1
|
Akinmade H, Ferreira RCU, Murad Leite Andrade MH, Fernandes C, Sipowicz P, Muñoz-Amatriaín M, Rios E. Genome-wide association studies dissect the genetic architecture of seed and yield component traits in cowpea (Vigna unguiculata L. Walp). G3 (BETHESDA, MD.) 2025; 15:jkaf024. [PMID: 39920462 PMCID: PMC12005157 DOI: 10.1093/g3journal/jkaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 09/18/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025]
Abstract
The identification of loci related to seed and yield component traits in cowpea constitutes a key step for improvement through marker-assisted selection (MAS). Furthermore, seed morphology has an impact on industrial processing and influences consumer and farmer preferences. In this study, we performed genome-wide association studies (GWAS) on a mini-core collection of cowpea to dissect the genetic architecture and detect genomic regions associated with seed morphological traits and yield components. Phenotypic data were measured both manually and by high-throughput image-based approaches to test associations with 41,533 single nucleotide polymorphism markers using the FarmCPU model. From genome-associated regions, we also investigated putative candidate genes involved in the variation of the phenotypic traits. We detected 42 marker-trait associations for pod length and 100-seed weight, length, width, perimeter, and area of the seed. Candidate genes encoding leucine-rich repeat-containing (LRR) and F-box proteins, known to be associated with seed size, were identified; in addition, we identified candidate genes encoding PPR (pentatricopeptide repeat) proteins, recognized to have an important role in seed development in several crops. Our findings provide insights into natural variation in cowpea for yield-related traits and valuable information for MAS breeding strategies in this and other closely related crops.
Collapse
Affiliation(s)
- Habib Akinmade
- Plant Breeding Graduate Program, University of Florida, Gainesville, FL 32611, USA
| | | | | | - Claudio Fernandes
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| | - Pablo Sipowicz
- Plant Breeding Graduate Program, University of Florida, Gainesville, FL 32611, USA
| | - María Muñoz-Amatriaín
- Departamento de Biología Molecular (Área Genética), Universidad de León, León 24071, Spain
| | - Esteban Rios
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Dong H, Zhuang Z, Bian J, Tang R, Ren Z, Peng Y. Candidate Gene for Kernel-Related Traits in Maize Revealed by a Combination of GWAS and Meta-QTL Analyses. PLANTS (BASEL, SWITZERLAND) 2025; 14:959. [PMID: 40265930 PMCID: PMC11946461 DOI: 10.3390/plants14060959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/24/2025]
Abstract
Maize kernel traits represent crucial agronomic characteristics that significantly determine yield potential. Analyzing the genetic basis of these traits is essential for yield improvement. In this study, we utilized 1283 maize inbred lines to investigate three kernel-related characteristics: kernel length (KL), kernel width (KW), and 100-kernel weight (HKW). We conducted a genome-wide association study (GWAS) on three kernel-related traits, resulting in the identification of 29 significantly associated SNPs and six candidate genes. Additionally, we compiled quantitative trait loci (QTL) information for 765 maize kernel-related traits from 56 studies, conducted a meta-analysis of QTL, and identified 65 meta-QTLs (MQTLs). Among the 23 MQTLs, we found 25 functional genes and reported candidate genes related to kernel traits. We identified 26 maize homologs across 19 MQTLs by utilizing 25 genes that affect rice grain traits. We compared the 29 significant SNPs detected with the physical locations of 65 MQTLs and found that 3 significant SNPs were located within these MQTL intervals, and another 10 significant SNPs were in proximity to these intervals, being less than 2 Mb away, although they were not included within the MQTL intervals. The results of this study provide a theoretical foundation for elucidating the genetic basis of maize kernel-related traits and advancing molecular marker-assisted breeding selection.
Collapse
Affiliation(s)
- Hanlong Dong
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (H.D.); (Z.Z.); (J.B.); (R.T.); (Z.R.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| | - Zelong Zhuang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (H.D.); (Z.Z.); (J.B.); (R.T.); (Z.R.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianwen Bian
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (H.D.); (Z.Z.); (J.B.); (R.T.); (Z.R.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| | - Rui Tang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (H.D.); (Z.Z.); (J.B.); (R.T.); (Z.R.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenping Ren
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (H.D.); (Z.Z.); (J.B.); (R.T.); (Z.R.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| | - Yunling Peng
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (H.D.); (Z.Z.); (J.B.); (R.T.); (Z.R.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Li W, Zhao M, Liu B, Liu Y, Deng J, Gu Y, Liu M, Cheng W, Ding Z, Li K. Dek570-1, a PPR-DYW protein, is required for maize seed and plant development via modulation of C-to-U RNA editing in mitochondria and chloroplasts. PLANTA 2025; 261:64. [PMID: 39985592 DOI: 10.1007/s00425-025-04634-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/29/2025] [Indexed: 02/24/2025]
Abstract
MAIN CONCLUSION Maize Dek570-1 affects the expression and function of organellar genes by performing cytidines-to-uridines RNA editing at specific sites of mitochondrial and chloroplast transcripts, thereby regulating seed and plant development. Cytidines-to-uridines (C-to-U) RNA editing at specific sites of mitochondrial and plastid transcripts is crucial for the expression and function of organellar genes, which requires PPR proteins. Here, we report the map-based cloning and characterization of Defective Kernel 570-1 (Dek570-1), which encodes a PPR-DYW protein and is an allele of Emp17. However, compared to the empty pericarp and embryonic lethality of emp17 (W22 background), dek570-1 (Zheng58 background) can produce small but viable seeds despite reducing the size of embryo and endosperm. dek570-1 plants are short and yellowed, but they can reproduce offspring. In mitochondria, loss-of-function of Dek570-1 abolishes the C-to-U editing at nad2-677 and ccmFC-799 sites, and reduces the editing at ccmFC-906 site, consistent with Emp17 deficiency. But unlike the reduced editing of the ccmFC-966 site in emp17, the ccmFC-966 site in dek570-1 is fully edited, and several other editing sites such as ccmFC-87, ccmFC-301, and ccmFC-306 are also found. More noteworthy is that Dek570-1 is not only located in mitochondria like Emp17, but also in chloroplasts. Correspondingly, the editing at rpl20-308 site of dek570-1 chloroplasts was significantly reduced, affecting the expression of some rRNAs, plastid-encoded RNA polymerase (PEP)- and nuclear-encoded single-subunit RNA polymerase (NEP)-dependent genes, thereby reducing chlorophyll accumulation and photosynthetic rate. Together, these results indicate that Dek570-1 is essential for C-to-U editing at several sites in mitochondrial and chloroplast transcripts, as well as for seed and plant development, and that this locus (Zm00001d028422) may have generated some functional evolutionary divergence in maize with different genetic backgrounds.
Collapse
Affiliation(s)
- Wenjie Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Mengsha Zhao
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Baiyu Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yecan Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jiaying Deng
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yu Gu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Min Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Wen Cheng
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Zhaohua Ding
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Kunpeng Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
4
|
Zang J, Zhang T, Zhang Z, Liu J, Chen H. DEFECTIVE KERNEL 56 functions in mitochondrial RNA editing and maize seed development. PLANT PHYSIOLOGY 2024; 194:1593-1610. [PMID: 37956067 DOI: 10.1093/plphys/kiad598] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Proper seed development is essential for achieving grain production, successful seed germination, and seedling establishment in maize (Zea mays). In the past few decades, pentatricopeptide repeat (PPR) proteins have been proven to play an essential role in regulating the development of maize kernels through posttranscriptional RNA modification of mitochondrial genes. However, the underlying mechanisms remain largely unknown. Here, we characterized a mutant of DEFECTIVE KERNEL 56 (DEK56) with defective kernels that exhibited arrested development of both the embryo and endosperm. Accordingly, we isolated DEK56 through a map-based cloning strategy and found that it encoded an E subgroup PPR protein located in the mitochondria. Dysfunction of DEK56 resulted in altered cytidine (C)-to-uridine (U) editing efficiency at 48 editing sites across 21 mitochondrial transcripts. Notably, the editing efficiency of the maturase-related (matR)-1124 site was substantially reduced or abolished in the dek56 mutant. Furthermore, we found that the splicing efficiency of NADH dehydrogenase subunit 4 (nad4) Introns 1 and 3 was substantially reduced in dek56 kernels, which might be a consequence of the defective MatR function. Through a protein-protein interaction test, we hypothesized that DEK56 carries out its function by recruiting the PPR-DYW protein PPR motif, coiled-coil, and DYW domain-containing protein 1 (PCW1). This interaction is facilitated by Multiple Organellar RNA Editing Factors (ZmMORFs) and Glutamine-Rich Protein 23 (ZmGRP23). Based on these findings, we developed a working model of PPR-mediated mitochondrial processing that plays an essential role in the development of maize kernels. The present study will further broaden our understanding of PPR-mediated seed development and provide a theoretical basis for maize improvement.
Collapse
Affiliation(s)
- Jie Zang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tengfei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100864, China
| | - Zhaogui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Wei YM, Wang BH, Shao DJ, Yan RY, Wu JW, Zheng GM, Zhao YJ, Zhang XS, Zhao XY. Defective kernel 66 encodes a GTPase essential for kernel development in maize. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5694-5708. [PMID: 37490479 PMCID: PMC10540730 DOI: 10.1093/jxb/erad289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023]
Abstract
The mitochondrion is a semi-autonomous organelle that provides energy for cell activities through oxidative phosphorylation. In this study, we identified a defective kernel 66 (dek66)-mutant maize with defective kernels. We characterized a candidate gene, DEK66, encoding a ribosomal assembly factor located in mitochondria and possessing GTPase activity (which belongs to the ribosome biogenesis GTPase A family). In the dek66 mutant, impairment of mitochondrial structure and function led to the accumulation of reactive oxygen species and promoted programmed cell death in endosperm cells. Furthermore, the transcript levels of most of the key genes associated with nutrient storage, mitochondrial respiratory chain complex, and mitochondrial ribosomes in the dek66 mutant were significantly altered. Collectively, the results suggest that DEK66 is essential for the development of maize kernels by affecting mitochondrial function. This study provides a reference for understanding the impact of a mitochondrial ribosomal assembly factor in maize kernel development.
Collapse
Affiliation(s)
- Yi Ming Wei
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong 277160, China
| | - Bo Hui Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Dong Jie Shao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong 277160, China
| | - Ru Yu Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jia Wen Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Guang Ming Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ya Jie Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| |
Collapse
|
6
|
Cai Q, Jiao F, Wang Q, Zhang E, Song X, Pei Y, Li J, Zhao M, Guo X. Multiomics comparative analysis of the maize large grain mutant tc19 identified pathways related to kernel development. BMC Genomics 2023; 24:537. [PMID: 37697229 PMCID: PMC10496403 DOI: 10.1186/s12864-023-09567-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/08/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND The mechanism of grain development in elite maize breeding lines has not been fully elucidated. Grain length, grain width and grain weight are key components of maize grain yield. Previously, using the Chinese elite maize breeding line Chang7-2 and its large grain mutant tc19, we characterized the grain size developmental difference between Chang7-2 and tc19 and performed transcriptomic analysis. RESULTS In this paper, using Chang7-2 and tc19, we performed comparative transcriptomic, proteomic and metabolomic analyses at different grain development stages. Through proteomics analyses, we found 2884, 505 and 126 differentially expressed proteins (DEPs) at 14, 21 and 28 days after pollination, respectively. Through metabolomics analysis, we identified 51, 32 and 36 differentially accumulated metabolites (DAMs) at 14, 21 and 28 days after pollination, respectively. Through multiomics comparative analysis, we showed that the phenylpropanoid pathways are influenced at transcriptomic, proteomic and metabolomic levels in all the three grain developmental stages. CONCLUSION We identified several genes in phenylpropanoid biosynthesis, which may be related to the large grain phenotype of tc19. In summary, our results provided new insights into maize grain development.
Collapse
Affiliation(s)
- Qing Cai
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fuchao Jiao
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qianqian Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Enying Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiyun Song
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuhe Pei
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jun Li
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Meiai Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xinmei Guo
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
7
|
Yang L, Yang L, Ding Y, Chen Y, Liu N, Zhou X, Huang L, Luo H, Xie M, Liao B, Jiang H. Global Transcriptome and Co-Expression Network Analyses Revealed Hub Genes Controlling Seed Size/Weight and/or Oil Content in Peanut. PLANTS (BASEL, SWITZERLAND) 2023; 12:3144. [PMID: 37687391 PMCID: PMC10490140 DOI: 10.3390/plants12173144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Cultivated peanut (Arachis hypogaea L.) is an important economic and oilseed crop worldwide, providing high-quality edible oil and high protein content. Seed size/weight and oil content are two important determinants of yield and quality in peanut breeding. To identify key regulators controlling these two traits, two peanut cultivars with contrasting phenotypes were compared to each other, one having a larger seed size and higher oil content (Zhonghua16, ZH16 for short), while the second cultivar had smaller-sized seeds and lower oil content (Zhonghua6, ZH6). Whole transcriptome analyses were performed on these two cultivars at four stages of seed development. The results showed that ~40% of the expressed genes were stage-specific in each cultivar during seed development, especially at the early stage of development. In addition, we identified a total of 5356 differentially expressed genes (DEGs) between ZH16 and ZH6 across four development stages. Weighted gene co-expression network analysis (WGCNA) based on DEGs revealed multiple hub genes with potential roles in seed size/weight and/or oil content. These hub genes were mainly involved in transcription factors (TFs), phytohormones, the ubiquitin-proteasome pathway, and fatty acid synthesis. Overall, the candidate genes and co-expression networks detected in this study could be a valuable resource for genetic breeding to improve seed yield and quality traits in peanut.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Huifang Jiang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430000, China; (L.Y.); (L.Y.); (Y.D.); (Y.C.); (N.L.); (X.Z.); (L.H.); (H.L.); (M.X.); (B.L.)
| |
Collapse
|
8
|
Ren Y, Li J, Liu J, Zhang Z, Song Y, Fan D, Liu M, Zhang L, Xu Y, Guo D, He J, Song S, Gao Z, Ma C. Functional Differences of Grapevine Circular RNA Vv-circPTCD1 in Arabidopsis and Grapevine Callus under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2332. [PMID: 37375960 DOI: 10.3390/plants12122332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Circular RNAs (circRNAs) serve as covalently closed single-stranded RNAs and have been proposed to influence plant development and stress resistance. Grapevine is one of the most economically valuable fruit crops cultivated worldwide and is threatened by various abiotic stresses. Herein, we reported that a circRNA (Vv-circPTCD1) processed from the second exon of the pentatricopeptide repeat family gene PTCD1 was preferentially expressed in leaves and responded to salt and drought but not heat stress in grapevine. Additionally, the second exon sequence of PTCD1 was highly conserved, but the biogenesis of Vv-circPTCD1 is species-dependent in plants. It was further found that the overexpressed Vv-circPTCD1 can slightly decrease the abundance of the cognate host gene, and the neighboring genes are barely affected in the grapevine callus. Furthermore, we also successfully overexpressed the Vv-circPTCD1 and found that the Vv-circPTCD1 deteriorated the growth during heat, salt, and drought stresses in Arabidopsis. However, the biological effects on grapevine callus were not always consistent with those of Arabidopsis. Interestingly, we found that the transgenic plants of linear counterpart sequence also conferred the same phenotypes as those of circRNA during the three stress conditions, no matter what species it is. Those results imply that although the sequences are conserved, the biogenesis and functions of Vv-circPTCD1 are species-dependent. Our results indicate that the plant circRNA function investigation should be conducted in homologous species, which supports a valuable reference for further plant circRNA studies.
Collapse
Affiliation(s)
- Yi Ren
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junpeng Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingjing Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Zhen Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Song
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongying Fan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Minying Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lipeng Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Yuanyuan Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dinghan Guo
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan He
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiren Song
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Gao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Chao Ma
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Tang H, Dong H, Guo X, Cheng M, Li M, Chen Q, Yuan Z, Pu Z, Wang J. Identification of candidate gene for the defective kernel phenotype using bulked segregant RNA and exome capture sequencing methods in wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1173861. [PMID: 37342127 PMCID: PMC10277647 DOI: 10.3389/fpls.2023.1173861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/03/2023] [Indexed: 06/22/2023]
Abstract
Wheat is a significant source of protein and starch worldwide. The defective kernel (Dek) mutant AK-3537, displaying a large hollow area in the endosperm and shrunken grain, was obtained through ethyl methane sulfonate (EMS) treatment of the wheat cultivar Aikang 58 (AK58). The mode of inheritance of the AK-3537 grain Dek phenotype was determined to be recessive with a specific statistical significance level. We used bulked segregant RNA-seq (BSR-seq), BSA-based exome capture sequencing (BSE-seq), and the ΔSNP-index algorithm to identify candidate regions for the grain Dek phenotype. Two major candidate regions, DCR1 (Dek candidate region 1) and DCR2, were identified on chromosome 7A between 279.98 and 287.93 Mb and 565.34 and 568.59 Mb, respectively. Based on transcriptome analysis and previous reports, we designed KASP genotyping assays based on SNP variations in the candidate regions and speculated that the candidate gene is TraesCS7A03G0625900 (HMGS-7A), which encodes a 3-hydroxy-3-methylglutaryl-CoA synthase. One SNP variation located at position 1,049 in the coding sequence (G>A) causes an amino acid change from Gly to Asp. The research suggests that functional changes in HMGS-7A may affect the expression of key enzyme genes involved in wheat starch syntheses, such as GBSSII and SSIIIa.
Collapse
Affiliation(s)
- Hao Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Huixue Dong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xiaojiang Guo
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Mengping Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Maolian Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Qian Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Zhongwei Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Zhien Pu
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Wang C, Li H, Long Y, Dong Z, Wang J, Liu C, Wei X, Wan X. A Systemic Investigation of Genetic Architecture and Gene Resources Controlling Kernel Size-Related Traits in Maize. Int J Mol Sci 2023; 24:1025. [PMID: 36674545 PMCID: PMC9865405 DOI: 10.3390/ijms24021025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Grain yield is the most critical and complex quantitative trait in maize. Kernel length (KL), kernel width (KW), kernel thickness (KT) and hundred-kernel weight (HKW) associated with kernel size are essential components of yield-related traits in maize. With the extensive use of quantitative trait locus (QTL) mapping and genome-wide association study (GWAS) analyses, thousands of QTLs and quantitative trait nucleotides (QTNs) have been discovered for controlling these traits. However, only some of them have been cloned and successfully utilized in breeding programs. In this study, we exhaustively collected reported genes, QTLs and QTNs associated with the four traits, performed cluster identification of QTLs and QTNs, then combined QTL and QTN clusters to detect consensus hotspot regions. In total, 31 hotspots were identified for kernel size-related traits. Their candidate genes were predicted to be related to well-known pathways regulating the kernel developmental process. The identified hotspots can be further explored for fine mapping and candidate gene validation. Finally, we provided a strategy for high yield and quality maize. This study will not only facilitate causal genes cloning, but also guide the breeding practice for maize.
Collapse
Affiliation(s)
- Cheng Wang
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Huangai Li
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Yan Long
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Zhenying Dong
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Jianhui Wang
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Chang Liu
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xun Wei
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xiangyuan Wan
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| |
Collapse
|
11
|
Jung L, Schleicher S, Alsaied Taha F, Takenaka M, Binder S. The MITOCHONDRIAL TRANSCRIPT STABILITY FACTOR 4 (MTSF4) is essential for the accumulation of dicistronic rpl5-cob mRNAs in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:375-386. [PMID: 36468791 DOI: 10.1111/tpj.16053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The Arabidopsis thaliana genome harbors more than 450 nuclear genes encoding pentatricopeptide repeat (PPR) proteins that operate in the RNA metabolism of mitochondria and/or plastids. To date, the molecular function of many PPR proteins is still unknown. Here we analyzed the nucleus-encoded gene At4g19440 coding for a P-type PPR protein. Knockout of this gene interferes with normal embryo development and seed maturation. Two experimental approaches were applied to overcome lethality and to investigate the outcome of At4g19440 knockout in adult plants. These studies revealed changes in the abundance of several mitochondria-encoded transcripts. In particular, steady-state levels of dicistronic rpl5-cob RNAs were markedly reduced, whereas levels of mature ccmC and rpl2-mttB transcripts were clearly increased. Predictions according to the one repeat to one nucleotide code for PPR proteins indicate binding of the At4g19440 protein to a previously detected small RNA at the 3' termini of the dicistronic rpl5-cob transcripts. This potential interaction indicates a function of this protein in 3' end formation and stabilization of these RNA species, whereas the increase in the levels of the ccmC mRNA along with other mitochondria-encoded RNAs seems to be a secondary effect of At4g19440 knockout. Since the inactivation of At4g19440 influences the stability of several mitochondrial RNAs we call this gene MITOCHONDRIAL TRANSCRIPT STABILITY FACTOR 4 (MTSF4). This factor will be an interesting subject to study opposing effects of a single nucleus-encoded protein on mitochondrial transcript levels.
Collapse
Affiliation(s)
- Lisa Jung
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069, Ulm, Germany
| | - Sarah Schleicher
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069, Ulm, Germany
| | - Fatema Alsaied Taha
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069, Ulm, Germany
| | - Mizuki Takenaka
- Plant Molecular Genetics, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Stefan Binder
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069, Ulm, Germany
| |
Collapse
|
12
|
Ma S, Yang W, Liu X, Li S, Li Y, Zhu J, Zhang C, Lu X, Zhou X, Chen R. Pentatricopeptide repeat protein CNS1 regulates maize mitochondrial complex III assembly and seed development. PLANT PHYSIOLOGY 2022; 189:611-627. [PMID: 35218364 PMCID: PMC9157079 DOI: 10.1093/plphys/kiac086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/28/2022] [Indexed: 06/02/2023]
Abstract
Mitochondrial function relies on the assembly of electron transport chain complexes, which requires coordination between proteins encoded by the mitochondrion and those of the nucleus. Here, we cloned a maize (Zea mays) cytochrome c maturation FN stabilizer1 (CNS1) and found it encodes a pentatricopeptide repeat (PPR) protein. Members of the PPR family are widely distributed in plants and are associated with RNA metabolism in organelles. P-type PPR proteins play essential roles in stabilizing the 3'-end of RNA in mitochondria; whether a similar process exists for stabilizing the 5'-terminus of mitochondrial RNA remains unclear. The kernels of cns1 exhibited arrested embryo and endosperm development, whereas neither conventional splicing deficiency nor RNA editing difference in mitochondrial genes was observed. Instead, most of the ccmFN transcripts isolated from cns1 mutant plants were 5'-truncated and therefore lacked the start codon. Biochemical and molecular data demonstrated that CNS1 is a P-type PPR protein encoded by nuclear DNA and that it localizes to the mitochondrion. Also, one binding site of CNS1 located upstream of the start codon in the ccmFN transcript. Moreover, abnormal mitochondrial morphology and dramatic upregulation of alternative oxidase genes were observed in the mutant. Together, these results indicate that CNS1 is essential for reaching a suitable level of intact ccmFN transcripts through binding to the 5'-UTR of the RNAs and maintaining 5'-integrity, which is crucial for sustaining mitochondrial complex III function to ensure mitochondrial biogenesis and seed development in maize.
Collapse
Affiliation(s)
- Shuai Ma
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenzhu Yang
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoqing Liu
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Suzhen Li
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ye Li
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province , Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jiameng Zhu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Chunyi Zhang
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoduo Lu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan 250200, China
| | - Xiaojin Zhou
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rumei Chen
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
13
|
Qu Z, Wu Y, Hu D, Li T, Liang H, Ye F, Xue J, Xu S. Genome-Wide Association Analysis for Candidate Genes Contributing to Kernel-Related Traits in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:872292. [PMID: 35685022 PMCID: PMC9171146 DOI: 10.3389/fpls.2022.872292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/06/2022] [Indexed: 06/01/2023]
Abstract
Maize grain size is the main factor determining grain yield. Dissecting the genetic basis of maize grain size may help reveal the regulatory mechanism of maize seed development and yield formation. In this study, two associated populations were used for genome-wide association analysis of kernel length, kernel width, kernel thickness, and hundred-kernel weight from multiple locations in AM122 and AM180, respectively. Then, genome-wide association mapping was performed based on the maize 6H90K SNP chip. A total of 139 loci were identified as associated with the four traits with p < 1 × 10-4 using two models (FarmCPU and MLM). The transcriptome data showed that 15 of them were expressed differentially in two maize-inbred lines KB182 (small kernel) and KB020 (big kernel) during kernel development. These candidate genes were enriched in regulating peroxidase activity, oxidoreductase, and leaf senescence. The molecular function was major in binding and catalytic activity. This study provided important reference information for exploring maize kernel development mechanisms and applying molecular markers in high-yield breeding.
Collapse
Affiliation(s)
- Zhibo Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, China
- Maize Engineering Technology Research Centre, Yangling, China
| | - Ying Wu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, China
- Maize Engineering Technology Research Centre, Yangling, China
| | - Die Hu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, China
- Maize Engineering Technology Research Centre, Yangling, China
| | - Ting Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, China
- Maize Engineering Technology Research Centre, Yangling, China
| | - Hangyu Liang
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, China
- Maize Engineering Technology Research Centre, Yangling, China
| | - Fan Ye
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, China
- Maize Engineering Technology Research Centre, Yangling, China
| | - Jiquan Xue
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, China
- Maize Engineering Technology Research Centre, Yangling, China
| | - Shutu Xu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, China
- Maize Engineering Technology Research Centre, Yangling, China
| |
Collapse
|
14
|
Yang D, Cao SK, Yang H, Liu R, Sun F, Wang L, Wang M, Tan BC. DEK48 Is Required for RNA Editing at Multiple Mitochondrial Sites and Seed Development in Maize. Int J Mol Sci 2022; 23:ijms23063064. [PMID: 35328485 PMCID: PMC8952262 DOI: 10.3390/ijms23063064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022] Open
Abstract
In flowering plants, C-to-U RNA editing can be critical to normal functions of mitochondrion-encoded proteins. Mitochondrial C-to-U RNA editing is facilitated by many factors from diverse protein families, of which the pentatricopeptide repeat (PPR) proteins play an important role. Owing to their large number and frequent embryo lethality in mutants, functions of many PPRs remain unknown. In this study, we characterized a mitochondrion-localized DYW-type PPR protein, DEK48, functioning in the C-to-U RNA editing at multiple mitochondrial transcripts in maize. Null mutation of Dek48 severely arrests embryo and endosperm development, causing a defective kernel (dek) phenotype, named dek48. DEK48 loss of function abolishes the C-to-U editing at nad3-185, -215, and nad4-376, -977 sites and decreases the editing at 11 other sites, resulting in the alteration of the corresponding amino acids. Consequently, the absence of editing caused reduced assembly and activity of complex I in dek48. Interestingly, we identified a point mutation in dek48-3 causing a deletion of the Tryptophan (W) residue in the DYW motif that abolishes the editing function. In sum, this study reveals the function of DEK48 in the C-to-U editing in mitochondrial transcripts and seed development in maize, and it demonstrates a critical role of the W residue in the DYW triplet motif of DEK48 for the C-to-U editing function in vivo.
Collapse
|
15
|
Yang J, Cui Y, Zhang X, Yang Z, Lai J, Song W, Liang J, Li X. Maize PPR278 Functions in Mitochondrial RNA Splicing and Editing. Int J Mol Sci 2022; 23:ijms23063035. [PMID: 35328469 PMCID: PMC8949463 DOI: 10.3390/ijms23063035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are a large protein family in higher plants and play important roles during seed development. Most reported PPR proteins function in mitochondria. However, some PPR proteins localize to more than one organelle; functional characterization of these proteins remains limited in maize (Zea mays L.). Here, we cloned and analyzed the function of a P-subfamily PPR protein, PPR278. Loss-function of PPR278 led to a lower germination rate and other defects at the seedling stage, as well as smaller kernels compared to the wild type. PPR278 was expressed in all investigated tissues. Furthermore, we determined that PPR278 is involved in the splicing of two mitochondrial transcripts (nad2 intron 4 and nad5 introns 1 and 4), as well as RNA editing of C-to-U sites in 10 mitochondrial transcripts. PPR278 localized to the nucleus, implying that it may function as a transcriptional regulator during seed development. Our data indicate that PPR278 is involved in maize seed development via intron splicing and RNA editing in mitochondria and has potential regulatory roles in the nucleus.
Collapse
Affiliation(s)
- Jing Yang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China; (Y.C.); (X.Z.); (Z.Y.); (J.L.); (W.S.)
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Yang Cui
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China; (Y.C.); (X.Z.); (Z.Y.); (J.L.); (W.S.)
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Xiangbo Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China; (Y.C.); (X.Z.); (Z.Y.); (J.L.); (W.S.)
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Zhijia Yang
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China; (Y.C.); (X.Z.); (Z.Y.); (J.L.); (W.S.)
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China; (Y.C.); (X.Z.); (Z.Y.); (J.L.); (W.S.)
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Weibin Song
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China; (Y.C.); (X.Z.); (Z.Y.); (J.L.); (W.S.)
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Jingang Liang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China
- Correspondence: (J.L.); (X.L.)
| | - Xinhai Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- Correspondence: (J.L.); (X.L.)
| |
Collapse
|
16
|
Dek504 Encodes a Mitochondrion-Targeted E+-Type Pentatricopeptide Repeat Protein Essential for RNA Editing and Seed Development in Maize. Int J Mol Sci 2022; 23:ijms23052513. [PMID: 35269656 PMCID: PMC8910059 DOI: 10.3390/ijms23052513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
In flowering plants, RNA editing is a post-transcriptional process that selectively deaminates cytidines (C) to uridines (U) in organellar transcripts. Pentatricopeptide repeat (PPR) proteins have been identified as site-specific recognition factors for RNA editing. Here, we report the map-based cloning and molecular characterization of the defective kernel mutant dek504 in maize. Loss of Dek504 function leads to delayed embryogenesis and endosperm development, which produce small and collapsed kernels. Dek504 encodes an E+-type PPR protein targeted to the mitochondria, which is required for RNA editing of mitochondrial NADH dehydrogenase 3 at the nad3-317 and nad3-44 sites. Biochemical analysis of mitochondrial protein complexes revealed a significant reduction in the mitochondrial NADH dehydrogenase complex I activity, indicating that the alteration of the amino acid sequence at nad3-44 and nad3-317 through RNA editing is essential for NAD3 function. Moreover, the amino acids are highly conserved in monocots and eudicots, whereas the events of C-to-U editing are not conserved in flowering plants. Thus, our results indicate that Dek504 is essential for RNA editing of nad3, which is critical for NAD3 function, mitochondrial complex I stability, and seed development in maize.
Collapse
|
17
|
Genetic Architecture of Grain Yield-Related Traits in Sorghum and Maize. Int J Mol Sci 2022; 23:ijms23052405. [PMID: 35269548 PMCID: PMC8909957 DOI: 10.3390/ijms23052405] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 02/08/2023] Open
Abstract
Grain size, grain number per panicle, and grain weight are crucial determinants of yield-related traits in cereals. Understanding the genetic basis of grain yield-related traits has been the main research object and nodal in crop science. Sorghum and maize, as very close C4 crops with high photosynthetic rates, stress tolerance and large biomass characteristics, are extensively used to produce food, feed, and biofuels worldwide. In this review, we comprehensively summarize a large number of quantitative trait loci (QTLs) associated with grain yield in sorghum and maize. We placed great emphasis on discussing 22 fine-mapped QTLs and 30 functionally characterized genes, which greatly hinders our deep understanding at the molecular mechanism level. This review provides a general overview of the comprehensive findings on grain yield QTLs and discusses the emerging trend in molecular marker-assisted breeding with these QTLs.
Collapse
|
18
|
Hu M, Zhao H, Yang B, Yang S, Liu H, Tian H, Shui G, Chen Z, E L, Lai J, Song W. ZmCTLP1 is required for the maintenance of lipid homeostasis and the basal endosperm transfer layer in maize kernels. THE NEW PHYTOLOGIST 2021; 232:2384-2399. [PMID: 34559890 PMCID: PMC9292782 DOI: 10.1111/nph.17754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/15/2021] [Indexed: 05/26/2023]
Abstract
Maize kernel weight is influenced by the unloading of nutrients from the maternal placenta and their passage through the transfer tissue of the basal endosperm transfer layer (BETL) and the basal intermediate zone (BIZ) to the upper part of the endosperm. Here, we show that Small kernel 10 (Smk10) encodes a choline transporter-like protein 1 (ZmCTLP1) that facilitates choline uptake and is located in the trans-Golgi network (TGN). Its loss of function results in reduced choline content, leading to smaller kernels with a lower starch content. Mutation of ZmCTLP1 disrupts membrane lipid homeostasis and the normal development of wall in-growths. Expression levels of Mn1 and ZmSWEET4c, two kernel filling-related genes, are downregulated in the smk10, which is likely to be one of the major causes of incompletely differentiated transfer cells. Mutation of ZmCTLP1 also reduces the number of plasmodesmata (PD) in transfer cells, indicating that the smk10 mutant is impaired in PD formation. Intriguingly, we also observed premature cell death in the BETL and BIZ of the smk10 mutant. Together, our results suggest that ZmCTLP1-mediated choline transport affects kernel development, highlighting its important role in lipid homeostasis, wall in-growth formation and PD development in transfer cells.
Collapse
Affiliation(s)
- Mingjian Hu
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement CenterDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Haiming Zhao
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement CenterDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Bo Yang
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement CenterDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Shuang Yang
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement CenterDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Haihong Liu
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - He Tian
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Zongliang Chen
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement CenterDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
- Waksman Institute of MicrobiologyRutgers UniversityPiscatawayNJ08854‐8020USA
| | - Lizhu E
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement CenterDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijing100193China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement CenterDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijing100193China
| | - Weibin Song
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement CenterDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijing100193China
| |
Collapse
|
19
|
Qiu T, Zhao X, Feng H, Qi L, Yang J, Peng Y, Zhao W. OsNBL3, a mitochondrion-localized pentatricopeptide repeat protein, is involved in splicing nad5 intron 4 and its disruption causes lesion mimic phenotype with enhanced resistance to biotic and abiotic stresses. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2277-2290. [PMID: 34197672 PMCID: PMC8541779 DOI: 10.1111/pbi.13659] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/08/2021] [Accepted: 06/27/2021] [Indexed: 05/06/2023]
Abstract
Lesion mimic mutants are used to elucidate mechanisms controlling plant responses to pathogen attacks and environmental stresses. Although dozens of genes had been functionally demonstrated to be involved in lesion mimic phenotype in several plant species, the molecular mechanisms underlying the hypersensitive response are largely unknown. Here, a rice (Oryza sativa) lesion mimic mutant natural blight leaf 3 (nbl3) was identified from T-DNA insertion lines. The causative gene, OsNBL3, encodes a mitochondrion-localized pentatricopeptide repeat (PPR) protein. The nbl3 mutant exhibited spontaneous cell death response and H2 O2 accumulation, and displayed enhanced resistance to the fungal and bacterial pathogens Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae. This resistance was consistent with the up-regulation of several defence-related genes; thus, defence responses were induced in nbl3. RNA interference lines of OsNBL3 exhibited enhanced disease resistance similar to that of nbl3, while the disease resistance in overexpression lines did not differ from that of the wild type. In addition, nbl3 displayed improved tolerance to salt, accompanied by up-regulation of several salt-associated marker genes. OsNBL3 was found to mainly participate in the splicing of mitochondrial gene nad5 intron 4. Disruption of OsNBL3 leads to the reduction in complex I activity, the elevation of alternative respiratory pathways and the destruction of mitochondrial morphology. Overall, the results demonstrated that the PPR protein-coding gene OsNBL3 is essential for mitochondrial development and functions, and its disruption causes the lesion mimic phenotype and enhances disease resistance and tolerance to salt in rice.
Collapse
Affiliation(s)
- Tiancheng Qiu
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Xiaosheng Zhao
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Huijing Feng
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Linlu Qi
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - You‐Liang Peng
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Wensheng Zhao
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
20
|
Li X, Sun M, Liu S, Teng Q, Li S, Jiang Y. Functions of PPR Proteins in Plant Growth and Development. Int J Mol Sci 2021; 22:11274. [PMID: 34681932 PMCID: PMC8537650 DOI: 10.3390/ijms222011274] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 01/04/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins form a large protein family in land plants, with hundreds of different members in angiosperms. In the last decade, a number of studies have shown that PPR proteins are sequence-specific RNA-binding proteins involved in multiple aspects of plant organellar RNA processing, and perform numerous functions in plants throughout their life cycle. Recently, computational and structural studies have provided new insights into the working mechanisms of PPR proteins in RNA recognition and cytidine deamination. In this review, we summarized the research progress on the functions of PPR proteins in plant growth and development, with a particular focus on their effects on cytoplasmic male sterility, stress responses, and seed development. We also documented the molecular mechanisms of PPR proteins in mediating RNA processing in plant mitochondria and chloroplasts.
Collapse
Affiliation(s)
- Xiulan Li
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (M.S.); (S.L.); (Q.T.); (S.L.)
| | | | | | | | | | - Yueshui Jiang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (M.S.); (S.L.); (Q.T.); (S.L.)
| |
Collapse
|
21
|
Yi F, Gu W, Li J, Chen J, Hu L, Cui Y, Zhao H, Guo Y, Lai J, Song W. Miniature Seed6, encoding an endoplasmic reticulum signal peptidase, is critical in seed development. PLANT PHYSIOLOGY 2021; 185:985-1001. [PMID: 33793873 PMCID: PMC8133640 DOI: 10.1093/plphys/kiaa060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/15/2020] [Indexed: 05/15/2023]
Abstract
Endoplasmic reticulum (ER) type I signal peptidases (ER SPases I) are vital proteases that cleave signal peptides from secreted proteins. However, the specific function of ER SPase I in plants has not been genetically characterized, and the substrate is largely unknown. Here, we report the identification of a maize (Zea mays) miniature seed6 (mn6) mutant. The loss-of-function mn6 mutant exhibited severely reduced endosperm size. Map-based cloning and molecular characterization indicated that Mn6 is an S26-family ER SPase I, with Gly102 (box E) in Mn6 critical for protein function during processing. Mass spectrometric and immunoprecipitation analyses revealed that Mn6 is predominantly involved in processing carbohydrate synthesis-related proteins, including the cell wall invertase miniature seed1 (Mn1), which is specifically expressed in the basal endosperm transfer layer. RNA and protein expression levels of Mn1 were both significantly downregulated in the mn6 mutant. Due to the significant reduction in cell wall invertase activity in the transfer cell layer, mutation of Mn6 caused dramatic defects in endosperm development. These results suggest that proper maturation of Mn1 by Mn6 may be a crucial step for proper seed filling and maize development.
Collapse
Affiliation(s)
- Fei Yi
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Wei Gu
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Jianfang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Jian Chen
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Li Hu
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Yang Cui
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Haiming Zhao
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Weibin Song
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P. R. China
- Author for communication:
| |
Collapse
|
22
|
Zhang X, Cui Y, Wang J, Huang Y, Qi Y. Conserved co-functional network between maize and Arabidopsis aid in the identification of seed defective genes in maize. Genes Genomics 2021; 43:433-446. [PMID: 33651300 DOI: 10.1007/s13258-021-01067-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/17/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND The biological pathways related to Arabidopsis seed development have been well studied and functional genes involved in it have been discovered. However, functional studies about maize seed development were more limited compared to Arabidopsis. OBJECTIVE Therefore, transferring knowledge from Arabidopsis into maize would facilitate functional studies about maize seed development. METHOD In this study, public transcriptome data of the two species related to seed development were obtained. Co-expression network in each species was compared by integrating orthology information. RESULTS This conserved co-functional network contained 4510 maize and 4808 Arabidopsis genes, respectively. Most of these genes were expressed in throughout embryo, early or later endosperm/seed. These conserved co-functional genes were significantly enriched for members of PPR protein family, which was consistent with that PPR proteins play an important role in maize seed development. Spatial-temporally co-functional genes were discovered in the seed coat and embryo. Furthermore, 66 well-studied genes involved in Arabidopsis seed development were co-functional with 319 maize genes and one maize gene (GRMZM2G036050) was further confirmed using an EMS-induced seed defective mutant by bulked segregating RNA sequencing (BSR) analysis. CONCLUSIONS Altogether, these results showed the potential of this approach to support functional studies in maize seed development by transferring knowledge from Arabidopsis.
Collapse
Affiliation(s)
- Xiangbo Zhang
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yang Cui
- Sciences Rice and Sorghum Institude, Sichuan Academy of Agricultural, Deyang, 618000, China
| | - Juxuan Wang
- Yunnan Yingmao Sugar Industry (Group) Co. LTD, Kunming, 650228, China
| | - Yonghong Huang
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yongwen Qi
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, 510316, China.
| |
Collapse
|
23
|
Xiao H, Liu Z, Zou X, Xu Y, Peng L, Hu J, Lin H. Silencing of rice PPR gene PPS1 exhibited enhanced sensibility to abiotic stress and remarkable accumulation of ROS. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153361. [PMID: 33429329 DOI: 10.1016/j.jplph.2020.153361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Abiotic stresses widely constrain the development and reproduction of plant, especially impaired the yield of crops greatly. Recent researches presented pentatricopeptide repeat (PPR) proteins play crucial role in response to abiotic stress. However, the underlying mechanism of PPR genes in regulation of abiotic stress is still obscures. In our recent study, we found that the knockout of rice PPS1 causes pleiotropic growth disorders, including growth retardation, dwarf and sterile pollen, and finally leads to impaired C-U RNA editing at five consecutive sites on the mitochondrial nad3. In this study, we further investigate the roles of PPS1 in abiotic stress tolerance, we confirmed that pss1-RNAi line exhibited enhanced sensitivity to salinity and ABA stress at vegetative stage, specifically. While reactive oxygen species (ROS) accumulate significantly only at reproductive stage, which further activated the expression of several ROS-scavenging system related genes. These results implied that PPS1 functioned on ROS signaling network to contribute for the flexibility to abiotic stresses. Our research emphasizes the stress adaptability mediated by the PPR protein, and also provides new insight into the understanding of the interaction between cytoplasm and nucleus and signal transduction involved in RNA editing.
Collapse
Affiliation(s)
- Haijun Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Zhongjie Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xue Zou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yanghong Xu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Leilei Peng
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Jun Hu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
24
|
Zhang K, Wang F, Liu B, Xu C, He Q, Cheng W, Zhao X, Ding Z, Zhang W, Zhang K, Li K. ZmSKS13, a cupredoxin domain-containing protein, is required for maize kernel development via modulation of redox homeostasis. THE NEW PHYTOLOGIST 2021; 229:2163-2178. [PMID: 33034042 DOI: 10.1111/nph.16988] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
The SKU5 similar (SKS) genes encode a family of multi-copper-oxidase-like proteins with cupredoxin domains similar to those in laccase and ascorbate oxidase. Although SKS proteins are known to function in root growth and cotyledon vascular patterning in Arabidopsis, their role in plant reproductive processes is poorly understood. Here, we identified a seed mutant of maize (Zea mays), generated by ethyl methane sulfonate (EMS) mutagenesis, that we designated defective kernel-zk1 (dek-zk1). The mutant produced small, shriveled kernels with an aberrant basal endosperm transfer layer (BETL) and placento-chalazal (PC) layer and irregular starch granules. Map-based cloning revealed that Dek-zk1 encodes an SKU5 similar 13 (GenBank: ONM36900.1), so it was named ZmSKS13. ZmSKS13 comprises a paralogous pair with Zm00001d012524, but the transcript abundance of ZmSKS13 in developing kernels is 15 times higher than that of Zm00001d012524, resulting in dek-zk1 mutation conveying a distinct kernel phenotype. ZmSKS13 loss of function led to overaccumulation of reactive oxygen species (ROS) and severe DNA damage in the nucellus and BETL and PC layer cells, and exogenous antioxidants significantly alleviated the defects of the mutant kernels. Our results thus demonstrate that ZmSKS13 is a novel regulator that plays a crucial role in kernel development in maize through the modulation of ROS homeostasis.
Collapse
Affiliation(s)
- Ke Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Fei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Baiyu Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Changzheng Xu
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250103, China
| | - Wen Cheng
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, China
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zhaohua Ding
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, China
| | - Wei Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Kewei Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Kunpeng Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
25
|
Dai D, Ma Z, Song R. Maize kernel development. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:2. [PMID: 37309525 PMCID: PMC10231577 DOI: 10.1007/s11032-020-01195-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 06/14/2023]
Abstract
Maize (Zea mays) is a leading cereal crop in the world. The maize kernel is the storage organ and the harvest portion of this crop and is closely related to its yield and quality. The development of maize kernel is initiated by the double fertilization event, leading to the formation of a diploid embryo and a triploid endosperm. The embryo and endosperm are then undergone independent developmental programs, resulting in a mature maize kernel which is comprised of a persistent endosperm, a large embryo, and a maternal pericarp. Due to the well-characterized morphogenesis and powerful genetics, maize kernel has long been an excellent model for the study of cereal kernel development. In recent years, with the release of the maize reference genome and the development of new genomic technologies, there has been an explosive expansion of new knowledge for maize kernel development. In this review, we overviewed recent progress in the study of maize kernel development, with an emphasis on genetic mapping of kernel traits, transcriptome analysis during kernel development, functional gene cloning of kernel mutants, and genetic engineering of kernel traits.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
26
|
Fan K, Peng Y, Ren Z, Li D, Zhen S, Hey S, Cui Y, Fu J, Gu R, Wang J, Wang G, Li L. Maize Defective Kernel605 Encodes a Canonical DYW-Type PPR Protein that Edits a Conserved Site of nad1 and Is Essential for Seed Nutritional Quality. PLANT & CELL PHYSIOLOGY 2020; 61:1954-1966. [PMID: 32818255 DOI: 10.1093/pcp/pcaa110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins involved in mitochondrial RNA cytidine (C)-to-uridine (U) editing mostly result in stagnant embryo and endosperm development upon loss of function. However, less is known about PPRs that are involved in farinaceous endosperm formation and maize quality. Here, we cloned a maize DYW-type PPR Defective Kernel605 (Dek605). Mutation of Dek605 delayed seed and seedling development. Mitochondrial transcript analysis of dek605 revealed that loss of DEK605 impaired C-to-U editing at the nad1-608 site and fails to alter Ser203 to Phe203 in NAD1 (dehydrogenase complex I), disrupting complex I assembly and reducing NADH dehydrogenase activity. Meanwhile, complexes III and IV in the cytochrome pathway, as well as AOX2 in the alternative respiratory pathway, are dramatically increased. Interestingly, the dek605 mutation resulted in opaque endosperm and increased levels of the free amino acids alanine, aspartic acid and phenylalanine. The down- and upregulated genes mainly involved in stress response-related and seed dormancy-related pathways, respectively, were observed after transcriptome analysis of dek605 at 12 d after pollination. Collectively, these results indicate that Dek605 specifically affects the single nad1-608 site and is required for normal seed development and resulted in nutritional quality relevant amino acid accumulation.
Collapse
Affiliation(s)
- Kaijian Fan
- Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yixuan Peng
- Institute of Crop Sciences, Chinese Academy of Agricultural iences, Beijing 100081, China
| | - Zhenjing Ren
- Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural iences, Beijing 100081, China
| | - Delin Li
- Institute of Crop Sciences, Chinese Academy of Agricultural iences, Beijing 100081, China
| | - Sihan Zhen
- Institute of Crop Sciences, Chinese Academy of Agricultural iences, Beijing 100081, China
| | - Stefan Hey
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Yu Cui
- Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Junjie Fu
- Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Riliang Gu
- Institute of Crop Sciences, Chinese Academy of Agricultural iences, Beijing 100081, China
| | - Jianhua Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural iences, Beijing 100081, China
| | - Guoying Wang
- Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Li Li
- Institute of Crop Sciences, Chinese Academy of Agricultural iences, Beijing 100081, China
| |
Collapse
|
27
|
Ren RC, Yan XW, Zhao YJ, Wei YM, Lu X, Zang J, Wu JW, Zheng GM, Ding XH, Zhang XS, Zhao XY. The novel E-subgroup pentatricopeptide repeat protein DEK55 is responsible for RNA editing at multiple sites and for the splicing of nad1 and nad4 in maize. BMC PLANT BIOLOGY 2020; 20:553. [PMID: 33297963 PMCID: PMC7727260 DOI: 10.1186/s12870-020-02765-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 12/01/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Pentatricopeptide repeat (PPR) proteins compose a large protein family whose members are involved in both RNA processing in organelles and plant growth. Previous reports have shown that E-subgroup PPR proteins are involved in RNA editing. However, the additional functions and roles of the E-subgroup PPR proteins are unknown. RESULTS In this study, we developed and identified a new maize kernel mutant with arrested embryo and endosperm development, i.e., defective kernel (dek) 55 (dek55). Genetic and molecular evidence suggested that the defective kernels resulted from a mononucleotide alteration (C to T) at + 449 bp within the open reading frame (ORF) of Zm00001d014471 (hereafter referred to as DEK55). DEK55 encodes an E-subgroup PPR protein within the mitochondria. Molecular analyses showed that the editing percentage of 24 RNA editing sites decreased and that of seven RNA editing sites increased in dek55 kernels, the sites of which were distributed across 14 mitochondrial gene transcripts. Moreover, the splicing efficiency of nad1 introns 1 and 4 and nad4 intron 1 significantly decreased in dek55 compared with the wild type (WT). These results indicate that DEK55 plays a crucial role in RNA editing at multiple sites as well as in the splicing of nad1 and nad4 introns. Mutation in the DEK55 gene led to the dysfunction of mitochondrial complex I. Moreover, yeast two-hybrid assays showed that DEK55 interacts with two multiple organellar RNA-editing factors (MORFs), i.e., ZmMORF1 (Zm00001d049043) and ZmMORF8 (Zm00001d048291). CONCLUSIONS Our results demonstrated that a mutation in the DEK55 gene affects the mitochondrial function essential for maize kernel development. Our results also provide novel insight into the molecular functions of E-subgroup PPR proteins involved in plant organellar RNA processing.
Collapse
Affiliation(s)
- Ru Chang Ren
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Xu Wei Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Ya Jie Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Yi Ming Wei
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Xiaoduo Lu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, 250200, PR China
| | - Jie Zang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Jia Wen Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Guang Ming Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Xin Hua Ding
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China.
| |
Collapse
|
28
|
Dai D, Jin L, Huo Z, Yan S, Ma Z, Qi W, Song R. Maize pentatricopeptide repeat protein DEK53 is required for mitochondrial RNA editing at multiple sites and seed development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6246-6261. [PMID: 32710615 DOI: 10.1093/jxb/eraa348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/21/2020] [Indexed: 05/21/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins were identified as site-specific recognition factors for RNA editing in plant mitochondria and plastids. In this study, we characterized maize (Zea mays) kernel mutant defective kernel 53 (dek53), which has an embryo lethal and collapsed endosperm phenotype. Dek53 encodes an E-subgroup PPR protein, which possesses a short PLS repeat region of only seven repeats. Subcellular localization analysis indicated that DEK53 is localized in the mitochondrion. Strand- and transcript-specific RNA-seq analysis showed that the dek53 mutation affected C-to-U RNA editing at more than 60 mitochondrial C targets. Biochemical analysis of mitochondrial protein complexes revealed a significant reduction in the assembly of mitochondrial complex III in dek53. Transmission electron microscopic examination showed severe morphological defects of mitochondria in dek53 endosperm cells. In addition, yeast two-hybrid and luciferase complementation imaging assays indicated that DEK53 can interact with the mitochondrion-targeted non-PPR RNA editing factor ZmMORF1, suggesting that DEK53 might be a functional component of the organellar RNA editosome.
Collapse
Affiliation(s)
- Dawei Dai
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Lifang Jin
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhenzhen Huo
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Shumei Yan
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Wang HC, Sayyed A, Liu XY, Yang YZ, Sun F, Wang Y, Wang M, Tan BC. SMALL KERNEL4 is required for mitochondrial cox1 transcript editing and seed development in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:777-792. [PMID: 31332949 DOI: 10.1111/jipb.12856] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
In land plants, cytidine-to-uridine (C-to-U) editing of organellar transcripts is an important post-transcriptional process, which is considered to remediate DNA genetic mutations to restore the coding of functional proteins. Pentatricopeptide repeat (PPR) proteins have key roles in C-to-U editing. Owing to its large number, however, the biological functions of many PPR proteins remain to be identified. Through characterizing a small kernel4 (smk4) mutant, here we report the function of Smk4 and its role in maize growth and development. Null mutation of Smk4 slows plant growth and development, causing small plants, delayed flowering time, and small kernels. Cloning revealed that Smk4 encodes a new E-subclass PPR protein, and localization indicated that SMK4 is exclusively localized in mitochondria. Loss of Smk4 function abolishes C-to-U editing at position 1489 of the cytochrome c oxidase1 (cox1) transcript, causing an amino acid change from serine to proline at 497 in Cox1. Cox1 is a core component of mitochondrial complex IV. Indeed, complex IV activity is reduced in the smk4, along with drastically elevated expression of alternative oxidases (AOX). These results indicate that SMK4 functions in the C-to-U editing of cox1-1489, and this editing is crucial for mitochondrial complex IV activity, plant growth, and kernel development in maize.
Collapse
Affiliation(s)
- Hong-Chun Wang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Aqib Sayyed
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xin-Yuan Liu
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yan-Zhuo Yang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Feng Sun
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yong Wang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Miaodi Wang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
30
|
Ren RC, Wang LL, Zhang L, Zhao YJ, Wu JW, Wei YM, Zhang XS, Zhao XY. DEK43 is a P-type pentatricopeptide repeat (PPR) protein responsible for the Cis-splicing of nad4 in maize mitochondria. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:299-313. [PMID: 31119902 DOI: 10.1111/jipb.12843] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/20/2019] [Indexed: 05/23/2023]
Abstract
Mitochondria, the main energy transducers in plant cells, require the proper assembly of respiratory chain complexes I-V for their function. The NADH dehydrogenase 4 (nad4) gene encodes mitochondrial respiratory chain complex I subunit IV, but the mechanism underlying nad4 transcript splicing is unclear. Here, we report that the P-type pentatricopeptide repeat (PPR) protein DEFECTIVE KERNEL 43 (DEK43) is responsible for cis-splicing of the nad4 transcript in maize. We demonstrate that DEK43 localizes to both the nucleus and mitochondria. The mutation of Dek43 resulted in embryo-lethal and light-colored defective kernels. Among the 22 mitochondrial group II introns, the splicing efficiency of nad4 introns 1 and 3 was reduced by up to 50% compared to the wild type. The levels of complex I and supercomplex I+III2 were also reduced in dek43. Furthermore, in-gel NADH dehydrogenase assays indicated that the activities of these complexes were significantly reduced in dek43. Further, the mitochondrial ultrastructure was altered in the mutant. Together, our findings indicate that DEK43, a dual-localized PPR protein, plays an important role in maintaining mitochondrial function and maize kernel development.
Collapse
Affiliation(s)
- Ru Chang Ren
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Li Li Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Lin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Ya Jie Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Jia Wen Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Yi Ming Wei
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
31
|
Yang YZ, Ding S, Wang Y, Wang HC, Liu XY, Sun F, Xu C, Liu B, Tan BC. PPR20 Is Required for the cis-Splicing of Mitochondrial nad2 Intron 3 and Seed Development in Maize. PLANT & CELL PHYSIOLOGY 2020; 61:370-380. [PMID: 31670803 DOI: 10.1093/pcp/pcz204] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/22/2019] [Indexed: 05/02/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins are helical repeat RNA-binding proteins that function in RNA processing by conferring sequence-specific RNA-binding activity. Owing to the lethality of PPR mutants, functions of many PPR proteins remain obscure. In this study, we report the function of PPR20 in intron splicing in mitochondria and its role in maize seed development. PPR20 is a P-type PPR protein targeted to mitochondria. The ppr20 mutants display slow embryo and endosperm development. Null mutation of PPR20 severely reduces the cis-splicing of mitochondrial nad2 intron 3, resulting in reduction in the assembly and activity of mitochondrial complex I. The ppr20-35 allele with a Mu insertion in the N-terminal region shows a much weaker phenotype. Molecular analyses revealed that the mutant produces a truncated transcript, coding for PPR20ΔN120 lacking the N-terminal 120 amino acids. Subcellular localization revealed that PPR20ΔN120:GFP is able to target to mitochondria as well, suggesting the sequence diversity of the mitochondrial targeting peptides. Another mutant zm_mterf15 was also found to be impaired in the splicing of mitochondrial nad2 intron 3. Further analyses are required to identify the exact function of PPR20 and Zm_mTERF15 in the splicing of nad2 intron 3.
Collapse
Affiliation(s)
- Yan-Zhuo Yang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Shuo Ding
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yong Wang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Hong-Chun Wang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xin-Yuan Liu
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Feng Sun
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Chunhui Xu
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Baohui Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Bao-Cai Tan
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
32
|
Liu M, Tan X, Yang Y, Liu P, Zhang X, Zhang Y, Wang L, Hu Y, Ma L, Li Z, Zhang Y, Zou C, Lin H, Gao S, Lee M, Lübberstedt T, Pan G, Shen Y. Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:207-221. [PMID: 31199064 PMCID: PMC6920160 DOI: 10.1111/pbi.13188] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/26/2019] [Accepted: 06/01/2019] [Indexed: 05/14/2023]
Abstract
Kernel size-related traits are the most direct traits correlating with grain yield. The genetic basis of three kernel traits of maize, kernel length (KL), kernel width (KW) and kernel thickness (KT), was investigated in an association panel and a biparental population. A total of 21 single nucleotide polymorphisms (SNPs) were detected to be most significantly (P < 2.25 × 10-6 ) associated with these three traits in the association panel under four environments. Furthermore, 50 quantitative trait loci (QTL) controlling these traits were detected in seven environments in the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population, of which eight were repetitively identified in at least three environments. Combining the two mapping populations revealed that 56 SNPs (P < 1 × 10-3 ) fell within 18 of the QTL confidence intervals. According to the top significant SNPs, stable-effect SNPs and the co-localized SNPs by association analysis and linkage mapping, a total of 73 candidate genes were identified, regulating seed development. Additionally, seven miRNAs were found to situate within the linkage disequilibrium (LD) regions of the co-localized SNPs, of which zma-miR164e was demonstrated to cleave the mRNAs of Arabidopsis CUC1, CUC2 and NAC6 in vitro. Overexpression of zma-miR164e resulted in the down-regulation of these genes above and the failure of seed formation in Arabidopsis pods, with the increased branch number. These findings provide insights into the mechanism of seed development and the improvement of molecular marker-assisted selection (MAS) for high-yield breeding in maize.
Collapse
Affiliation(s)
- Min Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Xiaolong Tan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yan Yang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Peng Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Xiaoxiang Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yinchao Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Lei Wang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yu Hu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Langlang Ma
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Zhaoling Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yanling Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Chaoying Zou
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Haijian Lin
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Shibin Gao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Michael Lee
- Department of AgronomyIowa State UniversityAmesIAUSA
| | | | - Guangtang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yaou Shen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest RegionMaize Research InstituteSichuan Agricultural UniversityChengduChina
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (In preparation)ChengduChina
| |
Collapse
|
33
|
Xiu Z, Peng L, Wang Y, Yang H, Sun F, Wang X, Cao SK, Jiang R, Wang L, Chen BY, Tan BC. Em pty Pericarp24 and Empty Pericarp25 Are Required for the Splicing of Mitochondrial Introns, Complex I Assembly, and Seed Development in Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:608550. [PMID: 33424905 PMCID: PMC7793708 DOI: 10.3389/fpls.2020.608550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/23/2020] [Indexed: 05/08/2023]
Abstract
RNA splicing is an essential post-transcriptional regulation in plant mitochondria and chloroplasts. As the mechanism of RNA splicing remains obscure, identification and functional elucidation of new splicing factors are necessary. Through a characterization of two maize mutants, we cloned Empty pericarp 24 (Emp24) and Empty pericarp 25 (Emp25). Both Emp24 and Emp25 encode mitochondrion-targeted P-type PPR proteins. EMP24 is required for the splicing of nad4 introns 1 and 3, which was reported (Ren Z. et al., 2019), and EMP25 functions in the splicing of nad5 introns 1, 2, and 3. Absence of either Nad4 or Nad5 proteins blocks the assembly of mitochondrial complex I, resulting in the formation of a sub-sized complex I of similar size in both mutants. Mass spectrometry identification revealed that the subcomplexes in both mutants lack an identical set of proteins of complex I. These results indicate that EMP24 and EMP25 function in the splicing of nad4 and nad5 introns, respectively, and are essential to maize kernel development. The identification of the subcomplexes provides genetic and molecular insights into the modular complex I assembly pathway in maize.
Collapse
Affiliation(s)
- Zhihui Xiu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Ling Peng
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Yong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Huanhuan Yang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Feng Sun
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shi-Kai Cao
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Ruicheng Jiang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Le Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Bao-Yin Chen
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- *Correspondence: Bao-Cai Tan,
| |
Collapse
|
34
|
Ren RC, Lu X, Zhao YJ, Wei YM, Wang LL, Zhang L, Zhang WT, Zhang C, Zhang XS, Zhao XY. Pentatricopeptide repeat protein DEK40 is required for mitochondrial function and kernel development in maize. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6163-6179. [PMID: 31598687 PMCID: PMC6859738 DOI: 10.1093/jxb/erz391] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/15/2019] [Indexed: 05/18/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins are one of the largest protein families, which consists of >400 members in most species. However, the molecular functions of many PPR proteins are still uncharacterized. Here, we isolated a maize mutant, defective kernel 40 (dek40). Positional cloning, and genetic and molecular analyses revealed that DEK40 encodes a new E+ subgroup PPR protein that is localized in the mitochondrion. DEK40 recognizes and directly binds to cox3, nad2, and nad5 transcripts and functions in their processing. In the dek40 mutant, abolishment of the C-to-U editing of cox3-314, nad2-26, and nad5-1916 leads to accumulated reactive oxygen species and promoted programmed cell death in endosperm cells due to the dysfunction of mitochondrial complexes I and IV. Furthermore, RNA sequencing analysis showed that gene expression in some pathways, such as glutathione metabolism and starch biosynthesis, was altered in the dek40 mutant compared with the wild-type control, which might be involved in abnormal development of the maize mutant kernels. Thus, our results provide solid evidence on the molecular mechanism underlying RNA editing by DEK40, and extend our understanding of PPR-E+ type protein in editing functions and kernel development in maize.
Collapse
Affiliation(s)
- Ru Chang Ren
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Xiaoduo Lu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, China
| | - Ya Jie Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Yi Ming Wei
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Li Li Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Lin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Wen Ting Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
- Correspondence: or
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
- Correspondence: or
| |
Collapse
|
35
|
Fu C, Du J, Tian X, He Z, Fu L, Wang Y, Xu D, Xu X, Xia X, Zhang Y, Cao S. Rapid identification and characterization of genetic loci for defective kernel in bread wheat. BMC PLANT BIOLOGY 2019; 19:483. [PMID: 31703630 PMCID: PMC6842267 DOI: 10.1186/s12870-019-2102-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Wheat is a momentous crop and feeds billions of people in the world. The improvement of wheat yield is very important to ensure world food security. Normal development of grain is the essential guarantee for wheat yield formation. The genetic study of grain phenotype and identification of key genes for grain filling are of great significance upon dissecting the molecular mechanism of wheat grain morphogenesis and yield potential. RESULTS Here we identified a pair of defective kernel (Dek) isogenic lines, BL31 and BL33, with plump and shrunken mature grains, respectively, and constructed a genetic population from the BL31/BL33 cross. Ten chromosomes had higher frequency of polymorphic single nucleotide polymorphism (SNP) markers between BL31 and BL33 using Wheat660K chip. Totally 783 simple sequence repeat (SSR) markers were chosen from the above chromosomes and 15 of these were integrated into two linkage groups using the genetic population. Genetic mapping identified three QTL, QDek.caas-3BS.1, QDek.caas-3BS.2 and QDek.caas-4AL, explaining 14.78-18.17%, 16.61-21.83% and 19.08-28.19% of phenotypic variances, respectively. Additionally, five polymorphic SNPs from Wheat660K were successfully converted into cleaved amplified polymorphic sequence (CAPS) markers and enriched the target regions of the above QTL. Biochemical analyses revealed that BL33 has significantly higher grain sucrose contents at filling stages and lower mature grain starch contents than BL31, indicating that the Dek QTL may be involved in carbohydrate metabolism. As such, the candidate genes for each QTL were predicated according to International Wheat Genome Sequence Consortium (IWGSC) RefSeq v1.0. CONCLUSIONS Three major QTL for Dek were identified and their causal genes were predicted, laying a foundation to conduct fine mapping and dissect the regulatory mechanism underlying Dek trait in wheat.
Collapse
Affiliation(s)
- Chao Fu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiuyuan Du
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Xiuling Tian
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- International Maize and Wheat Improvement Center, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Luping Fu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yue Wang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dengan Xu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoting Xu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yan Zhang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
36
|
Dai D, Tong H, Cheng L, Peng F, Zhang T, Qi W, Song R. Maize Dek33 encodes a pyrimidine reductase in riboflavin biosynthesis that is essential for oil-body formation and ABA biosynthesis during seed development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5173-5187. [PMID: 31173102 PMCID: PMC6793443 DOI: 10.1093/jxb/erz268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/28/2019] [Indexed: 05/05/2023]
Abstract
The maize (Zea mays) defective kernel 33 (dek33) mutant produces defective and occasionally viviparous kernel phenotypes. In this study, we cloned Dek33 by positional cloning and found that it encodes a pyrimidine reductase in riboflavin biosynthesis. In dek33, a single-base mutation (G to A) in the C-terminal COG3236 domain caused a premature stop codon (TGA), producing a weak mutant allele with only a truncated form of the DEK33 protein that occurred at much lower levels that the completed WT form, and with a reduced riboflavin content. The dek33 mutation significantly affected oil-body formation and suppressed endoreduplication. It also disrupted ABA biosynthesis, resulting in lower ABA content that might be responsible for the viviparous embryo. In addition, our results indicated that the COG3236 domain is important for the protein stability of DEK33. Yeast two-hybrid experiments identified several proteins that interacted with DEK33, including RGLG2 and SnRK1, suggesting possible post-translational regulation of DEK33 stability. The interaction between DEK33 and these proteins was further confirmed by luciferase complementation image assays. This study provides a weak mutant allele that can be utilized to explore cellular responses to impaired riboflavin biosynthesis during seed development. Our findings indicate that the COG3236 domain might be an essential regulatory structure for DEK33 stability in maize.
Collapse
Affiliation(s)
- Dawei Dai
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Hongyang Tong
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Lijun Cheng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fei Peng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Tingting Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Correspondence:
| |
Collapse
|
37
|
Hao Y, Wang Y, Wu M, Zhu X, Teng X, Sun Y, Zhu J, Zhang Y, Jing R, Lei J, Li J, Bao X, Wang C, Wang Y, Wan J. The nuclear-localized PPR protein OsNPPR1 is important for mitochondrial function and endosperm development in rice. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4705-4720. [PMID: 31087099 PMCID: PMC6760278 DOI: 10.1093/jxb/erz226] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/02/2019] [Indexed: 05/06/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants. Recent studies revealed the functions of PPR proteins in organellar RNA metabolism and plant development, but the functions of most PPR proteins, especially PPRs localized in the nucleus, remain largely unknown. Here, we report the isolation and characterization of a rice mutant named floury and growth retardation1 (fgr1). fgr1 showed floury endosperm with loosely arranged starch grains, decreased starch and amylose contents, and retarded seedling growth. Map-based cloning showed that the mutant phenotype was caused by a single nucleotide substitution in the coding region of Os08g0290000. This gene encodes a nuclear-localized PPR protein, which we named OsNPPR1, that affected mitochondrial function. In vitro SELEX and RNA-EMSAs showed that OsNPPR1 was an RNA protein that bound to the CUCAC motif. Moreover, a number of retained intron (RI) events were detected in fgr1. Thus, OsNPPR1 was involved in regulation of mitochondrial development and/or functions that are important for endosperm development. Our results provide novel insights into coordinated interaction between nuclear-localized PPR proteins and mitochondrial function.
Collapse
Affiliation(s)
- Yuanyuan Hao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Yunlong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Mingming Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Xiaopin Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Xuan Teng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Yinglun Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Jianping Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Yuanyan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Ruonan Jing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Jie Lei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Jingfang Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Xiuhao Bao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Chunming Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
- Correspondence: ; ; or
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
- Correspondence: ; ; or
| |
Collapse
|
38
|
Sandoval R, Boyd RD, Kiszter AN, Mirzakhanyan Y, Santibańez P, Gershon PD, Hayes ML. Stable native RIP9 complexes associate with C-to-U RNA editing activity, PPRs, RIPs, OZ1, ORRM1 and ISE2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1116-1126. [PMID: 31077462 PMCID: PMC6744336 DOI: 10.1111/tpj.14384] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 05/02/2023]
Abstract
The mitochondrial and chloroplast mRNAs of the majority of land plants are modified through cytidine to uridine (C-to-U) RNA editing. Previously, forward and reverse genetic screens demonstrated a requirement for pentatricopeptide repeat (PPR) proteins for RNA editing. Moreover, chloroplast editing factors OZ1, RIP2, RIP9 and ORRM1 were identified in co-immunoprecipitation (co-IP) experiments, albeit the minimal complex sufficient for editing activity was never deduced. The current study focuses on isolated, intact complexes that are capable of editing distinct sites. Peak editing activity for four sites was discovered in size-exclusion chromatography (SEC) fractions ≥ 670 kDa, while fractions estimated to be approximately 413 kDa exhibited the greatest ability to convert a substrate containing the editing site rps14 C80. RNA content peaked in the ≥ 670 kDa fraction. Treatment of active chloroplast extracts with RNase A abolished the relationship of editing activity with high-MW fractions, suggesting a structural RNA component in native complexes. By immunoblotting, RIP9, OTP86, OZ1 and ORRM1 were shown to be present in active gel filtration fractions, though OZ1 and ORRM1 were mainly found in low-MW inactive fractions. Active editing factor complexes were affinity-purified using anti-RIP9 antibodies, and orthologs to putative Arabidopsis thaliana RNA editing factor PPR proteins, RIP2, RIP9, RIP1, OZ1, ORRM1 and ISE2 were identified via mass spectrometry. Western blots from co-IP studies revealed the mutual association of OTP86 and OZ1 with native RIP9 complexes. Thus, RIP9 complexes were discovered to be highly associated with C-to-U RNA editing activity and other editing factors indicative of their critical role in vascular plant editosomes.
Collapse
Affiliation(s)
- Rafael Sandoval
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Robert D. Boyd
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California, 90032, USA
| | - Alena N. Kiszter
- Department of Chemistry, Graz University of Technology, Graz, Austria
| | - Yeva Mirzakhanyan
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697, USA
| | - Paola Santibańez
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California, 90032, USA
| | - Paul D. Gershon
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697, USA
| | - Michael L. Hayes
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California, 90032, USA
- To whom correspondence should be addressed. Michael L. Hayes: Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, CA 90032; ; Tel.(323) 343-2144
| |
Collapse
|
39
|
Song W, Zhu J, Zhao H, Li Y, Liu J, Zhang X, Huang L, Lai J. OS1 functions in the allocation of nutrients between the endosperm and embryo in maize seeds. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:706-727. [PMID: 30506638 DOI: 10.1111/jipb.12755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/27/2018] [Indexed: 05/05/2023]
Abstract
Uncovering the genetic basis of seed development will provide useful tools for improving both crop yield and nutritional value. However, the genetic regulatory networks of maize (Zea mays) seed development remain largely unknown. The maize opaque endosperm and small germ 1 (os1) mutant has opaque endosperm and a small embryo. Here, we cloned OS1 and show that it encodes a putative transcription factor containing an RWP-RK domain. Transcriptional analysis indicated that OS1 expression is elevated in early endosperm development, especially in the basal endosperm transfer layer (BETL), conducting zone (CZ), and central starch endosperm (CSE) cells. RNA sequencing (RNA-Seq) analysis of the os1 mutant revealed sharp downregulation of certain genes in specific cell types, including ZmMRP-1 and Meg1 in BETL cells and a majority of zein- and starch-related genes in CSE cells. Using a haploid induction system, we show that wild-type endosperm could rescue the smaller size of os1 embryo, which suggests that nutrients are allocated by the wild-type endosperm. Therefore, our data imply that the network regulated by OS1 accomplishes a key step in nutrient allocation between endosperm and embryo within maize seeds. Identification of this network will help uncover the mechanisms regulating the nutritional balance between endosperm and embryo.
Collapse
Affiliation(s)
- Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Jinjie Zhu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Haiming Zhao
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Yingnan Li
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Jiangtao Liu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Xiangbo Zhang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Liangliang Huang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| |
Collapse
|
40
|
Chen L, Huang L, Dai L, Gao Y, Zou W, Lu X, Wang C, Zhang G, Ren D, Hu J, Shen L, Dong G, Gao Z, Chen G, Xue D, Guo L, Xing Y, Qian Q, Zhu L, Zeng D. PALE-GREEN LEAF12 Encodes a Novel Pentatricopeptide Repeat Protein Required for Chloroplast Development and 16S rRNA Processing in Rice. PLANT & CELL PHYSIOLOGY 2019; 60:587-598. [PMID: 30508149 DOI: 10.1093/pcp/pcy229] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/21/2018] [Indexed: 05/21/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins regulate organellar gene expression in plants, through their involvement in organellar RNA metabolism. In rice (Oryza sativa), 477 genes are predicted to encode PPR proteins; however, the majority of their functions remain unknown. In this study, we identified and characterized a rice mutant, pale-green leaf12 (pgl12); at the seedling stage, pgl12 mutants had yellow-green leaves, which gradually turned pale green as the plants grew. The pgl12 mutant had significantly reduced Chl contents and increased sensitivity to changes in temperature. A genetic analysis revealed that the pgl12 mutation is recessive and located within a single nuclear gene. Map-based cloning of PGL12, including a transgenic complementation test, confirmed the presence of a base substitution (C to T), generating a stop codon, within LOC_Os12g10184 in the pgl12 mutant. LOC_Os12g10184 encodes a novel PLS-type PPR protein containing 17 PPR motifs and targeted to the chloroplasts. A quantitative real-time PCR analysis showed that PGL12 was expressed in various tissues, especially the leaves. We also showed that the transcript levels of several nuclear- and plastid-encoded genes associated with chloroplast development and photosynthesis were significantly altered in pgl12 mutants. The mutant exhibited defects in the 16S rRNA processing and splicing of the plastid transcript ndhA. Our results indicate that PGL12 is a new PLS-type PPR protein required for proper chloroplast development and 16S rRNA processing in rice.
Collapse
Affiliation(s)
- Long Chen
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Lichao Huang
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Liping Dai
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Yihong Gao
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Weiwei Zou
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Xueli Lu
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Changjian Wang
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Guangheng Zhang
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Deyong Ren
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Jiang Hu
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Lan Shen
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Guojun Dong
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Zhenyu Gao
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Guang Chen
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Longbiao Guo
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Qian Qian
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Li Zhu
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Dali Zeng
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| |
Collapse
|
41
|
Takenaka M, Jörg A, Burger M, Haag S. RNA editing mutants as surrogates for mitochondrial SNP mutants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:310-321. [PMID: 30599308 DOI: 10.1016/j.plaphy.2018.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
In terrestrial plants, RNA editing converts specific cytidines to uridines in mitochondrial and plastidic transcripts. Most of these events appear to be important for proper function of organellar encoded genes, since translated proteins from edited mRNAs show higher similarity with evolutionary conserved polypeptide sequences. So far about 100 nuclear encoded proteins have been characterized as RNA editing factors in plant organelles. Respective RNA editing mutants reduce or lose editing activity at different sites and display various macroscopic phenotypes from pale or albino in the case of chloroplasts to growth retardation or even embryonic lethality. Therefore, RNA editing mutants can be a useful resource of surrogate mutants for organellar encoded genes, especially for mitochondrially encoded genes that it is so far unfeasible to manipulate. However, connections between RNA editing defects and observed phenotypes in the mutants are often hard to elucidate, since RNA editing factors often target multiple RNA sites in different genes simultaneously. In this review article, we summarize the physiological aspects of respective RNA editing mutants and discuss them as surrogate mutants for functional analysis of mitochondrially encoded genes.
Collapse
Affiliation(s)
- Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Anja Jörg
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | - Matthias Burger
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | - Sascha Haag
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| |
Collapse
|
42
|
Cui X, Wang Y, Wu J, Han X, Gu X, Lu T, Zhang Z. The RNA editing factor DUA1 is crucial to chloroplast development at low temperature in rice. THE NEW PHYTOLOGIST 2019; 221:834-849. [PMID: 30295937 DOI: 10.1111/nph.15448] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Low temperature stress hinders plant growth and chloroplast development and can limit the geographic range of cultivars. In rice, japonica cultivars have greater chilling tolerance than indica cultivars, but the molecular mechanism underlying chilling tolerance is unclear. Here, we report an RNA-binding protein, DUA1, cloned from the indica cultivar Dular, which exhibits a deficiency in chloroplast development at an early stage of development under low-temperature conditions. DUA1 shares high sequence homology with the pentatricopeptide repeat family and functions in plastid RNA editing under low-temperature conditions. Our data suggest that DUA1 can bind to the plastid-encoded rps8-182 transcript and disruption of DUA1 activity impairs editing. The RNA editing cofactor WSP1, a partner of DUA1, also participates in chloroplast development at low temperature. Western blot analysis indicates that WSP1 enhances DUA1 stability under low temperatures. DUA1 sequence analyses of rice core germplasm revealed that three major haplotypes of DUA1 and one haplotype showed substantial differences in chlorophyll content under low-temperature conditions. Variation at DUA1 may play an important role in the adaptation of rice to different growing regions.
Collapse
Affiliation(s)
- Xuean Cui
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanwei Wang
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinxia Wu
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiao Han
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaofeng Gu
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tiegang Lu
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiguo Zhang
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
43
|
Chen L, Li YX, Li C, Shi Y, Song Y, Zhang D, Li Y, Wang T. Genome-wide analysis of the pentatricopeptide repeat gene family in different maize genomes and its important role in kernel development. BMC PLANT BIOLOGY 2018; 18:366. [PMID: 30567489 PMCID: PMC6299966 DOI: 10.1186/s12870-018-1572-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/23/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND The pentatricopeptide repeat (PPR) gene family is one of the largest gene families in land plants (450 PPR genes in Arabidopsis, 477 PPR genes in rice and 486 PPR genes in foxtail millet) and is important for plant development and growth. Most PPR genes are encoded by plastid and mitochondrial genomes, and the gene products regulate the expression of the related genes in higher plants. However, the functions remain largely unknown, and systematic analysis and comparison of the PPR gene family in different maize genomes have not been performed. RESULTS In this study, systematic identification and comparison of PPR genes from two elite maize inbred lines, B73 and PH207, were performed. A total of 491 and 456 PPR genes were identified in the B73 and PH207 genomes, respectively. Basic bioinformatics analyses, including of the classification, gene structure, chromosomal location and conserved motifs, were conducted. Examination of PPR gene duplication showed that 12 and 15 segmental duplication gene pairs exist in the B73 and PH207 genomes, respectively, with eight duplication events being shared between the two genomes. Expression analysis suggested that 53 PPR genes exhibit qualitative variations in the different genetic backgrounds. Based on analysis of the correlation between PPR gene expression in kernels and kernel-related traits, four PPR genes are significantly negatively correlated with hundred kernel weight, 12 are significantly negatively correlated with kernel width, and eight are significantly correlated with kernel number. Eight of the 24 PPR genes are also located in metaQTL regions associated with yield and kernel-related traits in maize. Two important PPR genes (GRMZM2G353195 and GRMZM2G141202) might be regarded as important candidate genes associated with maize kernel-related traits. CONCLUSIONS Our results provide a more comprehensive understanding of PPR genes in different maize inbred lines and identify important candidate genes related to kernel development for subsequent functional validation in maize.
Collapse
Affiliation(s)
- Lin Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yong-xiang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chunhui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yunsu Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yanchun Song
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Dengfeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Tianyu Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|