1
|
Yin X, Zhao X, Shen Y, Xie W, He C, Guo J, Li Z, Xuan F, Zeng S, Zeng X, Fang C. Nanoparticle-mediated dual targeting of stromal and immune components to overcome fibrotic and immunosuppressive barriers in hepatocellular carcinoma. J Control Release 2025; 383:113783. [PMID: 40306574 DOI: 10.1016/j.jconrel.2025.113783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Cancer-associated fibroblasts (CAFs) are key drivers of hepatocellular carcinoma (HCC) through their promotion of fibrosis and immune suppression activity. To overcome this stroma-immune barrier, we developed D/F@MRL, a stroma-immune co-targeting nanoplatform that enables the spatiotemporal coordination of CAF reprogramming and immune activation. In D/F@MRL, MMP-2-responsive hybrid liposomes (MRL) was employed to co-load digoxin (Dig) and PD-L1-degrading nanofibers (NFs). Upon encountering the MMP-2-enriched HCC stroma, D/F@MRL undergoes enzymatic cleavage, thereby enabling the targeted release of Dig and NFs within the HCC microenvironment. Mechanistically, Dig inhibits the phosphorylation of SMAD3 in CAFs, while PD-L1 degradation destabilizes the TGFβ receptor, synergistically silencing TGF-β/Smad signaling to reprogram CAFs. This combination not only disrupts the fibrotic barrier but also creates a feed-forward loop that further enhances drug penetration, while reinforcing the immune activation driven by Dig-induced immunogenic cell death (ICD) and PD-L1 degradation. In the humanized immune PDX model, D/F@MRL successfully reprogrammed CAFs and robustly remodeled the stromal and immune microenvironments without causing systemic toxicity, highlighting its promising potential for clinical translation. By integrating CAF reprogramming with ICD and immune checkpoint inhibition, this strategy overcame the limitations of single-target therapies, induced robust immune activation, further provided a clinic-transformative approach for fibrotic malignancies.
Collapse
Affiliation(s)
- Xiangyi Yin
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xingyang Zhao
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiming Shen
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Weizhong Xie
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Cheng He
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jianan Guo
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zirong Li
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Feichao Xuan
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Silue Zeng
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaojun Zeng
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chihua Fang
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Institute of Digital Intelligent Minimally Invasive Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, China; South China Institute of National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Guangzhou 510280, China.
| |
Collapse
|
2
|
Zuo W, Ma H, Bi J, Li T, Mo Y, Yu S, Wang J, Li B, Huang J, Li Y, Li L. Phosphorylation of RelA/p65 Ser536 inhibits the progression and metastasis of hepatocellular carcinoma by mediating cytoplasmic retention of NF-κB p65. Gastroenterol Rep (Oxf) 2024; 12:goae094. [PMID: 39498383 PMCID: PMC11534074 DOI: 10.1093/gastro/goae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 11/07/2024] Open
Abstract
Background Intrahepatic and extrahepatic metastases contribute to the high recurrence rate and mortality of hepatocellular carcinoma (HCC). Constitutive activation of nuclear factor-κB (NF-κB) is a crucial feature of HCC. NF-κB p65 (p50-p65) is the most common dimeric form. Ser536 acts as an essential phosphorylation site of RelA/p65. However, the effect of RelA/p65 Ser536 phosphorylation on progression and metastases during intermediate and advanced HCC has not been reported. Methods Phosphorylation of RelA/p65 (p-p65 Ser536) and NF-κB p65 were detected by using immunohistochemical staining in HCC tissue samples. The biological effects of RelA/p65 Ser536 phosphorylation were evaluated by using xenograft and metastasis models. NF-κB p65 nuclear translocation was detected by using Western blotting. The binding of NF-κB p65 to the BCL2, SNAIL, and MMP9 promoters was detected by using chromatin immunoprecipitation. The biological effects on proliferation, migration, invasion, and epithelial-mesenchymal transition were assessed by using tetrazolium-based colorimetry, colony formation, EdU incorporation, flow cytometry, cell wound healing, and transwell assay. Results NF-κB p65 is highly expressed, while p-p65 Ser536 is not well expressed in intermediate and advanced HCC tissues. In vivo experiments demonstrated that a phosphorylation-mimetic mutant of RelA/p65 Ser536 (p65/S536D) prevents tumor progression and metastasis. In vitro experiments showed that p65/S536D inhibits proliferation, migration, and invasion. Mechanistically, RelA/p65 Ser536 phosphorylation inhibits NF-κB p65 nuclear translocation and reduces NF-κB p65 binding to the BCL2, SNAIL, and MMP9 promoters. Conclusions RelA/p65 Ser536 phosphorylation was detrimental to NF-κB p65 entry into the nucleus and inhibited HCC progression and metastasis by reducing BCL2, SNAIL, and MMP9. The phosphorylation site of RelA/p65 Ser536 has excellent potential to be a promising target for NF-κB-targeted therapy in HCC.
Collapse
Affiliation(s)
- Wentao Zuo
- College of Basic Medical, Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Haoyang Ma
- College of Basic Medical, Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Jianghui Bi
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Tiaolan Li
- College of Basic Medical, Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Yifeng Mo
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Shiyu Yu
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Jia Wang
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Beiqing Li
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Jinfeng Huang
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Yongwen Li
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Li Li
- College of Basic Medical, Guilin Medical University, Guilin, Guangxi, P. R. China
| |
Collapse
|
3
|
Liu YG, Jiang ST, Zhang JW, Zheng H, Zhang L, Zhao HT, Sang XT, Xu YY, Lu X. Role of extracellular vesicle-associated proteins in the progression, diagnosis, and treatment of hepatocellular carcinoma. Cell Biosci 2024; 14:113. [PMID: 39227992 PMCID: PMC11373138 DOI: 10.1186/s13578-024-01294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, characterized by difficulties in early diagnosis, prone to distant metastasis, and high recurrence rates following surgery. Extracellular vesicles (EVs) are a class of cell-derived particles, including exosomes, characterized by a phospholipid bilayer. They serve as effective carriers for intercellular communication cargo, including proteins and nucleic acids, and are widely involved in tumor progression. They are being explored as potential tumor biomarkers and novel therapeutic avenues. We provide a brief overview of the biogenesis and characteristics of EVs to better understand their classification standards. The focus of this review is on the research progress of EV-associated proteins in the field of HCC. EV-associated proteins are involved in tumor growth and regulation in HCC, participate in intercellular communication within the tumor microenvironment (TME), and are implicated in events including angiogenesis and epithelial-mesenchymal transition (EMT) during tumor metastasis. In addition, EV-associated proteins show promising diagnostic efficacy for HCC. For the treatment of HCC, they also demonstrate significant potential including enhancing the efficacy of tumor vaccines, and as targeting cargo anchors. Facing current challenges, we propose the future directions of research in this field. Above all, research on EV-associated proteins offers the potential to enhance our comprehension of HCC and offer novel insights for developing new treatment strategies.
Collapse
Affiliation(s)
- Yao-Ge Liu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Shi-Tao Jiang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jun-Wei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Han Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Lei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Hai-Tao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yi-Yao Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| |
Collapse
|
4
|
Mu W, Gu P, Li H, Zhou J, Jian Y, Jia W, Ge Y. Exposure of benzo[a]pyrene induces HCC exosome-circular RNA to activate lung fibroblasts and trigger organotropic metastasis. Cancer Commun (Lond) 2024; 44:718-738. [PMID: 38840551 PMCID: PMC11260768 DOI: 10.1002/cac2.12574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Benzo[a]pyrene (B[a]P), a carcinogen pollutant produced by combustion processes, is present in the western diet with grilled meats. Chronic exposure of B[a]P in hepatocellular carcinoma (HCC) cells promotes metastasis rather than primary proliferation, implying an unknown mechanism of B[a]P-induced malignancy. Given that exosomes carry bioactive molecules to distant sites, we investigated whether and how exosomes mediate cancer-stroma communications for a toxicologically associated microenvironment. METHOD Exosomes were isolated from B[a]P stimulated BEL7404 HCC cells (7404-100Bap Exo) at an environmental relevant dose (100 nmol/L). Lung pre-education animal model was prepared via injection of exosomes and cytokines. The inflammatory genes of educated lungs were evaluated using quantitative reverse transcription PCR array. HCC LM3 cells transfected with firefly luciferase were next injected to monitor tumor burdens and organotropic metastasis. Profile of B[a]P-exposed exosomes were determined by ceRNA microarray. Interactions between circular RNA (circRNA) and microRNAs (miRNAs) were detected using RNA pull-down in target lung fibroblasts. Fluorescence in situ hybridization and RNA immunoprecipitation assay was used to evaluate the "on-off" interaction of circRNA-miRNA pairs. We further developed an adeno-associated virus inhalation model to examine mRNA expression specific in lung, thereby exploring the mRNA targets of B[a]P induced circRNA-miRNA cascade. RESULTS Lung fibroblasts exert activation phenotypes, including focal adhesion and motility were altered by 7404-100Bap Exo. In the exosome-educated in vivo model, fibrosis factors and pro-inflammatory molecules of are up-regulated when injected with exosomes. Compared to non-exposed 7404 cells, circ_0011496 was up-regulated following B[a]P treatment and was mainly packaged into 7404-100Bap Exo. Exosomal circ_0011496 were delivered and competitively bound to miR-486-5p in recipient fibroblasts. The down-regulation of miR-486-5p converted fibroblast to cancer-associated fibroblast via regulating the downstream of Twinfilin-1 (TWF1) and matrix metalloproteinase-9 (MMP9) cascade. Additionally, increased TWF1, specifically in exosomal circ_0011496 educated lungs, could promote cancer-stroma crosstalk via activating vascular endothelial growth factor (VEGF). These modulated fibroblasts promoted endothelial cells angiogenesis and recruited primary HCC cells invasion, as a consequence of a pre-metastatic niche formation. CONCLUSION We demonstrated that B[a]P-induced tumor exosomes can deliver circ_0011496 to activate miR-486-5p/TWF1/MMP9 cascade in the lung fibroblasts, generating a feedback loop that promoted HCC metastasis.
Collapse
Affiliation(s)
- Wei Mu
- School of Public HealthCenter for Single‐cell OmicsShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Pengfei Gu
- School of Public HealthCenter for Single‐cell OmicsShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Huating Li
- Shanghai Key Laboratory of Diabetes MellitusDepartment of Endocrinology and MetabolismShanghai Diabetes InstituteShanghai Clinical Center for DiabetesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Jinjin Zhou
- School of Public HealthCenter for Single‐cell OmicsShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Yulun Jian
- School of Public HealthCenter for Single‐cell OmicsShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Weiping Jia
- Shanghai Key Laboratory of Diabetes MellitusDepartment of Endocrinology and MetabolismShanghai Diabetes InstituteShanghai Clinical Center for DiabetesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Yang Ge
- School of Public HealthCenter for Single‐cell OmicsShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| |
Collapse
|
5
|
Pan JJ, Xie SZ, Zheng X, Xu JF, Xu H, Yin RQ, Luo YL, Shen L, Chen ZR, Chen YR, Yu SZ, Lu L, Zhu WW, Lu M, Qin LX. Acetyl-CoA metabolic accumulation promotes hepatocellular carcinoma metastasis via enhancing CXCL1-dependent infiltration of tumor-associated neutrophils. Cancer Lett 2024; 592:216903. [PMID: 38670307 DOI: 10.1016/j.canlet.2024.216903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
High levels of acetyl-CoA are considered a key metabolic feature of metastatic cancers. However, the impacts of acetyl-CoA metabolic accumulation on cancer microenvironment remodeling are poorly understood. In this study, using human hepatocellular carcinoma (HCC) tissues and orthotopic xenograft models, we found a close association between high acetyl-CoA levels in HCCs, increased infiltration of tumor-associated neutrophils (TANs) in the cancer microenvironment and HCC metastasis. Cytokine microarray and enzyme-linked immunosorbent assays (ELISA) revealed the crucial role of the chemokine (C-X-C motif) ligand 1(CXCL1). Mechanistically, acetyl-CoA accumulation induces H3 acetylation-dependent upregulation of CXCL1 gene expression. CXCL1 recruits TANs, leads to neutrophil extracellular traps (NETs) formation and promotes HCC metastasis. Collectively, our work linked the accumulation of acetyl-CoA in HCC cells and TANs infiltration, and revealed that the CXCL1-CXC receptor 2 (CXCR2)-TANs-NETs axis is a potential target for HCCs with high acetyl-CoA levels.
Collapse
Affiliation(s)
- Jun-Jie Pan
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Sun-Zhe Xie
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Xin Zheng
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Jian-Feng Xu
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Hao Xu
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Rui-Qi Yin
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Yun-Ling Luo
- Department of Infectious Diseases, Rui'an People's Hospital, Wenzhou Medical University, 168 Ruifeng Avenue, Zhejiang 325200, China
| | - Li Shen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Zheng-Ru Chen
- Department of Infectious Diseases, Rui'an People's Hospital, Wenzhou Medical University, 168 Ruifeng Avenue, Zhejiang 325200, China
| | - Yi-Ran Chen
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Shi-Zhe Yu
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Lu Lu
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Wen-Wei Zhu
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road, Shanghai 200040, China.
| | - Ming Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| | - Lun-Xiu Qin
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road, Shanghai 200040, China; Institutes of Biomedical Sciences, Fudan University, 130 Dongan Road, Shanghai 200032, China.
| |
Collapse
|
6
|
Sinkarevs S, Strumfs B, Volkova S, Strumfa I. Tumour Microenvironment: The General Principles of Pathogenesis and Implications in Diffuse Large B Cell Lymphoma. Cells 2024; 13:1057. [PMID: 38920685 PMCID: PMC11201569 DOI: 10.3390/cells13121057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma worldwide, constituting around 30-40% of all cases. Almost 60% of patients develop relapse of refractory DLBCL. Among the reasons for the therapy failure, tumour microenvironment (TME) components could be involved, including tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (TANs), cancer-associated fibroblasts (CAFs), and different subtypes of cytotoxic CD8+ cells and T regulatory cells, which show complex interactions with tumour cells. Understanding of the TME can provide new therapeutic options for patients with DLBCL and improve their prognosis and overall survival. This review provides essentials of the latest understanding of tumour microenvironment elements and discusses their role in tumour progression and immune suppression mechanisms which result in poor prognosis for patients with DLBCL. In addition, we point out important markers for the diagnostic purposes and highlight novel therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - Ilze Strumfa
- Department of Pathology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| |
Collapse
|
7
|
Yao Y, Yang K, Wang Q, Zhu Z, Li S, Li B, Feng B, Tang C. Prediction of CAF-related genes in immunotherapy and drug sensitivity in hepatocellular carcinoma: a multi-database analysis. Genes Immun 2024; 25:55-65. [PMID: 38233508 PMCID: PMC10873201 DOI: 10.1038/s41435-024-00252-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
This study aims to identify the cancer-associated fibroblasts (CAF)-related genes that can affect immunotherapy and drug sensitivity in hepatocellular carcinoma (HCC). Expression data and survival data associated with HCC were obtained in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Weighted correlation network analysis (WGCNA) analysis was performed to obtain CAF-related genes. Least Absolute Shrinkage and Selection Operator (LASSO) regression was used for regression analysis and risk models. Subsequently, Gene Set Enrichment Analysis (GSEA) analysis, Gene Set Enrichment Analysis (ssGSEA) analysis, Tumor Immune Dysfunction and Exclusion (TIDE) analysis and drug sensitivity analysis were performed on the risk models. Survival analysis of CAF scores showed that the survival rate was lower in samples with high CAF scores than those with low scores. However, this difference was not significant, suggesting CAF may not directly influence the prognosis of HCC patients. Further screening of CAF-related genes yielded 33 CAF-related genes. Seven risk models constructed based on CDR2L, SPRED1, PFKP, ENG, KLF2, FSCN1 and VCAN, showed significant differences in immunotherapy and partial drug sensitivity in HCC. Seven CAF-related genes may have important roles in immunotherapy, drug sensitivity and prognostic survival in HCC patients.
Collapse
Affiliation(s)
- Yi Yao
- Division 1, Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - KaiQing Yang
- Division 1, Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Qiang Wang
- Division 1, Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Zeming Zhu
- Division 2, Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Sheng Li
- Division 1, Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Bin Li
- Division 1, Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Bin Feng
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China.
| | - Caixi Tang
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China.
| |
Collapse
|
8
|
Christou C, Stylianou A, Gkretsi V. Midkine (MDK) in Hepatocellular Carcinoma: More than a Biomarker. Cells 2024; 13:136. [PMID: 38247828 PMCID: PMC10814326 DOI: 10.3390/cells13020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
Midkine (MDK) is a multifunctional secreted protein that can act as a cytokine or growth factor regulating multiple signaling pathways and being implicated in fundamental cellular processes, such as survival, proliferation, and migration. Although its expression in normal adult tissues is barely detectable, MDK serum levels are found to be elevated in several types of cancer, including hepatocellular carcinoma (HCC). In this review, we summarize the findings of recent studies on the role of MDK in HCC diagnosis and progression. Overall, studies show that MDK is a powerful biomarker for HCC early diagnosis, as it can differentiate not only between HCC patients and normal individuals but also between HCC patients and patients with other liver pathologies. It is correlated with high recurrence rates and was shown to be valuable for the diagnosis of early-stage HCC, even in patients negative for α-fetoprotein (AFP), the most commonly used biomarker for HCC diagnosis. A comparison with AFP reveals that MDK is inferior to AFP with regard to specificity but significantly superior with regard to sensitivity, which further indicates the need for using both biomarkers for more effective HCC diagnosis.
Collapse
Affiliation(s)
- Christiana Christou
- Cancer Metastasis and Adhesion Laboratory, Basic and Translational Cancer Research Center (BTCRC), European University Cyprus, Nicosia 2404, Cyprus;
- European University Cyprus Research Centre Ltd., Nicosia 2404, Cyprus;
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Andreas Stylianou
- European University Cyprus Research Centre Ltd., Nicosia 2404, Cyprus;
- Cancer Mechanobiology and Applied Biophysics Laboratory, Basic and Translational Cancer Research Center (BTCRC), European University Cyprus, Nicosia 2404, Cyprus
| | - Vasiliki Gkretsi
- Cancer Metastasis and Adhesion Laboratory, Basic and Translational Cancer Research Center (BTCRC), European University Cyprus, Nicosia 2404, Cyprus;
- European University Cyprus Research Centre Ltd., Nicosia 2404, Cyprus;
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
| |
Collapse
|
9
|
Li T, Jiao J, Ke H, Ouyang W, Wang L, Pan J, Li X. Role of exosomes in the development of the immune microenvironment in hepatocellular carcinoma. Front Immunol 2023; 14:1200201. [PMID: 37457718 PMCID: PMC10339802 DOI: 10.3389/fimmu.2023.1200201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Despite numerous improved treatment methods used in recent years, hepatocellular carcinoma (HCC) is still a disease with a high mortality rate. Many recent studies have shown that immunotherapy has great potential for cancer treatment. Exosomes play a significant role in negatively regulating the immune system in HCC. Understanding how these exosomes play a role in innate and adaptive immunity in HCC can significantly improve the immunotherapeutic effects on HCC. Further, engineered exosomes can deliver different drugs and RNA molecules to regulate the immune microenvironment of HCC by regulating the aforementioned immune pathway, thereby significantly improving the mortality rate of HCC. This study aimed to declare the role of exosomes in the development of the immune microenvironment in HCC and list engineered exosomes that could be used for clinical transformation therapy. These findings might be beneficial for clinical patients.
Collapse
Affiliation(s)
- Tanghua Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiapeng Jiao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haoteng Ke
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wenshan Ouyang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Luobin Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jin Pan
- The Department of Electronic Engineering, The Chinese University of Hong Kong, Hongkong, Hongkong SAR, China
| | - Xin Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Chen J, Yang P, Li S, Feng Y. Increased FOXM1 Expression was Associated with the Prognosis and the Recruitment of Neutrophils in Endometrial Cancer. J Immunol Res 2023; 2023:5437526. [PMID: 37159818 PMCID: PMC10163965 DOI: 10.1155/2023/5437526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/27/2022] [Accepted: 04/05/2023] [Indexed: 05/11/2023] Open
Abstract
Background Although the biological functions of Forkhead box protein M1 (FOXM1) were explored in a variety of cancer, to date, however, little attention has been paid to the situation of FOXM1 in EC endometrial cancer (EC). Method Bioinformatics analysis, including GEPIA, TIMER, cBioPortal, LinkedOmics, and STRING were used to analyze the FOXM1 gene expression, genetic alteration, and immune cell infiltration in EC. IHC staining, qPCR, cell viability, and migration assay were applied to identify the functions of FOXM1 in EC. Results FOXM1 was highly expressed in EC tissues and closely correlated with the prognosis of EC patients. FOXM1 knockdown inhibited EC cell proliferation and invasion as well as migration. FOXM1 genetic alteration was verified in EC patients. Coexpression network of FOXM1 indicated that it had roles in the EC cell cycle and the infiltration of immune cells in EC. Furthermore, bioinformatic and immunohistochemical analysis indicated that FOXM1 induced the increased CD276 expression and also enhanced the neutrophil recruitment in EC. Conclusion Our present study discovered a novel role of FOXM1 in EC, suggesting FOXM1 could be treated as a potential prognostic biomarker and immunotherapeutic target in EC diagnosis and treatment.
Collapse
Affiliation(s)
- Jing Chen
- Department of Obstetrics and Gynecology, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pusheng Yang
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shaojing Li
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Yichen Feng
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital, Shanghai, China
- Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Ma YB, Qiao JW, Hu X. Transmembrane serine protease 2 cleaves nidogen 1 and inhibits extrahepatic liver cancer cell migration and invasion. Exp Biol Med (Maywood) 2023; 248:91-105. [PMID: 36408877 PMCID: PMC10041054 DOI: 10.1177/15353702221134111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We aimed to confirm whether transmembrane serine protease 2 (TMPRSS2) regulates nidogen 1 (NID1) expression in extracellular vesicles (EVs) and metastatic hepatocellular carcinoma (HCC) cells. HCC cells, HUVEC cells, MRC-5 cells, HLE cells, MHCCLM3 cells, MHCC97L cells, H2P cells, H2M cells, as well as LO2 cells were cultured according to providers' instruction and EV models were established by using BALB/cAnN-nu mice to facilitate the verifications. We found that TMPRSS2 expression was inversely correlated with the metastatic potential of HCC cell lines. The expression of TMPRSS2 decreased in a time-dependent manner in tumor-bearing model mice implanted with MHCCLM3 cells compared with uninoculated mice. TMPRSS2 overexpression in MHCCLM3 and MHCC97L cells led to the significant downregulation of NID1 expression in total cell lysates and isolated EVs. In contrast, TMPRSS2 silencing resulted in the elevation of NID1 expression in cells and EVs. Administration of EVs from MHCCLM3 and MHCC97L cells with overexpressed or silenced TMPRSS2 inhibited or strengthened, respectively, the invasion, proliferation, and migration of LO2 tumor cells. EVs derived from MHCCLM3 and MHCC97L cells with overexpressed or depleted TMPRSS2 also deactivated or activated fibroblasts, respectively. These EVs secrete inflammatory cytokines and phosphorylated p65, facilitate the colonization of fibroblasts, and augment fibroblast growth and motility. These findings provide evidence for a new candidate drug targeting tumorigenic EV-NID1 to treat HCC.
Collapse
Affiliation(s)
- Yong-Biao Ma
- Department of Hepatobiliary Surgery, Weifang People's Hospital, Weifang 261041, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Jian-Wen Qiao
- Department of Hepatobiliary Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Xiao Hu
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
12
|
Radiomics for Detection of the EGFR Mutation in Liver Metastatic NSCLC. Acad Radiol 2022; 30:1039-1046. [PMID: 35907759 DOI: 10.1016/j.acra.2022.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/09/2022]
Abstract
RATIONALE AND OBJECTIVES The research aims to investigate whether MRI radiomics on hepatic metastasis from primary nonsmall cell lung cancer (NSCLC) can be used to differentiate patients with epidermal growth factor receptor (EGFR) mutations from those with EGFR wild-type, and develop a prediction model based on combination of primary tumor and the metastasis. MATERIALS AND METHODS A total of 130 patients were enrolled between Aug. 2017 and Dec. 2021, all pathologically confirmed harboring hepatic metastasis from primary NSCLC. The pyradiomics was used to extract radiomics features from intra- and peritumoral areas of both primary tumor and metastasis. The least absolute shrinkage and selection operator (LASSO) regression was applied to identify most predictive features and to develop radiomics signatures (RSs) for prediction of the EGFR mutation status. The receiver operating characteristic (ROC) curve analysis was performed to assess the prediction capability of the developed RSs. RESULTS A RS-Primary and a RS-Metastasis were derived from the primary tumor and metastasis, respectively. The RS-Combine by combination of the primary tumor and metastasis achieved the highest prediction performance in the training (AUCs, RS-Primary vs. RS-Metastasis vs. RS-Combine, 0.826 vs. 0.821 vs. 0.908) and testing (AUCs, RS-Primary vs. RS-Metastasis vs. RS-Combine, 0.760 vs. 0.791 vs. 0.884) set. The smoking status showed significant difference between EGFR mutant and wild-type groups (p < 0.05) in the training set. CONCLUSION The study indicates that hepatic metastasis-based radiomics can be used to detect the EGFR mutation. The developed multiorgan combined radiomics signature may be helpful to guide individual treatment strategies for patients with metastatic NSCLC.
Collapse
|
13
|
Wang W, Hao LP, Song H, Chu XY, Wang R. The Potential Roles of Exosomal Non-Coding RNAs in Hepatocellular Carcinoma. Front Oncol 2022; 12:790916. [PMID: 35280805 PMCID: PMC8912917 DOI: 10.3389/fonc.2022.790916] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth highest-incidence cancer and the 4th most deadly cancer all over the world, with a high fatality and low diagnostic rate. Nowadays, Excessive alcohol consumption, type-2 diabetes, smoking and obesity have become some primary risk factors of HCC. As intercellular messenger transporting information cargoes between cells, exosomes are a type of extracellular vesicles (EVs) released by most types of cells including tumor cells and non-tumor cells and play a pivotal role in establishing an HCC microenvironment. Exosomes, and more generally EVs, contain different molecules, including messenger RNAs (mRNAs), non-coding RNAs (ncRNAs), proteins, lipids and transcription factors. The three main ncRNAs in exosomes are microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs). NcRNAs, identified as essential components, are selectively sorted into exosomes and exosomal ncRNAs show great potential in regulating tumor development, including proliferation, invasion, angiogenesis, metastasis, immune escape and drug resistance. Here, we chiefly review the formation and uptake of exosomes, classification of exosomal ncRNAs and current research on the roles of exosomal ncRNAs in HCC progression. We also explored their clinical applications as new diagnostic biomarkers and therapeutic avenues in HCC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Li-Ping Hao
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Haizhu Song
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Xiao-Yuan Chu
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
14
|
Han L, Shi H, Ma S, Luo Y, Sun W, Li S, Zhang N, Jiang X, Gao Y, Huang Z, Xie C, Gong Y. Agrin Promotes Non-Small Cell Lung Cancer Progression and Stimulates Regulatory T Cells via Increasing IL-6 Secretion Through PI3K/AKT Pathway. Front Oncol 2022; 11:804418. [PMID: 35111682 PMCID: PMC8801576 DOI: 10.3389/fonc.2021.804418] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/23/2021] [Indexed: 01/04/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) has high mortality rates worldwide. Agrin contributes to immune synapse information and is involved in tumor metastasis. However, its roles in NSCLC and tumor immune microenvironment remain unclear. This study examined the effects and the underlying mechanisms of Agrin in NSCLC and tumor-infiltrated immune cells. Clinical tissue samples were used to confirm the bioinformatic predictions. NSCLC cells were used to investigate the effects of Agrin on cell cycle and proliferation, as well as invasion and migration. Tumor xenograft mouse model was used to confirm the effects of Agrin on NSCLC growth and tumor-infiltrated regulatory T cells (Tregs) in vivo. Agrin levels in NSCLC cells were closely related to tumor progression and metastasis, and its function was enriched in the PI3K/AKT pathway. In vitro assays demonstrated that Agrin knockdown suppressed NSCLC cell proliferation and metastasis, while PI3K/AKT activators reversed the inhibitory effects of Agrin deficiency on NSCLC cell behaviors. Agrin expression was negatively associated with immunotherapy responses in NSCLC patients. Agrin knockdown suppressed Tregs, as well as interleukin (IL)-6 expression and secretion, while PI3K/AKT activators and exogenous IL-6 rescued the inhibitory effects. In the mouse model, Agrin downregulation alleviated NSCLC cell growth and Treg infiltration in vivo. Our results indicated that Agrin promotes tumor cell growth and Treg infiltration via increasing IL-6 expression and secretion through PI3K/AKT pathway in NSCLC. Our studies suggested Agrin as a therapeutically potential target to increase the efficacy of immunotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongjie Shi
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shijing Ma
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuying Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Nannan Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xueping Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanping Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Yan Z, He M, He L, Wei L, Zhang Y. Identification and Validation of a Novel Six-Gene Expression Signature for Predicting Hepatocellular Carcinoma Prognosis. Front Immunol 2021; 12:723271. [PMID: 34925311 PMCID: PMC8671815 DOI: 10.3389/fimmu.2021.723271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a highly lethal disease. Effective prognostic tools to guide clinical decision-making for HCC patients are lacking. Objective We aimed to establish a robust prognostic model based on differentially expressed genes (DEGs) in HCC. Methods Using datasets from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and the International Genome Consortium (ICGC), DEGs between HCC tissues and adjacent normal tissues were identified. Using TCGA dataset as the training cohort, we applied the least absolute shrinkage and selection operator (LASSO) algorithm and multivariate Cox regression analyses to identify a multi-gene expression signature. Proportional hazard assumptions and multicollinearity among covariates were evaluated while building the model. The ICGC cohort was used for validation. The Pearson test was used to evaluate the correlation between tumor mutational burden and risk score. Through single-sample gene set enrichment analysis, we investigated the role of signature genes in the HCC microenvironment. Results A total of 274 DEGs were identified, and a six-DEG prognostic model was developed. Patients were stratified into low- or high-risk groups based on risk scoring by the model. Kaplan-Meier analysis revealed significant differences in overall survival and progression-free interval. Through univariate and multivariate Cox analyses, the model proved to be an independent prognostic factor compared to other clinic-pathological parameters. Time-dependent receiver operating characteristic curve analysis revealed satisfactory prediction of overall survival, but not progression-free interval. Functional enrichment analysis showed that cancer-related pathways were enriched, while immune infiltration analyses differed between the two risk groups. The risk score did not correlate with levels of PD-1, PD-L1, CTLA4, or tumor mutational burden. Conclusions We propose a six-gene expression signature that could help to determine HCC patient prognosis. These genes may serve as biomarkers in HCC and support personalized disease management.
Collapse
Affiliation(s)
- Zongcai Yan
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Meiling He
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lifeng He
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Liuxia Wei
- Department of Oncology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Yumei Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
16
|
Xing X, Gu F, Hua L, Cui X, Li D, Wu Z, Zhang R. TIMELESS Promotes Tumor Progression by Enhancing Macrophages Recruitment in Ovarian Cancer. Front Oncol 2021; 11:732058. [PMID: 34490127 PMCID: PMC8417241 DOI: 10.3389/fonc.2021.732058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/29/2021] [Indexed: 01/11/2023] Open
Abstract
Objective Ovarian cancer (OV) is the most fatal and frequent type of gynecological malignancy worldwide. TIMELESS (TIM), as a circadian clock gene, has been found to be highly expressed and predictive of poor prognosis in various cancers. However, the function of TIM in OV is not known. This study was designed to investigate the biological functions and underlying mechanisms of TIM during OV progression. Methods Cell viability assay, cell migration assay, immunohistochemistry staining, qPCR analyses, and tumor xenograft model were used to identify the functions of TIM in OV. Bioinformatics analyses, including GEPIA, cBioPortal, GeneMANIA, and TIMER, were used to analyze the gene expression, genetic alteration, and immune cell infiltration of TIM in OV. Results TIM is highly expressed in OV patients. TIM knockdown inhibited OV cell proliferation, migration, and invasion both in vitro and in vivo. Genetic alteration of TIM was identified in patients with OV. TIM co-expression network indicates that TIM had a wide effect on the immune cell infiltration and activation in OV. Further analysis and experimental verification revealed that TIM was positively correlated with macrophages infiltration in OV. Conclusions Our study unveiled a novel function of highly expressed TIM associated with immune cell especially macrophages infiltration in OV. TIM may serve as a potential prognostic biomarker and immunotherapy target for OV patients.
Collapse
Affiliation(s)
- Xin Xing
- Department of Obstetrics and Gynecology, Fengxian Hospital Affiliated to the Southern Medical University, Shanghai, China
| | - Fei Gu
- Department of Obstetrics and Gynecology, Fengxian Hospital Affiliated to the Southern Medical University, Shanghai, China
| | - Lanyu Hua
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoxiao Cui
- Department of Obstetrics and Gynecology, Fengxian Hospital Affiliated to the Southern Medical University, Shanghai, China
| | - Dongxue Li
- Shanghai Cancer Institute, Shanghai, China
| | - Zhiyong Wu
- Gynecology Department, Shanghai Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Rong Zhang
- Department of Obstetrics and Gynecology, Fengxian Hospital Affiliated to the Southern Medical University, Shanghai, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Tang G, Xu Y, Zhang C, Wang N, Li H, Feng Y. Green Tea and Epigallocatechin Gallate (EGCG) for the Management of Nonalcoholic Fatty Liver Diseases (NAFLD): Insights into the Role of Oxidative Stress and Antioxidant Mechanism. Antioxidants (Basel) 2021; 10:1076. [PMID: 34356308 PMCID: PMC8301033 DOI: 10.3390/antiox10071076] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver diseases (NAFLD) represent a set of liver disorders progressing from steatosis to steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma, which induce huge burden to human health. Many pathophysiological factors are considered to influence NAFLD in a parallel pattern, involving insulin resistance, oxidative stress, lipotoxicity, mitochondrial dysfunction, endoplasmic reticulum stress, inflammatory cascades, fibrogenic reaction, etc. However, the underlying mechanisms, including those that induce NAFLD development, have not been fully understood. Specifically, oxidative stress, mainly mediated by excessive accumulation of reactive oxygen species, has participated in the multiple NAFLD-related signaling by serving as an accelerator. Ameliorating oxidative stress and maintaining redox homeostasis may be a promising approach for the management of NAFLD. Green tea is one of the most important dietary resources of natural antioxidants, above which epigallocatechin gallate (EGCG) notably contributes to its antioxidative action. Accumulative evidence from randomized clinical trials, systematic reviews, and meta-analysis has revealed the beneficial functions of green tea and EGCG in preventing and managing NAFLD, with acceptable safety in the patients. Abundant animal and cellular studies have demonstrated that green tea and EGCG may protect against NAFLD initiation and development by alleviating oxidative stress and the related metabolism dysfunction, inflammation, fibrosis, and tumorigenesis. The targeted signaling pathways may include, but are not limited to, NRF2, AMPK, SIRT1, NF-κB, TLR4/MYD88, TGF-β/SMAD, and PI3K/Akt/FoxO1, etc. In this review, we thoroughly discuss the oxidative stress-related mechanisms involved in NAFLD development, as well as summarize the protective effects and underlying mechanisms of green tea and EGCG against NAFLD.
Collapse
Affiliation(s)
- Guoyi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China; (G.T.); (Y.X.); (C.Z.); (N.W.)
| | - Yu Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China; (G.T.); (Y.X.); (C.Z.); (N.W.)
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China; (G.T.); (Y.X.); (C.Z.); (N.W.)
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China; (G.T.); (Y.X.); (C.Z.); (N.W.)
| | - Huabin Li
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China;
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China; (G.T.); (Y.X.); (C.Z.); (N.W.)
| |
Collapse
|
18
|
Bao S, Jiang X, Jin S, Tu P, Lu J. TGF-β1 Induces Immune Escape by Enhancing PD-1 and CTLA-4 Expression on T Lymphocytes in Hepatocellular Carcinoma. Front Oncol 2021; 11:694145. [PMID: 34249750 PMCID: PMC8270637 DOI: 10.3389/fonc.2021.694145] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022] Open
Abstract
Primary liver cancer (PLC) is one of the most common types of cancer worldwide. Hepatocellular carcinoma (HCC) accounts for approximately 90% of PLC cases. The HCC microenvironment plays an important role in the occurrence and development of HCC. Immunotherapy for the HCC microenvironment has become an effective treatment strategy. T lymphocytes are an important part of the HCC microenvironment, and programmed cell death 1 (PD-1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) are the main immunosuppressive molecules of T lymphocytes. Transforming growth factor β1 (TGF-β1) can inhibit the immune function of T lymphocytes and promote the occurrence and development of tumors. However, few studies have explored whether TGF-β1 can upregulate the expression of PD-1 and CTLA-4 on T cells. In this study, we showed that TGF-β1 upregulated the expression of PD-1 and CTLA-4 on T lymphocytes and attenuated the cytotoxicity of T lymphocytes for HCC cells in vitro and in vivo. In addition, TGF-β1 increased the apoptosis of T lymphocytes induced by HCC cells. Finally, we found that the mechanism by which TGF-β1 upregulates the expression of PD-1 and CTLA-4 on T lymphocytes may be related to the calcineurin-nuclear factor of activated T cells 1 (CaN/NFATc1) pathway. This study will provide some experimental basis for liver cancer immunotherapy based on the tumor microenvironment.
Collapse
Affiliation(s)
- Shixiang Bao
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Xiaopei Jiang
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Shuai Jin
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Peipei Tu
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Jingtao Lu
- School of Life Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
19
|
Lee HA, Goh HG, Lee YS, Jung YK, Kim JH, Yim HJ, Lee MG, An H, Jeen YT, Yeon JE, Byun KS, Seo YS. Natural killer cell activity is a risk factor for the recurrence risk after curative treatment of hepatocellular carcinoma. BMC Gastroenterol 2021; 21:258. [PMID: 34118869 PMCID: PMC8199695 DOI: 10.1186/s12876-021-01833-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background Natural killer (NK) cells have been known to contribute to surveillance and control of hepatocellular carcinoma (HCC). However, the association of NK cell activity with stage and recurrence risk of HCC have not been fully evaluated. Methods Untreated patients with newly diagnosed HCC were prospectively enrolled. Peripheral blood mononuclear cells were isolated at the time of diagnosis. Patients who had undergone surgery or radiofrequency ablation were classified as the curative treatment group, and their blood samples were collected again at 1 month after treatment. Results A total of 80 patients with HCC were enrolled. The mean age was 62.5 years. At baseline, interferon (IFN)-γ producing NK cell proportion was significantly lower in patients with Barcelona clinic liver cancer (BCLC) stage B, C, or D than in those with BCLC stage 0 (42.9% vs. 56.8%, P = 0.045). Among all patients, 56 patients had undergone curative treatment, and 42 patients re-visited at 1 month after curative treatment. There was no significant change in total NK cell and IFN-γ producing NK cell proportion from baseline to 1 month after treatment (all P > 0.05). During a median follow-up of 12.4 months, HCC recurred in 14 patients (33.3%). When patients were classified according to the IFN-γ producing NK cell proportion (group 1, ≥ 45%; and group 2, < 45%), HCC recurrence rate did not differ according to the IFN-γ producing NK cell proportion at baseline (log-rank test, P = 0.835). However, patients with < 45% IFN-γ producing NK cell proportion at 1 month after treatment had a significantly higher HCC recurrence rate than patients with that of ≥ 45% (log-rank test, P < 0.001). Multivariate analysis revealed that BCLC stage B (hazard ratio [HR] = 3.412, P = 0.045) and < 45% IFN-γ producing NK cell proportion at 1 month after treatment (HR = 6.934, P = 0.001) independently predicted an increased risk of HCC recurrence. Conclusions Decreased NK cell activity is significantly associated with the advanced stage of HCC, and the increased recurrence risk of HCC after curative treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-021-01833-2.
Collapse
Affiliation(s)
- Han Ah Lee
- Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-Gu, Seoul, Korea.,Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Hyun Gil Goh
- Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-Gu, Seoul, Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-Gu, Seoul, Korea
| | - Young Kul Jung
- Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-Gu, Seoul, Korea
| | - Ji Hoon Kim
- Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-Gu, Seoul, Korea
| | - Hyung Joon Yim
- Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-Gu, Seoul, Korea
| | - Min-Goo Lee
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
| | - Hyunggin An
- Department of Biostatistics, Korea University College of Medicine, Seoul, Korea
| | - Yoon Tae Jeen
- Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-Gu, Seoul, Korea
| | - Jong Eun Yeon
- Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-Gu, Seoul, Korea
| | - Kwan Soo Byun
- Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-Gu, Seoul, Korea
| | - Yeon Seok Seo
- Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-Gu, Seoul, Korea.
| |
Collapse
|
20
|
Zhang H, Liu S, Chen L, Sheng Y, Luo W, Zhao G. MicroRNA miR-509-3p inhibit metastasis and epithelial-mesenchymal transition in hepatocellular carcinoma. Bioengineered 2021; 12:2263-2273. [PMID: 34115554 PMCID: PMC8806452 DOI: 10.1080/21655979.2021.1932210] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Our study seeks to obtain data which help to assess the impacts and related mechanisms of microRNA miR-509-3p in hepatocellular carcinoma (HCC). We found that the expression of miR-509-3p was down-regulated and Twist was up-regulated in HCC tissues and cell lines (HepG2, HCCLM3, Bel7402, and SMMC7721) compared with the adjacent normal tissues and normal human hepatocyte (L02). Moreover, cell proliferation, invasion, migration and epithelial–mesenchymal transition (EMT) in HepG2 and HCCLM3 cells were appeared to be markedly suppressed by overexpressed miR-509-3p. Overexpression of miR-509-3p also performed inhibition of the growth and metastasis in vivo. In addition, miR-509-3p could target and inhibit Twist expression, and it could further reverse the tumor promotion by Twist in HCC. All in all, miR-509-3p overexpression causes inhibition of the proliferation, migration, invasion and EMT of HCC cells by negatively regulating Twist, thereby suppressing HCC development and metastasis.
Collapse
Affiliation(s)
- Huiming Zhang
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Shuang Liu
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Liqiang Chen
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Yanliang Sheng
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Wenzhe Luo
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Gang Zhao
- School of Stomatology, Jiamusi University, Jiamusi, China
| |
Collapse
|
21
|
Liu G, Sun J, Yang ZF, Zhou C, Zhou PY, Guan RY, Sun BY, Wang ZT, Zhou J, Fan J, Qiu SJ, Yi Y. Cancer-associated fibroblast-derived CXCL11 modulates hepatocellular carcinoma cell migration and tumor metastasis through the circUBAP2/miR-4756/IFIT1/3 axis. Cell Death Dis 2021; 12:260. [PMID: 33707417 PMCID: PMC7952559 DOI: 10.1038/s41419-021-03545-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/31/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are commonly acquired activated extracellular matrix (ECM)-producing myofibroblasts, a phenotypes with multiple roles in hepatic fibrogenesis and carcinogenesis via crosstalk with cohabitating stromal/cancer cells. Here, we discovered a mechanism whereby CAF-derived cytokines enhance hepatocellular carcinoma (HCC) progression and metastasis by activating the circRNA-miRNA-mRNA axis in tumor cells. CAFs secreted significantly higher levels of CXCL11 than normal fibroblasts (NFs), and CXCL11 also had comparatively higher expressions in HCC tissues, particularly in metastatic tissues, than para-carcinoma tissues. Both CAF-derived and experimentally introduced CXCL11 promoted HCC cell migration. Likewise, CAFs promoted tumor migration in orthotopic models, as shown by an increased number of tumor nodules, whereas CXCL11 silencing triggered a decrease of it. CXCL11 stimulation upregulated circUBAP2 expression, which was significantly higher in HCC tissues than para-carcinoma tissues. Silencing circUBAP2 reversed the effects of CXCL11 on the expression of IL-1β/IL-17 and HCC cell migration. Further downstream, the IFIT1 and IFIT3 levels were significantly upregulated in HCC cells upon CXCL11 stimulation, but downregulated upon circUBAP2 silencing. IFIT1 or IFIT3 silencing reduced the expression of IL-17 and IL-1β, and attenuated the migration capability of HCC cells. Herein, circUBAP2 counteracted miR-4756-mediated inhibition on IFIT1/3 via sponging miR-4756. miR-4756 inhibition reversed the effects induced by circUBAP2 silencing on the IL-17 and IL-1β levels and HCC cell migration. In orthotopic models, miR-4756 inhibition also reversed the effects on metastatic progression induced by silencing circUBAP2.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Cancer-Associated Fibroblasts/metabolism
- Cancer-Associated Fibroblasts/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/secondary
- Cell Line, Tumor
- Cell Movement
- Chemokine CXCL11/genetics
- Chemokine CXCL11/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Male
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Invasiveness
- Paracrine Communication
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Signal Transduction
- Tumor Burden
- Mice
Collapse
Affiliation(s)
- Gao Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Jian Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Zhang-Fu Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Cheng Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Pei-Yun Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Ruo-Yu Guan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Bao-Ye Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Zhu-Tao Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China.
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China.
| |
Collapse
|
22
|
Wang P, Shen Y, Zhao L. Chitosan nanoparticles loaded with aspirin and 5-fluororacil enable synergistic antitumour activity through the modulation of NF-κB/COX-2 signalling pathway. IET Nanobiotechnol 2021; 14:479-484. [PMID: 32755957 DOI: 10.1049/iet-nbt.2020.0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Based on the enhancement of synergistic antitumour activity to treat cancer and the correlation between inflammation and carcinogenesis, the authors designed chitosan nanoparticles for co-delivery of 5-fluororacil (5-Fu: an as anti-cancer drug) and aspirin (a non-steroidal anti-inflammatory drug) and induced synergistic antitumour activity through the modulation of the nuclear factor kappa B (NF-κB)/cyclooxygenase-2 (COX-2) signalling pathways. The results showed that aspirin at non-cytotoxic concentrations synergistically sensitised hepatocellular carcinoma cells to 5-Fu in vitro. It demonstrated that aspirin inhibited NF-κB activation and suppressed NF-κB regulated COX-2 expression and prostaglandin E2 (PGE2) synthesis. Furthermore, the proposed results clearly indicated that the combination of 5-Fu and aspirin by chitosan nanoparticles enhanced the intracellular concentration of drugs and exerted synergistic growth inhibition and apoptosis induction on hepatocellular carcinoma cells by suppressing NF-κB activation and inhibition of expression of COX-2.
Collapse
Affiliation(s)
- Peng Wang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Yaping Shen
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, People's Republic of China.
| |
Collapse
|
23
|
Li J, Yan Y, Ang L, Li X, Liu C, Sun B, Lin X, Peng Z, Zhang X, Zhang Q, Wu H, Zhao M, Su C. Extracellular vesicles-derived OncomiRs mediate communication between cancer cells and cancer-associated hepatic stellate cells in hepatocellular carcinoma microenvironment. Carcinogenesis 2020; 41:223-234. [PMID: 31140556 DOI: 10.1093/carcin/bgz096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/08/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023] Open
Abstract
Tumor microenvironment (TME) is a critical determinant for hepatocellular carcinoma (HCC). Hepatic stellate cells (HSCs) are main interstitial cells in TME and play a vital role in early intrahepatic invasion and metastasis of HCC. The potential mechanism on the interactions between HSCs and HCC cells remains unclear. In this study, the effects of extracellular vesicles (EVs)-derived OncomiRs that mediate communication between HCC cells and cancer-associated hepatic stellate cells (caHSCs) and remold TME were investigated. The results found that the HCC cells-released EVs contained more various OncomiRs, which could activate HSCs (LX2 cells) and transform them to caHSCs, the caHSCs in turn exerted promotion effects on HCC cells through HSCs-released EVs. To further simulate the effects of OncomiRs in EVs on construction of pro-metastatic TME, a group of OncomiRs, miR-21, miR-221 and miR-151 was transfected into HCC cells and LX2 cells. These microRNAs in the EVs from OncomiRs-enhanced cells were demonstrated to have oncogenic effects on HCC cells by upregulating the activities of protein kinase B (AKT)/extracellular signal-regulated kinase (ERK) signal pathways. Equivalent results were also found in HCC xenografted tumor models. The findings suggested that the OncomiR secretion and transference by cancer cells-released EVs can mediate the communication between HCC cells and HSCs. HCC cells and caHSCs, as well as their secreted EVs, jointly construct a pro-metastatic TME suitable for invasion and metastasis of cancer cells, all these TME components form a positive feedback loop to promote HCC progression and metastasis.
Collapse
Affiliation(s)
- Jiang Li
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Yan Yan
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Lin Ang
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, Anhui Province, China
| | - Xiaoya Li
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Chunying Liu
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Bin Sun
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Xuejing Lin
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Zhangxiao Peng
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Xiaofeng Zhang
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Qin Zhang
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Hongping Wu
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Min Zhao
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, Anhui Province, China
| | - Changqing Su
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| |
Collapse
|
24
|
Wu Y, Xia L, Zhao P, Deng Y, Guo Q, Zhu J, Chen X, Ju X, Wu X. Immune profiling reveals prognostic genes in high-grade serous ovarian cancer. Aging (Albany NY) 2020; 12:11398-11415. [PMID: 32544083 PMCID: PMC7343445 DOI: 10.18632/aging.103199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/30/2020] [Indexed: 12/27/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) is a heterogeneous disease with diverse clinical outcomes, highlighting a need for prognostic biomarker identification. Here, we combined tumor microenvironment (TME) scores with HGSOC characteristics to identify immune-related prognostic genes through analysis of gene expression profiles and clinical patient data from The Cancer Genome Atlas and the International Cancer Genome Consortium public cohorts. We found that high TME scores (TMEscores) based on the fractions of immune cell types correlated with better overall survival. Furthermore, differential expression analysis revealed 329 differentially expressed genes between patients with high vs. low TMEscores. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that these genes participated mainly in immune-related functions and, among them, 48 TME-related genes predicted overall survival in HGSOC. Seven of those genes were associated with prognosis in an independent HGSOC database. Finally, the two genes with the lowest p-values in the prognostic analysis (GBP1, ETV7) were verified through in vitro experiments. These findings reveal specific TME-related genes that could serve as effective prognostic biomarkers for HGSOC.
Collapse
Affiliation(s)
- Yong Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingfang Xia
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ping Zhao
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Deng
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qinhao Guo
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Zhu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaojun Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xingzhu Ju
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Yin H, Tang Y, Guo Y, Wen S. Immune Microenvironment of Thyroid Cancer. J Cancer 2020; 11:4884-4896. [PMID: 32626535 PMCID: PMC7330689 DOI: 10.7150/jca.44506] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Thyroid cancer (TC) is a highly heterogeneous endocrine malignancy with an increased incidence in women than in men. Previous studies regarding the pathogenesis of TC focused on the pathological changes of the tumor cells while ignoring the importance of the mesenchymal cells in tumor microenvironment. However, more recently, the stable environment provided by the interaction of thyroid cancer cells with the peri-tumoral stroma has been widely studied. Studies have shown that components of an individual's immune system are closely related to the occurrence, invasion, and metastasis of TC, which may affect response to treatment and prognosis of the patients. This article presents a comprehensive review of the immune cells, secreted soluble mediators and immune checkpoints in the immune microenvironment, mechanisms that promoting TC cells immune evasion and existing immunotherapy strategies. Besides it provides new strategies for TC prognosis prediction and immunotherapy.
Collapse
Affiliation(s)
- Hongyu Yin
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Yemei Tang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Shuxin Wen
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China.,General Hospital, Shenzhen University, Shenzhen 518061, Guangdong, P.R. China
| |
Collapse
|
26
|
Juengpanich S, Topatana W, Lu C, Staiculescu D, Li S, Cao J, Lin J, Hu J, Chen M, Chen J, Cai X. Role of cellular, molecular and tumor microenvironment in hepatocellular carcinoma: Possible targets and future directions in the regorafenib era. Int J Cancer 2020; 147:1778-1792. [PMID: 32162677 DOI: 10.1002/ijc.32970] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) remains as one of the major causes of cancer-related mortality, despite the recent development of new therapeutic options. Regorafenib, an oral multikinase inhibitor, is the first systemic therapy that has a survival benefit for patients with advanced HCC that have a poor response to sorafenib. Even though regorafenib has been approved by the FDA, the clinical trial for regorafenib treatment does not show significant improvement in overall survival. The impaired efficacy of regorafenib caused by various resistance mechanisms, including epithelial-mesenchymal transitions, inflammation, angiogenesis, hypoxia, oxidative stress, fibrosis and autophagy, still needs to be resolved. In this review, we provide insight on regorafenib microenvironmental, molecular and cellular mechanisms and interactions in HCC treatment. The aim of this review is to help physicians select patients that would obtain the maximal benefits from regorafenib in HCC therapy.
Collapse
Affiliation(s)
- Sarun Juengpanich
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Lu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Daniel Staiculescu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jiacheng Lin
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiang Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Tian Z, Wang Z, Chen Y, Qu S, Liu C, Chen F, Ma L, Zhu J. Bioinformatics Analysis of Prognostic Tumor Microenvironment-Related Genes in the Tumor Microenvironment of Hepatocellular Carcinoma. Med Sci Monit 2020; 26:e922159. [PMID: 32231177 PMCID: PMC7146066 DOI: 10.12659/msm.922159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background Growing evidence shows that the tumor microenvironment plays a crucial role in the pathogenesis of hepatocellular carcinoma (HCC). The present work aimed to screen tumor microenvironment-related genes strongly related to prognosis and to construct a prognostic gene expression model for HCC. Material/Methods We downloaded gene expression data of 371 HCC patients in The Cancer Genome Atlas (TCGA). A novel ESTIMATE algorithm was applied to calculate immune scores and stromal scores for each patient. Then, the differentially-expressed genes (DEGs) were detected according to the immune and stromal scores, and tumor microenvironment-related genes were further explored. Univariate, Lasso, and multivariate Cox analyses were performed to build the tumor microenvironment-related prediction model. Results Stromal and immune scores were calculated and were found to be correlated with the 3-year prognosis of HCC patients. DEGs were detected according to the stromal and immune scores. There were 49 genes with prognostic value in both TCGA and ICGC (International Cancer Genome Consortium) considered as prognostic tumor microenvironment-related genes. Univariate, Lasso, and multivariate Cox analyses were conducted. A novel 2-gene signature (IL18RAP and GPR182) was built for HCC 3-year prognosis prediction. The 2-gene signature was regarded as an independent prognostic predictor that was correlated with 3-year survival rate, as shown by Cox regression analysis. Conclusions This study offers a novel 2-gene signature to predict overall survival of patients with HCC, which has the potential to be used as an independent prognostic predictor. Overall, this study reveals more details about the tumor microenvironment in HCC and offers novel candidate biomarkers.
Collapse
Affiliation(s)
- Zongbiao Tian
- Department of Gastroenterology, TengZhou Central People's Hospital, Tengzhou, Shandong, China (mainland)
| | - Zheng Wang
- Department of Infectious Diseases, Qilu Hospital, Shandong University, Jinan, Shandong, China (mainland)
| | - Yanfeng Chen
- Department of Gastroenterology, TengZhou Central People's Hospital, Tengzhou, Shandong, China (mainland)
| | - Shuoying Qu
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong, China (mainland)
| | - Changhong Liu
- Department of Gastroenterology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China (mainland)
| | - Fengzhe Chen
- Department of Infectious Diseases, Qilu Hospital, Shandong University, Jinan, Shandong, China (mainland)
| | - Lixian Ma
- Department of Infectious Diseases, Qilu Hospital, Shandong University, Jinan, Shandong, China (mainland)
| | - Jie Zhu
- Department of Infectious Diseases, Qilu Hospital, Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
28
|
Wang M, Ye Q, Mao D, Li H. Research Progress in Liver-Regenerating Microenvironment and DNA Methylation in Hepatocellular Carcinoma: The Role of Traditional Chinese Medicine. Med Sci Monit 2020; 26:e920310. [PMID: 32144233 PMCID: PMC7077739 DOI: 10.12659/msm.920310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
The development, progression, recurrence, and metastasis of hepatocellular carcinoma (HCC) are closely associated with an abnormal liver-regenerating microenvironment (LRM). Therefore, preventing and reversing an abnormal LRM is a potential therapeutic strategy against HCC. Studies are increasingly focusing on the impact of regeneration, fibrosis, angiogenesis, inflammation, immunomodulation, and hepatic stem cells on HCC development and progression. As a key epigenetic mechanism, DNA methylation is extensively involved in regulating physiological and pathological pathways. In this review, we summarize recent findings on the role of DNA methylation in the fibrotic, angiogenic, inflammatory/immune, and stem cell microenvironments of HCC, and discuss new advances in Traditional Chinese Medicine (TCM) on influencing the abnormal LRM, so as to gain new insights into alleviating the abnormal LRM via regulating DNA methylation by TCM.
Collapse
Affiliation(s)
- Minggang Wang
- Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, P.R. China
| | - Qianling Ye
- Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, P.R. China
| | - Dewen Mao
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, P.R. China
| | - Hanmin Li
- Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, P.R. China
| |
Collapse
|
29
|
Ma Q, Wu H, Xiao Y, Liang Z, Liu T. Upregulation of exosomal microRNA‑21 in pancreatic stellate cells promotes pancreatic cancer cell migration and enhances Ras/ERK pathway activity. Int J Oncol 2020; 56:1025-1033. [PMID: 32319558 DOI: 10.3892/ijo.2020.4986] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/20/2020] [Indexed: 11/05/2022] Open
Abstract
Pancreatic stellate cells (PSCs) are typically activated in pancreatic ductal adenocarcinoma (PDAC) and release exosomes containing high levels of microRNA‑21 (miR‑21). However, the specific roles of exosomal miR‑21 in regulating the PDAC malignant phenotype remain unknown. The present study aimed to determine the effects of exosomal miR‑21 on the migratory ability of PDAC cells and explore the potential underlying molecular mechanism. Weighted gene correlation network and The Cancer Genome Atlas database analysis revealed that high miR‑21 levels were associated with a poor prognosis in patients with pancreatic adenocarcinoma, and that the Ras/ERK signaling pathway may be a potential target of miR‑21. In vitro, PDAC cells were demonstrated to internalize the PSC-derived exosome, resulting in high miR‑21 levels, which subsequently promoted cell migration, induced epithelial‑to‑mesenchymal transition (EMT) and increased matrix metalloproteinase‑2/9 activity. In addition, exosomal miR‑21 increased the levels of ERK1/2 and Akt phosphorylation in PDAC cells. Collectively, these results suggested that PSC‑derived exosomal miR‑21 may promote PDAC cell migration and EMT and enhance Ras/ERK signaling activity. Thus, miR‑21 may be a potential cause of poor prognosis in patients with pancreatic cancer and a new treatment target.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Pathology, Peking Union Medical College Hospital, Beijing 100730, P. R. China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Beijing 100730, P. R. China
| | - Ying Xiao
- Department of Pathology, Peking Union Medical College Hospital, Beijing 100730, P. R. China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Beijing 100730, P. R. China
| | - Tonghua Liu
- Department of Pathology, Peking Union Medical College Hospital, Beijing 100730, P. R. China
| |
Collapse
|
30
|
Liu H, Liu T, Zhou Y, Song X, Wei R. Overexpression of long non-coding RNA cancer susceptibility 11 is involved in the development of chemoresistance to carboplatin in hepatocellular carcinoma. Oncol Lett 2020; 19:1993-1998. [PMID: 32194694 DOI: 10.3892/ol.2020.11265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 11/13/2019] [Indexed: 11/06/2022] Open
Abstract
The long non-coding (lnc)RNA cancer susceptibility 11 (CASC11) promotes gastric cancer, however its role in other diseases is unknown. The present study demonstrated upregulation of lncRNA CASC11 and microRNA (miR)-21 in hepatocellular carcinoma (HCC). Furthermore, the expression of CASC11 was positively correlated with that of miR-21 in HCC tumors. Moreover, overexpression of lncRNA CASC11 led to upregulation of miR-21 in HCC cells, whereas overexpression of miR-21 had no effect on CASC11 levels. The levels of lncRNA CASC11 and miR-21 were found to be upregulated in the plasma of patients with HCC during chemotherapy. In vitro cell experiments demonstrated upregulation of lncRNA CASC11 in HCC cells treated with carboplatin. Additionally, overexpression of lncRNA CASC11 promoted, whereas its knockdown inhibited the viability of HCC cells following carboplatin treatment. Finally, overexpression of miR-21 ameliorated the effects of lncRNA CASC11 knockdown on cell viability. Thus, these findings suggest that upregulation of lncRNA CASC11 is involved in the development of chemoresistance to carboplatin in patients with HCC, via the upregulation of miR-21.
Collapse
Affiliation(s)
- Haidong Liu
- Department of Digestive Diseases, The Sixth People's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| | - Tao Liu
- Department of Hepatology, The Sixth People's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| | - Yong Zhou
- Department of Hepatology, The Sixth People's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| | - Xinwen Song
- Department of Infectious Diseases, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Rendong Wei
- Department of Hepatology, The Sixth People's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| |
Collapse
|
31
|
Liver Cancer: Current and Future Trends Using Biomaterials. Cancers (Basel) 2019; 11:cancers11122026. [PMID: 31888198 PMCID: PMC6966667 DOI: 10.3390/cancers11122026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common type of cancer diagnosed and the second leading cause of death worldwide. Despite advancement in current treatments for HCC, the prognosis for this cancer is still unfavorable. This comprehensive review article focuses on all the current technology that applies biomaterials to treat and study liver cancer, thus showing the versatility of biomaterials to be used as smart tools in this complex pathologic scenario. Specifically, after introducing the liver anatomy and pathology by focusing on the available treatments for HCC, this review summarizes the current biomaterial-based approaches for systemic delivery and implantable tools for locally administrating bioactive factors and provides a comprehensive discussion of the specific therapies and targeting agents to efficiently deliver those factors. This review also highlights the novel application of biomaterials to study HCC, which includes hydrogels and scaffolds to tissue engineer 3D in vitro models representative of the tumor environment. Such models will serve to better understand the tumor biology and investigate new therapies for HCC. Special focus is given to innovative approaches, e.g., combined delivery therapies, and to alternative approaches-e.g., cell capture-as promising future trends in the application of biomaterials to treat HCC.
Collapse
|
32
|
Myricetin inhibits migration and invasion of hepatocellular carcinoma MHCC97H cell line by inhibiting the EMT process. Oncol Lett 2019; 18:6614-6620. [PMID: 31788118 PMCID: PMC6865832 DOI: 10.3892/ol.2019.10998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 08/17/2019] [Indexed: 12/15/2022] Open
Abstract
The recurrence and metastasis of hepatocellular carcinoma (HCC) are a major concern in current research. Epithelial-mesenchymal transition (EMT) is the leading cause underlying the high mobility and invasiveness of tumor cells. Myricetin is a natural flavonol with various pharmacological activities. The effects of myricetin on the migration and invasion of HCC MHCC97H cells were evaluated in the present study. Wound healing, Transwell migration and invasion assays were used to examine cell migration and invasion. Western blot analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to examine the expression of epithelial (E)-cadherin, neural (N)-cadherin and vimentin. The present study aimed to investigate the effects of myricetin on the migration and invasion of HCC MHCC97H cells. It was indicated that myricetin decreased the viability of MHCC97H cells in a concentration and time-dependent manner, and inhibited MHCC97H cells migration and invasion. As the concentration of myricetin increased, filopodia and lamellipodia in cells weakened and cells were arranged more closely. RT-qPCR and western blotting revealed that myricetin upregulated E-cadherin expression and downregulated N-cadherin. Collectively, the results of the present study demonstrate that myricetin may inhibit the migration and invasion of HCC MHCC97H cells by inhibiting the EMT process.
Collapse
|
33
|
Zhang X, Lu M, Xu Y, He G, Liu Q, Zhu J, Zhang C, Zhang X. IL-10 promoter hypomethylation is associated with increased IL-10 expression and poor survival in hepatocellular carcinoma. Transl Cancer Res 2019; 8:1466-1475. [PMID: 35116889 PMCID: PMC8797925 DOI: 10.21037/tcr.2019.07.33] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/11/2019] [Indexed: 11/21/2022]
Abstract
Background Epigenetic alterations of tumor-associated genes contribute to the pathogenesis of virtually all cancer types. We evaluated the methylation status of the interleukin-10 (IL-10) gene promoter and assessed its association with IL-10 mRNA expression and clinical prognosis in hepatocellular carcinoma (HCC) patients. Methods Methylation-specific polymerase chain reaction (MSP) and real-time polymerase chain reaction (PCR) were used to define the methylation index (MI) of the IL-10 gene and quantify IL-10 mRNA expression in 120 HCC samples and paired non-tumor tissues. Results Mean MI was 0.47 in HCC specimens and 0.59 in non-tumor controls, and was associated with metastasis classification and serum α-fetoprotein (AFP) levels. IL-10 mRNA levels [mean –∆∆Ct of 1.678 in HCC cases with hypomethylation (∆MI ≤0) and –0.18 in HCC cases with hypermethylation (∆MI >0)] also correlated with metastasis classification and serum AFP. An association was detected between IL-10 mRNA and its gene’s MI in HCC. Also, an association was found between IL-10 hypomethylation, but not IL-10 mRNA expression and reduced postoperative HCC survival. Conclusions These results indicate that IL-10 promoter hypomethylation is associated with increased IL-10 mRNA levels and indicative of poor survival in HCC.
Collapse
Affiliation(s)
- Xianjing Zhang
- The Second Clinical Department, Medical School of Nanchang University, Nanchang 330006, China.,Department of Laboratory, Suzhou Science& Technology Town Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215153, China
| | - Mingzhu Lu
- Clinical Oncology Laboratory, Changzhou Cancer Hospital, Soochow University, Changzhou 213032, China
| | - Yun Xu
- Department of Oncology, Nanyang Center Hospital, Nanyang 473000, China
| | - Guangzhao He
- Clinical Oncology Laboratory, Changzhou Cancer Hospital, Soochow University, Changzhou 213032, China
| | - Qian Liu
- Clinical Oncology Laboratory, Changzhou Cancer Hospital, Soochow University, Changzhou 213032, China
| | - Jing Zhu
- Department of Laboratory, Suzhou Science& Technology Town Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215153, China
| | - Changsong Zhang
- Department of Laboratory, Suzhou Science& Technology Town Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215153, China.,Clinical Oncology Laboratory, Changzhou Cancer Hospital, Soochow University, Changzhou 213032, China
| | - Xiaoli Zhang
- Department of Clinical Medicine, Hubei College of Chinese Medicine, Jingzhou 434100, China
| |
Collapse
|
34
|
Cui M, Yao X, Lin Y, Zhang D, Cui R, Zhang X. Interactive functions of microRNAs in the miR-23a-27a-24-2 cluster and the potential for targeted therapy in cancer. J Cell Physiol 2019; 235:6-16. [PMID: 31192453 DOI: 10.1002/jcp.28958] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs about 19-22 nucleotides in length. Growing evidence has reported the significant role of miRNAs in various cancer-associated biological processes, such as proliferation, differentiation, apoptosis, metabolism, invasion, metastasis, and drug resistance. However, most studies focus on the targets of some individual miRNAs; the interactive and global functions of diverse miRNAs are still unclear and the phenomenon of the gathering of miRNAs in clusters has always been ignored. On the other hand, the fact that a single miRNA may regulate many genes and that numerous mRNAs are regulated by the same miRNA also makes it imperative to further study the cooperating characteristics of miRNAs in cancer. MiR-23a-27a-24-2 is located in the human chromosome 9q22, forming three mature miRNAs: miR-23a, miR27a, and miR-24, which are expressed abnormally in many malignant tumors. This review aims to summarize the interactive functions of miRNAs in miR-23a-27a-24-2 clusters in cancer from the perspectives of the regulation network, tumor microenvironment, and targeted therapy.
Collapse
Affiliation(s)
- Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Xiaoxiao Yao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Yang Lin
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Dan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| |
Collapse
|
35
|
Hypo-phosphorylated CD147 promotes migration and invasion of hepatocellular carcinoma cells and predicts a poor prognosis. Cell Oncol (Dordr) 2019; 42:537-554. [DOI: 10.1007/s13402-019-00444-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2019] [Indexed: 02/08/2023] Open
|
36
|
Recent Insight into the Role of Fibrosis in Nonalcoholic Steatohepatitis-Related Hepatocellular Carcinoma. Int J Mol Sci 2019; 20:ijms20071745. [PMID: 30970564 PMCID: PMC6480228 DOI: 10.3390/ijms20071745] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/20/2019] [Accepted: 03/23/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most widespread tumors in the world and its prognosis is poor because of lack of effective treatments. Epidemiological studies show that non-alcoholic steatohepatitis (NASH) and advanced fibrosis represent a relevant risk factors to the HCC development. However little is known of pathophysiological mechanisms linking liver fibrogenesis to HCC in NASH. Recent advances in scientific research allowed to discover some mechanisms that may represent potential therapeutic targets. These include the integrin signaling, hepatic stellate cells (HSCs) activation, Hedgehog signaling and alteration of immune system. In the near future, knowledge of fibrosis-dependent carcinogenic mechanisms, will help optimize antifibrotic therapies as an approach to prevent and treat HCC in patients with NASH and advanced fibrosis.
Collapse
|
37
|
Tian XP, Wang CY, Jin XH, Li M, Wang FW, Huang WJ, Yun JP, Xu RH, Cai QQ, Xie D. Acidic Microenvironment Up-Regulates Exosomal miR-21 and miR-10b in Early-Stage Hepatocellular Carcinoma to Promote Cancer Cell Proliferation and Metastasis. Am J Cancer Res 2019; 9:1965-1979. [PMID: 31037150 PMCID: PMC6485281 DOI: 10.7150/thno.30958] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/27/2019] [Indexed: 12/18/2022] Open
Abstract
Rationale: The incidence of hepatocellular carcinoma is rising worldwide. It is predicted that nearly half of the early-stage hepatocellular carcinoma (E-HCC) patients will develop recurrence. Dysregulated pH, a hallmark of E-HCC, is correlated with poor prognosis. The acidic microenvironment has been shown to promote the release of exosomes, the membrane vesicles recognized as intercellular communicators associated with tumor progression, recurrence, and metastasis. We, therefore, aimed to identify exosomes induced by acidic microenvironment that may regulate E-HCC progression and to explore their mechanisms and clinical significance in E-HCCs. Methods: miRNA microarray analysis and LASSO logistic statistic model were used to identify the main functional exosomal miRNAs. Invasion and scratch assays were performed to examine the migration and invasion of HCC cells. Immunoblotting and immunofluorescence were employed to detect the epithelial-to-mesenchymal transition (EMT) in HCC cells. Chromatin immunoprecipitation (ChIP) was used to analyze the binding of HIF-1α and HIF-2α to promoter regions of miR-21 and miR-10b. Results: The acidic microenvironment in HCC was correlated with poor prognosis of patients. Exosomes from HCC cells cultured in the acidic medium could promote cell proliferation, migration, and invasion of recipient HCC cells. We identified miR-21 and miR-10b as the most important functional miRNAs in acidic HCC-derived exosomes. Also, the acidic microenvironment triggered the activation of HIF-1α and HIF-2α and stimulated exosomal miR-21 and miR-10b expression substantially promoting HCC cell proliferation, migration, and invasion both in vivo and in vitro. In E-HCC patients, serum exosomal miR-21 and miR-10b levels were associated with advanced tumor stage and HIF-1α and HIF-2α expression and were independent prognostic factors for disease-free survival of E-HCC patients. Most importantly, we developed a nano-drug to target exosomal miR-21 and/or miR-10b and examined its therapeutic effects against HCC in vivo. Conclusion: Our findings suggested that the exosomal miR-21 and miR-10b induced by acidic microenvironment in HCC promote cancer cell proliferation and metastasis and may serve as prognostic molecular markers and therapeutic targets for HCC.
Collapse
|
38
|
Knockdown of PHF5A Inhibits Migration and Invasion of HCC Cells via Downregulating NF- κB Signaling. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1621854. [PMID: 30766880 PMCID: PMC6350539 DOI: 10.1155/2019/1621854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/29/2018] [Accepted: 12/23/2018] [Indexed: 02/07/2023]
Abstract
Background Inflammation is the major risk factor for the progression of hepatocellular carcinoma (HCC), and the nuclear factor-κB (NF-κB) signaling plays the central role in the inflammation process. However, the activated mechanism of NF-κB signaling in HCC is unclear. Methods The expression of PHF5A is examined by qPCR, western blotting, and immunohistochemistry (IHC) assay. The potential of PHF5A (PHD-finger domain protein 5a) for migration and invasion is examined by wound healing and Transwell assay. Luciferase reporter assay, western blotting, and qPCR were applied to explore the mechanism by which PHF5A is involved in progression of HCC. Results PHF5A was significantly upregulated in HCC tissues and cells. Downregulation of PHF5A inhibits the migration and invasion of HCC cells. Further study demonstrated that PHF5A is implicated in HCC progression through NF-κB signaling. In addition, blocking the NF-κB signaling can weaken the stimulatory effect of PHF5A on migration and invasion of HCC cells. Conclusion PHF5A expression is upregulated in HCC tissues, and depletion of PHF5A inhibits the migration and invasion of HCC cells. Further experiments demonstrated that PHF5A is implicated in NF-κB signaling and knockdown of PHF5A downregulates the activity of NF-κB pathway to inhibit the tumor progression. The above results provide the evidence that PHF5A plays an indispensable role in progressive effect of NF-κB pathway in HCC and may be a novel therapeutic target of HCC.
Collapse
|
39
|
Vacante F, Senesi P, Montesano A, Paini S, Luzi L, Terruzzi I. Metformin Counteracts HCC Progression and Metastasis Enhancing KLF6/p21 Expression and Downregulating the IGF Axis. Int J Endocrinol 2019; 2019:7570146. [PMID: 30774659 PMCID: PMC6350585 DOI: 10.1155/2019/7570146] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/21/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is the common tumor of the liver. Unfortunately, most HCC seem to be resistant to conventional chemotherapy and radiotherapy. The poor efficacy of antitumor agents is also due, at least in part, to the inefficient drug delivery and metabolism exerted by the steatotic/cirrhotic liver that hosts the tumor. Thus, novel approaches in chemotherapy may be needed to improve the survival rate in patients with HCC. Metformin (METF) has been found to lower HCC risk; however, the mechanisms by which METF performs its anticancer activity are not completely elucidated. Previous studies have showed METF action on growth inhibition in the liver in a dose/time-dependent manner and its antitumor role by targeting multiple pathways. We investigated molecular effects of METF in an in vitro human hepatoma model (HepG2), studying cell cycle regulators, tumorigenesis markers, and insulin-like growth factor (IGF) axis regulation. MATERIALS AND METHODS HepG2 cells were treated with METF (400 μM) for 24, 48, and 72 hours. METF action on cell cycle progression and cellular pathways involved in metabolism regulation was evaluated by gene expression analysis, immunofluorescence, and Western blot assay. RESULTS By assessing HepG2 cell viability, METF significantly decreased growth cell capacity raising KLF6/p21 protein content. Moreover, METF ameliorated the cancer microenvironment reducing cellular lipid drop accumulation and promoting AMPK activity. The overexpression of IGF-II molecule and the IGF-I receptor that plays a main role in HCC progression was counteracted by METF. Furthermore, the protein content of HCC principal tumor markers, CK19 and OPN, linked to the metastasis process was significantly reduced by METF stimulus. CONCLUSION Our data show that METF could suppress HepG2 proliferation, through induction of cell cycle arrest at the G0/G1 phase. In addition, METF effect on the cancer microenvironment and on the IGF axis leads to the development of new METF therapeutic use in HCC treatment.
Collapse
Affiliation(s)
- Fernanda Vacante
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Pamela Senesi
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Anna Montesano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Stefano Paini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Livio Luzi
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Ileana Terruzzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
40
|
Liu XS, Lin XK, Mei Y, Ahmad S, Yan CX, Jin HL, Yu H, Chen C, Lin CZ, Yu JR. Regulatory T Cells Promote Overexpression of Lgr5 on Gastric Cancer Cells via TGF-beta1 and Confer Poor Prognosis in Gastric Cancer. Front Immunol 2019; 10:1741. [PMID: 31417548 PMCID: PMC6682668 DOI: 10.3389/fimmu.2019.01741] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/10/2019] [Indexed: 01/26/2023] Open
Abstract
Background: The leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5) is considered a cancer stem cell marker, and is often overexpressed in tumors. The interaction between Lgr5 and the immune-related tumor microenvironment is not completely understood. The aim of this study was to examine the role of Lgr5 in the microenvironment of gastric cancer (GC), and to explore possible immunological mechanisms influencing Lgr5 expression that are governed by regulatory T cells. Methods: Lgr5 expression was examined in 180 GC tumors by immunohistochemistry, and in 80 pairs of GC tumors for analysis of Th1/Th2 cytokines by ELISA. In addition, SGC7901 cells were co-cultured with patient-derived Tregs, varying concentrations of TGF-β1, TGF-β1 neutralizing antibody, or TGF-β receptor inhibitor SB431542, and Lgr5 and β-catenin expression were examined by qRT-PCR and western blot. Results: In this study, an immunosuppressive microenvironment was associated with high Lgr5 expression in GC. Furthermore, Lgr5 expression was up-regulated in GC cells co-cultured with Tregs or treated with exogenous TGF-β1. This up-regulation was partially inhibited by the TGF-β1 neutralizing antibody, or TGF-β1 receptor antagonist SB431542. β-catenin was up-regulated with high Lgr5 expression induced by exogenous TGF-β1, and this up-regulation was inhibited by SB431542. An increased number of Tregs and high Lgr5 expression in GC tissues were significantly associated with low overall survival. Conclusion: Tregs promoted increased Lgr5 expression in GC cells via TGF-β1 and TGF-β1 signaling pathway, which may involve activation of the Wnt signaling pathway. High Lgr5 expression via TGF-β confer poor prognosis in gastric cancer.
Collapse
Affiliation(s)
- Xiao-Sun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Xian-Ke Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Mei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sabir Ahmad
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chong-Xian Yan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Long Jin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cai-Zhao Lin
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ji-Ren Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Ji-Ren Yu
| |
Collapse
|
41
|
Shi C, Chen Y, Chen Y, Yang Y, Bing W, Qi J. CD4 + CD25 + regulatory T cells promote hepatocellular carcinoma invasion via TGF-β1-induced epithelial-mesenchymal transition. Onco Targets Ther 2018; 12:279-289. [PMID: 30643426 PMCID: PMC6314313 DOI: 10.2147/ott.s172417] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background CD4+ CD25+ regulatory T cells (Tregs), a crucial component of the infiltration of immune cells in tumor microenvironment, are associated with progression and metastasis of hepatocellular carcinoma (HCC). Methods The mechanism of Tregs in the invasion and metastasis of HCC was investigated in vivo and in vitro using immunohistochemical analysis, western blot, and quantitative reverse transcription-PCR (qRT-PCR). Results Analysis of 78 clinical HCC samples indicated that high expression of Tregs was strongly associated with poor cancer-free survival and overall survival of patients. The reduced expression of E-cadherin and enhanced expression of Vimentin and transforming growth factor-beta 1 (TGF-β1) were found in HCC tissue compared with normal liver tissue. The HCC Hepa1-6 cells were treated with the supernatant of Tregs-conditioned medium (Tregs-CM) to investigate the epithelial-mesenchymal transition (EMT) and TGF-β1. Western blot and qRT-PCR also showed that down-regulated E-cadherin and up-regulated Vimentin and TGF-β1 were found in Tregs-CM-treated Hepa1-6 cells. An experiment of tumorigenicity in C57 mice showed larger and heavier tumors in Tregs-CM-treated group than in the control group. Tregs produced higher TGF-β1 compared with Tregs treated with FOXP3 shRNA. TGF-β1 with neutralizing antibodies was used to deplete TGF-β1 in Tregs-CM, which enhanced expression of E-cadherin, reduced expression of Vimentin and TGF-β1, and decreased migratory and invasive capacity of Hepa1-6 cells. Conclusion Tregs could promote the invasion and migration of Hepa1-6 cells, which are possibly maintained by TGF-β1-induced EMT. This study showed that the development of therapeutic strategies against TGF-β1 pathway is valuable in HCC therapy.
Collapse
Affiliation(s)
- Chunying Shi
- Department of Radiology, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin 150001, China
| | - Ying Chen
- Department of Radiology, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin 150001, China
| | - Yaodong Chen
- Department of Radiology, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin 150001, China
| | - Yuchuan Yang
- Department of Radiology, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin 150001, China
| | - Wang Bing
- Department of Radiology, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin 150001, China
| | - Jiping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin 150001, China,
| |
Collapse
|
42
|
Zheng Y, Huang Q, Ding Z, Liu T, Xue C, Sang X, Gu J. Genome-wide DNA methylation analysis identifies candidate epigenetic markers and drivers of hepatocellular carcinoma. Brief Bioinform 2018; 19:101-108. [PMID: 27760737 DOI: 10.1093/bib/bbw094] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Indexed: 02/06/2023] Open
Abstract
The alteration of DNA methylation landscape is a key epigenetic event in cancer. As the accumulation of large-scale genome-wide DNA methylation data from clinical samples, we are able to characterize the patterns of DNA methylation alterations for identifying candidate epigenetic markers and drivers. In this survey, we take hepatocellular carcinoma (HCC) as an example to show the basic steps of analyzing the DNA methylation patterns in cancer across multiple data sets. We collected three genome-wide DNA methylation data sets with ∼800 clinical samples and the corresponding gene expression data sets. First, by quantitatively analyzing two global methylation alterations, it is found that about 90% tumors acquire either genome-wide DNA hypo-methylation or CpG island methylator phenotype. Second, probe-level analysis identified 267, 228 and 197 hyper-methylated sites in promoter regions for the three data sets, respectively. These local hyper-methylated patterns are highly consistent: 84 sites (from 61 promoters) are hyper-methylated in all the three studied data sets, including many previously reported genes, such as CDKL2, TBX15 and NKX6-2. Then, these hyper-methylated sites were used as candidate markers to classify tumor and non-tumor samples. The classifiers based on only 10 selected probes can achieve high discriminative ability across different data sets. Finally, by integrative analyzing DNA methylation and gene expression data, we identified 222 candidate epigenetic drivers, which are enriched in inflammatory response and multiple metabolic pathways. A set of high-confidence candidates, including SFN, SPP1 and TKT, are significantly associated with patients' overall survivals. In summary, this study systematically characterized the DNA methylation alterations and their impacts on gene expressions in HCCs based on multiple data sets.
Collapse
|
43
|
Dai N, Ye R, He Q, Guo P, Chen H, Zhang Q. Capsaicin and sorafenib combination treatment exerts synergistic anti‑hepatocellular carcinoma activity by suppressing EGFR and PI3K/Akt/mTOR signaling. Oncol Rep 2018; 40:3235-3248. [PMID: 30272354 PMCID: PMC6196646 DOI: 10.3892/or.2018.6754] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
Capsaicin (8‑methyl N‑vanillyl‑6 nonenamide) is a natural plant extract that has antitumor properties and induces apoptosis and autophagy in various types of malignancies, including hepatocellular carcinoma (HCC). Sorafenib is a multi‑kinase inhibitor that improves the survival of patients with advanced HCC. In the present study, capsaicin and sorafenib were found to inhibit the growth of LM3, Hep3B and HuH7 cells. In addition, the combination of capsaicin and sorafenib exerted a synergistic inhibitory effect on HCC cell growth. In LM3 cells, capsaicin and sorafenib combination treatment achieved a markedly stronger induction of apoptosis by increasing caspase‑3, Bax and poly(ADP‑ribose) polymerase activity and inhibiting Bcl‑2, and induction of autophagy by upregulating the levels of beclin‑1 and LC3A/B II, enhancing P62 degradation. The combination of capsaicin and sorafenib also inhibited cell invasion and metastasis via upregulation of E‑cadherin and downregulation of N‑cadherin, vimentin, matrix metalloproteinase (MMP)2 and MMP9. Additional studies suggested an association between the abovementioned anticancer activities and inhibition of the epidermal growth factor receptor/phosphoinositide 3 kinase/Akt/mammalian target of rapamycin pathway. Taken together, these data confirm that capsaicin and sorafenib combination treatment inhibits the growth, invasion and metastasis of HCC cells and induces autophagy in a synergistic manner, supporting its potential as a therapeutic option for HCC.
Collapse
Affiliation(s)
- Ninggao Dai
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| | - Ruifan Ye
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| | - Qikuan He
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| | - Pengyi Guo
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| | - Hao Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| | - Qiyu Zhang
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| |
Collapse
|
44
|
Li HM. Liver regeneration microenvironment in liver cancer: Research progress and prospect. Shijie Huaren Xiaohua Zazhi 2018; 26:1529-1536. [DOI: 10.11569/wcjd.v26.i26.1529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The proposal of the new concept of liver regeneration microenvironment in liver cancer (LC) contributes to the overall understanding of how LC microenvironment influences the occurrence and development of LC through liver regeneration microenvironment, inflammatory microenvironment, immune microenvironment, and angiogenesis microenvironment, and helps explore more comprehensive and effective preventive and therapeutic measures for LC to improve the capability of LC prevention and cure. On the basis of eliminating hepatocellular carcinoma cells or tissues, the maintenance of normal liver regeneration and improvement of liver regeneration microenvironment in LC is an important strategy for LC prevention and treatment. Improving liver regeneration microenvironment to prevent or reverse the occurrence, development, and metastasis of LC should be an important research direction of LC prevention and treatment research. In recent years, traditional Chinese medicine research and application have made some progress in improving liver regeneration microenvironment to prevent or reverse the occurrence, development, recurrence, and metastasis of LC. However, it remains to be solved on how to accurately reveal the comprehensive network mechanism and how to provide advanced evidence-based medical evidence, which needs further extensive research.
Collapse
Affiliation(s)
- Han-Min Li
- Institute of Liver Diseases and Institute of Traditional Chinese Medicine Basic Theory, Hubei Provincial Hospital of Traditional Chinese Medicine (Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine), Wuhan 430061, Hubei Province, China
| |
Collapse
|
45
|
Wang X, Xiong Z, Liu Z, Huang X, Jiang X. Angiopep-2/IP10-EGFRvIIIscFv modified nanoparticles and CTL synergistically inhibit malignant glioblastoma. Sci Rep 2018; 8:12827. [PMID: 30150691 PMCID: PMC6110710 DOI: 10.1038/s41598-018-30072-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023] Open
Abstract
Preparation of agents that can successfully traverse the blood-brain-barrier (BBB) is a key challenge in brain cancer therapeutics. In this study, angiopep-2 was used as a brain-targeting peptide for preparing multifunctional Angiopep-2-modified poly nanoparticles, angiopep-2 and IP10-EGFRvIIIscFv fusion protein modified nanoparticles. In vitro experiments showed a greater uptake of Angiopep-2 modified nanoparticles, also angiopep-2 and IP10-EGFRvIIIscFv fusion protein modified nanoparticles by bEnd.3 cells versus nanoparticles and nanoparticles modified by IP10-EGFRvIIIscFv. Angiopep-2 and IP10-EGFRvIIIscFv fusion protein modified nanoparticles accumulated in brain tissue after intravenous injection and recruited activated CD8+ T lymphocytes to location of glioblastoma cells. In vivo experiments to assess anti-glioblastoma effect of angiopep-2 and IP10-EGFRvIIIscFv fusion protein modified nanoparticles showed significantly reduced tumor volume in angiopep-2 and IP10-EGFRvIIIscFv fusion protein modified nanoparticles+ CD8+ cytotoxic T lymphocytes group versus in NPs modified by IP10-EGFRvIIIscFv+ CD8+ cytotoxic T lymphocytes, CD8+ cytotoxic T lymphocytes, Angiopep-2 modified nanoparticles+ CD8+ cytotoxic T lymphocytes, angiopep-2 and IP10-EGFRvIIIscFv fusion protein modified nanoparticles and PBS groups. Leukocytes infiltrated in brain tissues showed strong anti-glioblastoma activity in angiopep-2 and IP10-EGFRvIIIscFv fusion protein modified nanoparticles+ CD8+ cytotoxic T lymphocytes treated mice. Thus, angiopep-2 and IP10-EGFRvIIIscFv fusion protein modified nanoparticles may be useful for brain-targeted delivery and recruitment of activated CD8+ T lymphocytes to glioblastoma cells.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Neurosurgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiyong Xiong
- Department of Neurosurgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhen Liu
- Department of Neurosurgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xing Huang
- Department of Neurosurgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
46
|
Zaravinos A, Bonavida B, Chatzaki E, Baritaki S. RKIP: A Key Regulator in Tumor Metastasis Initiation and Resistance to Apoptosis: Therapeutic Targeting and Impact. Cancers (Basel) 2018; 10:287. [PMID: 30149591 PMCID: PMC6162400 DOI: 10.3390/cancers10090287] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/12/2018] [Accepted: 08/18/2018] [Indexed: 02/07/2023] Open
Abstract
RAF-kinase inhibitor protein (RKIP) is a well-established tumor suppressor that is frequently downregulated in a plethora of solid and hematological malignancies. RKIP exerts antimetastatic and pro-apoptotic properties in cancer cells, via modulation of signaling pathways and gene products involved in tumor survival and spread. Here we review the contribution of RKIP in the regulation of early metastatic steps such as epithelial⁻mesenchymal transition (EMT), migration, and invasion, as well as in tumor sensitivity to conventional therapeutics and immuno-mediated cytotoxicity. We further provide updated justification for targeting RKIP as a strategy to overcome tumor chemo/immuno-resistance and suppress metastasis, through the use of agents able to modulate RKIP expression in cancer cells.
Collapse
Affiliation(s)
- Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus.
- Centre for Risk and Decision Sciences (CERIDES), Nicosia 2404, Cyprus.
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece.
| | - Stavroula Baritaki
- Division of Surgical Oncology, School of Medicine, University of Crete, Heraklion, Crete 71500, Greece.
| |
Collapse
|
47
|
Long non-coding RNA FEZF1-AS1 promotes cell invasion and epithelial-mesenchymal transition through JAK2/STAT3 signaling pathway in human hepatocellular carcinoma. Biomed Pharmacother 2018; 106:134-141. [PMID: 29957463 DOI: 10.1016/j.biopha.2018.05.116] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 01/05/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as key regulators in the development of hepatocellular carcinoma (HCC). In the present study, we explored the expression profile and biological role of lncRNA FEZF1-AS1 in HCC. We observed remarkable upregulation of FEZF1-AS1 in HCC tissues and cell lines, and high FEZF1-AS1 expression was correlated with aggressive phenotypes and poor prognosis of HCC patients. Furthermore, we found that FEZF1-AS1 knockdown markedly inhibited the proliferation of HCC cells by inducing cell cycle arrest. In addition, FEZF1-AS1 knockdown suppressed HCC tumor growth in vivo. Moreover, FEZF1-AS1 knockdown inhibited the migration and invasion of HCC cells through suppression of JAK2/STAT3 signaling-mediated epithelial-mesenchymal transition (EMT). In conclusion, the present study for the first time demonstrated that FEZF1-AS1 serves as an oncogenic lncRNA in human HCC and implicated FEZF1-AS1 as a valuable therapeutic target for HCC treatment.
Collapse
|
48
|
The mechanism of HBx protein to promote the initiation and progression of hepatocellular carcinoma. INFECTION INTERNATIONAL 2018. [DOI: 10.2478/ii-2018-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AbstractHepatocellular carcinoma (HCC) is the sixth most common malignancy worldwide and the third most common cause of death from cancer, after lung and stomach cancer. Hepatitis B virus (HBV) infection is closely related to HCC and is a major cause of HCC. HBV is a lysogenic virus of the hepadnavirus family. Its genome presents a slack, ring-like, double-chain structure, containing four open reading frames. The X region encodes the product HBV X protein (HBx), which is a multifunctional regulatory protein that plays an important role in intracellular signal transduction, viral genome replication and transcription, cell proliferation and apoptosis, cell cycle progression, protein degradation, and genetic stability of hepatocytes. This article summarizes the recent research on the mechanism of promotion of initiation and progression of HCC by HBx protein.
Collapse
|
49
|
Fan K, Yang C, Fan Z, Huang Q, Zhang Y, Cheng H, Jin K, Lu Y, Wang Z, Luo G, Yu X, Liu C. MUC16 C terminal-induced secretion of tumor-derived IL-6 contributes to tumor-associated Treg enrichment in pancreatic cancer. Cancer Lett 2018; 418:167-175. [PMID: 29337110 DOI: 10.1016/j.canlet.2018.01.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/28/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is the most lethal tumor. CA125 (gene symbol MUC16) is an important serum marker for pancreatic cancer diagnosis and treatment. High serum CA125 is related to metabolic tumor burden and poor prognosis. The circulating Treg subset is another independent prognostic factor for pancreatic cancer. Our unpublished data indicated that the circulating Treg proportion might be related to the serum CA125 level. However, the potential relationship and underlying mechanism of MUC16 and Treg in pancreatic cancer tissues remain unclear. In this study, we found that pancreatic cancer tissues were positive for both MUC16 C terminal (MUC16c) and Foxp3 expression and that their expression was correlated. MUC16c released into the cytoplasm via EGF induction significantly increased IL-6 expression and secretion. The PI3K/AKT pathway may participate in the regulation of IL-6 expression and secretion. By treating CD4+ T cells with IL-6 or co-culturing the cells with pancreatic cancer cells, tumor-derived IL-6 was identified to promote Foxp3 expression and Treg differentiation, which was significantly inhibited by the JAK2 inhibitor AG-490. In sum, our study demonstrated that the relationship between the MUC16c level and Foxp3 expression in the local tumor environment was consistent with that of the serum CA125 level and circulating Treg proportion in the systemic environment. MUC16c promoted Foxp3 expression and tumor-associated Treg enrichment in tumor tissues through tumor-secreted IL-6 activation of the JAK2/STAT3 pathway. These findings may provide deeper insight into potential pancreatic cancer therapy approaches.
Collapse
Affiliation(s)
- Kun Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, PR China; Department of Oncology, Shanghai Medical College, Fudan University, PR China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, PR China
| | - Chao Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, PR China; Department of Oncology, Shanghai Medical College, Fudan University, PR China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, PR China
| | - Zhiyao Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, PR China; Department of Oncology, Shanghai Medical College, Fudan University, PR China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, PR China
| | - Qiuyi Huang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, PR China; Department of Oncology, Shanghai Medical College, Fudan University, PR China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, PR China
| | - Yiyin Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, PR China; Department of Oncology, Shanghai Medical College, Fudan University, PR China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, PR China
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, PR China; Department of Oncology, Shanghai Medical College, Fudan University, PR China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, PR China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, PR China; Department of Oncology, Shanghai Medical College, Fudan University, PR China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, PR China
| | - Yu Lu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, PR China; Department of Oncology, Shanghai Medical College, Fudan University, PR China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, PR China
| | - Zhengshi Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, PR China; Department of Oncology, Shanghai Medical College, Fudan University, PR China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, PR China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, PR China; Department of Oncology, Shanghai Medical College, Fudan University, PR China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, PR China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, PR China; Department of Oncology, Shanghai Medical College, Fudan University, PR China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, PR China.
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, PR China; Department of Oncology, Shanghai Medical College, Fudan University, PR China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, PR China.
| |
Collapse
|
50
|
Zhen Y, Wu Q, Ding Y, Zhang W, Zhai Y, Lin X, Weng Y, Guo R, Zhang Y, Feng J, Lei Y, Chen J. Exogenous hydrogen sulfide promotes hepatocellular carcinoma cell growth by activating the STAT3-COX-2 signaling pathway. Oncol Lett 2018; 15:6562-6570. [PMID: 29725404 DOI: 10.3892/ol.2018.8154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 04/21/2017] [Indexed: 12/20/2022] Open
Abstract
The effects of hydrogen sulfide (H2S) on cancer are controversial. Our group previously demonstrated that exogenous H2S promotes the development of cancer via amplifying the activation of the nuclear factor-κB signaling pathway in hepatocellular carcinoma (HCC) cells (PLC/PRF/5). The present study aimed to further investigate the hypothesis that exogenous H2S promotes PLC/PRF/5 cell proliferation and migration, and inhibits apoptosis by activating the signal transducer and activator of transcription 3 (STAT3)-cyclooxygenase-2 (COX-2) signaling pathway. PLC/PRF/5 cells were treated with 500 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of phosphorylated (p)-STAT3, STAT3, cleaved caspase-3 and COX-2 were measured by western blot assay. Cell viability was detected by Cell Counting kit-8 assay. Apoptotic cells were observed by Hoechst 33258 staining. The expression of STAT3 and COX-2 messenger RNA (mRNA) was detected by semiquantitative reverse transcription-polymerase chain reaction. The production of vascular endothelial growth factor (VEGF) was evaluated by ELISA. The results indicated that treatment of PLC/PRF/5 cells with 500 µmol/l NaHS for 24 h markedly increased the expression levels of p-STAT3 and STAT3 mRNA, leading to COX-2 and COX-2 mRNA overexpression, VEGF induction, decreased cleaved caspase-3 production, increased cell viability and migration, and decreased number of apoptotic cells. However, co-treatment of PLC/PRF/5 cells with 500 µmol/l NaHS and 30 µmol/l AG490 (an inhibitor of STAT3) or 20 µmol/l NS-398 (an inhibitor of COX-2) for 24 h significantly reverted the effects induced by NaHS. Furthermore, co-treatment of PLC/PRF/5 cells with 500 µmol/l NaHS and 30 µmol/l AG490 markedly decreased the NaHS-induced increase in the expression level of COX-2. By contrast, co-treatment of PLC/PRF/5 cells with 500 µmol/l NaHS and 20 µmol/l NS-398 inhibited the NaHS-induced increase in the expression level of p-STAT3. In conclusion, the findings of the present study provide evidence that the STAT3-COX-2 signaling pathway is involved in NaHS-induced cell proliferation, migration, angiogenesis and anti-apoptosis in PLC/PRF/5 cells, and suggest that the positive feedback between STAT3 and COX-2 may serve a crucial role in hepatocellular carcinoma carcinogenesis.
Collapse
Affiliation(s)
- Yulan Zhen
- Department of Oncology, The Third People's Hospital of Dongguan Dongguan City, Guangdong 523326, P.R. China
| | - Qiaomei Wu
- Department of Anesthesiology, Oral Subsidiary Sun Yat-Sen University Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Yiqian Ding
- Grade 2013, Medical Imaging, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Wei Zhang
- Department of Cardiovasology and Cardiac Care Unit, Huangpu Division of The First Affiliated Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Yuansheng Zhai
- Department of Cardiovasology and Cardiac Care Unit, Huangpu Division of The First Affiliated Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaoxiong Lin
- Department of Cardiovasology and Cardiac Care Unit, Huangpu Division of The First Affiliated Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Yunxia Weng
- Department of Cardiovasology and Cardiac Care Unit, Huangpu Division of The First Affiliated Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Ruixian Guo
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Ying Zhang
- Department of Oncology, Affiliated Hospital, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Jianqiang Feng
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Yiyan Lei
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jingfu Chen
- Department of Cardiovascular Medicine and Dongguan Cardiovascular Institute, The Third People's Hospital of Dongguan City, Dongguan, Guangdong 523326, P.R. China
| |
Collapse
|