1
|
Liu Y, Zhang E, Pan T, Chen J, Gao Y, Peñuelas J. Anthropogenic adaptation measures expand suitable area for highland barley in Tibetan Plateau. Sci Bull (Beijing) 2025; 70:1504-1512. [PMID: 40024841 DOI: 10.1016/j.scib.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 03/04/2025]
Abstract
Understanding the driving mechanisms of crop suitability is critical for ensuring global food security, particularly in promoting the sustainable development of alpine agriculture and alpine civilizations. In contrast to climate factors, how anthropogenic adaptation measures affect crop suitability remains largely unknown. This overlooked mechanism may explain why climate-driven model simulations underestimate the upper altitude limit for highland barley compared with observed records. Here, we used two decades of site-based phenological observations on the Tibetan Plateau and biophysical modeling, finding that anthropogenic adaptation measures can expand suitable cropping limits. These measures mainly involve breeding genotypes with lower thermal units, which enhance the adaptability of highland barley phenology to cold climates. Such adaptation mechanisms clarify the conflict between thermal niche model predictions and the observed distribution of highland barley up to an altitude of 5000 m. Considering these mechanisms, we developed an explainable framework to predict the potential habitat of highland barley under current climates. Results showed that anthropogenic adaptation measures expanded the suitable cropping area for highland barley by 27 × 104 km2 and the upper altitude limit for highland barley could reliably increase by approximately 50 m. This observation-based evidence underscores the crucial roles of anthropogenic adaptation measures in expanding suitable cropping limits of crops and highlights its importance for supporting food security and simulating accurate crop suitability.
Collapse
Affiliation(s)
- Yujie Liu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ermei Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Pan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahao Chen
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Gao
- Key Laboratory of Tibetan Plateau Earth System Science, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Josep Peñuelas
- Global Ecology Unit CREAF-CSIC-UAB, Center for Ecological Research and Forestry Applications - National Research Council, Edifici C, Universitat Autonoma de Barcelona, Barcelona 08193, Spain
| |
Collapse
|
2
|
Pei J, Wang Z, Heng Y, Chen Z, Wang K, Xiao Q, Li J, Hu Z, He H, Cao Y, Ye X, Deng XW, Liu Z, Ma L. Selection of dysfunctional alleles of bHLH1 and MYB1 has produced white grain in the tribe Triticeae. PLANT COMMUNICATIONS 2025; 6:101265. [PMID: 39893516 PMCID: PMC12010413 DOI: 10.1016/j.xplc.2025.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/20/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Grain color is a key agronomic trait that greatly determines food quality. The molecular and evolutionary mechanisms that underlie grain-color regulation are also important questions in evolutionary biology and crop breeding. Here, we confirm that both bHLH and MYB genes have played a critical role in the evolution of grain color in Triticeae. Blue grain is the ancestral trait in Triticeae, whereas white grain caused by bHLH or MYB dysfunctions is the derived trait. HvbHLH1 and HvMYB1 have been the targets of selection in barley, and dysfunctions caused by deletion(s), insertion(s), and/or point mutation(s) in the vast majority of Triticeae species are accompanied by a change from blue grain to white grain. Wheat with white grains exhibits high seed vigor under stress. Artificial co-expression of ThbHLH1 and ThMYB1 in the wheat endosperm or aleurone layer can generate purple grains with health benefits and blue grains for use in a new hybrid breeding technology, respectively. Our study thus reveals that white grain may be a favorable derived trait retained through natural or artificial selection in Triticeae and that the ancient blue-grain trait could be regained and reused in molecular breeding of modern wheat.
Collapse
Affiliation(s)
- Jiawei Pei
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zheng Wang
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Yanfang Heng
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhuo Chen
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingmeng Xiao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Jian Li
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Zhaorong Hu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Hang He
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Ying Cao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xing Wang Deng
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Zhijin Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ligeng Ma
- College of Life Sciences, Capital Normal University, Beijing, China.
| |
Collapse
|
3
|
Yang Z, Bai W, Guo G, Huang S, Wang Y, Zhou Y, Zhang Y, Sun J. The Q-interacted protein QIP3 recruits TaTPL to regulate spike architecture in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70149. [PMID: 40275435 DOI: 10.1111/tpj.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/06/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
Spike architecture is a critical determinant of grain yield in wheat; yet the regulatory mechanisms remain poorly understood. Here, we demonstrate that the AP2 transcription factor Q directly represses the expression of TaMYB30-6A, a gene associated with spike length in wheat. We further identify QIP3 as a Q-interacting protein harboring an N-terminal EAR motif. Simultaneously, we reveal that QIP3 exhibits transcriptional repression activity, dependent on the EAR motif, and physically interacts with the transcriptional corepressor TaTPL. Importantly, the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-generated qip3-aabbdd mutants exhibit reduced plant height and increased spike length phenotypes. Furthermore, RNA-seq and RT-qPCR assays show that QIP3 negatively regulates the expression of the Q target gene TaMYB30-6A in wheat. Collectively, we propose that the EAR motif-containing QIP3 interacts with Q to regulate spike architecture by recruiting the transcriptional corepressor TaTPL in wheat.
Collapse
Affiliation(s)
- Ziyi Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wanqing Bai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanghui Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, 475004, China
| | - Shuxian Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yufan Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, 475004, China
| | - Yunwei Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
4
|
Hayat U, Ul Din K, Ahmad M, Zulfiqar U, Sajjad M, Maqsood MF, Soufan W, Prasad PVV, Djalovic I. Salicylic acid confers cadmium tolerance in wheat by regulating photosynthesis, yield and ionic homeostasis. Sci Rep 2025; 15:3698. [PMID: 39880835 PMCID: PMC11779808 DOI: 10.1038/s41598-025-87236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Wheat (Triticum aestivum L.) productivity and quality can be threatened by soil cadmium (Cd) contamination, posing a concern to food security. Salicylic acid (SA) is an endogenously produced signaling molecule that activates the defense system imparting abiotic stress tolerance in plants. Hence, an experiment was conducted to explore the roles of foliar application of SA in ameliorating Cd toxicity in two wheat varieties. The treatments comprised of, a) Cd stress: i) Cd0 = control (No Cd), Cd1 = 500 µM Cd stress at 30 days after sowing (DAS); SA applications: (i) SA0 = control (No SA) (ii) SA1 = 0.5 mM SA at 32 DAS, and c) Wheat varieties: (i) Anaj-17 and (ii) Akbar-19. The experiment was carried out with three replicates in a completely randomized design (CRD). The findings of the study have revealed that Cd stress prominently reduced the plant growth and yield, gaseous exchange attributes, and relative water content of both wheat varieties, and more reduction was observed in Anaj-17 as compared to Akbar-19. Plant height, economic yield, photosynthetic rate, and relative water content were decreased by (9.80 and 8.20%), (12.2 and 6.58%), (20 and 11.32%), and (12.5 and 10%) in Anaj-17 and Akbar-19 respectively. Further, SPAD value and chlorophyll fluorescence decreased under Cd toxicity in both wheat cultivars as compared to non-stress conditions. Contrarily, electrolyte leakage and Cd contents were increased in the plants as compared to the control. However, the foliar applications of SA in Cd-stressed plants significantly improved the plant growth and yield attributes, relative water content, gas exchange attributes, and chlorophyll content in both wheat varieties as compared to control-no SA applied. In addition, chlorophyll fluorescence and nutrient uptake were also improved under SA applications as compared to control. However, SA played an ameliorative role in reducing Cd-toxicity by reducing the electrolyte leakage and Cd uptake by the plants. Among the varieties, Akbar-19 outperformed the Anaj-17 to impart Cd toxicity under SA applications based on plant morphophysiological attributes. Hence, the outcomes of the experiment recommended that the foliar treatment of SA amended the Cd tolerance of wheat varieties by improving plant physiological and biochemical attributes.
Collapse
Affiliation(s)
- Umer Hayat
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Kaleem Ul Din
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Maryium Sajjad
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38040, Pakistan
| | | | - Walid Soufan
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - P V Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki, 30, Novi Sad, 21000, Serbia.
| |
Collapse
|
5
|
Tong C, Jia Y, Hu H, Zeng Z, Chapman B, Li C. Pangenome and pantranscriptome as the new reference for gene-family characterization: A case study of basic helix-loop-helix (bHLH) genes in barley. PLANT COMMUNICATIONS 2025; 6:101190. [PMID: 39521956 PMCID: PMC11783906 DOI: 10.1016/j.xplc.2024.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Genome-wide identification and comparative gene-family analyses have commonly been performed to investigate species-specific evolution linked to various traits and molecular pathways. However, most previous studies have been limited to gene screening in a single reference genome, failing to account for the gene presence/absence variations (gPAVs) in a species. Here, we propose an innovative pangenome-based approach for gene-family analyses based on orthologous gene groups (OGGs). Using the basic helix-loop-helix (bHLH) transcription factor family in barley as an example, we identified 161-176 bHLHs in 20 barley genomes, which can be classified into 201 OGGs. These 201 OGGs were further classified into 140 core, 12 softcore, 29 shell, and 20 line-specific/cloud bHLHs, revealing the complete profile of bHLH genes in barley. Using a genome-scanning approach, we overcame the genome annotation bias and identified an average of 1.5 un-annotated core bHLHs per barley genome. We found that whole-genome/segmental duplicates are predominant mechanisms contributing to the expansion of most core/softcore bHLHs, whereas dispensable bHLHs are more likely to result from small-scale duplication events. Interestingly, we noticed that the dispensable bHLHs tend to be enriched in the specific subfamilies SF13, SF27, and SF28, implying the potentially biased expansion of specific bHLHs in barley. We found that 50% of the bHLHs contain at least 1 intact transposon element (TE) within the 2-kb upstream-to-downstream region. bHLHs with copy-number variations (CNVs) have 1.48 TEs on average, significantly more than core bHLHs without CNVs (1.36), supporting a potential role of TEs in bHLH expansion. Analyses of selection pressure showed that dispensable bHLHs have experienced clear relaxation of selection compared with core bHLHs, consistent with their conservation patterns. We also integrated the pangenome data with recently available barley pantranscriptome data from 5 tissues and discovered apparent transcriptional divergence within and across bHLH subfamilies. We conclude that pangenome-based gene-family analyses can better describe the previously untapped, genuine evolutionary status of bHLHs and provide novel insights into bHLH evolution in barley. We expect that this study will inspire similar analyses in many other gene families and species.
Collapse
Affiliation(s)
- Cen Tong
- Western Crop Genetic Alliance, Murdoch University, Murdoch, WA 6150, Australia; State Agricultural Biotechnology Centre (SABC), College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Yong Jia
- Western Crop Genetic Alliance, Murdoch University, Murdoch, WA 6150, Australia; State Agricultural Biotechnology Centre (SABC), College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia.
| | - Haifei Hu
- Western Crop Genetic Alliance, Murdoch University, Murdoch, WA 6150, Australia; State Agricultural Biotechnology Centre (SABC), College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Zhanghui Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Brett Chapman
- Western Crop Genetic Alliance, Murdoch University, Murdoch, WA 6150, Australia; State Agricultural Biotechnology Centre (SABC), College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Chengdao Li
- Western Crop Genetic Alliance, Murdoch University, Murdoch, WA 6150, Australia; State Agricultural Biotechnology Centre (SABC), College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia; Department of Primary Industry and Regional Development, Government of Western Australia, South Perth, WA 6155, Australia; College of Agriculture, Shandong Agricultural University, TaiAn, China.
| |
Collapse
|
6
|
Balcerowicz M. Lost in domestication: Has modern wheat left its microbial allies behind? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1261-1262. [PMID: 39551966 DOI: 10.1111/tpj.17137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
|
7
|
Ali A, Ullah Z, Ullah R, Kazi M. Barley a nutritional powerhouse for gut health and chronic disease defense. Heliyon 2024; 10:e38669. [PMID: 39640645 PMCID: PMC11619984 DOI: 10.1016/j.heliyon.2024.e38669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 12/07/2024] Open
Abstract
Background Digestive issues are recognized as significant contributors to various chronic diseases, including obesity, diabetes, and cardiovascular disease. Barley, a traditional grain, offers considerable promise in addressing these health challenges due to unique nutritional and bioactive compounds. Objective This review examines the therapeutic potential of various parts of barley, underutilized resource, for chronic disease prevention and management. Method ology: A comprehensive literature search was conducted across multiple databases like Google Scholar, PubMed, and ISI Web of Science, to identify nutritional components and functional ingredients in barley that contribute to gut health and chronic disease mitigation. Results The finding suggests that humans digest barley starch more slowly than wheat and rice, which benefits chronic disease management. Barley's high-molecular-weight β-glucan high content acts as a prebiotic, promotes gut health through microbiome modulation and short-chain fatty acid production, potentially preventing colon cancer and boosting immunity. Recent studies on exploring barley grass of high land showed functional ingredients such as flavonoids, saponarin lutonarin, superoxide dismutase, gamma-aminobutyric acid, polyphenols K, Ca, Se, tryptophan chlorophyll, and vitamins, suggesting potential for enhanced antioxidant activity and improved management of chronic conditions like diabetes, cholesterol, hypertension, cardiovascular health, liver protection, and even boosted immunity. Conclusion This review underscores the therapeutic potential of barley and its components in chronic disease management, highlighting the need for well-designed clinical trials to translate these findings into effective interventions.
Collapse
Affiliation(s)
- Arif Ali
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Zakir Ullah
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Rehman Ullah
- Department of Botany, University of Peshawar, Peshawar, 25100, Pakistan
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, POBOX- 2457, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
8
|
Rolhauser AG, Isaac ME, Violle C, Martin AR, Vasseur F, Lemoine T, Mahaut L, Fort F, Rotundo JL, Vile D. Phenotypic limits of crop diversity: a data exploration of functional trait space. THE NEW PHYTOLOGIST 2024; 244:708-718. [PMID: 39183372 DOI: 10.1111/nph.20050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024]
Abstract
Relationships between crop genetic and functional diversity are key to addressing contemporary agricultural challenges. Yet, there are few approaches for quantifying the relationship between genetic diversity and crop functional trait expression. Here, we introduce 'functional space accumulation curves' to analyze how trait space increases with the number of crop genotypes within a species. We explore the potential for functional space accumulating curves to quantify genotype-trait space relationships in four common annual crop species: barley (Hordeum vulgare), rice (Oryza sativa), soybean (Glycine max), and durum wheat (Triticum durum). We also employ these curves to describe genotype-trait space relationships in the wild annual Arabidopsis thaliana, which has not been subjected to artificial selection. All five species exhibited asymptotic functional space accumulation curves, suggesting a limit to intraspecific functional crop diversity, likely due to: dominant phenotypes represented by several genotypes; or functional redundancy that might exist among genotypes. Our findings indicate that there is a diminishing return of functional diversity with increasing number of genotypes. Our analysis demonstrates the efficacy of functional space accumulation curves in quantifying trait space occupancy of crops, with implications for managing crop diversity in agroecosystems, and genetic diversity in crop breeding programs.
Collapse
Affiliation(s)
- Andrés G Rolhauser
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, M1C1A4, ON, Canada
- Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, C1417DSE, Argentina
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, C1417DSE, Argentina
| | - Marney E Isaac
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, M1C1A4, ON, Canada
- Department of Global Development Studies, University of Toronto Scarborough, Toronto, M1C1A4, ON, Canada
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - Adam R Martin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, M1C1A4, ON, Canada
| | - François Vasseur
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - Taina Lemoine
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - Lucie Mahaut
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - Florian Fort
- CEFE, Univ Montpellier, Institut Agro, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - José L Rotundo
- Corteva Agriscience, 7250 NW 62nd Ave., Johnston, 50310, IA, USA
| | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, 34000, France
| |
Collapse
|
9
|
Pal P, Singh AK, Srivastava RK, Rathore SS, Sahoo UK, Subudhi S, Sarangi PK, Prus P. Circular Bioeconomy in Action: Transforming Food Wastes into Renewable Food Resources. Foods 2024; 13:3007. [PMID: 39335935 PMCID: PMC11431570 DOI: 10.3390/foods13183007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
The growing challenge of food waste management presents a critical opportunity for advancing the circular bioeconomy, aiming to transform waste into valuable resources. This paper explores innovative strategies for converting food wastes into renewable food resources, emphasizing the integration of sustainable technologies and zero-waste principles. The main objective is to demonstrate how these approaches can contribute to a more sustainable food system by reducing environmental impacts and enhancing resource efficiency. Novel contributions of this study include the development of bioproducts from various food waste streams, highlighting the potential of underutilized resources like bread and jackfruit waste. Through case studies and experimental findings, the paper illustrates the successful application of green techniques, such as microbial fermentation and bioprocessing, in valorizing food wastes. The implications of this research extend to policy frameworks, encouraging the adoption of circular bioeconomy models that not only address waste management challenges but also foster economic growth and sustainability. These findings underscore the potential for food waste to serve as a cornerstone in the transition to a circular, regenerative economy.
Collapse
Affiliation(s)
- Priti Pal
- Shri Ramswaroop Memorial College of Engineering & Management, Tewariganj, Faizabad Road, Lucknow 226028, India;
| | - Akhilesh Kumar Singh
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, India; (A.K.S.); (S.S.R.)
| | - Rajesh Kumar Srivastava
- Department of Biotechnology, GIT, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam 530045, India;
| | - Saurabh Singh Rathore
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, India; (A.K.S.); (S.S.R.)
| | | | - Sanjukta Subudhi
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi 110003, India;
| | | | - Piotr Prus
- Department of Agronomy, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
| |
Collapse
|
10
|
Fernie AR, Bulut M. A delicate balance: transcriptional control of awn development and yield in barley. TRENDS IN PLANT SCIENCE 2024; 29:946-947. [PMID: 38538388 DOI: 10.1016/j.tplants.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 09/07/2024]
Abstract
In a recent study, Zhang et al. identified that MADS1-regulated lemma and awn development can positively regulate barley yield. This finding, alongside the demonstration that the function of MADS1 is conserved in wheat, suggests it is an important target for the improvement of Triticeae crops.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| | - Mustafa Bulut
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
11
|
Song R, Shi P, Xiang L, He Y, Dong Y, Miao Y, Qi J. Evaluation of barley genotypes for drought adaptability: based on stress indices and comprehensive evaluation as criteria. FRONTIERS IN PLANT SCIENCE 2024; 15:1436872. [PMID: 39253570 PMCID: PMC11381406 DOI: 10.3389/fpls.2024.1436872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024]
Abstract
The prevalence of drought events worldwide emphasizes the importance of screening and cultivating drought-adapted crops. In this study, 206 germplasm resources were used as materials, dry weight as target trait, and two genotyping methods as criteria to evaluate drought adaptability at the seedling establishment stage. The results showed a significant decrease in average dry weight of the tested germplasm resources (from 746.90 mg to 285.40 mg) and rich variation in the responses of dry weight among each genotype to drought (CV=61.14%). In traditional evaluation method, drought resistance coefficient (DC), geometric mean productivity index (GMP), mean productivity index (MP), stress susceptibility index (SSI), stress tolerance index (STI), and tolerance index (TOL) also exhibited diversity in tested genotypes (CV>30%). However, these indices showed varying degrees of explanation for dry weight under stress and non-stress environments and failed to differentiate drought adaptability among genotypes clearly. In new evaluation method, four stress indices were developed to quantify barley seedling production and stability capacities. Compared to traditional stress indices, the stress production index (SI) explained dry weight more comprehensively under stress conditions (R2 = 0.98), while the ideal production index (II) explained dry weight better under non-stress conditions (R2 = 0.89). Furthermore, the potential index (PI) and elasticity index (EI) eliminated disparities in traditional stress indices and comprehensively clarified the contribution of elasticity and potential to production capacity under drought stress. Ultimately, through grading evaluation and cluster analysis, the tested germplasm resources were effectively categorized, and 11 genotypes were identified as suitable for cultivation in arid areas. Overall, the comprehensive evaluation method based on the newly developed stress indices surpasses the traditional method in screening drought adaptability of crops and serves as a vital tool for identifying high-stability and high-production capacities genotypes in various environments, which is expected to provide practical guidance for barley planting and breeding in arid areas.
Collapse
Affiliation(s)
- Ruijiao Song
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group-College of Agriculture, Shihezi University, Shihezi, China
| | - Peichun Shi
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group-College of Agriculture, Shihezi University, Shihezi, China
| | - Li Xiang
- Qitai Triticeae Crops Experimental Station, Xinjiang Academy of Agricultural Sciences, Qitai, China
| | - Yu He
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group-College of Agriculture, Shihezi University, Shihezi, China
| | - Yusheng Dong
- Qitai Triticeae Crops Experimental Station, Xinjiang Academy of Agricultural Sciences, Qitai, China
| | - Yu Miao
- Qitai Triticeae Crops Experimental Station, Xinjiang Academy of Agricultural Sciences, Qitai, China
| | - Juncang Qi
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group-College of Agriculture, Shihezi University, Shihezi, China
| |
Collapse
|
12
|
Borg AN, Vuts J, Caulfield JC, Withall DM, Foulkes MJ, Birkett MA. Characterisation of aphid antixenosis in aphid-resistant ancestor wheat, Triticum monococcum. PEST MANAGEMENT SCIENCE 2024. [PMID: 39152728 DOI: 10.1002/ps.8380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Due to the increasing presence of insecticide resistance across cereal aphid populations, new aphid management strategies, including the engineering of host resistance to aphids into commercial wheat varieties, are required. Previous studies have identified ancestor wheat, Triticum monococcum accessions MDR045 and MDR049, with resistance against the grain aphid, Sitobion avenae. To test the hypothesis that resistance can be accounted for by antixenosis (reduced attractiveness of host plants) via the release of repellent volatile organic compounds (VOCs), we explored the response of S. avenae to MDR045 and MDR049 following S. avenae herbivory, using behaviour and electrophysiology experiments. RESULTS In four-arm olfactometry assays, alate S. avenae showed aphid density-dependent reduced preference to VOC extracts from T. monococcum MDR045 and MDR049. By contrast, alate S. avenae showed aphid density-dependent increased preference to extracts from aphid-susceptible hexaploid wheat, Triticum aestivum var. Solstice and T. monococcum MDR037. Coupled gas chromatography-electroantennography (GC-EAG), using the antennae of alate S. avenae, located 24 electrophysiologically active compounds across all tested accessions. Synthetic blends created from 21 identified EAG-active compounds confirmed bioactivity of corresponding VOC extracts in four-arm olfactometry assays against alate S. avenae. CONCLUSION Our data suggest that resistance of T. monococcum MDR045 and MDR049 to S. avenae can be at least partially accounted for by antixenosis through antennal perception of specific repellent VOC blends induced by S. avenae feeding behaviour. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Alexander N Borg
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
- Division of Plant and Crop Sciences, The University of Nottingham, Loughborough, UK
| | - József Vuts
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - John C Caulfield
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - David M Withall
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - M John Foulkes
- Division of Plant and Crop Sciences, The University of Nottingham, Loughborough, UK
| | - Michael A Birkett
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| |
Collapse
|
13
|
Yang Z, Yang R, Bai W, Chen W, Kong X, Zhou Y, Qiao W, Zhang Y, Sun J. Q negatively regulates wheat salt tolerance through directly repressing the expression of TaSOS1 and reactive oxygen species scavenging genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:478-489. [PMID: 38659310 DOI: 10.1111/tpj.16777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
The Q transcription factor plays important roles in improving multiple wheat domestication traits such as spike architecture, threshability and rachis fragility. However, whether and how it regulates abiotic stress adaptation remain unclear. We found that the transcriptional expression of Q can be induced by NaCl and abscisic acid treatments. Using the q mutants generated by CRISPR/Cas9 and Q overexpression transgenic lines, we showed that the domesticated Q gene causes a penalty in wheat salt tolerance. Then, we demonstrated that Q directly represses the transcription of TaSOS1-3B and reactive oxygen species (ROS) scavenging genes to regulate Na+ and ROS homeostasis in wheat. Furthermore, we showed that wheat salt tolerance protein TaWD40 interacts with Q to competitively interfere with the interaction between Q and the transcriptional co-repressor TaTPL. Taken together, our findings reveal that Q directly represses the expression of TaSOS1 and some ROS scavenging genes, thus causing a harmful effect on wheat salt tolerance.
Collapse
Affiliation(s)
- Ziyi Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruizhen Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wanqing Bai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenxi Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, 475001, China
| | - Weihua Qiao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunwei Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
14
|
Alefe M, Abera BD, Delel MA. The Ethiopian snack food ('Kolo'): Existing knowledge and research directions on processing practices, quality and consumption. Heliyon 2024; 10:e29067. [PMID: 38601516 PMCID: PMC11004644 DOI: 10.1016/j.heliyon.2024.e29067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/01/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
'Kolo' is an Ethiopian well-roasted and dehulled barely snack food eaten alone or mixed with other roasted grains with a relatively long shelf life. It is an ancient and staple Ethiopian snack food that is being introduced around the globe. Traditionally, Kolo has been prepared by Ethiopian mothers. However, there is a scarcity of documented information about the nutritional profile, consumption status and effect of processing conditions on quality of Kolo. Therefore, the aim of this review is to access the indigenous processing practices, consumption status and the effect of processing conditions in quality of Kolo. The review discussed in detail the raw materials, processing steps, nutritional status, anti-nutritional factors, digestability and functional properties of Kolo from publications from the last thirty years. Due to the high temperature processing condition, the presence of acrylamide is highly likely and this may affect the safety of Kolo. The anti-nutritional factors in Kolo may affect the nutritional quality of Kolo due to the inaccessibility of nutrients. This information could have a significant contribution for future researchers, policy makers, society and producers. In conclusion, there is a need to get more tangible information about the quality and safety of Kolo through well designed scientific research to safeguard the wellbeing of the society.
Collapse
Affiliation(s)
- Mekuannt Alefe
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P. O. Box 26, Bahir Dar, Ethiopia
| | - Biresaw Demelash Abera
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P. O. Box 26, Bahir Dar, Ethiopia
| | - Mulugeta Admasu Delel
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P. O. Box 26, Bahir Dar, Ethiopia
| |
Collapse
|
15
|
Leber R, Heuberger M, Widrig V, Jung E, Paux E, Keller B, Sánchez-Martín J. A diverse panel of 755 bread wheat accessions harbors untapped genetic diversity in landraces and reveals novel genetic regions conferring powdery mildew resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:88. [PMID: 38532180 PMCID: PMC10965746 DOI: 10.1007/s00122-024-04582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
KEY MESSAGE A bread wheat panel reveals rich genetic diversity in Turkish, Pakistani and Iranian landraces and novel resistance loci to diverse powdery mildew isolates via subsetting approaches in association studies. Wheat breeding for disease resistance relies on the availability and use of diverse genetic resources. More than 800,000 wheat accessions are globally conserved in gene banks, but they are mostly uncharacterized for the presence of resistance genes and their potential for agriculture. Based on the selective reduction of previously assembled collections for allele mining for disease resistance, we assembled a trait-customized panel of 755 geographically diverse bread wheat accessions with a focus on landraces, called the LandracePLUS panel. Population structure analysis of this panel based on the TaBW35K SNP array revealed an increased genetic diversity compared to 632 landraces genotyped in an earlier study and 17 high-quality sequenced wheat accessions. The additional genetic diversity found here mostly originated from Turkish, Iranian and Pakistani landraces. We characterized the LandracePLUS panel for resistance to ten diverse isolates of the fungal pathogen powdery mildew. Performing genome-wide association studies and dividing the panel further by a targeted subsetting approach for accessions of distinct geographical origin, we detected several known and already cloned genes, including the Pm2a gene. In addition, we identified 22 putatively novel powdery mildew resistance loci that represent useful sources for resistance breeding and for research on the mildew-wheat pathosystem. Our study shows the value of assembling trait-customized collections and utilizing a diverse range of pathogen races to detect novel loci. It further highlights the importance of integrating landraces of different geographical origins into future diversity studies.
Collapse
Affiliation(s)
- Rebecca Leber
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Matthias Heuberger
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Victoria Widrig
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, 37007, Salamanca, Spain
| | - Esther Jung
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Etienne Paux
- Université Clermont Auvergne, INRAE, GDEC, 63000, Clermont-Ferrand, France
- VetAgro Sup Campus Agronomique, 63370, Lempdes, France
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| | - Javier Sánchez-Martín
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
16
|
He Y, Xiong W, Hu P, Huang D, Feurtado JA, Zhang T, Hao C, DePauw R, Zheng B, Hoogenboom G, Dixon LE, Wang H, Challinor AJ. Climate change enhances stability of wheat-flowering-date. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170305. [PMID: 38278227 DOI: 10.1016/j.scitotenv.2024.170305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
The stability of winter wheat-flowering-date is crucial for ensuring consistent and robust crop performance across diverse climatic conditions. However, the impact of climate change on wheat-flowering-dates remains uncertain. This study aims to elucidate the influence of climate change on wheat-flowering-dates, predict how projected future climate conditions will affect flowering date stability, and identify the most stable wheat genotypes in the study region. We applied a multi-locus genotype-based (MLG-based) model for simulating wheat-flowering-dates, which we calibrated and evaluated using observed data from the Northern China winter wheat region (NCWWR). This MLG-based model was employed to project flowering dates under different climate scenarios. The simulated flowering dates were then used to assess the stability of flowering dates under varying allelic combinations in projected climatic conditions. Our MLG-based model effectively simulated flowering dates, with a root mean square error (RMSE) of 2.3 days, explaining approximately 88.5 % of the genotypic variation in flowering dates among 100 wheat genotypes. We found that, in comparison to the baseline climate, wheat-flowering-dates are expected to shift earlier within the target sowing window by approximately 11 and 14 days by 2050 under the Representative Concentration Pathways 4.5 (RCP4.5) and RCP8.5 climate scenarios, respectively. Furthermore, our analysis revealed that wheat-flowering-date stability is likely to be further strengthened under projected climate scenarios due to early flowering trends. Ultimately, we demonstrate that the combination of Vrn and Ppd genes, rather than individual Vrn or Ppd genes, plays a critical role in wheat-flowering-date stability. Our results suggest that the combination of Ppd-D1a with winter genotypes carrying the vrn-D1 allele significantly contributes to flowering date stability under current and projected climate scenarios. These findings provide valuable insights for wheat breeders and producers under future climatic conditions.
Collapse
Affiliation(s)
- Yong He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Wei Xiong
- Sustainable Agrifood System, International Maize and Wheat Improvement Center, Texcoco 56237, Mexico.
| | - Pengcheng Hu
- Agriculture and Food, CSIRO, GPO Box 1700, Canberra ACT 2601, ACT, Australia; School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Daiqing Huang
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada.
| | - J Allan Feurtado
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada.
| | - Tianyi Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| | - Chenyang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Ron DePauw
- Advancing Wheat Technologies, 118 Strathcona Rd SW, Calgary, Alberta T3H 1P3, Canada
| | - Bangyou Zheng
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Queensland Biosciences Precinct, St Lucia, Queensland 4067, Australia.
| | - Gerrit Hoogenboom
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL 110570, USA.
| | - Laura E Dixon
- School of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Hong Wang
- HW Eco Research Group, Fleetwood Postal Outlet, Surrey V4N 9E9, Canada
| | - Andrew Juan Challinor
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
17
|
Lubega J, Figueroa M, Dodds PN, Kanyuka K. Comparative Analysis of the Avirulence Effectors Produced by the Fungal Stem Rust Pathogen of Wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:171-178. [PMID: 38170736 DOI: 10.1094/mpmi-10-23-0169-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Crops are constantly exposed to pathogenic microbes. Rust fungi are examples of these harmful microorganisms, which have a major economic impact on wheat production. To protect themselves from pathogens like rust fungi, plants employ a multilayered immune system that includes immunoreceptors encoded by resistance genes. Significant efforts have led to the isolation of numerous resistance genes against rust fungi in cereals, especially in wheat. However, the evolution of virulence of rust fungi hinders the durability of resistance genes as a strategy for crop protection. Rust fungi, like other biotrophic pathogens, secrete an arsenal of effectors to facilitate infection, and these are the molecules that plant immunoreceptors target for pathogen recognition and mounting defense responses. When recognized, these effector proteins are referred to as avirulence (Avr) effectors. Despite the many predicted effectors in wheat rust fungi, only five Avr genes have been identified, all from wheat stem rust. Knowledge of the Avr genes and their variation in the fungal population will inform deployment of the most appropriate wheat disease-resistance genes for breeding and farming. The review provides an overview of methodologies as well as the validation techniques that have been used to characterize Avr effectors from wheat stem rust. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Jibril Lubega
- National Institute of Agricultural Botany (NIAB), Cambridge CB3 0LE, U.K
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra 2601, Australia
| | - Peter N Dodds
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra 2601, Australia
| | - Kostya Kanyuka
- National Institute of Agricultural Botany (NIAB), Cambridge CB3 0LE, U.K
| |
Collapse
|
18
|
Huang Y, Maurer A, Giehl RFH, Zhao S, Golan G, Thirulogachandar V, Li G, Zhao Y, Trautewig C, Himmelbach A, Börner A, Jayakodi M, Stein N, Mascher M, Pillen K, Schnurbusch T. Dynamic Phytomeric Growth Contributes to Local Adaptation in Barley. Mol Biol Evol 2024; 41:msae011. [PMID: 38243866 PMCID: PMC10837018 DOI: 10.1093/molbev/msae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Vascular plants have segmented body axes with iterative nodes and internodes. Appropriate node initiation and internode elongation are fundamental to plant fitness and crop yield; however, how these events are spatiotemporally coordinated remains elusive. We show that in barley (Hordeum vulgare L.), selections during domestication have extended the apical meristematic phase to promote node initiation, but constrained subsequent internode elongation. In both vegetative and reproductive phases, internode elongation displays a dynamic proximal-distal gradient, and among subpopulations of domesticated barleys worldwide, node initiation and proximal internode elongation are associated with latitudinal and longitudinal gradients, respectively. Genetic and functional analyses suggest that, in addition to their converging roles in node initiation, flowering-time genes have been repurposed to specify the timing and duration of internode elongation. Our study provides an integrated view of barley node initiation and internode elongation and suggests that plant architecture should be recognized as a collection of dynamic phytomeric units in the context of crop adaptive evolution.
Collapse
Affiliation(s)
- Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
| | - Andreas Maurer
- Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, 06120 Halle, Germany
| | - Ricardo F H Giehl
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
| | - Shuangshuang Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
| | - Guy Golan
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
| | | | - Guoliang Li
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
| | - Corinna Trautewig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Klaus Pillen
- Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, 06120 Halle, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
- Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, 06120 Halle, Germany
| |
Collapse
|
19
|
Zhang Y, Shen C, Li G, Shi J, Yuan Y, Ye L, Song Q, Shi J, Zhang D. MADS1-regulated lemma and awn development benefits barley yield. Nat Commun 2024; 15:301. [PMID: 38182608 PMCID: PMC10770128 DOI: 10.1038/s41467-023-44457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/14/2023] [Indexed: 01/07/2024] Open
Abstract
Floral organ shape and size in cereal crops can affect grain size and yield, so genes that regulate their development are promising breeding targets. The lemma, which protects inner floral organs, can physically constrain grain growth; while the awn, a needle-like extension of the lemma, creates photosynthate to developing grain. Although several genes and modules controlling grain size and awn/lemma growth in rice have been characterized, these processes, and the relationships between them, are not well understood for barley and wheat. Here, we demonstrate that the barley E-class gene HvMADS1 positively regulates awn length and lemma width, affecting grain size and weight. Cytological data indicates that HvMADS1 promotes awn and lemma growth by promoting cell proliferation, while multi-omics data reveals that HvMADS1 target genes are associated with cell cycle, phytohormone signaling, and developmental processes. We define two potential targets of HvMADS1 regulation, HvSHI and HvDL, whose knockout mutants mimic awn and/or lemma phenotypes of mads1 mutants. Additionally, we demonstrate that HvMADS1 interacts with APETALA2 (A-class) to synergistically activate downstream genes in awn/lemma development in barley. Notably, we find that MADS1 function remains conserved in wheat, promoting cell proliferation to increase awn length. These findings extend our understanding of MADS1 function in floral organ development and provide insights for Triticeae crop improvement strategies.
Collapse
Affiliation(s)
- Yueya Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chaoqun Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Adelaide, SA, 5064, Australia
| | - Gang Li
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Adelaide, SA, 5064, Australia.
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yajing Yuan
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingzhen Ye
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qingfeng Song
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572025, China.
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Adelaide, SA, 5064, Australia
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572025, China
| |
Collapse
|
20
|
Zhang Y, Shen C, Shi J, Shi J, Zhang D. Boosting Triticeae crop grain yield by manipulating molecular modules to regulate inflorescence architecture: insights and knowledge from other cereal crops. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:17-35. [PMID: 37935244 DOI: 10.1093/jxb/erad386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
One of the challenges for global food security is to reliably and sustainably improve the grain yield of cereal crops. One solution is to modify the architecture of the grain-bearing inflorescence to optimize for grain number and size. Cereal inflorescences are complex structures, with determinacy, branching patterns, and spikelet/floret growth patterns that vary by species. Recent decades have witnessed rapid advancements in our understanding of the genetic regulation of inflorescence architecture in rice, maize, wheat, and barley. Here, we summarize current knowledge on key genetic factors underlying the different inflorescence morphologies of these crops and model plants (Arabidopsis and tomato), focusing particularly on the regulation of inflorescence meristem determinacy and spikelet meristem identity and determinacy. We also discuss strategies to identify and utilize these superior alleles to optimize inflorescence architecture and, ultimately, improve crop grain yield.
Collapse
Affiliation(s)
- Yueya Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
| | - Chaoqun Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
| | - Jin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya 572025, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya 572025, China
- School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| |
Collapse
|
21
|
Hong K, Radian Y, Manda T, Xu H, Luo Y. The Development of Plant Genome Sequencing Technology and Its Conservation and Application in Endangered Gymnosperms. PLANTS (BASEL, SWITZERLAND) 2023; 12:4006. [PMID: 38068641 PMCID: PMC10708082 DOI: 10.3390/plants12234006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 10/16/2024]
Abstract
Genome sequencing is widely recognized as a fundamental pillar in genetic research and legal studies of biological phenomena, providing essential insights for genetic investigations and legal analyses of biological events. The field of genome sequencing has experienced significant progress due to rapid improvements in scientific and technological developments. These advancements encompass not only significant improvements in the speed and quality of sequencing but also provide an unparalleled opportunity to explore the subtle complexities of genomes, particularly in the context of rare species. Such a wide range of possibilities has successfully supported the validation of plant gene functions and the refinement of precision breeding methodologies. This expanded scope now includes a comprehensive exploration of the current state and conservation efforts of gymnosperm gene sequencing, offering invaluable insights into their genomic landscapes. This comprehensive review elucidates the trajectory of development and the diverse applications of genome sequencing. It encompasses various domains, including crop breeding, responses to abiotic stress, species evolutionary dynamics, biodiversity, and the unique challenges faced in the conservation and utilization of gymnosperms. It highlights both ongoing challenges and the unveiling of forthcoming developmental trajectories.
Collapse
Affiliation(s)
- Kaiyue Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an 223300, China;
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Yasmina Radian
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Teja Manda
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Haibin Xu
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Yuming Luo
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an 223300, China;
| |
Collapse
|
22
|
Wang H, Shemesh-Mayer E, Zhang J, Gao S, Zeng Z, Yang Z, Zhang X, Jia H, Wang Y, Song J, Zhang X, Yang W, He Q, Sherman A, Li L, Kamenetsky R, Liu T. Genome resequencing reveals the evolutionary history of garlic reproduction traits. HORTICULTURE RESEARCH 2023; 10:uhad208. [PMID: 38046855 PMCID: PMC10689055 DOI: 10.1093/hr/uhad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/11/2023] [Indexed: 12/05/2023]
Abstract
The propagation of cultivated garlic relies on vegetative cloves, thus flowers become non-essential for reproduction in this species, driving the evolution of reproductive feature-derived traits. To obtain insights into the evolutionary alteration of reproductive traits in the clonally propagated garlic, the evolutionary histories of two main reproduction-related traits, bolting and flower differentiation, were explored by genome analyses using 134 accessions displaying wide diversity in these two traits. Resequencing identified 272.8 million variations in the garlic genome, 198.0 million of which represent novel variants. Population analysis identified five garlic groups that have evolved into two clades. Gene expression, single-cell transcriptome sequencing, and genome-wide trait association analyses have identified numerous candidates that correlate with reproductive transition and flower development, some of which display distinct selection signatures. Selective forces acting on the B-box zinc finger protein-encoding Asa2G00291.1, the global transcription factor group E protein-encoding Asa5G01527.1, and VERNALIZATION INSENSITIVE 3-like Asa3G03399.1 appear to be representative of the evolution of garlic bolting. Plenty of novel genomic variations and trait-related candidates represent valuable resources for biological studies of garlic. Numerous selective signatures from genes associated with the two chosen reproductive traits provide important insights into the evolutionary history of reproduction in this clonally propagated crop.
Collapse
Affiliation(s)
- Haiping Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Einat Shemesh-Mayer
- Institute of Plant Sciences, Agricultural Research Organization—The Volcani Institute, Rishon LeZion, Israel
| | - Jiangjiang Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Song Gao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Zheng Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Zemao Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xueyu Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Huixia Jia
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- Industrial Research Institute of garlic (IBFC-Jinxiang), Jinxiang, China
| | - Jiangping Song
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohui Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiaoyun He
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Amir Sherman
- Institute of Plant Sciences, Agricultural Research Organization—The Volcani Institute, Rishon LeZion, Israel
| | - Lin Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rina Kamenetsky
- Institute of Plant Sciences, Agricultural Research Organization—The Volcani Institute, Rishon LeZion, Israel
| | - Touming Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
- Industrial Research Institute of garlic (IBFC-Jinxiang), Jinxiang, China
| |
Collapse
|
23
|
Gao Z, Bian J, Lu F, Jiao Y, He H. Triticeae crop genome biology: an endless frontier. FRONTIERS IN PLANT SCIENCE 2023; 14:1222681. [PMID: 37546276 PMCID: PMC10399237 DOI: 10.3389/fpls.2023.1222681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023]
Abstract
Triticeae, the wheatgrass tribe, includes several major cereal crops and their wild relatives. Major crops within the Triticeae are wheat, barley, rye, and oat, which are important for human consumption, animal feed, and rangeland protection. Species within this tribe are known for their large genomes and complex genetic histories. Powered by recent advances in sequencing technology, researchers worldwide have made progress in elucidating the genomes of Triticeae crops. In addition to assemblies of high-quality reference genomes, pan-genome studies have just started to capture the genomic diversities of these species, shedding light on our understanding of the genetic basis of domestication and environmental adaptation of Triticeae crops. In this review, we focus on recent signs of progress in genome sequencing, pan-genome analyses, and resequencing analysis of Triticeae crops. We also propose future research avenues in Triticeae crop genomes, including identifying genome structure variations, the association of genomic regions with desired traits, mining functions of the non-coding area, introgression of high-quality genes from wild Triticeae resources, genome editing, and integration of genomic resources.
Collapse
Affiliation(s)
- Zhaoxu Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Jianxin Bian
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuling Jiao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hang He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| |
Collapse
|
24
|
Ma C, Yu Y, Liu F, Lin L, Zhang K, Liu N, Zhang H. Influence mechanism of awns on wheat grain Pb absorption: Awns' significant contribution to grain Pb was mainly originated from their direct absorption of atmospheric Pb at the late grain-filling stage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114957. [PMID: 37105099 DOI: 10.1016/j.ecoenv.2023.114957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/10/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
The spike is the organ that contributes the most to lead (Pb) accumulation in wheat grains. However, as an important photosynthetic and transpiration tissue in spike, the role of awn in wheat grain Pb absorption remains unknown. A field experiment was conducted to investigate the influence mechanism of awn on grain Pb accumulation through two comparative treatments: with and without awns (de-awned treatment). The de-awned treatment decreased wheat yield by 4.1 %; however, it significantly lowered the grain Pb accumulation rate at the late filling stage (15 days after anthesis) and led to a 22.8 % decrease in grain Pb concentration from 0.57 to 0.44 mg·kg-1. Moreover, the relative contribution of awn-to-grain Pb accumulation gradually increased with the filling process, finally reaching 26.6 % at maturity. In addition, Pb isotope source analysis indicated that the Pb in the awn and grain mainly originated from atmospheric deposition, and the de-awned treatment decreased the proportion of grain Pb from atmospheric deposition by 8.9 %. Microstructural observations further confirmed that the contribution of awns to grain Pb accumulation mainly originated from their direct absorption of atmospheric Pb. In conclusion, awns play an important role in wheat grain Pb absorption at the late grain-filling stage; planting awnless or short-awn wheat varieties may be the simplest and effective environmental management measure to reduce the health risks of Pb in wheat in regions with serious atmospheric Pb contamination.
Collapse
Affiliation(s)
- Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China.
| | - Yawei Yu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Fuyong Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China; Department of Chemistry, University of Camerino, Camerino, 62032 Macerata, Italy
| | - Lin Lin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Nan Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China.
| |
Collapse
|
25
|
Hou Z, Fang C, Liu B, Yang H, Kong F. Origin, variation, and selection of natural alleles controlling flowering and adaptation in wild and cultivated soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:36. [PMID: 37309391 PMCID: PMC10248697 DOI: 10.1007/s11032-023-01382-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/12/2023] [Indexed: 06/14/2023]
Abstract
Soybean (Glycine max) is an economically important crop worldwide, serving as a major source of oil and protein for human consumption and animal feed. Cultivated soybean was domesticated from wild soybean (Glycine soja) which both species are highly sensitive to photoperiod and can grow over a wide geographical range. The extensive ecological adaptation of wild and cultivated soybean has been facilitated by a series of genes represented as quantitative trait loci (QTLs) that control photoperiodic flowering and maturation. Here, we review the molecular and genetic basis underlying the regulation of photoperiodic flowering in soybean. Soybean has experienced both natural and artificial selection during adaptation to different latitudes, resulting in differential molecular and evolutionary mechanisms between wild and cultivated soybean. The in-depth study of natural and artificial selection for the photoperiodic adaptability of wild and cultivated soybean provides an important theoretical and practical basis for enhancing soybean adaptability and yield via molecular breeding. In addition, we discuss the possible origin of wild soybean, current challenges, and future research directions in this important topic.
Collapse
Affiliation(s)
- Zhihong Hou
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Hui Yang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| |
Collapse
|
26
|
Slafer GA, Casas AM, Igartua E. Sense in sensitivity: difference in the meaning of photoperiod-insensitivity between wheat and barley. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad128. [PMID: 37021554 DOI: 10.1093/jxb/erad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Indexed: 06/19/2023]
Abstract
The description of long photoperiod sensitivity in wheat and barley is a cause of confusion for researchers working in these crops, usually accustomed to free exchange of physiological and genetic knowledge of such similar crops. Indeed, wheat and barley scientists customarily quote studies of either crop species when researching one of them. Among their numerous similarities the main gene controlling that response is the same in both crops (PPD1; PPD-H1 in barley and PPD-D1 in hexaploid wheat). However, the photoperiod responses are different: (i) the main dominant allele inducing shorter time to anthesis is the insensitive allele in wheat (Ppd-D1a) but the sensitive allele in barley (Ppd-H1) (i.e. sensitivity to photoperiod produces opposite effects on time to heading in wheat and barley), (ii) the main "insensitive" allele in wheat, Ppd-D1a, does confer insensitivity, whilst that of barley reduces the sensitivity but still responds to photoperiod. The different behaviour of PPD1 genes in wheat and barley is put in a common framework based on the similarities and differences of the molecular bases of their mutations, which include polymorphism at gene expression levels, copy number variation, and sequence of coding regions. This common perspective sheds light on a source on confusion for cereal researchers, and prompts us to recommend accounting for the photoperiod sensitivity status of the plant materials when doing research on genetic control of phenology. Finally, we provide advice to facilitate the management of natural PPD1 diversity in breeding programs and suggest targets for further modification through gene editing, based on mutual knowledge on the two crops.
Collapse
Affiliation(s)
- Gustavo A Slafer
- Department of Crop and Forest Sciences University of Lleida and AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain
- ICREA, Catalonian Institution for Research and Advanced Studies, Spain
| | - Ana M Casas
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD, CSIC, Avda. Montañana 1005, E-50059 Zaragoza, Spain
| | - Ernesto Igartua
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD, CSIC, Avda. Montañana 1005, E-50059 Zaragoza, Spain
| |
Collapse
|
27
|
Enhancing Wheat Growth and Yield through Salicylic Acid-Mediated Regulation of Gas Exchange, Antioxidant Defense, and Osmoprotection under Salt Stress. STRESSES 2023. [DOI: 10.3390/stresses3010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Salinity is a major challenge for agricultural productivity, adversely affecting crop growth and yield. In recent years, various techniques have been developed to increase crop tolerance to salinity, including seed priming. This study was carried out to assess the effects of salicylic acid (SA) priming (0-, 10- and 20-mM) in comparison with hydropriming on growth, physio-biochemical activities, and yield of two wheat varieties (AARI-11 and Ujala-15) under 0- and 170-mM sodium chloride (NaCl) toxicity. The exposure of wheat plants to NaCl led to a significant reduction in various growth factors, including fresh weight (40%), total chlorophyll (39%), stomatal conductance (42%), shoot Ca2+ (39%), and 1000-grain weight (34%). In contrast, salt stress triggered the activities of POD, SOD, CAT, glycine-betaine, phenolics, and proline. The application of 20 mM SA through seed priming was found to greatly improve the fresh root weight, chlorophyll b, POD activities, shoot Ca2+, and overall yield (up to 71, 66, 35, 57, and 44%, respectively) under salt stress. While hydropriming also enhanced wheat tolerance to salinity.
Collapse
|
28
|
Gruet C, Abrouk D, Börner A, Muller D, Moënne-Loccoz Y. Wheat genome architecture influences interactions with phytobeneficial microbial functional groups in the rhizosphere. PLANT, CELL & ENVIRONMENT 2023; 46:1018-1032. [PMID: 36494920 DOI: 10.1111/pce.14508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Wheat has undergone a complex evolutionary history, which led to allopolyploidization and the hexaploid bread wheat Triticum aestivum. However, the significance of wheat genomic architecture for beneficial plant-microbe interactions is poorly understood, especially from a functional standpoint. In this study, we tested the hypothesis that wheat genomic architecture was an overriding factor determining root recruitment of microorganisms with particular plant-beneficial traits. We chose five wheat species representing genomic profiles AA (Triticum urartu), BB {SS} (Aegilops speltoides), DD (Aegilops tauschii), AABB (Triticum dicoccon) and AABBDD (Triticum aestivum) and assessed by quantitative polymerase chain reaction their ability to interact with free-nitrogen fixers, 1-aminocyclopropane-1-carboxylate deaminase producers, 2,4-diacetylphloroglucinol producers and auxin producers via the phenylpyruvate decarboxylase pathway, in combination with Illumina MiSeq metabarcoding analysis of N fixers (and of the total bacterial community). We found that the abundance of the microbial functional groups could fluctuate according to wheat genomic profile, as did the total bacterial abundance. N fixer diversity and total bacterial diversity were also influenced significantly by wheat genomic profile. Often, rather similar results were obtained for genomes DD (Ae. tauschii) and AABBDD (T. aestivum), pointing for the first time that the D genome could be particularly important for wheat-bacteria interactions.
Collapse
Affiliation(s)
- Cécile Gruet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Danis Abrouk
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Daniel Muller
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
29
|
Wang F, Li S, Kong F, Lin X, Lu S. Altered regulation of flowering expands growth ranges and maximizes yields in major crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1094411. [PMID: 36743503 PMCID: PMC9892950 DOI: 10.3389/fpls.2023.1094411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/04/2023] [Indexed: 06/14/2023]
Abstract
Flowering time influences reproductive success in plants and has a significant impact on yield in grain crops. Flowering time is regulated by a variety of environmental factors, with daylength often playing an important role. Crops can be categorized into different types according to their photoperiod requirements for flowering. For instance, long-day crops include wheat (Triticum aestivum), barley (Hordeum vulgare), and pea (Pisum sativum), while short-day crops include rice (Oryza sativa), soybean (Glycine max), and maize (Zea mays). Understanding the molecular regulation of flowering and genotypic variation therein is important for molecular breeding and crop improvement. This paper reviews the regulation of flowering in different crop species with a particular focus on how photoperiod-related genes facilitate adaptation to local environments.
Collapse
Affiliation(s)
| | | | | | - Xiaoya Lin
- *Correspondence: Xiaoya Lin, ; Sijia Lu,
| | - Sijia Lu
- *Correspondence: Xiaoya Lin, ; Sijia Lu,
| |
Collapse
|
30
|
Nan J, Ling Y, An J, Wang T, Chai M, Fu J, Wang G, Yang C, Yang Y, Han B. Genome resequencing reveals independent domestication and breeding improvement of naked oat. Gigascience 2022; 12:giad061. [PMID: 37524540 PMCID: PMC10390318 DOI: 10.1093/gigascience/giad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/04/2023] [Accepted: 07/06/2023] [Indexed: 08/02/2023] Open
Abstract
As an important cereal crop, common oat, has attracted more and more attention due to its healthy nutritional components and bioactive compounds. Here, high-depth resequencing of 115 oat accessions and closely related hexaploid species worldwide was performed. Based on genetic diversity and linkage disequilibrium analysis, it was found that hulled oat (Avena sativa) experienced a more severe bottleneck than naked oat (Avena sativa var. nuda). Combined with the divergence time of ∼51,200 years ago, the previous speculation that naked oat was a variant of hulled oat was rejected. It was found that the common segments that hulled oat introgressed to naked oat cultivars contained 444 genes, mainly enriched in photosynthetic efficiency-related pathways. Selective sweeps during environmental adaptation and breeding improvement were identified in the naked oat genome. Candidate genes associated with smut resistance and the days to maturity phenotype were also identified. Our study provides genomic resources and new insights into naked oat domestication and breeding.
Collapse
Affiliation(s)
- Jinsheng Nan
- Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Yu Ling
- Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Jianghong An
- Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Ting Wang
- Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Mingna Chai
- Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Jun Fu
- Beijing 8omics Gene Technology Co. Ltd, Beijing 100080, China
| | - Gaochao Wang
- Beijing 8omics Gene Technology Co. Ltd, Beijing 100080, China
| | - Cai Yang
- Inner Mongolia Guomai Agriculture Co. Ltd, Xilingol League, Xilinhot City 026005, China
| | - Yan Yang
- Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Bing Han
- Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot 010010, China
| |
Collapse
|
31
|
Exome-wide variation in a diverse barley panel reveals genetic associations with ten agronomic traits in Eastern landraces. J Genet Genomics 2022; 50:241-252. [PMID: 36566016 DOI: 10.1016/j.jgg.2022.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Barley (Hordeum vulgare ssp. vulgare) was one of the first crops to be domesticated and is adapted to a wide range of environments. Worldwide barley germplasm collections possess valuable allelic variations that could further improve barley productivity. Although barley genomics has offered a global picture of allelic variation among varieties and its association with various agronomic traits, polymorphisms from East Asian varieties remain scarce. In this study, we analyzed exome polymorphisms in a panel of 274 barley varieties collected worldwide, including 137 varieties from East Asian countries and Ethiopia. We revealed the underlying population structure and conducted genome-wide association studies for ten agronomic traits. Moreover, we examined genome-wide associations for traits related to grain size such as awn length and glume length. Our results demonstrate the value of diverse barley germplasm panels containing Eastern varieties, highlighting their distinct genomic signatures relative to Western subpopulations.
Collapse
|
32
|
Impacts of the Green Revolution on Rhizosphere Microbiology Related to Nutrient Acquisition. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The Green Revolution (GR) involved selective breeding of cereals and the use of high fertilizer inputs with the goal of increasing crop yields to alleviate hunger. As a result of both greater use of inorganic fertilizers and the introduction of semi-dwarf cultivars, grain yield increased globally and hunger was alleviated in certain areas of the world. However, these changes in varietal selection and fertilization regimes have impacted soil fertility and the root-associated microbiome. Higher rates of inorganic fertilizer application resulted in reduced rhizosphere microbial diversity, while semi-dwarf varieties displayed a greater abundance of rhizosphere microbes associated with nitrogen utilization. Ultimately, selection for beneficial aboveground traits during the GR led to healthier belowground traits and nutrient uptake capabilities.
Collapse
|
33
|
Luo G, Najafi J, Correia PMP, Trinh MDL, Chapman EA, Østerberg JT, Thomsen HC, Pedas PR, Larson S, Gao C, Poland J, Knudsen S, DeHaan L, Palmgren M. Accelerated Domestication of New Crops: Yield is Key. PLANT & CELL PHYSIOLOGY 2022; 63:1624-1640. [PMID: 35583202 PMCID: PMC9680862 DOI: 10.1093/pcp/pcac065] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/17/2022] [Accepted: 05/17/2022] [Indexed: 05/05/2023]
Abstract
Sustainable agriculture in the future will depend on crops that are tolerant to biotic and abiotic stresses, require minimal input of water and nutrients and can be cultivated with a minimal carbon footprint. Wild plants that fulfill these requirements abound in nature but are typically low yielding. Thus, replacing current high-yielding crops with less productive but resilient species will require the intractable trade-off of increasing land area under cultivation to produce the same yield. Cultivating more land reduces natural resources, reduces biodiversity and increases our carbon footprint. Sustainable intensification can be achieved by increasing the yield of underutilized or wild plant species that are already resilient, but achieving this goal by conventional breeding programs may be a long-term prospect. De novo domestication of orphan or crop wild relatives using mutagenesis is an alternative and fast approach to achieve resilient crops with high yields. With new precise molecular techniques, it should be possible to reach economically sustainable yields in a much shorter period of time than ever before in the history of agriculture.
Collapse
Affiliation(s)
- Guangbin Luo
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C DK-1871, Denmark
| | - Javad Najafi
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C DK-1871, Denmark
| | - Pedro M P Correia
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C DK-1871, Denmark
| | - Mai Duy Luu Trinh
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C DK-1871, Denmark
| | - Elizabeth A Chapman
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, Copenhagen V DK-1799, Denmark
| | | | | | - Pai Rosager Pedas
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, Copenhagen V DK-1799, Denmark
| | - Steve Larson
- US Department of Agriculture (USDA), USDA–ARS Forage & Range Research Lab, Utah State University Logan, Logan, UT 84322, USA
| | - Caixia Gao
- Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jesse Poland
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Makkah 23955, Saudi Arabia
| | - Søren Knudsen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, Copenhagen V DK-1799, Denmark
| | - Lee DeHaan
- The Land Institute, Salina, KS 67401, USA
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C DK-1871, Denmark
| |
Collapse
|
34
|
Pisias MT, Bakala HS, McAlvay AC, Mabry ME, Birchler JA, Yang B, Pires JC. Prospects of Feral Crop De Novo Redomestication. PLANT & CELL PHYSIOLOGY 2022; 63:1641-1653. [PMID: 35639623 DOI: 10.1093/pcp/pcac072] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Modern agriculture depends on a narrow variety of crop species, leaving global food and nutritional security highly vulnerable to the adverse effects of climate change and population expansion. Crop improvement using conventional and molecular breeding approaches leveraging plant genetic diversity using crop wild relatives (CWRs) has been one approach to address these issues. However, the rapid pace of the global change requires additional innovative solutions to adapt agriculture to meet global needs. Neodomestication-the rapid and targeted introduction of domestication traits using introgression or genome editing of CWRs-is being explored as a supplementary approach. These methods show promise; however, they have so far been limited in efficiency and applicability. We propose expanding the scope of neodomestication beyond truly wild CWRs to include feral crops as a source of genetic diversity for novel crop development, in this case 'redomestication'. Feral crops are plants that have escaped cultivation and evolved independently, typically adapting to their local environments. Thus, feral crops potentially contain valuable adaptive features while retaining some domestication traits. Due to their genetic proximity to crop species, feral crops may be easier targets for de novo domestication (i.e. neodomestication via genome editing techniques). In this review, we explore the potential of de novo redomestication as an application for novel crop development by genome editing of feral crops. This approach to efficiently exploit plant genetic diversity would access an underutilized reservoir of genetic diversity that could prove important in support of global food insecurity in the face of the climate change.
Collapse
Affiliation(s)
- Michael T Pisias
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | - Harmeet Singh Bakala
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | - Alex C McAlvay
- Institute of Economic Botany, New York Botanical Garden, 2900 Southern Boulevard, Bronx, NY 10458, USA
| | - Makenzie E Mabry
- Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, FL 32611, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Tucker Hall, Columbia, MO 65211, USA
| | - Bing Yang
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
- Donald Danforth Plant Science Center, 975 N Warson Road, St. Louis, MO 63132, USA
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Tucker Hall, Columbia, MO 65211, USA
| |
Collapse
|
35
|
Wang X, Chang C. Exploring and exploiting cuticle biosynthesis for abiotic and biotic stress tolerance in wheat and barley. FRONTIERS IN PLANT SCIENCE 2022; 13:1064390. [PMID: 36438119 PMCID: PMC9685406 DOI: 10.3389/fpls.2022.1064390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Wheat and barley are widely distributed cereal crops whose yields are adversely affected by environmental stresses such as drought, salinity, extreme temperatures, and attacks of pathogens and pests. As the interphase between aerial plant organs and their environments, hydrophobic cuticle largely consists of a cutin matrix impregnated and sealed with cuticular waxes. Increasing evidence supports that the cuticle plays a key role in plant adaptation to abiotic and biotic stresses, which could be harnessed for wheat and barley improvement. In this review, we highlighted recent advances in cuticle biosynthesis and its multifaceted roles in abiotic and biotic stress tolerance of wheat and barley. Current strategies, challenges, and future perspectives on manipulating cuticle biosynthesis for abiotic and biotic stress tolerance in wheat and barley are discussed.
Collapse
|
36
|
Zhang R, Liu G, Xu H, Lou H, Zhai S, Chen A, Hao S, Xing J, Liu J, You M, Zhang Y, Xie C, Ma J, Liang R, Sun Q, Zhai H, Ni Z, Li B. Heat Stress Tolerance 2 confers basal heat stress tolerance in allohexaploid wheat (Triticum aestivum L.). JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6600-6614. [PMID: 35781562 DOI: 10.1093/jxb/erac297] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Heat stress substantially reduces the yield potential of wheat (Triticum aestivum L.), one of the most widely cultivated staple crops, and greatly threatens global food security in the context of global warming. However, few studies have explored the heat stress tolerance (HST)-related genetic resources in wheat. Here, we identified and fine-mapped a wheat HST locus, TaHST2, which is indispensable for HST in both the vegetative and reproductive stages of the wheat life cycle. The studied pair of near isogenic lines (NILs) exhibited diverse morphologies under heat stress, based on which we mapped TaHST2 to a 485 kb interval on chromosome arm 4DS. Under heat stress, TaHST2 confers a superior conversion rate from soluble sugars to starch in wheat grains, resulting in faster grain filling and a higher yield potential. A further exploration of genetic resources indicated that TaHST2 underwent strong artificial selection during wheat domestication, suggesting it is an essential locus for basal HST in wheat. Our findings provide deeper insights into the genetic basis of wheat HST and might be useful for global efforts to breed heat-stress-tolerant cultivars.
Collapse
Affiliation(s)
- Runqi Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Guoyu Liu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Huanwen Xu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Hongyao Lou
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shanshan Zhai
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Aiyan Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Shuiyuan Hao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- Hetao College, Bayannur, China
| | - Jiewen Xing
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Jie Liu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Mingshan You
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yufeng Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Chaojie Xie
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Jun Ma
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Rongqi Liang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Huijie Zhai
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Baoyun Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| |
Collapse
|
37
|
Saini P, Islam M, Das R, Shekhar S, Sinha ASK, Prasad K. Wheat Bran as Potential Source of Dietary Fiber: Prospects and Challenges. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Lovell JT, Sreedasyam A, Schranz ME, Wilson M, Carlson JW, Harkess A, Emms D, Goodstein DM, Schmutz J. GENESPACE tracks regions of interest and gene copy number variation across multiple genomes. eLife 2022; 11:78526. [PMID: 36083267 PMCID: PMC9462846 DOI: 10.7554/elife.78526] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
The development of multiple chromosome-scale reference genome sequences in many taxonomic groups has yielded a high-resolution view of the patterns and processes of molecular evolution. Nonetheless, leveraging information across multiple genomes remains a significant challenge in nearly all eukaryotic systems. These challenges range from studying the evolution of chromosome structure, to finding candidate genes for quantitative trait loci, to testing hypotheses about speciation and adaptation. Here, we present GENESPACE, which addresses these challenges by integrating conserved gene order and orthology to define the expected physical position of all genes across multiple genomes. We demonstrate this utility by dissecting presence–absence, copy-number, and structural variation at three levels of biological organization: spanning 300 million years of vertebrate sex chromosome evolution, across the diversity of the Poaceae (grass) plant family, and among 26 maize cultivars. The methods to build and visualize syntenic orthology in the GENESPACE R package offer a significant addition to existing gene family and synteny programs, especially in polyploid, outbred, and other complex genomes. The genome is the complete DNA sequence of an individual. It is a crucial foundation for many studies in medicine, agriculture, and conservation biology. Advances in genetics have made it possible to rapidly sequence, or read out, the genome of many organisms. For closely related species, scientists can then do detailed comparisons, revealing similar genes with a shared past or a common role, but comparing more distantly related organisms remains difficult. One major challenge is that genes are often lost or duplicated over evolutionary time. One way to be more confident is to look at ‘synteny’, or how genes are organized or ordered within the genome. In some groups of species, synteny persists across millions of years of evolution. Combining sequence similarity with gene order could make comparisons between distantly related species more robust. To do this, Lovell et al. developed GENESPACE, a software that links similarities between DNA sequences to the order of genes in a genome. This allows researchers to visualize and explore related DNA sequences and determine whether genes have been lost or duplicated. To demonstrate the value of GENESPACE, Lovell et al. explored evolution in vertebrates and flowering plants. The software was able to highlight the shared sequences between unique sex chromosomes in birds and mammals, and it was able to track the positions of genes important in the evolution of grass crops including maize, wheat, and rice. Exploring the genetic code in this way could lead to a better understanding of the evolution of important sections of the genome. It might also allow scientists to find target genes for applications like crop improvement. Lovell et al. have designed the GENESPACE software to be easy for other scientists to use, allowing them to make graphics and perform analyses with few programming skills.
Collapse
Affiliation(s)
- John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, United States.,Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, United States
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Melissa Wilson
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, United States
| | - Joseph W Carlson
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Alex Harkess
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, United States.,Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, United States
| | - David Emms
- Oxford University, Oxford, United Kingdom
| | - David M Goodstein
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, United States.,Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
39
|
Chapman EA, Thomsen HC, Tulloch S, Correia PMP, Luo G, Najafi J, DeHaan LR, Crews TE, Olsson L, Lundquist PO, Westerbergh A, Pedas PR, Knudsen S, Palmgren M. Perennials as Future Grain Crops: Opportunities and Challenges. FRONTIERS IN PLANT SCIENCE 2022; 13:898769. [PMID: 35968139 PMCID: PMC9372509 DOI: 10.3389/fpls.2022.898769] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Perennial grain crops could make a valuable addition to sustainable agriculture, potentially even as an alternative to their annual counterparts. The ability of perennials to grow year after year significantly reduces the number of agricultural inputs required, in terms of both planting and weed control, while reduced tillage improves soil health and on-farm biodiversity. Presently, perennial grain crops are not grown at large scale, mainly due to their early stages of domestication and current low yields. Narrowing the yield gap between perennial and annual grain crops will depend on characterizing differences in their life cycles, resource allocation, and reproductive strategies and understanding the trade-offs between annualism, perennialism, and yield. The genetic and biochemical pathways controlling plant growth, physiology, and senescence should be analyzed in perennial crop plants. This information could then be used to facilitate tailored genetic improvement of selected perennial grain crops to improve agronomic traits and enhance yield, while maintaining the benefits associated with perennialism.
Collapse
Affiliation(s)
| | | | - Sophia Tulloch
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Pedro M. P. Correia
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Guangbin Luo
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Javad Najafi
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Lennart Olsson
- Lund University Centre for Sustainability Studies, Lund, Sweden
| | - Per-Olof Lundquist
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna Westerbergh
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pai Rosager Pedas
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Søren Knudsen
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
40
|
Levy AA, Feldman M. Evolution and origin of bread wheat. THE PLANT CELL 2022; 34:2549-2567. [PMID: 35512194 PMCID: PMC9252504 DOI: 10.1093/plcell/koac130] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/18/2022] [Indexed: 05/12/2023]
Abstract
Bread wheat (Triticum aestivum, genome BBAADD) is a young hexaploid species formed only 8,500-9,000 years ago through hybridization between a domesticated free-threshing tetraploid progenitor, genome BBAA, and Aegilops tauschii, the diploid donor of the D subgenome. Very soon after its formation, it spread globally from its cradle in the fertile crescent into new habitats and climates, to become a staple food of humanity. This extraordinary global expansion was probably enabled by allopolyploidy that accelerated genetic novelty through the acquisition of new traits, new intergenomic interactions, and buffering of mutations, and by the attractiveness of bread wheat's large, tasty, and nutritious grain with high baking quality. New genome sequences suggest that the elusive donor of the B subgenome is a distinct (unknown or extinct) species rather than a mosaic genome. We discuss the origin of the diploid and tetraploid progenitors of bread wheat and the conflicting genetic and archaeological evidence on where it was formed and which species was its free-threshing tetraploid progenitor. Wheat experienced many environmental changes throughout its evolution, therefore, while it might adapt to current climatic changes, efforts are needed to better use and conserve the vast gene pool of wheat biodiversity on which our food security depends.
Collapse
Affiliation(s)
- Avraham A Levy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Moshe Feldman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100 Israel
| |
Collapse
|
41
|
Ben-Abu Y, Itsko M. Metabolome dynamics during wheat domestication. Sci Rep 2022; 12:8532. [PMID: 35595776 PMCID: PMC9122938 DOI: 10.1038/s41598-022-11952-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
One of the most important crops worldwide is wheat. Wheat domestication took place about 10,000 years ago. Not only that its wild progenitors have been discovered and phenotypically characterized, but their genomes were also sequenced and compared to modern wheat. While comparative genomics is essential to track genes that contribute to improvement in crop yield, comparative analyses of functional biological end-products, such as metabolites, are still lacking. With the advent of rigorous mass-spectrometry technologies, it is now possible to address that problem on a big-data scale. In attempt to reveal classes of metabolites, which are associated with wheat domestication, we analyzed the metabolomes of wheat kernel samples from various wheat lines. These wheat lines represented subspecies of tetraploid wheat along primary and secondary domestications, including wild emmer, domesticated emmer, landraces durum, and modern durum. We detected that the groups of plant metabolites such as plant-defense metabolites, antioxidants and plant hormones underwent significant changes during wheat domestication. Our data suggest that these metabolites may have contributed to the improvement in the agricultural fitness of wheat. Closer evaluation of specific metabolic pathways may result in the future in genetically-engineered high-yield crops.
Collapse
Affiliation(s)
- Yuval Ben-Abu
- Department of Physics and Project Unit, Sapir Academic College, 79165, Sderot, Hof Ashkelon, Israel. .,Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
| | - Mark Itsko
- WDS Inc., Contractor to Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30033, USA
| |
Collapse
|
42
|
Zang Y, Gong Q, Xu Y, Liu H, Bai H, Li N, Du L, Ye X, Lan C, Wang K. Production of Conjoined Transgenic and Edited Barley and Wheat Plants for Nud Genes Using the CRISPR/SpCas9 System. Front Genet 2022; 13:873850. [PMID: 35601488 PMCID: PMC9117629 DOI: 10.3389/fgene.2022.873850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
The Nudum (Nud) gene controls the caryopsis type of cereal crops by regulating lipid biosynthetic pathways. Based on the HvNud sequence and its homologous gene sequences in wheat, a conserved sgRNA was designed to obtain the mutants from the barley variety “Vlamingh” and the wheat variety “Fielder” via Agrobacterium-mediated transformation. A total of 19 and 118 transgenic plants were obtained, and 11 and 61 mutant plants were identified in T0 transgenic plants in barley and wheat after PCR-RE detection, and the editing efficiencies of the targeted gene were 57.9 and 51.7% in barley and wheat, respectively. The grain shape of the barley mutants was naked. Five different combinations of mutations for wheat TaNud genes were identified in the T0 generation, and their homozygous-edited plants were obtained in the T1 generation. Interestingly, the conjoined plants in which one plant has different genotypes were first identified. The different tillers in an individual T0 plant showed independent transgenic or mutant events in both barley and wheat, and the different genotypes can stably inherit into T1 generation, indicating that the T0 transgenic plants were the conjoined type. In addition, we did not find any off-target mutations in both barley and wheat. A candidate method for detecting putative-edited wheat plants was suggested to avoid losing mutations in this investigation. This study provides not only materials for studying the function of the Nud gene in barley and wheat but also a system for detecting the mutants in wheat.
Collapse
Affiliation(s)
- Yiming Zang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Gong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanhao Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Huiyun Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hao Bai
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Na Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lipu Du
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingguo Ye
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Caixia Lan
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Caixia Lan, ; Ke Wang,
| | - Ke Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Caixia Lan, ; Ke Wang,
| |
Collapse
|
43
|
Abstract
Changes in plant architecture can improve cereal crop yield.
Collapse
Affiliation(s)
- G Wilma van Esse
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
44
|
geng L, Li M, Zhang G, Ye L. Barley: a potential cereal for producing healthy and functional foods. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Barley is the fourth largest cereal crop in the world. It is mainly used for feeding, beer production and food. Barley is receiving more attention from both agricultural and food scientists because of its special chemical composition and health benefits. In comparison with other cereal crops, including wheat, rice and maize, barley grains are rich in dietary fiber (such as β-glucan) and tocols, which are beneficial to human health. It is well proved that diets rich in those chemicals can provide protection against hypertension, cardiovascular disease, and diabetes. Barley has been widely recognized to be great potential as a healthy or functional food. In this review, we present the information about the studies on physical structure of barley grain and the distribution of main chemical components, nutrient and functional composition of barley grain and their health benefits, and the approaches of improving and utilizing the nutrient and functional chemicals in barley grain. With the development of processing technologies, functional components in barley grains, especially β-glucan, can be efficiently extracted and concentrated. Moreover, nutrient and functional components in barley grains can be efficiently improved by precise breeding and agronomic approaches. The review highlights the great potential of barley used as healthy and functional foods, and may be instructive for better utilization of barley in food processing.
Collapse
Affiliation(s)
- La geng
- Agronomy Department, Zhejiang University, Hangzhou 310058, China
| | - Mengdi Li
- Agronomy Department, Zhejiang University, Hangzhou 310058, China
| | - Guoping Zhang
- Agronomy Department, Zhejiang University, Hangzhou 310058, China
| | - Lingzhen Ye
- Agronomy Department, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| |
Collapse
|
45
|
Osnato M, Cota I, Nebhnani P, Cereijo U, Pelaz S. Photoperiod Control of Plant Growth: Flowering Time Genes Beyond Flowering. FRONTIERS IN PLANT SCIENCE 2022; 12:805635. [PMID: 35222453 PMCID: PMC8864088 DOI: 10.3389/fpls.2021.805635] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Fluctuations in environmental conditions greatly influence life on earth. Plants, as sessile organisms, have developed molecular mechanisms to adapt their development to changes in daylength, or photoperiod. One of the first plant features that comes to mind as affected by the duration of the day is flowering time; we all bring up a clear image of spring blossom. However, for many plants flowering happens at other times of the year, and many other developmental aspects are also affected by changes in daylength, which range from hypocotyl elongation in Arabidopsis thaliana to tuberization in potato or autumn growth cessation in trees. Strikingly, many of the processes affected by photoperiod employ similar gene networks to respond to changes in the length of light/dark cycles. In this review, we have focused on developmental processes affected by photoperiod that share similar genes and gene regulatory networks.
Collapse
Affiliation(s)
- Michela Osnato
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Cota
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Poonam Nebhnani
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Unai Cereijo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Soraya Pelaz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
46
|
Shahid S, Ali Q, Ali S, Al-Misned FA, Maqbool S. Water Deficit Stress Tolerance Potential of Newly Developed Wheat Genotypes for Better Yield Based on Agronomic Traits and Stress Tolerance Indices: Physio-Biochemical Responses, Lipid Peroxidation and Antioxidative Defense Mechanism. PLANTS 2022; 11:plants11030466. [PMID: 35161446 PMCID: PMC8839292 DOI: 10.3390/plants11030466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 12/03/2022]
Abstract
Changing environmental conditions, fresh water shortages for irrigation and the rapid increase in world population have created the problems of food insecurity and malnutrition. Different strategies, including the development of water stress-tolerant, high-yielding genotypes through breeding are used to fulfil the world food demand. The present study was conducted for the selection of high-yielding, drought-tolerant wheat genotypes, considering different morpho-physio-biochemical, agronomic and yield attributes in relation to the stress tolerance indices (STI). The experiment was carried out in field in a split-plot arrangement. Water deficit stress was maintained based on the number of irrigations. All genotypes showed a differential decreasing trend in different agronomic traits. However, the increasing or decreasing trend in leaf photosynthetic pigments, non-enzymatic and enzymatic antioxidants under limited water supply also found to be genotype-specific. Genotypes MP1, MP3, MP5, MP8 and MP10 performed better regarding the yield performance under water deficit stress, which was associated with their better maintenance of water relations, photosynthetic pigments and antioxidative defense mechanisms. In conclusion, the physio-biochemical mechanisms should also be considered as the part of breeding programs for the selection of stress-tolerant genotypes, along with agronomic traits, in wheat.
Collapse
Affiliation(s)
- Sumreena Shahid
- Department of Botany, Government College University, Faisalabad 38000, Pakistan;
| | - Qasim Ali
- Department of Botany, Government College University, Faisalabad 38000, Pakistan;
- Correspondence: (Q.A.); (S.A.)
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
- Correspondence: (Q.A.); (S.A.)
| | - Fahad A. Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Saliha Maqbool
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN 55108, USA;
| |
Collapse
|
47
|
Gruet C, Muller D, Moënne-Loccoz Y. Significance of the Diversification of Wheat Species for the Assembly and Functioning of the Root-Associated Microbiome. Front Microbiol 2022; 12:782135. [PMID: 35058901 PMCID: PMC8764353 DOI: 10.3389/fmicb.2021.782135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Wheat, one of the major crops in the world, has had a complex history that includes genomic hybridizations between Triticum and Aegilops species and several domestication events, which resulted in various wild and domesticated species (especially Triticum aestivum and Triticum durum), many of them still existing today. The large body of information available on wheat-microbe interactions, however, was mostly obtained without considering the importance of wheat evolutionary history and its consequences for wheat microbial ecology. This review addresses our current understanding of the microbiome of wheat root and rhizosphere in light of the information available on pre- and post-domestication wheat history, including differences between wild and domesticated wheats, ancient and modern types of cultivars as well as individual cultivars within a given wheat species. This analysis highlighted two major trends. First, most data deal with the taxonomic diversity rather than the microbial functioning of root-associated wheat microbiota, with so far a bias toward bacteria and mycorrhizal fungi that will progressively attenuate thanks to the inclusion of markers encompassing other micro-eukaryotes and archaea. Second, the comparison of wheat genotypes has mostly focused on the comparison of T. aestivum cultivars, sometimes with little consideration for their particular genetic and physiological traits. It is expected that the development of current sequencing technologies will enable to revisit the diversity of the wheat microbiome. This will provide a renewed opportunity to better understand the significance of wheat evolutionary history, and also to obtain the baseline information needed to develop microbiome-based breeding strategies for sustainable wheat farming.
Collapse
Affiliation(s)
| | | | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
48
|
Altendorf KR, DeHaan LR, Larson SR, Anderson JA. QTL for seed shattering and threshability in intermediate wheatgrass align closely with well-studied orthologs from wheat, barley, and rice. THE PLANT GENOME 2021; 14:e20145. [PMID: 34626160 DOI: 10.1002/tpg2.20145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Perennial grain crops have the potential to improve agricultural sustainability but few existing species produce sufficient grain yield to be economically viable. The outcrossing, allohexaploid, and perennial forage species intermediate wheatgrass (IWG) [Thinopyrum intermedium (Host) Barkworth & D. R. Dewey] has shown promise in undergoing direct domestication as a perennial grain crop using phenotypic and genomic selection. However, decades of selection will be required to achieve yields on par with annual small-grain crops. Marker-aided selection could accelerate progress if important genomic regions associated with domestication were identified. Here we use the IWG nested association mapping (NAM) population, with 1,168 F1 progeny across 10 families to dissect the genetic control of brittle rachis, floret shattering, and threshability. We used a genome-wide association study (GWAS) with 8,003 single nucleotide polymorphism (SNP) markers and linkage mapping-both within-family and combined across families-with a robust phenotypic dataset collected from four unique year-by-location combinations. A total of 29 quantitative trait loci (QTL) using GWAS and 20 using the combined linkage analysis were detected, and most large-effect QTL were in common across the two analysis methods. We reveal that the genetic control of these traits in IWG is complex, with significant QTL across multiple chromosomes, sometimes within and across homoeologous groups and effects that vary depending on the family. In some cases, these QTL align within 216 bp to 31 Mbp of BLAST hits for known domestication genes in related species and may serve as precise targets of selection and directions for further study to advance the domestication of IWG.
Collapse
Affiliation(s)
- Kayla R Altendorf
- USDA-ARS Forage Seed and Cereal Research Unit, Prosser, WA, 99350, USA
| | | | - Steve R Larson
- USDA-ARS Forage & Range Research Lab, Logan, UT, 84322, USA
| | - James A Anderson
- Dep. of Agronomy and Plant Genetics, Univ. of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|
49
|
Huang B, Wu W, Hong Z. Genetic Loci Underlying Awn Morphology in Barley. Genes (Basel) 2021; 12:genes12101613. [PMID: 34681007 PMCID: PMC8535194 DOI: 10.3390/genes12101613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 10/09/2021] [Indexed: 11/28/2022] Open
Abstract
Barley awns are highly active in photosynthesis and account for 30–50% of grain weight in barley. They are diverse in length, ranging from long to awnless, and in shape from straight to hooded or crooked. Their diversity and importance have intrigued geneticists for several decades. A large collection of awnness mutants are available—over a dozen of them have been mapped on chromosomes and a few recently cloned. Different awnness genes interact with each other to produce diverse awn phenotypes. With the availability of the sequenced barley genome and application of new mapping and gene cloning strategies, it will now be possible to identify and clone more awnness genes. A better understanding of the genetic basis of awn diversity will greatly facilitate development of new barley cultivars with improved yield, adaptability and sustainability.
Collapse
Affiliation(s)
- Biguang Huang
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Fujian Collegiate Key Laboratory of Applied Plant Genetics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Weiren Wu
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (W.W.); (Z.H.)
| | - Zonglie Hong
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
- Correspondence: (W.W.); (Z.H.)
| |
Collapse
|
50
|
Ben-Abu Y, Itsko M. Changes in "natural antibiotic" metabolite composition during tetraploid wheat domestication. Sci Rep 2021; 11:20340. [PMID: 34645851 PMCID: PMC8514463 DOI: 10.1038/s41598-021-98764-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022] Open
Abstract
Gramineous plants protect their seeds from a variety of biotic stresses by producing toxic and deterrent secondary metabolites such as benzoxazinoids. It is unclear how the composition and abundance of these natural toxins has changed over the course of crop-plant domestication. To address this uncertainty, we characterized differences in metabolic levels of benzoxazinoids and their derivatives, between four lines of tetraploid wheat: wild emmer wheat (WEW), the direct progenitor of modern wheat; non-fragile domesticated emmer wheat (DEW), which was first domesticated about 11,000 years ago; the subsequently developed non-fragile and free-threshing durum landraces (LD); and modern durum (MD) varieties. Three-dimensional principal component analysis of mass spectrometry data of wheat metabolites showed with high resolution clear differences between metabolic profiles of WEW, DEW, and durum (LD + MD) and similarity in the metabolic profiles of the two durum lines (LD and MD) that is coherent with the phylogenetic relationship between the corresponding wheat lines. Moreover, our results indicated that some secondary metabolites involved in plant defense mechanisms became significantly more abundant during wheat domestication, while other defensive metabolites decreased or were lost. These metabolic changes reflect the beneficial or detrimental roles the corresponding metabolites might play during the domestication of three taxonomic subspecies of tetraploid wheat (Triticum turgidum).
Collapse
Affiliation(s)
- Yuval Ben-Abu
- Department of Physics and Project Unit, Sapir Academic College, 79165, Sderot, Hof Ashkelon, Israel.
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
| | - Mark Itsko
- WDS Inc., Contractor to Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30033, USA
| |
Collapse
|