rizzato Paschoal
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Biomolecular Sciences, University of São Paulo (USP), Ribeirao Preto, SP 14040-900, Brazil.
| |
Collapse
|
9
|
Lan NGT, Dong HT, Vinh NT, Senapin S, Shinn AP, Salin KR, Rodkhum C. Immersion prime and oral boost vaccination with an inactivated Vibrio harveyi vaccine confers a specific immune response and protection in Asian seabass (Lates calcarifer). FISH & SHELLFISH IMMUNOLOGY 2024; 144:109293. [PMID: 38104696 DOI: 10.1016/j.fsi.2023.109293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Asian seabass (Lates calcarifer) holds significant economic value in fish farming in the Asia-Pacific region. Vibriosis caused by Vibrio harveyi (Vh) is a severe infectious disease affecting intensive farming of this species, for which prevention strategies by vaccination have been developed. This study investigated an alternative approach to injectable vaccination to prevent vibriosis in Asian seabass juveniles. The strategy begins with an immersion prime vaccination with a heat-inactivated Vh vaccine, followed by two oral booster doses administered at 14- and 28-days post-vaccination (dpv). Expression of five immune genes TNFα, IL1β, CD4, CD8, and IgM in the head kidney and spleen, along with investigation of anti-Vh antibody response (IgM) in both systemic and mucosal systems, was conducted on a weekly basis. The efficacy of the vaccines was assessed by a laboratory challenge test at 43 dpv. The results showed that the immunized fish displayed higher levels of mRNA transcripts of the immune genes after the immersion prime and the first oral booster dose compared to the control group. The expression levels peaked at 14 and 28 dpv and then declined to baseline at 35 and 42 dpv. Serum specific IgM antibodies were detected as early as 7 dpv (the first time point investigated) and exhibited a steady increase, reaching the first peak at 21 dpv, and a second peak at 35 dpv. Although the antibody levels gradually declined over subsequent weeks, they remained significantly higher than the control group throughout the experiment. A similar antibody response pattern was also observed in the mucosal compartment. The laboratory challenge test demonstrated high protection by injection with 1.65 × 104 CFU/fish, with a relative percent of survival (RPS) of 72.22 ± 7.86 %. In conclusion, our findings highlight the potential of an immersion prime-oral booster vaccination strategy as a promising approach for preventing vibriosis in Asian seabass.
Collapse
Affiliation(s)
- Nguyen Giang Thu Lan
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Aquaculture and Aquatic Resources Management, Department of Food Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Ha Thanh Dong
- Aquaculture and Aquatic Resources Management, Department of Food Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand.
| | - Nguyen Tien Vinh
- Aquaculture and Aquatic Resources Management, Department of Food Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand; Fish Heath Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Andrew P Shinn
- INVE (Thailand), 471 Bond Street, Bangpood, Pakkred, Nonthaburi, 11120, Thailand
| | - Krishna R Salin
- Aquaculture and Aquatic Resources Management, Department of Food Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Channarong Rodkhum
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
10
|
Jones EM, Cain KD. An Introduction to Relevant Immunology Principles with Respect to Oral Vaccines in Aquaculture. Microorganisms 2023; 11:2917. [PMID: 38138061 PMCID: PMC10745647 DOI: 10.3390/microorganisms11122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Vaccines continue to play an enormous role in the progression of aquaculture industries worldwide. Though preventable diseases cause massive economic losses, injection-based vaccine delivery is cost-prohibitive or otherwise impractical for many producers. Most oral vaccines, which are much cheaper to administer, do not provide adequate protection relative to traditional injection or even immersion formulas. Research has focused on determining why there appears to be a lack of protection afforded by oral vaccines. Here, we review the basic immunological principles associated with oral vaccination before discussing the recent progress and current status of oral vaccine research. This knowledge is critical for the development and advancement of efficacious oral vaccines for the aquaculture industry.
Collapse
Affiliation(s)
| | - Kenneth D. Cain
- Department of Fisheries and Wildlife, University of Idaho, Moscow, ID 83844, USA;
| |
Collapse
|
11
|
Thompson KD, Rodkhum C, Bunnoy A, Thangsunan P, Kitiyodom S, Sukkarun P, Yostawornkul J, Yata T, Pirarat N. Addressing Nanovaccine Strategies for Tilapia. Vaccines (Basel) 2023; 11:1356. [PMID: 37631924 PMCID: PMC10459980 DOI: 10.3390/vaccines11081356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/28/2023] Open
Abstract
Tilapia is the world's most extensively farmed species after carp. It is an attractive species for aquaculture as it grows quickly, reaching harvest size within six to seven months of production, and provides an important source of food and revenue for many low-income families, especially in low- to middle-income countries. The expansion of tilapia aquaculture has resulted in an intensification of farming systems, and this has been associated with increased disease outbreaks caused by various pathogens, mostly bacterial and viral agents. Vaccination is routinely used to control disease in higher-value finfish species, such as Atlantic salmon. At the same time, many tilapia farmers are often unwilling to vaccinate their fish by injection once the fish have been moved to their grow-out site. Alternative vaccination strategies are needed to help tilapia farmers accept and use vaccines. There is increasing interest in nanoparticle-based vaccines as alternative methods for delivering vaccines to fish, especially for oral and immersion administration. They can potentially improve vaccine efficacy through the controlled release of antigens, protecting antigens from premature proteolytic degradation in the gastric tract, and facilitating antigen uptake and processing by antigen-presenting cells. They can also allow targeted delivery of the vaccine at mucosal sites. This review provides a brief overview of the bacterial and viral diseases affecting tilapia aquaculture and vaccine strategies for farmed tilapia. It focuses on the use of nanovaccines to improve the acceptance and uptake of vaccines by tilapia farmers.
Collapse
Affiliation(s)
- Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.R.); (P.T.)
| | - Anurak Bunnoy
- Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand;
| | - Patcharapong Thangsunan
- Center of Excellence in Fish Infectious (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.R.); (P.T.)
| | - Sirikorn Kitiyodom
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (J.Y.); (N.P.)
| | - Pimwarang Sukkarun
- Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat 90000, Thailand;
| | - Jakarwan Yostawornkul
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (J.Y.); (N.P.)
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nopadon Pirarat
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (J.Y.); (N.P.)
| |
Collapse
|
12
|
Kembou-Ringert JE, Steinhagen D, Thompson KD, Daly JM, Adamek M. Immune responses to Tilapia lake virus infection: what we know and what we don't know. Front Immunol 2023; 14:1240094. [PMID: 37622112 PMCID: PMC10445761 DOI: 10.3389/fimmu.2023.1240094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Tilapia lake virus (TiLV) is a novel contagious pathogen associated with a lethal disease affecting and decimating tilapia populations on several continents across the globe. Fish viral diseases, such as Tilapia lake virus disease (TiLVD), represent a serious threat to tilapia aquaculture. Therefore, a better understanding of the innate immune responses involved in establishing an antiviral state can help shed light on TiLV disease pathogenesis. Moreover, understanding the adaptive immune mechanisms involved in mounting protection against TiLV could greatly assist in the development of vaccination strategies aimed at controlling TiLVD. This review summarizes the current state of knowledge on the immune responses following TiLV infection. After describing the main pathological findings associated with TiLVD, both the innate and adaptive immune responses and mechanisms to TiLV infection are discussed, in both disease infection models and in vitro studies. In addition, our work, highlights research questions, knowledge gaps and research areas in the immunology of TiLV infection where further studies are needed to better understand how disease protection against TiLV is established.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
13
|
Jungi SV, Machimbirike VI, Linh NV, Sangsuriya P, Salin KR, Senapin S, Dong HT. Synthetic peptides derived from predicted B cell epitopes of nervous necrosis virus (NNV) show antigenicity and elicit immunogenic responses in Asian seabass (Lates calcarifer). FISH & SHELLFISH IMMUNOLOGY 2023:108854. [PMID: 37253409 DOI: 10.1016/j.fsi.2023.108854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/01/2023]
Abstract
Nervous necrosis virus (NNV) has spread throughout the world, affecting more than 120 freshwater and marine fish species. While vaccination effectively prevents disease outbreaks, the difficulty of producing sufficient viruses using cell lines continues to be a significant disadvantage for producing inactivated vaccines. This study, therefore, explored the application of synthetic peptides as potential vaccine candidates for the prevention of NNV in Asian seabass (Lates calcarifer). Using the epitope prediction tool and molecular docking, three predicted immunogenic B cell epitopes (30-32 aa) derived from NNV coat protein were selected and synthesised, corresponding to amino acid positions 5 to 34 (P1), 133 to 162 (P2) and 181 to 212 (P3). All the predicted peptides interact with Asian sea bass's MHC class II by docking. The antigenicity of these peptides was determined through ELISA and all peptides were able to react with NNV-specific antibodies. Subsequently, the immunogenicity of these synthetic peptides was investigated by immunisation of Asian seabass with individual peptides (30 μg/fish) and a peptide cocktail (P1+P2+P3, 10 μg each/fish) by intraperitoneal injection, followed by a booster dose at day 28 post-primary immunisation. There was a subset of immunised fish that were able to induce upregulation of immune genes (IL-1β, TNFα, MHCI, MHCII β, CD4, CD8, and IgM-like) in the head kidney and spleen post immunization. Importantly, antibodies derived from fish immunised with synthetic peptides reacted with whole NNV virions, and sera from P1 group could neutralise NNV in an in vitro assay. Taken together, these findings indicate that synthetic linear peptides based on predicted B cell epitopes exhibited both antigenic and immunogenic properties, suggesting that they could be potential vaccine candidates for the prevention of NNV in fish.
Collapse
Affiliation(s)
- Sumit Vinod Jungi
- Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thanim, 12120, Thailand
| | - Vimbai Irene Machimbirike
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John's, A1C 5S7, NL, Canada
| | - Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Material Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pakkakul Sangsuriya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand; Aquatic Molecular Genetics and Biotechnology Research Team, BIOTEC, NSTDA, Pathum Thani, 12120, Thailand
| | - Krishna R Salin
- Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thanim, 12120, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand; Fish Heath Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ha Thanh Dong
- Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thanim, 12120, Thailand.
| |
Collapse
|
14
|
Gong YM, Wei XF, Zheng YY, Li Y, Yu Q, Li PF, Zhu B. Combining Phage Display Technology with In Silico-Designed Epitope Vaccine to Elicit Robust Antibody Responses against Emerging Pathogen Tilapia Lake Virus. J Virol 2023; 97:e0005023. [PMID: 36975794 PMCID: PMC10134809 DOI: 10.1128/jvi.00050-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Antigen epitope identification is a critical step in the vaccine development process and is a momentous cornerstone for the development of safe and efficient epitope vaccines. In particular, vaccine design is difficult when the function of the protein encoded by the pathogen is unknown. The genome of Tilapia lake virus (TiLV), an emerging virus from fish, encodes protein functions that have not been elucidated, resulting in a lag and uncertainty in vaccine development. Here, we propose a feasible strategy for emerging viral disease epitope vaccine development using TiLV. We determined the targets of specific antibodies in serum from a TiLV survivor by panning a Ph.D.-12 phage library, and we identified a mimotope, TYTTRMHITLPI, referred to as Pep3, which provided protection against TiLV after prime-boost vaccination; its immune protection rate was 57.6%. Based on amino acid sequence alignment and structure analysis of the target protein from TiLV, we further identified a protective antigenic site (399TYTTRNEDFLPT410) which is located on TiLV segment 1 (S1). The epitope vaccine with keyhole limpet hemocyanin (KLH-S1399-410) corresponding to the mimotope induced the tilapia to produce a durable and effective antibody response after immunization, and the antibody depletion test confirmed that the specific antibody against S1399-410 was necessary to neutralize TiLV. Surprisingly, the challenge studies in tilapia demonstrated that the epitope vaccine elicited a robust protective response against TiLV challenge, and the survival rate reached 81.8%. In conclusion, this study revealed a concept for screening antigen epitopes of emerging viral diseases, providing promising approaches for development and evaluation of protective epitope vaccines against viral diseases. IMPORTANCE Antigen epitope determination is an important cornerstone for developing efficient vaccines. In this study, we attempted to explore a novel approach for epitope discovery of TiLV, which is a new virus in fish. We investigated the immunogenicity and protective efficacy of all antigenic sites (mimotopes) identified in serum of primary TiLV survivors by using a Ph.D.-12 phage library. We also recognized and identified the natural epitope of TiLV by bioinformatics, evaluated the immunogenicity and protective effect of this antigenic site by immunization, and revealed 2 amino acid residues that play important roles in this epitope. Both Pep3 and S1399-410 (a natural epitope identified by Pep3) elicited antibody titers in tilapia, but S1399-410 was more prominent. Antibody depletion studies showed that anti-S1399-410-specific antibodies were essential for neutralizing TiLV. Our study demonstrated a model for combining experimental and computational screens to identify antigen epitopes, which is attractive for epitope-based vaccine development.
Collapse
Affiliation(s)
- Yu-Ming Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xue-Feng Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu-Ying Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qing Yu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Peng-Fei Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
15
|
Wei XF, Gong YM, Xia JY, Liu MZ, Li PF, Wang GX, Zhu B. Biomimetic nanovaccine based on erythrocyte membrane enhances immune response and protection against tilapia lake virus. Virology 2023; 580:41-49. [PMID: 36746063 DOI: 10.1016/j.virol.2023.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/28/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
An infectious disease emerged in recent years, Tilapia Lake Virus Disease (TiLVD), has severely restricted the development of global tilapia industry. Vaccination has proved potential strategy to prevent its causative agent Tilapia Lake Virus (TiLV) infectious. However, the response intensity of subunit vaccine is limited by its low immunogenicity, thus inclusion of adjuvants is required. Thus, we prepared a biomimetic nano-system (Cs-S2@M-M) with a particle size of ∼100 nm and an encapsulation efficiency of about 79.15% based on erythrocyte membrane. The immune response was detected after intramuscular injection to assess the effectiveness of the vaccine. The biomimetic system significantly up-regulates the expression of immune genes, enhances the activity of non-specific immune-related enzymes (P < 0.05) and improved relative percentage survival by 17.4%-26.1% in TiLV challenge. The biomimetic nano-system based on erythrocyte membrane induced significant immune response in tilapia and enhanced protection against TiLV, promising as a model for fish vaccines.
Collapse
Affiliation(s)
- Xue-Feng Wei
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Yu-Ming Gong
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Jun-Yao Xia
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Ming-Zhu Liu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, 530007, China
| | - Peng-Fei Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, 530007, China.
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, 530007, China.
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, 530007, China.
| |
Collapse
|
16
|
Kembou-Ringert JE, Steinhagen D, Readman J, Daly JM, Adamek M. Tilapia Lake Virus Vaccine Development: A Review on the Recent Advances. Vaccines (Basel) 2023; 11:vaccines11020251. [PMID: 36851129 PMCID: PMC9961428 DOI: 10.3390/vaccines11020251] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Tilapia tilapinevirus (or tilapia lake virus, TiLV) is a recently emerging virus associated with a novel disease affecting and decimating tilapia populations around the world. Since its initial identification, TiLV has been reported in 17 countries, often causing mortalities as high as 90% in the affected populations. To date, no therapeutics or commercial vaccines exist for TiLV disease control. Tilapia exposed to TiLV can develop protective immunity, suggesting that vaccination is achievable. Given the important role of vaccination in fish farming, several vaccine strategies are currently being explored and put forward against TiLV but, a comprehensive overview on the efficacy of these platforms is lacking. We here present these approaches in relation with previously developed fish vaccines and discuss their efficacy, vaccine administration routes, and the various factors that can impact vaccine efficacy. The overall recent advances in TiLV vaccine development show different but promising levels of protection. The field is however hampered by the lack of knowledge of the biology of TiLV, notably the function of its genes. Further research and the incorporation of several approaches including prime-boost vaccine regimens, codon optimization, or reverse vaccinology would be beneficial to increase the effectiveness of vaccines targeting TiLV and are further discussed in this review.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
- Correspondence: (J.E.K.-R.); (M.A.)
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - John Readman
- Department of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Correspondence: (J.E.K.-R.); (M.A.)
| |
Collapse
|
17
|
Dharmaratnam A, Sudhagar A, Swaminathan TR. Evaluation of protective effects of heat-inactivated cyprinid herpesvirus-2 (CyHV-2) vaccine against herpesviral hematopoietic necrosis disease (HVHND) in goldfish (Carassius auratus). FISH & SHELLFISH IMMUNOLOGY 2023; 132:108460. [PMID: 36503057 DOI: 10.1016/j.fsi.2022.108460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/18/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Cyprinid herpesvirus-2 (CyHV-2) is an important virus that causes herpesviral hematopoietic necrosis disease (HVHND) leading to huge economic losses in goldfish (Carassius auratus). However, until now no proper prophylactic measure or treatment is available for CyHV-2 infection in goldfish. Hence, in this experiment, we developed a heat-inactivated CyHV-2 vaccine and evaluated its performance in goldfish. Initially, CyHV-2 was propagated in the fantail goldfish fin (FtGF) cell line and the titer of the viral inoculum was 107.8 TCID50/ml. Subsequently, various temperatures (40 °C, 50 °C, 60 °C, 70 °C, and 80 °C) were evaluated to achieve the complete inactivation of CyHV-2. Only the viral inoculum inactivated at 80 °C for 1 h did not show any cytopathic effect in the FtGF cell line after five blind passages. Hence the heat-inactivated CyHV-2 vaccine developed at 80 °C was further used for immunization trials in goldfish. The experimental goldfish were intraperitoneally immunized with 300 μL of the heat-inactivated CyHV-2 vaccine. Subsequently, the kidney and spleen tissues were sampled at various time points post-vaccination (6th hr, 2nd day, 4th day, 6th day, 10th day, 16th day, and 30th day) to evaluate the expression of immune genes (IL-12, IL-10, IFN-γ, CD8, and CD4). A significant upregulation of immune genes was observed at various time points in the kidney and spleen tissue of the vaccinated goldfish. Furthermore, in order to study the efficacy of the vaccine, the experimental fish were challenged with CyHV-2 (107.8 TCID50/ml) after the 30th day post-vaccination. The survival of the fish in the vaccine group (86.7%) was significantly higher compared to the non-vaccinated group (20%). Moreover, the relative percentage survival of the vaccinated group was 83.34%. In spite of the single dose, the heat-killed vaccine developed in the present study elicited the immune response and offered better protection in goldfish against CyHV-2. However, further large-scale field performance evaluation studies are necessary to develop this vaccine on a commercial scale.
Collapse
Affiliation(s)
- Arathi Dharmaratnam
- Peninsular and Marine Fish Genetic Resources Centre, ICAR National Bureau of Fish Genetic Resources, CMFRI Campus, Kochi, Kerala, 682 018, India
| | - Arun Sudhagar
- Peninsular and Marine Fish Genetic Resources Centre, ICAR National Bureau of Fish Genetic Resources, CMFRI Campus, Kochi, Kerala, 682 018, India
| | - Thangaraj Raja Swaminathan
- Peninsular and Marine Fish Genetic Resources Centre, ICAR National Bureau of Fish Genetic Resources, CMFRI Campus, Kochi, Kerala, 682 018, India.
| |
Collapse
|
18
|
Augustine SM, Tzigos S, Snowdon R. Heat-Killed Tobacco Mosaic Virus Mitigates Plant Abiotic Stress Symptoms. Microorganisms 2022; 11:87. [PMID: 36677379 PMCID: PMC9862074 DOI: 10.3390/microorganisms11010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Since the discovery of the tobacco mosaic virus in the 1890s, awareness has grown in regard to how viruses affect the environment. Viral infections are now known to cause various effects besides pathogenicity, with some viruses in fact having a beneficial impact on plants. Although research has focused on disease-causing viruses that can infect plants, many wild plants are also infected with non-pathogenic viral agents. Traditionally, abiotic, and biotic stresses have been studied as isolated stimuli that trigger signaling pathways within the plant. However, both biotic and abiotic stress can trigger complex molecular interactions within plants, which in turn drive interconnected response pathways. Here, we demonstrate that heat-killed tobacco mosaic virus (TMV) can increase abiotic stress tolerance in plants, an effect that could potentially be implemented in challenging growth environments. To our knowledge, this is the first report of plant abiotic stress tolerance following treatment with heat-killed viral particles.
Collapse
Affiliation(s)
- Sruthy Maria Augustine
- Department of Plant Breeding, IFZ Research Center for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich Buff Ring 26, 35392 Giessen, Germany
| | | | | |
Collapse
|
19
|
Tattiyapong P, Kitiyodom S, Yata T, Jantharadej K, Adamek M, Surachetpong W. Chitosan nanoparticle immersion vaccine offers protection against tilapia lake virus in laboratory and field studies. FISH & SHELLFISH IMMUNOLOGY 2022; 131:972-979. [PMID: 36351543 DOI: 10.1016/j.fsi.2022.10.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Tilapia lake virus (TiLV), an enveloped negative-sense single-stranded RNA virus, causes tilapia lake virus disease (TiLVD), which is associated with mass mortality and severe economic impacts in wild and farmed tilapia industries worldwide. In this study, we developed a chitosan nanoparticle TiLV immersion vaccine and assessed the efficacy of the vaccine in laboratory and field trials. Transmission electron microscopy showed that the inactivated vaccine had a particle size of 210.3 nm, while the nano inactivated vaccine had a spherical shape with a diameter of 120.4 nm. Further analysis using fluorescent staining and immunohistochemistry analysis revealed the mucoadhesive properties of the nanovaccine (CN-KV) through fish gills. We assessed the efficacy of an immersion-based TiLV nanovaccine using a cohabitation challenge model. The fish that received the nanovaccine showed better relative percent survival (RPS) at 68.17% compared with the RPS of the inactivated virus vaccine (KV) group at 25.01%. The CN-KV group also showed a higher TiLV-specific antibody response than the control and KV groups (p < 0.05). Importantly, under field conditions, the fish receiving the CN-KV nanovaccine had better RPS at 52.2% than the nonvaccinated control group. Taken together, the CN-KV nanovaccinated fish showed better survival and antibody response than the control and KV groups both under laboratory control challenge conditions and field trials. The newly developed immersion-based nanovaccine is easy to administer in small fish, is less labor-intensive, and allows for mass vaccination to protect fish from TiLV infection.
Collapse
Affiliation(s)
- Puntanat Tattiyapong
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand; Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Thailand
| | - Sirikorn Kitiyodom
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Thailand
| | - Teerapong Yata
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Thailand
| | - Krittayapong Jantharadej
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Thailand
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Win Surachetpong
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand; Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Thailand.
| |
Collapse
|
20
|
Du Y, Hu X, Miao L, Chen J. Current status and development prospects of aquatic vaccines. Front Immunol 2022; 13:1040336. [PMID: 36439092 PMCID: PMC9684733 DOI: 10.3389/fimmu.2022.1040336] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Diseases are a significant impediment to aquaculture's sustainable and healthy growth. The aquaculture industry is suffering significant financial losses as a result of the worsening water quality and increasing frequency of aquatic disease outbreaks caused by the expansion of aquaculture. Drug control, immunoprophylaxis, ecologically integrated control, etc. are the principal control strategies for fish infections. For a long time, the prevention and control of aquatic diseases have mainly relied on the use of various antibiotics and chemical drugs. However, long-term use of chemical inputs not only increases pathogenic bacteria resistance but also damages the fish and aquaculture environments, resulting in drug residues in aquatic products, severely impeding the development of the aquaculture industry. The development and use of aquatic vaccines are the safest and most effective ways to prevent aquatic animal diseases and preserve the health and sustainability of aquaculture. To give references for the development and implementation of aquatic vaccines, this study reviews the development history, types, inoculation techniques, mechanisms of action, development prospects, and challenges encountered with aquatic vaccines.
Collapse
Affiliation(s)
- Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Liang Miao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
21
|
Yang YF, Yamkasem J, Surachetpong W, Lin YJ, You SH, Lu TH, Chen CY, Wang WM, Liao CM. Assessing the effect of probiotics on tilapia lake virus-infected tilapia: Transmission and immune response. JOURNAL OF FISH DISEASES 2022; 45:1117-1132. [PMID: 35514291 DOI: 10.1111/jfd.13635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Probiotics have been used to alleviate disease transmission in aquaculture. However, there are limited studies on probiotic use in modulating tilapia lake virus (TiLV). We assessed commercially available probiotic supplements used in TiLV-infected tilapia and performed mortality and cohabitation assays. We developed a mechanistic approach to predict dose-response interactions of probiotic effects on mortality and immune gene response. We used a susceptible-infected-mortality disease model to assess key epidemiological parameters such as transmission rate and basic reproduction number (R0 ) based on our viral load dynamic data. We found that the most marked benefits of probiotics are significantly associated with immune system enhancements (~30%) and reductions in disease transmission (~80%) and R0 (~70%) in tilapia populations, resulting in a higher tolerance of farming densities (~400 fold) in aquaculture. These findings provide early insights as to how probiotic use-related factors may influence TiLV transmission and the immune responses in TiLV-infected tilapia. Our study facilitates understanding the mode of action of probiotics in disease containment and predicting better probiotic dosages in diet and supplements to achieve the optimal culturing conditions. Overall, our analysis assures that further study of rationally designed and targeted probiotics, or mechanistic modelling is warranted on the basis of promising early data of this approach.
Collapse
Affiliation(s)
- Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Jidapa Yamkasem
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology and Immunology, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Win Surachetpong
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology and Immunology, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Yi-Jun Lin
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Han You
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung City, Taiwan
| | - Tien-Hsuan Lu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Chi-Yun Chen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Wei-Min Wang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
22
|
Chamtim P, Suwan E, Dong HT, Sirisuay S, Areechon N, Wangkahart E, Hirono I, Mavichak R, Unajak S. Combining segments 9 and 10 in DNA and recombinant protein vaccines conferred superior protection against tilapia lake virus in hybrid red tilapia ( oreochromis sp.) compared to single segment vaccines. Front Immunol 2022; 13:935480. [PMID: 35958595 PMCID: PMC9359061 DOI: 10.3389/fimmu.2022.935480] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Tilapia lake virus (TiLV) now affects Nile tilapia culture worldwide, with no available commercial vaccine for disease prevention. DNA and recombinant protein-based vaccines were developed and tested following viral isolation and characterization. The viral strain isolated from diseased hybrid red tilapia (Oreochromis sp.) shared high levels of morphological and genomic similarity (95.49-99.52%) with other TiLV isolates in the GenBank database. TiLV segment 9 (Tis9) and segment 10 (Tis10) DNA vaccines (pcDNA-Tis9 and pcDNA-Tis10) and recombinant protein vaccines (Tis9 and Tis10) were prepared and tested for their efficacy in juvenile hybrid red tilapia. Fish were immunized with either single vaccines (pcDNA-Tis9, pcDNA-Tis10, Tis9 and Tis10) or combined vaccines (pcDNA-Tis9 + pcDNA-Tis10 and Tis9 + Tis10) by intramuscular injection and intraperitoneal injection for DNA and protein vaccines, respectively. Negative controls were injected with PBS or a naked pcDNA3.1 vector in the same manner. An experimental challenge with TiLV was carried out at 4 weeks post-vaccination (wpv) by intraperitoneal injection with a dose of 1 × 105 TCID50 per fish. Relative percent survival (RPS) ranged from 16.67 ± 00.00 to 61.11 ± 9.62%. The Tis10 and pcDNA-Tis10 vaccines conferred better protection compared to Tis9 and pcDNA-Tis9. Highest levels of protection were observed in pcDNA-Tis9 + pcDNA-Tis10 (61.11 ± 9.62%) and Tis9 + Tis10 (55.56 ± 9.62%) groups. Specific antibody was detected in all vaccinated groups at 1-4 wpv by Dot Blot method, with the highest integrated density at 2 and 3 wpv. In silico analysis of Tis9 and Tis10 revealed a number of B-cell epitopes in their coil structure, possibly reflecting their immunogenicity. Findings suggested that the combination of Tis9 and Tis10 in DNA and recombinant protein vaccine showed high efficacy for the prevention of TiLV disease in hybrid red tilapia.
Collapse
Affiliation(s)
- Pitakthai Chamtim
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Eukote Suwan
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Ha Thanh Dong
- Aquaculture and Aquatic Resources Management Program, Department of Food, Agriculture and Bioresources (AARM/FAB), School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Soranuth Sirisuay
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Nontawith Areechon
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Eakapol Wangkahart
- Division of Fisheries, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, Thailand
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Rapeepat Mavichak
- Molecular Biology Research Department, Charoen Pokphand Foods Public Co., Ltd., Aquatic Animal Health Research Center, Samut Sakhon, Thailand
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
23
|
Adamek M, Rebl A, Matras M, Lodder C, Abd El Rahman S, Stachnik M, Rakus K, Bauer J, Falco A, Jung-Schroers V, Piewbang C, Techangamsuwan S, Surachetpong W, Reichert M, Tetens J, Steinhagen D. Immunological insights into the resistance of Nile tilapia strains to an infection with tilapia lake virus. FISH & SHELLFISH IMMUNOLOGY 2022; 124:118-133. [PMID: 35367372 DOI: 10.1016/j.fsi.2022.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/12/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
The emergence of viral diseases affecting fish and causing very high mortality can lead to the disruption of aquaculture production. Recently, this occurred in Nile tilapia aquaculture where a disease caused by a systemic infection with a novel virus named tilapia lake virus (TiLV) caused havoc in cultured populations. With mortality surpassing 90% in young tilapia, the disease caused by TiLV has become a serious challenge for global tilapia aquaculture. In order to partly mitigate the losses, we explored the natural resistance to TiLV-induced disease in three genetic strains of tilapia which were kept at the University of Göttingen, Germany. We used two strains originating from Nilotic regions (Lake Mansala (MAN) and Lake Turkana (ELM)) and one from an unknown location (DRE). We were able to show that the virus is capable of overcoming the natural resistance of tilapia when injected, providing inaccurate mortality results that might complicate finding the resistant strains. Using the cohabitation infection model, we found an ELM strain that did not develop any clinical signs of the infection, which resulted in nearly 100% survival rate. The other two strains (DRE and MAN) showed severe clinical signs and much lower survival rates of 29.3% in the DRE strain and 6.7% in the MAN strain. The disease resistance of tilapia from the ELM strain was correlated with lower viral loads both at the mucosa and internal tissues. Our results suggest that the lower viral load could be caused by a higher magnitude of a mx1-based antiviral response in the initial phase of infection. The lower pro-inflammatory responses also found in the resistant strain might additionally contribute to its protection from developing pathological changes related to the disease. In conclusion, our results suggest the possibility of using TiLV-resistant strains as an ad hoc, cost-effective solution to the TiLV challenge. However, as the fish from the disease-resistant strain still retained significant virus loads in liver and brain and thus could become persistent virus carriers, they should be used within an integrative approach also combining biosecurity, diagnostics and vaccination measures.\.
Collapse
Affiliation(s)
- Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Alexander Rebl
- Fish Genetics Unit, Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Marek Matras
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Christian Lodder
- Department of Animal Sciences, Georg-August-University of Göttingen, Göttingen, Germany
| | - Sahar Abd El Rahman
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Magdalena Stachnik
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Julia Bauer
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Alberto Falco
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), 03202, Elche, Spain
| | - Verena Jung-Schroers
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Chutchai Piewbang
- Animal Virome and Diagnostic Development Research Group, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Somporn Techangamsuwan
- Animal Virome and Diagnostic Development Research Group, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Michal Reichert
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University of Göttingen, Göttingen, Germany; Center for Integrated Breeding Research, Georg-August-University of Göttingen, Göttingen, Germany
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
24
|
Mai TT, Kayansamruaj P, Soontara C, Kerddee P, Nguyen DH, Senapin S, Costa JZ, del-Pozo J, Thompson KD, Rodkhum C, Dong HT. Immunization of Nile Tilapia ( Oreochromis niloticus) Broodstock with Tilapia Lake Virus (TiLV) Inactivated Vaccines Elicits Protective Antibody and Passive Maternal Antibody Transfer. Vaccines (Basel) 2022; 10:167. [PMID: 35214626 PMCID: PMC8879158 DOI: 10.3390/vaccines10020167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Tilapia lake virus (TiLV), a major pathogen of farmed tilapia, is known to be vertically transmitted. Here, we hypothesize that Nile tilapia (Oreochromis niloticus) broodstock immunized with a TiLV inactivated vaccine can mount a protective antibody response and passively transfer maternal antibodies to their fertilized eggs and larvae. To test this hypothesis, three groups of tilapia broodstock, each containing four males and eight females, were immunized with either a heat-killed TiLV vaccine (HKV), a formalin-killed TiLV vaccine (FKV) (both administered at 3.6 × 106 TCID50 per fish), or with L15 medium. Booster vaccination with the same vaccines was given 3 weeks later, and mating took place 1 week thereafter. Broodstock blood sera, fertilized eggs and larvae were collected from 6-14 weeks post-primary vaccination for measurement of TiLV-specific antibody (anti-TiLV IgM) levels. In parallel, passive immunization using sera from the immunized female broodstock was administered to naïve tilapia juveniles to assess if antibodies induced in immunized broodstock were protective. The results showed that anti-TiLV IgM was produced in the majority of both male and female broodstock vaccinated with either the HKV or FKV and that these antibodies could be detected in the fertilized eggs and larvae from vaccinated broodstock. Higher levels of maternal antibody were observed in fertilized eggs from broodstock vaccinated with HKV than those vaccinated with FKV. Low levels of TiLV-IgM were detected in some of the 1-3 day old larvae but were undetectable in 7-14 day old larvae from the vaccinated broodstock, indicating a short persistence of TiLV-IgM in larvae. Moreover, passive immunization proved that antibodies elicited by TiLV vaccination were able to confer 85% to 90% protection against TiLV challenge in naïve juvenile tilapia. In conclusion, immunization of tilapia broodstock with TiLV vaccines could be a potential strategy for the prevention of TiLV in tilapia fertilized eggs and larvae, with HKV appearing to be more promising than FKV for maternal vaccination.
Collapse
Affiliation(s)
- Thao Thu Mai
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (T.T.M.); (D.-H.N.)
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Aquacultural Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh 700000, Vietnam
| | - Pattanapon Kayansamruaj
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand; (P.K.); (C.S.); (P.K.)
| | - Chayanit Soontara
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand; (P.K.); (C.S.); (P.K.)
| | - Pattarawit Kerddee
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand; (P.K.); (C.S.); (P.K.)
| | - Dinh-Hung Nguyen
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (T.T.M.); (D.-H.N.)
| | - Saengchan Senapin
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng 12120, Thailand
| | - Janina Z. Costa
- Aquaculture Research Group, Moredun Research Institute, Edinburgh EH26 0PZ, UK; (J.Z.C.); (K.D.T.)
| | - Jorge del-Pozo
- Infection and Immunity Division, Roslin Institute, Edinburgh EH25 9RG, UK;
| | - Kim D. Thompson
- Aquaculture Research Group, Moredun Research Institute, Edinburgh EH26 0PZ, UK; (J.Z.C.); (K.D.T.)
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (T.T.M.); (D.-H.N.)
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ha Thanh Dong
- Aquaculture and Aquatic Resources Program, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Khlong Nueng 12120, Thailand
| |
Collapse
|
25
|
Lertwanakarn T, Trongwongsa P, Yingsakmongkol S, Khemthong M, Tattiyapong P, Surachetpong W. Antiviral Activity of Ribavirin against Tilapia tilapinevirus in Fish Cells. Pathogens 2021; 10:1616. [PMID: 34959571 PMCID: PMC8705004 DOI: 10.3390/pathogens10121616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
The outbreak of the novel Tilapia tilapinevirus or Tilapia lake virus (TiLV) is having a severe economic impact on global tilapia aquaculture. Effective treatments and vaccines for TiLV are lacking. In this study, we demonstrated the antiviral activity of ribavirin against TiLV in E-11 cells. Our findings revealed that at concentrations above 100 μg/mL, ribavirin efficiently attenuates the cytopathic effect of the TiLV infection in fish cells. When administered in a dose-dependent manner, ribavirin significantly improved cell survival compared to the untreated control cells. Further investigation revealed that the cells exposed to ribavirin and TiLV had a lower viral load (p < 0.05) than the untreated cells. However, at concentrations above 1000 μg/mL, ribavirin led to cell toxicity. Taken together, our results demonstrate the efficacy of this antiviral drug against TiLV and could be a useful tool for future research on the pathogenesis and replication mechanism of TiLV as well as other piscine viruses.
Collapse
Affiliation(s)
- Tuchakorn Lertwanakarn
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Pirada Trongwongsa
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.T.); (S.Y.); (M.K.); (P.T.)
| | - Sangchai Yingsakmongkol
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.T.); (S.Y.); (M.K.); (P.T.)
| | - Matepiya Khemthong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.T.); (S.Y.); (M.K.); (P.T.)
| | - Puntanat Tattiyapong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.T.); (S.Y.); (M.K.); (P.T.)
- Interdisciplinary Genetic Engineering Program, The Graduate School, Kasetsart University, Bangkok 10900, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.T.); (S.Y.); (M.K.); (P.T.)
- Interdisciplinary Genetic Engineering Program, The Graduate School, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|