1
|
Wang J, Li S, Wu L, Shi D, Xu L, Zhang Z, Wang Y, Ji C, Chen Y, Zhou X, Zhang F, Li M, Li X, Du C, Wang Q, Lu X, Wang W, Wang G, Wu Y. The Fie1-PRC2 complex regulates H3K27me3 deposition to balance endosperm filling and development in cereals. PLANT COMMUNICATIONS 2025; 6:101343. [PMID: 40269501 PMCID: PMC12177492 DOI: 10.1016/j.xplc.2025.101343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/06/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
Polycomb repressive complex 2 (PRC2)-mediated H3K27me3 deposition is vital for cell fate determination during Arabidopsis thaliana endosperm development. Unlike the transient endosperm in Arabidopsis, cereals follow a different developmental program after the cellularization phase, producing a persistent endosperm. In contrast to the single, constitutively expressed Fertilization Independent Endosperm (FIE) gene in Arabidopsis, cereals have evolved a duplicated, grain-specific counterpart, such as maize ZmFie1 and rice OsFie1. However, their functions remain unclear. We applied Cleavage Under Targets and Tagmentation (CUT&Tag) to profile the dynamics of the H3K27me3 mark during maize endosperm development. We observed a genome-wide elevation of H3K27me3 levels at early stages, followed by a rapid reduction after seed filling. We identified common regions and designated them as Filling Specific Peaks (FSPs), which are largely regulated by ZmFie1. Indeed, knockout of ZmFie1 results in earlier cellularization and slightly enhanced mitosis during endosperm filling, leading to smaller kernels that accumulate more zeins. Consistently, H3K27me3 levels on α-zein genes, located as tandem repeats on chromosome 4, are dramatically decreased in zmfie1. Moreover, it indirectly inhibits cell proliferation by mediating H3K27me3 deposition at ZmMADS loci, thereby balancing endosperm development and filling. Intriguingly, OsFie1 imposes H3K27me3 modification at the loci of 13-kDa prolamin genes and OsMADSs, leading to their repressed expression. Collectively, our findings reveal the conserved function of H3K27me3 deposition mediated by ZmFie1/OsFie1 in cereal endosperm development. The newly evolved, cereal grain-specific FIE1-PRC2 complex plays a key role in balancing storage substance synthesis and cell proliferation during persistent endosperm development.
Collapse
Affiliation(s)
- Jiechen Wang
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China
| | - Shuai Li
- Shanghai Oebiotech Co., Ltd., Shanghai 200032, China
| | - Liujie Wu
- College of Life Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200233, China
| | - Dongsheng Shi
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Lina Xu
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China
| | - Zhiping Zhang
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China
| | - Yongyan Wang
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Chen Ji
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqi Chen
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xueling Zhou
- College of Life Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200233, China
| | - Feifan Zhang
- College of Life Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200233, China
| | - Mengyao Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xiaohan Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Canghao Du
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Qiong Wang
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China
| | - Xiaoduo Lu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, China
| | - Wenqin Wang
- College of Life Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200233, China
| | - Guifeng Wang
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongrui Wu
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China; Shanghai Academy of Natural Sciences, Shanghai 200031, China.
| |
Collapse
|
2
|
Li Y, Guo X, Song J, Xu K, Qin T, Zhang X, Song Z, He Y, Zhang B, Zhang H, Li H, Yuan W. OsSPL14 and OsNF-YB9/YC8-12 subunits cooperate to enhance grain appearance quality by promoting Waxy and PDIL1-1 expression in rice. PLANT COMMUNICATIONS 2025; 6:101348. [PMID: 40319356 PMCID: PMC12177491 DOI: 10.1016/j.xplc.2025.101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/19/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
The identification of seed development-related regulators is critical for the genetic improvement of yield and grain quality in cereal crops. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE14 (OsSPL14) is a well-studied, plant-specific transcription factor; however, its roles in controlling rice grain appearance quality and the underlying molecular mechanisms have not been fully elucidated. In this study, we demonstrate that OsSPL14 positively regulates appearance quality by controlling grain chalkiness in rice. Genetic analysis revealed that knockdown or knockout of OsSPL14 leads to a chalky grain phenotype, which is associated with significant defects in compound starch granules and notable changes in both starch and protein contents in the endosperm. Transcript analysis identified multiple genes regulated by OsSPL14, including the key granule-bound starch synthase gene Waxy (Wx) and the protein disulfide isomerase-like enzyme-encoding gene PDIL1-1. Both in vitro and in vivo assays demonstrated that OsSPL14 directly binds to the GTAC-box motif in the Wx and PDIL1-1 promoters to enhance their expression. Protein-protein interaction experiments further revealed that OsSPL14 interacts with the nuclear transcription factor Y (NF-Y) heterodimer OsNF-YB9/YC8-12 to promote the transcription of Wx and PDIL1-1, thereby enhancing rice grain appearance quality. Our findings uncover a novel regulatory pathway controlled by OsSPL14 and provide new insights into the molecular mechanisms underlying rice grain appearance quality, with promising implications for genetic improvement in rice.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xuelian Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jiayi Song
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Kun Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Tian Qin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xianhua Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhaojian Song
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yuchi He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Biaoming Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Haitao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Haitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wenya Yuan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
3
|
Zhao Y, Wu W, Liu K, Shi W, Peng Y, Zhang C, Shen Y, Liu W, Ding Y, Tang S. Effects of structural properties of glutelin on the formation of grain quality under elevated temperatures and additional nitrogen during the grain filling period. Food Chem 2025; 476:143469. [PMID: 39986082 DOI: 10.1016/j.foodchem.2025.143469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/08/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Glutelin, the key storage substance for determining rice quality, was sensitive to warming and nitrogen. However, the relationship between the structural properties of glutelin and rice quality needs to be further investigated under warming and nitrogen. The higher glutelin level was responsible for deteriorating quality under warming and additional nitrogen. The key amino acid components for glutelin were less affected by temperature and nitrogen, whereas glutelin subunit level was sensitive to nitrogen. A lower-ordered sequence for glutelin secondary structure may be involved in deteriorating rice quality for inferior spikelets. The higher level of disulfide bonds may not affect the texture properties of cooked rice. Overall, the results contributed to understanding rice quality formation under warming, as well as a theoretical basis for adjustment of protein extraction process to meet the needs of food processing industry in combination with cultivation measures in light of warming.
Collapse
Affiliation(s)
- Yufei Zhao
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Wei Wu
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Ke Liu
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Wentao Shi
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yuxuan Peng
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Chen Zhang
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yingying Shen
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Wenzhe Liu
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China; Jiangsu Collaborative Innovation Center for Modern Crop Production, 210095 Nanjing, PR China
| | - She Tang
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China; Jiangsu Collaborative Innovation Center for Modern Crop Production, 210095 Nanjing, PR China.
| |
Collapse
|
4
|
Nawade B, Shim SH, Chu SH, Zhao W, Lee SK, Somsri A, Maung TZ, Kang KK, Kim JY, Lee CY, Kim MS, Baik MY, Jeon JS, Park YJ. Integrative transcriptogenomic analyses reveal the regulatory network underlying rice eating and cooking quality and identify a role for alpha-globulin in modulating starch and sucrose metabolism. PLANT COMMUNICATIONS 2025; 6:101287. [PMID: 39980198 DOI: 10.1016/j.xplc.2025.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 12/03/2024] [Accepted: 02/18/2025] [Indexed: 02/22/2025]
Abstract
Rice eating and cooking quality (ECQ) is significantly influenced by the physicochemical properties of rice starch. This study integrates whole-genome resequencing, transcriptomic data, and phenotypic analysis to identify the genetic factors that regulate transcript expression levels and contribute to phenotypic variation in rice ECQ traits. A TWAS (transcriptome-wide association study) identified 285 transcripts linked to 6 ECQ traits. Genome-wide mapping of these transcripts revealed 21 747 local eQTLs (expression quantitative trait loci) and 45 158 distal eQTLs. TWAS and eQTL analysis detected several known and novel genes, including starch synthesis-related genes, heat shock proteins, transcription factors, genes related to ATP accumulation, and UDP-glucosyltransferases, showcasing the complex genetic regulation of rice ECQ. WGCNA (weighted gene co-expression network analysis) uncovered key co-expression networks, including a module that links alpha-globulin1 (GLB1) to starch and sucrose metabolism. Genetic diversity analysis of the GLB1 gene across a Korean rice collection identified 26 haplotypes, with indica and aus forming 7 and 3 haplotypes, respectively, which showed significant phenotypic effects on ECQ traits. CRISPR-Cas9-created knockout lines validated these findings, demonstrating that loss of GLB1 function caused significant changes in seed storage proteins, reduced amylose content, altered starch granules, and modified pasting properties without affecting plant phenotypes. By integrating TWAS, eQTL mapping, haplotype analysis, gene expression networks, and CRISPR validation, this study establishes GLB1 as a regulator of ECQ, linking starch biosynthesis and protein accumulation pathways. This transcriptogenomic convergence approach provides novel insights into the genetic regulation of ECQ in rice, demonstrating its effectiveness for characterizing complex traits and enabling precision breeding.
Collapse
Affiliation(s)
- Bhagwat Nawade
- Department of Plant Resources, Kongju National University, Yesan 32439, Republic of Korea
| | - Su-Hyeon Shim
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Sang-Ho Chu
- Department of Plant Resources, Kongju National University, Yesan 32439, Republic of Korea
| | - Weiguo Zhao
- Department of Plant Resources, Kongju National University, Yesan 32439, Republic of Korea; School of Biotechnology, Jiangsu University of Science and Technology, Sibaidu, Zhenjiang, Jiangsu 212100, P.R. China
| | - Sang-Kyu Lee
- Division of Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Aueangporn Somsri
- Department of Plant Resources, Kongju National University, Yesan 32439, Republic of Korea
| | - Thant Zin Maung
- Department of Plant Resources, Kongju National University, Yesan 32439, Republic of Korea
| | - Kwon Kyoo Kang
- Department of Horticultural Life Science, Hankyong National University, Anseong 17579, Republic of Korea
| | - Jae Yoon Kim
- Department of Plant Resources, Kongju National University, Yesan 32439, Republic of Korea
| | - Chang-Yong Lee
- Department of Industrial and Systems Engineering, Kongju National University, Cheonan 31080, Republic of Korea
| | - Min-Seok Kim
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Moo-Yeol Baik
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Yong-Jin Park
- Department of Plant Resources, Kongju National University, Yesan 32439, Republic of Korea.
| |
Collapse
|
5
|
De Silva MRP, Weeraman JWJK, Piyatissa S, Fernando PC. Prediction of new candidate proteins and analysis of sub-modules and protein hubs associated with seed development in rice (Oryza sativa) using an ensemble network-based systems biology approach. BMC PLANT BIOLOGY 2025; 25:604. [PMID: 40340735 PMCID: PMC12060574 DOI: 10.1186/s12870-025-06595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/21/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Rice is a critical global food source, but it faces challenges due to nutritional deficiencies and the pressures of a growing population. Understanding the molecular mechanisms and protein functions in rice seed development is essential to improve yield and grain quality. However, there is still a significant knowledge gap regarding the key proteins and their interactions that govern rice seed development. Protein-protein interaction (PPI) analysis is a powerful tool for studying developmental processes like seed development, though its potential in rice research is yet to be fully realized. With the aim of unraveling the protein interaction landscape associated with rice seed development, this systems biology study conducted a PPI network-based analysis. Using a list of known seed development proteins from the Gene Ontology (GO) knowledgebase and literature, novel candidate proteins for seed development were predicted using an ensemble of network-based algorithms, including Majority Voting, Hishigaki Algorithm, Functional Flow, and Random Walk with Restart, which were selected based on their popularity and usability. The predictions were validated using enrichment analysis and cross-checked with independent transcriptomic analysis results. The rice seed development sub-network was further analyzed for community and hub detection. RESULTS The study predicted 196 new proteins linked to rice seed development and identified 14 sub-modules within the network, each representing different developmental pathways, such as endosperm development and seed growth regulation. Of these, 17 proteins were identified as intra-modular hubs and 6 as inter-modular hubs. Notably, the protein SDH1 emerged as a dual hub, acting as both an intra-modular and inter-modular hub, highlighting its importance in seed development PPI network stability. CONCLUSIONS These findings, including the identified hub proteins and sub-modules, provide a better understanding of the PPI interaction landscape governing seed development in rice. This information is useful for achieving a systems biology understanding of seed development. This study implements an ensemble of algorithms for the analysis and showcases how systems biology techniques can be applied in developmental biology.
Collapse
Affiliation(s)
- M R P De Silva
- Department of Plant Sciences, University of Colombo, Colombo 03, Sri Lanka
| | - J W J K Weeraman
- Department of Plant Sciences, University of Colombo, Colombo 03, Sri Lanka
| | - S Piyatissa
- Department of Plant Sciences, University of Colombo, Colombo 03, Sri Lanka
| | - P C Fernando
- Department of Plant Sciences, University of Colombo, Colombo 03, Sri Lanka.
| |
Collapse
|
6
|
Ma Z, Chen X, Cao J, Yu J, Zhu Y, Li G, Xu F, Hu Q, Zhang H, Liu G, Wei H. Analysis of the effects of light and panicle fertilizer on rice eating quality based on morphological structural changes in starch and protein during cooking. Int J Biol Macromol 2025; 305:141121. [PMID: 39961564 DOI: 10.1016/j.ijbiomac.2025.141121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/17/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Light and panicle fertilizer are crucial environmental factors that influence rice eating quality. Currently, there is a lack of systematic research on how light and panicle fertilizer alter the morphological structures of starch and protein during cooking, subsequently affecting rice taste. To address this gap, field experiments were conducted under varying conditions of light (100 % light, L1; 50 % light, L2) and panicle fertilizer (no panicle fertilizer, N1; 81 kg/ha of panicle fertilizer, N2), followed by cooking after harvest. The results showed that, compared to L1N1, the water migration (low T2), starch and protein structural disruption (slow decline in 1047/1022 cm-1) were limited in L1N2, L2N1, and L2N2 during the cooking, making rice hard to cook. Eventually, compared to L1N1, L1N2, L2N1 and L2N2 exhibited lower peak viscosity but higher strength gel networks (higher G' and G''), leading to a decline in rice eating quality. In summary, reduced light intensity and applied panicle fertilizer restricted the disruption of starch and protein structures during rice cooking, which hindered rice cooking processes, ultimately leading to a decrease in rice eating quality. Furthermore, it is noteworthy that the combination of reduced light and applied panicle fertilizer further exacerbated the decline in rice eating quality.
Collapse
Affiliation(s)
- Zhongtao Ma
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Xi Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Jiale Cao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Jianghui Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Ying Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Guangyan Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Fangfu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Qun Hu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Hongcheng Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Guodong Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China.
| | - Haiyan Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
7
|
Li W, Yang K, Hu C, Abbas W, Zhang J, Xu P, Cheng B, Zhang J, Yin W, Shalmani A, Qu L, Lv Q, Li B, He Y, Lai X, Xiong L, Zhang Q, Li Y. A natural gene on-off system confers field thermotolerance for grain quality and yield in rice. Cell 2025:S0092-8674(25)00413-1. [PMID: 40311617 DOI: 10.1016/j.cell.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/22/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025]
Abstract
Rising global temperatures threaten crop grain quality and yield; however, how temperature regulates grain quality and how to achieve synergistic thermotolerance for both quality and yield remain unknown. Here, we identified a rice major locus, QT12, which negatively controls grain-quality field thermotolerance by disrupting endosperm storage substance homeostasis through over-activating unfolded protein response (UPR). Natural variations in QT12 and an NF-Y complex form a natural gene on-off system to modulate QT12 expression and thermotolerance. High temperatures weaken NF-YB9/NF-YC10 interactions with NF-YA8, releasing QT12 suppression and triggering quality deterioration. Low QT12 expression confers superior quality and increases elite rice yield up to 1.31-1.93 times under large-scale high-temperature trials. Two trait regulatory haplotypes (TRHs) from co-selected variations of the four genetically unlinked genes in NF-Ys-QT12 were identified for subspecies thermotolerance differentiation. Our work provides mechanistic insights into rice field thermotolerance and offers a proof-of-concept breeding strategy to break stress-growth and yield-quality trade-offs.
Collapse
Affiliation(s)
- Wei Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ke Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Chaofan Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Waseem Abbas
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jian Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Pengkun Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Bo Cheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Juncheng Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wenjing Yin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Abdullah Shalmani
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Lianghuan Qu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qingya Lv
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Bingchen Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xuelei Lai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
8
|
Jukanti AK, Karapati D, Bharali V, Gudla M, Thati S, Yadla S, Kumar M, Sundaram RM. From Gene to Plate: Molecular Insights into and Health Implications of Rice ( Oryza sativa L.) Grain Protein. Int J Mol Sci 2025; 26:3163. [PMID: 40243926 PMCID: PMC11989779 DOI: 10.3390/ijms26073163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Rice is a staple food crop widely consumed across the world. It is rich in carbohydrates, quality protein, and micronutrients. The grain protein content (GPC) in rice varies considerably. Although it is generally lower than that of other major cereals, the quality of protein is superior. GPC and its components are complex quantitative traits influenced by both genetics and environmental factors. Glutelin is the major protein fraction (70-80%) in rice. Rice protein is rich in lysine, methionine, and cysteine along with other amino acids. Globally, Protein-Energy Malnutrition (PEM) is a major concern, particularly in Asia and Africa. Additionally, non-communicable diseases (NCDs) including diabetes, cancer, cardiovascular diseases, hypertension, and obesity are on the rise due to various reasons including changes in lifestyle and consumption patterns. Rice plays a very important part in the daily human diet, and therefore, substantial research efforts focus on the genetic characterization of GPC and understanding its role in the prevention of NCDs. The contribution of both rice grain and bran protein in improving human health is an established fact. The present study summarizes the different aspects of rice grain protein including its variability, composition, factors affecting it, and its industrial uses and more importantly its role in human health.
Collapse
Affiliation(s)
| | - Divya Karapati
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, Telangana, India
| | - Violina Bharali
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, Telangana, India
| | - Mahesh Gudla
- Department of Crop Physiology, School of Agricultural Sciences, Malla Reddy University, Hyderabad 500043, Telangana, India
| | - Srinivas Thati
- Regional Agricultural Research Station, Acharya NG Ranga Agricultural University, Maruteru 534122, Andhra Pradesh, India
| | - Suneetha Yadla
- Regional Agricultural Research Station, Acharya NG Ranga Agricultural University, Maruteru 534122, Andhra Pradesh, India
| | - Manoj Kumar
- Agricultural Research Station, Agriculture University, Kota 324001, Rajasthan, India
| | | |
Collapse
|
9
|
Xi M, Li Z, Liang S, Xu Y, Zhou Y, Tu D, Sun X, Yang L. Positional variations of rice protein compositions accumulation within a panicle during the grain filling. BMC PLANT BIOLOGY 2025; 25:356. [PMID: 40102755 PMCID: PMC11921686 DOI: 10.1186/s12870-025-06368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025]
Abstract
Grain protein is a critical quality attribute of rice that influences consumer preferences. However, the spatial variation in protein accumulation within a rice panicle remains poorly understood. This study investigated the dynamics of protein accumulation, including protein components and protein synthesis-related enzymes and genes, among grains located at the top, middle, and bottom primary rachises of a rice panicle during the grain filling. The results revealed significant variations in protein compositions across different rachis positions. The contents of albumin, globulin, prolamin, glutelin, and total protein contents exhibited fluctuations during grain filling. Notably, the grain position had a significant effect on glutelin content, with grains at the bottom primary rachis consistently having higher glutelin level than those at the top and middle rachises, except 17 days after flowering (DAF). A similar trend was observed for total protein content. Grains at the bottom rachis demonstrated dominance in the rate of protein accumulation, initiating rapid accumulation 2.0 d later and 2.2 d earlier than grains at the top and middle rachises, respectively. Furthermore, the duration of active protein accumulation was 1.9 d and 3.4 d shorter for grains at the bottom rachis compared to those at the top and middle rachises, respectively. This phenomenon was attributed to alterations in enzymatic activities. Specifically, the activities of glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate pyruvate transaminase (GPT), and glutamic oxalo-acetic transaminase (GOT) in grains located at the basal rachis exhibited a marked increase from 8 DAF to 17 DAF. These activities were significantly elevated compared to those observed in grains at the top and middle rachis, although they experienced a subsequent sharp decline. The glutelin content and enzymatic activities demonstrated a strong correlation, either positive or negative, at 11 DAF and 20 DAF. These findings suggest that the positional changes of grain protein were closely associated with nitrogen assimilation and glutelin accumulation during the rice grain filling process.
Collapse
Affiliation(s)
- Min Xi
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Anhui, Hefei, 230031, China.
| | - Zhong Li
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Anhui, Hefei, 230031, China
| | - Shuang Liang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Anhui, Hefei, 230031, China
| | - Youzun Xu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Anhui, Hefei, 230031, China
| | - Yongjin Zhou
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Anhui, Hefei, 230031, China
| | - Debao Tu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Anhui, Hefei, 230031, China
| | - Xueyuan Sun
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Anhui, Hefei, 230031, China
| | - Linsheng Yang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Anhui, Hefei, 230031, China
| |
Collapse
|
10
|
Cai Y, Chen Z, Liu J, Yu L, Wang Z, Zhu S, Shi W, Pan C, Wu Y, Li Y, Ji H, Huang N, Zhang X, Gao P, Xiao N, Zuo S, Li A. Genetic improvement of eating and cooking quality of rice cultivars in southern China. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:518-531. [PMID: 39546400 PMCID: PMC11772335 DOI: 10.1111/pbi.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/17/2024]
Abstract
The genetic improvement of rice eating and cooking quality (ECQ) is an important goal in rice breeding. It is important to understand the genetic regulation of ECQ at the genomic level for effective breeding to improve ECQ. However, the mechanisms underlying the improvement of ECQ of indica and japonica cultivars in southern China remain unclear. In this study, 290 rice cultivars (155 indica and 135 japonica cultivars) bred in southern China in the past 30 years were collected. Physicochemical indicators, namely, apparent amylose content (AAC), protein content (PC), lipid content and taste value, were measured and correlation analysis was performed. A decrease in AAC and PC was a crucial factor for the ECQ improvement of the rice cultivars in southern China. Genome-wide association analysis and selective domestication analysis preliminarily clarified that the comprehensive utilization of major and minor genes was an important genetic basis for improvement of ECQ. An elite allele, RAmy1AA, with potential application in breeding to improve starch viscosity characteristics and ECQ, was mined. The Wxb/OsmtSSB1LT/OsDML4G/RPBFT/Du3T and Wxb/OsEro1T/Glup3G/OsNAC25G/OsBEIIbC/RAmy1AA/FLO12A gene modules, neither of which have been widely used, are proposed as the optimal allele combinations for ECQ improvement of indica and japonica cultivars in southern China. The results clarify the genetic regulation of rice ECQ improvement in southern China and provide novel genetic resources and breeding strategies for ECQ improvement in rice.
Collapse
Affiliation(s)
- Yue Cai
- Lixiahe Agricultural Research Institute of Jiangsu ProvinceYangzhouChina
- Zhongshan Biological Breeding LaboratoryNanjingChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgriculture College of Yangzhou UniversityYangzhouChina
| | - Zichun Chen
- Lixiahe Agricultural Research Institute of Jiangsu ProvinceYangzhouChina
- Zhongshan Biological Breeding LaboratoryNanjingChina
| | - Jianju Liu
- Lixiahe Agricultural Research Institute of Jiangsu ProvinceYangzhouChina
- Zhongshan Biological Breeding LaboratoryNanjingChina
| | - Ling Yu
- Lixiahe Agricultural Research Institute of Jiangsu ProvinceYangzhouChina
| | - Zhiping Wang
- Lixiahe Agricultural Research Institute of Jiangsu ProvinceYangzhouChina
| | - Shuhao Zhu
- Lixiahe Agricultural Research Institute of Jiangsu ProvinceYangzhouChina
| | - Wei Shi
- Lixiahe Agricultural Research Institute of Jiangsu ProvinceYangzhouChina
| | - Cunhong Pan
- Lixiahe Agricultural Research Institute of Jiangsu ProvinceYangzhouChina
- Zhongshan Biological Breeding LaboratoryNanjingChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgriculture College of Yangzhou UniversityYangzhouChina
- Collaborative Innovation Center for Modern Crop Production Co‐Sponsored by Province and MinistryNanjingChina
| | - Yunyu Wu
- Lixiahe Agricultural Research Institute of Jiangsu ProvinceYangzhouChina
- Zhongshan Biological Breeding LaboratoryNanjingChina
| | - Yuhong Li
- Lixiahe Agricultural Research Institute of Jiangsu ProvinceYangzhouChina
- Zhongshan Biological Breeding LaboratoryNanjingChina
| | - Hongjuan Ji
- Lixiahe Agricultural Research Institute of Jiangsu ProvinceYangzhouChina
| | - Niansheng Huang
- Lixiahe Agricultural Research Institute of Jiangsu ProvinceYangzhouChina
| | - Xiaoxiang Zhang
- Lixiahe Agricultural Research Institute of Jiangsu ProvinceYangzhouChina
- Zhongshan Biological Breeding LaboratoryNanjingChina
| | - Peng Gao
- Lixiahe Agricultural Research Institute of Jiangsu ProvinceYangzhouChina
- Zhongshan Biological Breeding LaboratoryNanjingChina
| | - Ning Xiao
- Lixiahe Agricultural Research Institute of Jiangsu ProvinceYangzhouChina
- Zhongshan Biological Breeding LaboratoryNanjingChina
- Collaborative Innovation Center for Modern Crop Production Co‐Sponsored by Province and MinistryNanjingChina
| | - Shimin Zuo
- Zhongshan Biological Breeding LaboratoryNanjingChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgriculture College of Yangzhou UniversityYangzhouChina
| | - Aihong Li
- Lixiahe Agricultural Research Institute of Jiangsu ProvinceYangzhouChina
- Zhongshan Biological Breeding LaboratoryNanjingChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgriculture College of Yangzhou UniversityYangzhouChina
- Collaborative Innovation Center for Modern Crop Production Co‐Sponsored by Province and MinistryNanjingChina
| |
Collapse
|
11
|
Sharma S, Prusty A, Dansana PK, Kapoor S, Tyagi AK. Overexpression of the general transcription factor OsTFIIB5 alters rice development and seed quality. PLANT CELL REPORTS 2025; 44:27. [PMID: 39794608 DOI: 10.1007/s00299-025-03423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
KEY MESSAGE Overexpression of general transcription factor OsTFIIB5 in rice affects seedling growth, plant height, flowering time, panicle architecture, and seed protein/starch levels and involves modulation of expression of associated genes. TFIIB, a key general transcription factor (GTF), plays a critical role in pre-initiation complex (PIC) formation and facilitates RNA polymerase II-mediated transcription. In humans and yeast, TFIIB is encoded by a single gene; however, in plants it is encoded by a multigene family whose products may perform specialized transcriptional functions. The role of plant TFIIBs, particularly in monocots, remains largely unexplored. This study presents the first functional characterization of the rice TFIIB gene, OsTFIIB5 (LOC_Os09g36440), during development. Expression profiling of OsTFIIB5 revealed differential patterns across various developmental stages, with pronounced transcript accumulation during seed development. Overexpression of OsTFIIB5 impacted multiple stages of plant growth and development, leading to phenotypic changes such as altered seedling growth, reduced plant height, early heading, altered panicle architecture, decreased yield, and changes in seed storage substances. Notably, there were no effects on seed germination, pollen development, and grain size. Reduction in shoot length and plant height was linked to altered expression of genes involved in gibberellin (GA) biosynthesis, signalling, and deactivation. Overexpression of OsTFIIB5 enhanced the expression of genes involved in the photoperiodic flowering pathway, resulting in early panicle emergence. Higher expression levels of OsTFIIB5 also induced the accumulation of seed storage proteins (SSPs), while reducing starch content and altering the proportions of amylose and amylopectin in seeds. These findings suggest that OsTFIIB5 functions as a transcriptional regulator, governing multiple aspects of rice growth and development.
Collapse
Affiliation(s)
- Shivam Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), Benito Juarez Marg, New Delhi, 110021, India
| | - Ankita Prusty
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), Benito Juarez Marg, New Delhi, 110021, India
| | - Prasant Kumar Dansana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), Benito Juarez Marg, New Delhi, 110021, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), Benito Juarez Marg, New Delhi, 110021, India
| | - Akhilesh Kumar Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), Benito Juarez Marg, New Delhi, 110021, India.
| |
Collapse
|
12
|
Xu S, Zhang Y, Cai H, He Y, Chen L, Zhang G, Chen R, Gu C, Teng X, Duan E, Jiang L, Ren Y, Wang Y, Dong H, Wan J. Lysine 98 in NAC20/NAC26 transcription factors: a key regulator of starch and protein synthesis in rice endosperm. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112258. [PMID: 39277049 DOI: 10.1016/j.plantsci.2024.112258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Starch and proteins are main storage product to determine the appearance, cooking, texture, and nutritional quality of rice (Oryza sativa L.). OsNAC20 and OsNAC26, as pivotal transcription factors, redundantly regulate the expression of genes responsible for starch and protein synthesis in the rice endosperm. Any knockout of OsNAC20 or OsNAC26 did not result in visible endosperm defects. In this study, we had isolated and characterized a mutant named as floury endosperm25 (flo25). The caryopsis of the flo25 mutant exhibits a floury endosperm, accompanied by reductions in both the 1000-grain weight and grain length, as well as diminished levels of total starch and protein. Through map-based cloning, it was determined that FLO25 encodes a NAM, ATAF, and CUC (NAC) transcription factors, namely OsNAC26, with a lysine to asparagine substitution at position 98 in the flo25 mutant. Remarkably, lysine 98 is conserved across plants species, and this mutation does not alter the subcellular localization of OsNAC26 but significantly attenuates its transcriptional activity and its ability to activate downstream target genes. Furthermore, the mutant protein encoded by OsNAC26-flo25 could interact with OsNAC20, disrupting the native interaction between OsNAC20 proteins. Additionally, when lysine 98 is substituted with asparagine in OsNAC20, the resulting mutant protein, OsNAC20(K98N), similarly disrupts the interaction between OsNAC26 proteins. Collectively, these findings underscore the pivotal role of Lysine 98 (K) in modulating the transcriptional activity of NAC20/NAC26 within the rice endosperm.
Collapse
Affiliation(s)
- Shanbin Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongping Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuzhe He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Laibao Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Guiping Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongbo Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuanwei Gu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Teng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Erchao Duan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Hui Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
13
|
Dong X, Yang H, Chai Y, Han B, Liu J, Tian L, Cui S, Xiong S, Zhong M, Fu B, Qu LQ. Simultaneous knockout of cytosolic and plastidial disproportionating enzymes disrupts grain setting and filling in rice. PLANT PHYSIOLOGY 2024; 196:1391-1406. [PMID: 39056538 DOI: 10.1093/plphys/kiae398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Rice (Oryza sativa) plants contain plastidial and cytosolic disproportionating enzymes (DPE1 and DPE2). Our previous studies showed that DPE2 acts on maltose, the major product of starch degradation in pollens, releasing one glucose to fuel pollen tube growth and fertilization, whereas DPE1 participates in endosperm starch synthesis by transferring maltooligosyl groups from amylose to amylopectin, and removing excess short maltooligosaccharides. However, little is known about their integrated function. Here, we report that the coordinated actions of DPE1 and DPE2 contribute to grain setting and filling in rice. The dpe1dpe2 mutants could not be isolated from the progeny of heterozygous parental plants but were obtained via anther culture. Unlike that reported in Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum), the dpe1dpe2 rice plants grew normally but only yielded a small number of empty, unfilled seeds. In the dpe1dpe2 seeds, nutrient accumulation was substantially reduced, and dorsal vascular bundles were also severely malnourished. Zymogram analyses showed that changes in the activities of the major starch-synthesizing enzymes matched well with various endosperm phenotypes of mutant seeds. Mechanistically, DPE1 deficiency allowed normal starch mobilization in leaves and pollens but affected starch synthesis in endosperm, while DPE2 deficiency blocked starch degradation, resulting in substantially decreased levels of the sugars available for pollen tube growth and grain filling. Overall, our results demonstrate the great potential of DPE1-DPE2 as an important regulatory module to realize higher crop yields and present a promising target for regulating nutrient accumulation in cereal crop endosperm.
Collapse
Affiliation(s)
- Xiangbai Dong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Huifang Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaru Chai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinxin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lihong Tian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shuai Cui
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Xiong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Manfang Zhong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Fu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Qing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Alam M, Lou G, Abbas W, Osti R, Ahmad A, Bista S, Ahiakpa JK, He Y. Improving Rice Grain Quality Through Ecotype Breeding for Enhancing Food and Nutritional Security in Asia-Pacific Region. RICE (NEW YORK, N.Y.) 2024; 17:47. [PMID: 39102064 DOI: 10.1186/s12284-024-00725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Rice grain is widely consumed as a staple food, providing essential nutrition for households, particularly marginalized families. It plays a crucial role in ensuring food security, promoting human nutrition, supporting good health, and contributing to global food and nutritional security. Addressing the diverse quality demands of emerging diverse and climate-risked population dietary needs requires the development of a single variety of rice grain that can meet the various dietary and nutritional requirements. However, there is a lack of concrete definition for rice grain quality, making it challenging to cater to the different demands. The lack of sufficient genetic study and development in improving rice grain quality has resulted in widespread malnutrition, hidden hunger, and micronutrient deficiencies affecting a significant portion of the global population. Therefore, it is crucial to identify genetically evolved varieties with marked qualities that can help address these issues. Various factors account for the declining quality of rice grain and requires further study to improve their quality for healthier diets. We characterized rice grain quality using Lancastrians descriptor and a multitude of intrinsic and extrinsic quality traits. Next, we examined various components of rice grain quality favored in the Asia-Pacific region. This includes preferences by different communities, rice industry stakeholders, and value chain actors. We also explored the biological aspects of rice grain quality in the region, as well as specific genetic improvements that have been made in these traits. Additionally, we evaluated the factors that can influence rice grain quality and discussed the future directions for ensuring food and nutritional security and meeting consumer demands for grain quality. We explored the diverse consumer bases and their varied preferences in Asian-Pacific countries including India, China, Nepal, Bhutan, Vietnam, Sri Lanka, Pakistan, Thailand, Cambodia, Philippines, Bangladesh, Indonesia, Korea, Myanmar and Japan. The quality preferences encompassed a range of factors, including rice head recovery, grain shape, uniform size before cooking, gelatinization, chalkiness, texture, amylose content, aroma, red-coloration of grain, soft and shine when cooked, unbroken when cooked, gelatinization, less water required for cooking, gelatinization temperature (less cooking time), aged rice, firm and dry when cooked (gel consistency), extreme white, soft when chewed, easy-to-cook rice (parboiled rice), vitamins, and minerals. These preferences were evaluated across high, low, and medium categories. A comprehensive analysis is provided on the enhancement of grain quality traits, including brown rice recovery, recovery rate of milled rice, head rice recovery, as well as morphological traits such as grain length, grain width, grain length-width ratio, and grain chalkiness. We also explored the characteristics of amylose, gel consistency, gelatinization temperature, viscosity, as well as the nutritional qualities of rice grains such as starch, protein, lipids, vitamins, minerals, phytochemicals, and bio-fortification potential. The various factors that impact the quality of rice grains, including pre-harvest, post-harvest, and genotype considerations were explored. Additionally, we discussed the future direction and genetic strategies to effectively tackle these challenges. These qualitative characteristics represent the fundamental focus of regional and national breeding strategies employed by different countries to meet consumer preference. Given the significance of rice as a staple food in Asia-Pacific countries, it is primarily consumed domestically, with only a small portion being exported internationally. All the important attributes must be clearly defined within specific parameters. It is crucial for geneticists and breeders to develop a rice variety that can meet the diverse demands of consumers worldwide by incorporating multiple desirable traits. Thus, the goal of addressing global food and nutritional security, and human healthy can be achieved.
Collapse
Affiliation(s)
- Mufid Alam
- National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular Breeding, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Guangming Lou
- National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular Breeding, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Waseem Abbas
- National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular Breeding, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Rajani Osti
- College of Humanities and Social Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Aqeel Ahmad
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Science and Natural Resource Research, Chinese Academy of Science (CAS), Beijing, China
| | - Sunita Bista
- Sichuan Agricultural University, Chengdu, Sichuan, China
| | - John K Ahiakpa
- National Key Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular Breeding, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
15
|
Pham HA, Cho K, Tran AD, Chandra D, So J, Nguyen HTT, Sang H, Lee JY, Han O. Compensatory Modulation of Seed Storage Protein Synthesis and Alteration of Starch Accumulation by Selective Editing of 13 kDa Prolamin Genes by CRISPR-Cas9 in Rice. Int J Mol Sci 2024; 25:6579. [PMID: 38928285 PMCID: PMC11204006 DOI: 10.3390/ijms25126579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Rice prolamins are categorized into three groups by molecular size (10, 13, or 16 kDa), while the 13 kDa prolamins are assigned to four subgroups (Pro13a-I, Pro13a-II, Pro13b-I, and Pro13b-II) based on cysteine residue content. Since lowering prolamin content in rice is essential to minimize indigestion and allergy risks, we generated four knockout lines using CRISPR-Cas9, which selectively reduced the expression of a specific subgroup of the 13 kDa prolamins. These four mutant rice lines also showed the compensatory expression of glutelins and non-targeted prolamins and were accompanied by low grain weight, altered starch content, and atypically-shaped starch granules and protein bodies. Transcriptome analysis identified 746 differentially expressed genes associated with 13 kDa prolamins during development. Correlation analysis revealed negative associations between genes in Pro13a-I and those in Pro13a-II and Pro13b-I/II subgroups. Furthermore, alterations in the transcription levels of 9 ER stress and 17 transcription factor genes were also observed in mutant rice lines with suppressed expression of 13 kDa prolamin. Our results provide profound insight into the functional role of 13 kDa rice prolamins in the regulatory mechanisms underlying rice seed development, suggesting their promising potential application to improve nutritional and immunological value.
Collapse
Affiliation(s)
- Hue Anh Pham
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Kyoungwon Cho
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Anh Duc Tran
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Deepanwita Chandra
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Jinpyo So
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Hanh Thi Thuy Nguyen
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi 12406, Vietnam;
| | - Hyunkyu Sang
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Jong-Yeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, RDA, Jeonju 54874, Republic of Korea
| | - Oksoo Han
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| |
Collapse
|
16
|
Yang H, Chen L, Xiong R, Zeng Y, Jiang Y, Zhang J, Zhang B, Yang T. Experimental Warming Increased Cooked Rice Stickiness and Rice Thermal Stability in Three Major Chinese Rice Cropping Systems. Foods 2024; 13:1605. [PMID: 38890834 PMCID: PMC11171534 DOI: 10.3390/foods13111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Climate warming is a critical environmental issue affecting rice production. However, its effects on cooked rice texture and rice thermal properties remain unstudied in China. To address this gap, we conducted a two-year multi-site field warming experiment using free-air temperature increase facilities across three major Chinese rice cropping systems. Interestingly, warming had a minimal impact on the hardness of cooked rice, while it significantly increased stickiness by an average of 16.3% under warming conditions. Moreover, compared to control treatments, rice flour exhibited a significant increase in gelatinization enthalpy, onset, peak, and conclusion temperatures under warming conditions, with average increments of 8.7%, 1.00 °C, 1.05 °C, and 1.17 °C, respectively. In addition, warming significantly declined the amylose content, remarkedly elevated the protein content and relative crystallinity, and altered the weight distribution of the debranched starch. Correlation analysis revealed significant relationships between cooked rice stickiness, rice flour thermal properties, amylose content, protein content, and partial starch structures. Therefore, warming-induced alterations in rice composition and starch structure collectively enhanced cooked rice stickiness and rice thermal stability.
Collapse
Affiliation(s)
- Huifang Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The China Academy of Science, Beijing 100093, China
| | - Liming Chen
- Jiangxi Key Laboratory of Plant Resources and Biodiversity, Jingdezhen University, Jingdezhen 333400, China
| | - Ruoyu Xiong
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanhua Zeng
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yu Jiang
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Taotao Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
17
|
Tower J. Selectively advantageous instability in biotic and pre-biotic systems and implications for evolution and aging. FRONTIERS IN AGING 2024; 5:1376060. [PMID: 38818026 PMCID: PMC11137231 DOI: 10.3389/fragi.2024.1376060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
Rules of biology typically involve conservation of resources. For example, common patterns such as hexagons and logarithmic spirals require minimal materials, and scaling laws involve conservation of energy. Here a relationship with the opposite theme is discussed, which is the selectively advantageous instability (SAI) of one or more components of a replicating system, such as the cell. By increasing the complexity of the system, SAI can have benefits in addition to the generation of energy or the mobilization of building blocks. SAI involves a potential cost to the replicating system for the materials and/or energy required to create the unstable component, and in some cases, the energy required for its active degradation. SAI is well-studied in cells. Short-lived transcription and signaling factors enable a rapid response to a changing environment, and turnover is critical for replacement of damaged macromolecules. The minimal gene set for a viable cell includes proteases and a nuclease, suggesting SAI is essential for life. SAI promotes genetic diversity in several ways. Toxin/antitoxin systems promote maintenance of genes, and SAI of mitochondria facilitates uniparental transmission. By creating two distinct states, subject to different selective pressures, SAI can maintain genetic diversity. SAI of components of synthetic replicators favors replicator cycling, promoting emergence of replicators with increased complexity. Both classical and recent computer modeling of replicators reveals SAI. SAI may be involved at additional levels of biological organization. In summary, SAI promotes replicator genetic diversity and reproductive fitness, and may promote aging through loss of resources and maintenance of deleterious alleles.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
18
|
Cao S, Liu B, Wang D, Rasheed A, Xie L, Xia X, He Z. Orchestrating seed storage protein and starch accumulation toward overcoming yield-quality trade-off in cereal crops. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:468-483. [PMID: 38409921 DOI: 10.1111/jipb.13633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
Achieving high yield and good quality in crops is essential for human food security and health. However, there is usually disharmony between yield and quality. Seed storage protein (SSP) and starch, the predominant components in cereal grains, determine yield and quality, and their coupled synthesis causes a yield-quality trade-off. Therefore, dissection of the underlying regulatory mechanism facilitates simultaneous improvement of yield and quality. Here, we summarize current findings about the synergistic molecular machinery underpinning SSP and starch synthesis in the leading staple cereal crops, including maize, rice and wheat. We further evaluate the functional conservation and differentiation of key regulators and specify feasible research approaches to identify additional regulators and expand insights. We also present major strategies to leverage resultant information for simultaneous improvement of yield and quality by molecular breeding. Finally, future perspectives on major challenges are proposed.
Collapse
Affiliation(s)
- Shuanghe Cao
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
| | - Bingyan Liu
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
| | - Daowen Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Awais Rasheed
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lina Xie
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
| | - Xianchun Xia
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
| | - Zhonghu He
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
19
|
Ma Z, Zhu Y, Wang Z, Chen X, Cao J, Liu G, Li G, Wei H, Zhang H. Effect of starch and protein on eating quality of japonica rice in Yangtze River Delta. Int J Biol Macromol 2024; 261:129918. [PMID: 38309388 DOI: 10.1016/j.ijbiomac.2024.129918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
This study examined four types of japonica rice from Yangtze River Delta, categorized based on amylose content (AC) and protein content (PC): high AC with high PC, high AC with low PC, low AC with high PC, and low AC with low PC. It systematically explored the effect of starch, protein and their interactions on eating quality of japonica rice. Rheological analysis revealed that increased amylose, long chains amylopectin or protein levels during cooking strengthen starch-protein interactions (hydrogen bonding), forming a firm gel network. Scanning electron microscopy showed that increased amylose, long chains amylopectin or protein levels made protein and starch more stable in combination during cooking, limiting starch structure cleavage. Therefore, the eating quality of high AC in similar PC japonica rice and high PC in similar AC japonica rice were poor. Further, correlation and random-forest analysis (RFA) identified amylose as the most influential factor in starch-protein interactions affecting rice eating quality, followed by amylopectin and protein. RFA also revealed that in high AC japonica rice, the interactions of Fb3 and albumin with amylose were more conducive to forming good eating quality. In low AC japonica rice, the interactions of Fb2 and prolamin with amylose were more beneficial.
Collapse
Affiliation(s)
- Zhongtao Ma
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Ying Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Zhijie Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Xi Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Jiale Cao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Guodong Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Guangyan Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Haiyan Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China.
| | - Hongcheng Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
20
|
Zhang H, Zhang J, Xu P, Li M, Li Y. Insertion of a miniature inverted-repeat transposable element into the promoter of OsTCP4 results in more tillers and a lower grain size in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1421-1436. [PMID: 37988625 DOI: 10.1093/jxb/erad467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
A class I PCF type protein, TCP4, was identified as a transcription factor associated with both grain size and tillering through a DNA pull-down-MS assay combined with a genome-wide association study. This transcription factor was found to have a significant role in the variations among the 533 rice accessions, dividing them into two main subspecies. A Tourist-like miniature inverted-repeat transposable element (MITE) was discovered in the promoter of TCP4 in japonica/geng accessions (TCP4M+), which was found to suppress the expression of TCP4 at the transcriptional level. The MITE-deleted haplotype (TCP4M-) was mainly found in indica/xian accessions. ChIP-qPCR and EMSA demonstrated the binding of TCP4 to promoters of grain reservoir genes such as SSIIa and Amy3D in vivo and in vitro, respectively. The introduction of the genomic sequence of TCP4M+ into different TCP4M- cultivars was found to affect the expression of TCP4 in the transgenic rice, resulting in decreased expression of its downstream target gene SSIIa, increased tiller number, and decreased seed length. This study revealed that a Tourist-like MITE contributes to subspecies divergence by regulating the expression of TCP4 in response to environmental pressure, thus influencing source-sink balance by regulating starch biosynthesis in rice.
Collapse
Affiliation(s)
- Hui Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Juncheng Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Pengkun Xu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Ming Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430026, China
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| |
Collapse
|
21
|
Baiseitova G, Berkimbay K, Mynbayeva D, Nussupova A, Amirova AK, Usenbekov B, Kulakhmetova Z, Yernazarova G, Yussayeva D, Kazkeyev D, Mukhambetzhanov S. Heritability and amylose content in hybrid lines of late-generation rice with colored pericarp. BRAZ J BIOL 2024; 83:e280919. [PMID: 38422279 DOI: 10.1590/1519-6984.280919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/20/2023] [Indexed: 03/02/2024] Open
Abstract
Improving grain quality in rice breeding is one of the main tasks. This concerns the creation of rice varieties with colored pericarp uncommon in the Republic of Kazakhstan, and the assessment of its quality is an important stage of breeding. Rice with colored pericarp is an important dietary crop, more useful for the human body than white rice. Regardless of the type of rice, the amount of amylose in rice grain is a crucial indicator that determines the quality of rice. The paper presents the results of electrophoretic separation of spare grain proteins of rice hybrids and dihaploids with colored pericarp and their parent forms obtained as a result of the hybridization of varieties with colored pericarp (Black Rice (China), Mavr (Russia), and Yir 5815 (Ukraine)) with white rice varieties zoned in Kazakhstan. The hybridization of the rice varieties with colored pericarp with white rice varieties was carried out to obtain rice varieties with colored pericarp oriented to the soil and climate of Kazakhstan. Analyzing the results of electrophoresis and the amount of amylose, it was found that hybrid lines differed in amylose content. One of the studied hybrids was high in amylose, four had a medium amylose content, ten had a low amylose content, three had a very low amylose content, and six were glutinous. According to the results of electrophoretic separation of spare rice grain proteins, the spectrum of the enzyme determining amylose was detected in five hybrids, which corresponds to the results of spectrophotometric determination of amylose: high amylose in one hybrid and medium amylose content in four. The results show that the hybrids obtained as a result of hybridization are true hybrids and as a result of long-term selection, the amylose content in the F7-F8 hybrids stabilized. The hybrids can be used in further breeding of rice with colored pericarp.
Collapse
Affiliation(s)
- G Baiseitova
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
- Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - Kh Berkimbay
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
- Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - D Mynbayeva
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - A Nussupova
- Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - A K Amirova
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - B Usenbekov
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Z Kulakhmetova
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - G Yernazarova
- Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - D Yussayeva
- Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - D Kazkeyev
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - S Mukhambetzhanov
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|
22
|
Guo J, Zhou X, Chen D, Chen K, Ye C, Liu J, Liu S, Chen Y, Chen G, Liu C. Effect of Fat Content on Rice Taste Quality through Transcriptome Analysis. Genes (Basel) 2024; 15:81. [PMID: 38254970 PMCID: PMC10815682 DOI: 10.3390/genes15010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Rice is an important crop in the word, and fat is one of the main important nutrient components of rice. The lipid content and fatty acid composition of grains significantly influences the quality of rice. In this study, 94 homozygous recombination inbred lines (RILs) were developed and the crude fat content of them displayed a normal distribution ranging from 0.44% to 2.62%. Based on their taste quality, a positive association between fat content and eating quality was revealed. Then, two lines (FH and FL) were selected with similar agronomic characteristics and different lipid content and taste quality for RNA sequencing analysis, and a total of 619 differentiable expressed genes were detected, primarily enriched in metabolic pathways such as starch and sucrose metabolism, fatty acid metabolism, and amino acid metabolism. The expression of two genes related to fatty acid synthesis and elongation was significantly up-regulated, while the expression of three genes related to fatty acid degradation was significantly down-regulated in FH grains. By using liquid chromatography, the relative levels of palmitic acid and oleic acid were discovered significantly higher in FH grains. Additionally, the comparative genomic analysis was conducted to visualize genomic differences of five genes. Ultimately, two genes (Os07g0417200 and Os12g0102100) were selected to be the key gene to affect the lipid metabolism, especially for the synthesis of unsaturated fatty acids, significantly changing the eating quality of rice. These results provide a theoretical basis for improving the taste quality of rice.
Collapse
Affiliation(s)
- Jie Guo
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Xinqiao Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Dagang Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Ke Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Chanjuan Ye
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Juan Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Shaolong Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Youding Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Guorong Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Chuanguang Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| |
Collapse
|
23
|
Yan M, Zhou Z, Feng J, Bao X, Jiang Z, Dong Z, Chai M, Tan M, Li L, Cao Y, Ke Z, Wu J, Feng Z, Pan T. OsSHMT4 Is Required for Synthesis of Rice Storage Protein and Storage Organelle Formation in Endosperm Cells. PLANTS (BASEL, SWITZERLAND) 2023; 13:81. [PMID: 38202389 PMCID: PMC10780996 DOI: 10.3390/plants13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024]
Abstract
Storage proteins are essential for seed germination and seedling growth, as they provide an indispensable nitrogen source and energy. Our previous report highlighted the defective endosperm development in the serine hydroxymethyltransferase 4 (OsSHMT4) gene mutant, floury endosperm20-1 (flo20-1). However, the alterations in storage protein content and distribution within the flo20-1 endosperm remained unclear. Here, the immunocytochemistry analyses revealed a deficiency in storage protein accumulation in flo20-1. Electron microscopic observation uncovered abnormal morphological structures in protein bodies (PBI and PBII) in flo20-1. Immunofluorescence labeling demonstrated that aberrant prolamin composition could lead to the subsequent formation and deposition of atypical structures in protein body I (PBI), and decreased levels of glutelins and globulin resulted in protein body II (PBII) malformation. Further RNA-seq data combined with qRT-PCR results indicated that altered transcription levels of storage protein structural genes were responsible for the abnormal synthesis and accumulation of storage protein, which further led to non-concentric ring structural PBIs and amorphous PBIIs. Collectively, our findings further underscored that OsSHMT4 is required for the synthesis and accumulation of storage proteins and storage organelle formation in endosperm cells.
Collapse
Affiliation(s)
- Mengyuan Yan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (M.Y.); (Z.Z.); (Z.D.); (M.C.); (M.T.); (L.L.); (Y.C.); (Z.K.); (J.W.)
| | - Ziyue Zhou
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (M.Y.); (Z.Z.); (Z.D.); (M.C.); (M.T.); (L.L.); (Y.C.); (Z.K.); (J.W.)
| | - Juling Feng
- College of Agronomy, Northwest A&F University, Yangling 712100, China;
| | - Xiuhao Bao
- Institute of Crop Sciences, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China;
| | - Zhengrong Jiang
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China;
| | - Zhiwei Dong
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (M.Y.); (Z.Z.); (Z.D.); (M.C.); (M.T.); (L.L.); (Y.C.); (Z.K.); (J.W.)
| | - Meijie Chai
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (M.Y.); (Z.Z.); (Z.D.); (M.C.); (M.T.); (L.L.); (Y.C.); (Z.K.); (J.W.)
| | - Ming Tan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (M.Y.); (Z.Z.); (Z.D.); (M.C.); (M.T.); (L.L.); (Y.C.); (Z.K.); (J.W.)
| | - Libei Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (M.Y.); (Z.Z.); (Z.D.); (M.C.); (M.T.); (L.L.); (Y.C.); (Z.K.); (J.W.)
| | - Yaoliang Cao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (M.Y.); (Z.Z.); (Z.D.); (M.C.); (M.T.); (L.L.); (Y.C.); (Z.K.); (J.W.)
| | - Zhanbo Ke
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (M.Y.); (Z.Z.); (Z.D.); (M.C.); (M.T.); (L.L.); (Y.C.); (Z.K.); (J.W.)
| | - Jingchen Wu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (M.Y.); (Z.Z.); (Z.D.); (M.C.); (M.T.); (L.L.); (Y.C.); (Z.K.); (J.W.)
| | - Zhen Feng
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (M.Y.); (Z.Z.); (Z.D.); (M.C.); (M.T.); (L.L.); (Y.C.); (Z.K.); (J.W.)
| | - Tian Pan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (M.Y.); (Z.Z.); (Z.D.); (M.C.); (M.T.); (L.L.); (Y.C.); (Z.K.); (J.W.)
| |
Collapse
|
24
|
Alam M, Wang Y, Chen J, Lou G, Yang H, Zhou Y, Luitel S, Jiang G, He Y. QTL detection for rice grain storage protein content and genetic effect verifications. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:89. [PMID: 38059164 PMCID: PMC10695898 DOI: 10.1007/s11032-023-01436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Rice grain quality is a multifarious attribute mainly governed by multiple nutritional factors. Grain protein is the central component of rice grain nutrition dominantly affecting eating-cooking qualities. Grain protein content is quantitatively influenced by its protein fractions. Genetic quantification of five protein fractions-albumins, globulins, prolamins, glutelin, and grain protein content-were evaluated by exploiting two BC3F2 mapping populations, derived from Kongyu131/TKM9 (population-I) and Kongyu131/Bg94-1 (population-II), which were grown in a single environment. Correlation studies among protein fractions and grain protein content were thoroughly investigated. A genetic linkage map was developed by using 146 single sequence repeat (SSR) markers in population-I and 167 markers in population-II. In total, 40 QTLs were delineated for five traits in both populations. Approximately 22 QTLs were dissected in population-I, derived from Kongyu131/TKM9, seven QTLs for albumin content, four QTLs for globulin content, three QTLs for prolamin content, four QTLs for glutelin content, and four QTLs for grain protein content. In total, 18 QTLs were detected in population-II, derived from Kongyu131/Bg94-1, five QTLs for albumin content, three QTLs for globulin content, four QTLs for prolamin content, two QTLs for glutelin content, and four QTLs for grain protein content. Three QTLs, qAlb7.1, Alb7.2, and qGPC7.2, derived from population-II (Kongyu131/Bg94-1) for albumin and grain protein content were successfully validated in the near isogenic line (NIL) populations. The localized chromosomal locus of the validated QTLs could be helpful for fine mapping via map-based cloning to discover underlying candidate genes. The functional insights of the underlying candidate gene would furnish novel perceptivity for the foundation of rice grain protein content and trigger the development of nutritionally important rice cultivars by combining marker-assisted selection (MAS) breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01436-7.
Collapse
Affiliation(s)
- Mufid Alam
- National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular Breeding, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - YingYing Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular Breeding, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Jianxian Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular Breeding, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Guangming Lou
- National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular Breeding, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Hanyuan Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular Breeding, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Yin Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular Breeding, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Saurav Luitel
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Gonghao Jiang
- College of Life Science, Heilongjiang University, Haerbin, 150080 Heilongjiang China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular Breeding, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| |
Collapse
|
25
|
Zhang Y, Zhang S, Zhang J, Wei W, Zhu T, Qu H, Liu Y, Xu G. Improving rice eating and cooking quality by enhancing endogenous expression of a nitrogen-dependent floral regulator. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2654-2670. [PMID: 37623700 PMCID: PMC10651157 DOI: 10.1111/pbi.14160] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/31/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Improving rice eating and cooking quality (ECQ) is one of the primary tasks in rice production to meet the rising demands of consumers. However, improving grain ECQ without compromising yield faces a great challenge under varied nitrogen (N) supplies. Here, we report the approach to upgrade rice ECQ by native promoter-controlled high expression of a key N-dependent floral and circadian clock regulator Nhd1. The amplification of endogenous Nhd1 abundance alters rice heading date but does not affect the entire length of growth duration, N use efficiency and grain yield under both low and sufficient N conditions. Enhanced expression of Nhd1 reduces amylose content, pasting temperature and protein content while increasing gel consistence in grains. Metabolome and transcriptome analyses revealed that increased expression of Nhd1 mainly regulates the metabolism of carbohydrates and amino acids in the grain filling stage. Moreover, expression level of Nhd1 shows a positive relationship with grain ECQ in some local main cultivars. Thus, intensifying endogenous abundance of Nhd1 is a promising strategy to upgrade grain ECQ in rice production.
Collapse
Affiliation(s)
- Yuyi Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Shunan Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Jinfei Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Wei Wei
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Tao Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Hongye Qu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Ying Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Guohua Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
26
|
Chandra D, Cho K, Pham HA, Lee JY, Han O. Down-Regulation of Rice Glutelin by CRISPR-Cas9 Gene Editing Decreases Carbohydrate Content and Grain Weight and Modulates Synthesis of Seed Storage Proteins during Seed Maturation. Int J Mol Sci 2023; 24:16941. [PMID: 38069264 PMCID: PMC10707166 DOI: 10.3390/ijms242316941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The glutelins are a family of abundant plant proteins comprised of four glutelin subfamilies (GluA, GluB, GluC, and GluD) encoded by 15 genes. In this study, expression of subsets of rice glutelins were suppressed using CRISPR-Cas9 gene-editing technology to generate three transgenic rice variant lines, GluA1, GluB2, and GluC1. Suppression of the targeted glutelin genes was confirmed by SDS-PAGE, Western blot, and q-RT-PCR. Transgenic rice variants GluA1, GluB2, and GluC1 showed reduced amylose and starch content, increased prolamine content, reduced grain weight, and irregularly shaped protein aggregates/protein bodies in mature seeds. Targeted transcriptional profiling of immature seeds was performed with a focus on genes associated with grain quality, starch content, and grain weight, and the results were analyzed using the Pearson correlation test (requiring correlation coefficient absolute value ≥ 0.7 for significance). Significantly up- or down-regulated genes were associated with gene ontology (GO) and KEGG pathway functional annotations related to RNA processing (spliceosomal RNAs, group II catalytic introns, small nucleolar RNAs, microRNAs), as well as protein translation (transfer RNA, ribosomal RNA and other ribosome and translation factors). These results suggest that rice glutelin genes may interact during seed development with genes that regulate synthesis of starch and seed storage proteins and modulate their expression via post-transcriptional and translational mechanisms.
Collapse
Affiliation(s)
- Deepanwita Chandra
- Kumho Life Science Laboratory, Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (D.C.); (K.C.); (H.A.P.)
| | - Kyoungwon Cho
- Kumho Life Science Laboratory, Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (D.C.); (K.C.); (H.A.P.)
| | - Hue Anh Pham
- Kumho Life Science Laboratory, Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (D.C.); (K.C.); (H.A.P.)
| | - Jong-Yeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, RDA, Jeonju 54874, Republic of Korea
| | - Oksoo Han
- Kumho Life Science Laboratory, Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (D.C.); (K.C.); (H.A.P.)
| |
Collapse
|
27
|
Zhao Y, Zhang C, Zhao Y, Peng Y, Ran X, Guo H, Shen Y, Liu W, Ding Y, Tang S. Multiple regulators were involved in glutelin synthesis and subunit accumulation in response to temperature and nitrogen during rice grain-filling stage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107967. [PMID: 37597275 DOI: 10.1016/j.plaphy.2023.107967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Rice glutelin is sensitive to temperature and nitrogen, however, the regulatory mechanism of glutelin response to temperature and nitrogen is unclear. In this study, we conducted the open field warming experiment by the Free-air temperature enhancement facility and application of nitrogen during grain filling. In three-year field warming experiments, glutelin relative content was significantly increased under elevated temperature and application of nitrogen. Temperature and nitrogen and their interaction increased the glutelin accumulation rate in the early and middle grain filling stages (10-25d after flowering), but decreased the glutelin accumulation rate in the middle and late grain filling stages (25-45d after flowering). Elevated temperature promoted pro-glutelin levels whereas application of nitrogen under warming increased the amount of α-glutelin. At the transcriptional level, the expression levels of the glutelin-encoding genes and protein disulphide isomerase-like enzyme (PDIL1-1), glutelin precursor accumulation 4 (GPA4), glutelin precursor mutant 6 (GPA2), glutelin precursor accumulation 3 (GPA3) and vacuolar processing enzyme (OsVPE1) of glutelin folding, transport and accumulation-related genes were up-regulated by nitrogen under natural temperature as early as 5d after flowering. However, elevated temperature up-regulated glutelin-encoding genes before 20d after flowering, and the expression of endoplasmic reticulum chaperone (OsBip1), OsPDIL1-1, small GTPase gene (GPA1), GPA2-GPA4 and OsVPE1 were significantly increased post 20d after flowering under warming. In addition, the increase in glutelin content worsened grain quality, particularly chalkiness and eating quality. Overall, the results were helpful to understand glutelin accumulation and provide a theoretical basis for further study the relationship between rice quality and glutelin under global warming.
Collapse
Affiliation(s)
- Yufei Zhao
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Chen Zhang
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yigong Zhao
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yuxuan Peng
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Xuan Ran
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Hao Guo
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yingying Shen
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Wenzhe Liu
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China; Jiangsu Collaborative Innovation Center for Modern Crop Production, 210095, Nanjing, PR China
| | - She Tang
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China; Jiangsu Collaborative Innovation Center for Modern Crop Production, 210095, Nanjing, PR China.
| |
Collapse
|
28
|
Merlino M, Gaudin JC, Dardevet M, Martre P, Ravel C, Boudet J. Wheat DOF transcription factors TaSAD and WPBF regulate glutenin gene expression in cooperation with SPA. PLoS One 2023; 18:e0287645. [PMID: 37352279 PMCID: PMC10289392 DOI: 10.1371/journal.pone.0287645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023] Open
Abstract
Grain storage proteins (GSPs) quantity and composition determine the end-use value of wheat flour. GSPs consists of low-molecular-weight glutenins (LMW-GS), high-molecular-weight glutenins (HMW-GS) and gliadins. GSP gene expression is controlled by a complex network of DNA-protein and protein-protein interactions, which coordinate the tissue-specific protein expression during grain development. The regulatory network has been most extensively studied in barley, particularly the two transcription factors (TFs) of the DNA binding with One Finger (DOF) family, barley Prolamin-box Binding Factor (BPBF) and Scutellum and Aleurone-expressed DOF (SAD). They activate hordein synthesis by binding to the Prolamin box, a motif in the hordein promoter. The BPBF ortholog previously identified in wheat, WPBF, has a transcriptional activity in expression of some GSP genes. Here, the wheat ortholog of SAD, named TaSAD, was identified. The binding of TaSAD to GSP gene promoter sequences in vitro and its transcriptional activity in vivo were investigated. In electrophoretic mobility shift assays, recombinant TaSAD and WPBF proteins bound to cis-motifs like those located on HMW-GS and LMW-GS gene promoters known to bind DOF TFs. We showed by transient expression assays in wheat endosperms that TaSAD and WPBF activate GSP gene expression. Moreover, co-bombardment of Storage Protein Activator (SPA) with WPBF or TaSAD had an additive effect on the expression of GSP genes, possibly through conserved cooperative protein-protein interactions.
Collapse
Affiliation(s)
- Marielle Merlino
- INRAE, Clermont Auvergne University, UMR GDEC, Clermont-Ferrand, France
| | | | - Mireille Dardevet
- INRAE, Clermont Auvergne University, UMR GDEC, Clermont-Ferrand, France
| | - Pierre Martre
- LEPSE, Univ. Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Catherine Ravel
- INRAE, Clermont Auvergne University, UMR GDEC, Clermont-Ferrand, France
| | - Julie Boudet
- INRAE, Clermont Auvergne University, UMR GDEC, Clermont-Ferrand, France
| |
Collapse
|
29
|
He W, Li W, Luo X, Tang Y, Wang L, Yu F, Lin Q. Rice FERONIA-LIKE RECEPTOR 3 and 14 affect grain quality by regulating redox homeostasis during endosperm development. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3003-3018. [PMID: 36881783 DOI: 10.1093/jxb/erad077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/06/2023] [Indexed: 05/21/2023]
Abstract
Chalky endosperm negatively affects the appearance, milling, and eating qualities of rice (Oryza sativa L.) grains. Here, we report the role of two receptor-like kinases, FERONIA-LIKE RECEPTOR 3 (FLR3) and FERONIA-LIKE RECEPTOR 14 (FLR14), in grain chalkiness and quality. Knockouts of FLR3 and/or FLR14 increased the number of white-core grains caused by aberrant accumulation of storage substances, resulting in poor grain quality. Conversely, the overexpression of FLR3 or FLR14 reduced grain chalkiness and improved grain quality. Transcriptome and metabolome analyses showed that genes and metabolites involved in the oxidative stress response were significantly up-regulated in flr3 and flr14 grains. The content of reactive oxygen species was significantly increased in flr3 and flr14 mutant endosperm but decreased in overexpression lines. This strong oxidative stress response induced the expression of programmed cell death (PCD)-related genes and caspase activity in endosperm, which further accelerated PCD, resulting in grain chalkiness. We also demonstrated that FLR3 and FLR14 reduced grain chalkiness by alleviating heat-induced oxidative stress in rice endosperm. Therefore, we report two positive regulators of grain quality that maintain redox homeostasis in the endosperm, with potential applications in breeding rice for optimal grain quality.
Collapse
Affiliation(s)
- Wei He
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Hunan Province, Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, P. R. China
| | - Wanjing Li
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Xiao Luo
- Hunan Province, Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, P. R. China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, P. R. China
| | - Yuqin Tang
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Long Wang
- Hunan Province, Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, P. R. China
| | - Feng Yu
- Hunan Province, Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, P. R. China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, P. R. China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| |
Collapse
|
30
|
Mahto A, Yadav A, P V A, Parida SK, Tyagi AK, Agarwal P. Cytological, transcriptome and miRNome temporal landscapes decode enhancement of rice grain size. BMC Biol 2023; 21:91. [PMID: 37076907 PMCID: PMC10116700 DOI: 10.1186/s12915-023-01577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Rice grain size (GS) is an essential agronomic trait. Though several genes and miRNA modules influencing GS are known and seed development transcriptomes analyzed, a comprehensive compendium connecting all possible players is lacking. This study utilizes two contrasting GS indica rice genotypes (small-grained SN and large-grained LGR). Rice seed development involves five stages (S1-S5). Comparative transcriptome and miRNome atlases, substantiated with morphological and cytological studies, from S1-S5 stages and flag leaf have been analyzed to identify GS proponents. RESULTS Histology shows prolonged endosperm development and cell enlargement in LGR. Stand-alone and comparative RNAseq analyses manifest S3 (5-10 days after pollination) stage as crucial for GS enhancement, coherently with cell cycle, endoreduplication, and programmed cell death participating genes. Seed storage protein and carbohydrate accumulation, cytologically and by RNAseq, is shown to be delayed in LGR. Fourteen transcription factor families influence GS. Pathway genes for four phytohormones display opposite patterns of higher expression. A total of 186 genes generated from the transcriptome analyses are located within GS trait-related QTLs deciphered by a cross between SN and LGR. Fourteen miRNA families express specifically in SN or LGR seeds. Eight miRNA-target modules display contrasting expressions amongst SN and LGR, while 26 (SN) and 43 (LGR) modules are differentially expressed in all stages. CONCLUSIONS Integration of all analyses concludes in a "Domino effect" model for GS regulation highlighting chronology and fruition of each event. This study delineates the essence of GS regulation, providing scope for future exploits. The rice grain development database (RGDD) ( www.nipgr.ac.in/RGDD/index.php ; https://doi.org/10.5281/zenodo.7762870 ) has been developed for easy access of data generated in this paper.
Collapse
Affiliation(s)
- Arunima Mahto
- National Institute of Plant Genome Research, New Delhi, India
| | - Antima Yadav
- National Institute of Plant Genome Research, New Delhi, India
| | - Aswathi P V
- National Institute of Plant Genome Research, New Delhi, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, New Delhi, India
| | - Akhilesh K Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, New Delhi, India.
| |
Collapse
|
31
|
Molecular bases of rice grain size and quality for optimized productivity. Sci Bull (Beijing) 2023; 68:314-350. [PMID: 36710151 DOI: 10.1016/j.scib.2023.01.026] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The accomplishment of further optimization of crop productivity in grain yield and quality is a great challenge. Grain size is one of the crucial determinants of rice yield and quality; all of these traits are typical quantitative traits controlled by multiple genes. Research advances have revealed several molecular and developmental pathways that govern these traits of agronomical importance. This review provides a comprehensive summary of these pathways, including those mediated by G-protein, the ubiquitin-proteasome system, mitogen-activated protein kinase, phytohormone, transcriptional regulators, and storage product biosynthesis and accumulation. We also generalize the excellent precedents for rice variety improvement of grain size and quality, which utilize newly developed gene editing and conventional gene pyramiding capabilities. In addition, we discuss the rational and accurate breeding strategies, with the aim of better applying molecular design to breed high-yield and superior-quality varieties.
Collapse
|
32
|
Yang T, Wu X, Wang W, Wu Y. Regulation of seed storage protein synthesis in monocot and dicot plants: A comparative review. MOLECULAR PLANT 2023; 16:145-167. [PMID: 36495013 DOI: 10.1016/j.molp.2022.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Seeds are a major source of nutrients for humans and animal livestock worldwide. With improved living standards, high nutritional quality has become one of the main targets for breeding. Storage protein content in seeds, which is highly variable depending on plant species, serves as a pivotal criterion of seed nutritional quality. In the last few decades, our understanding of the molecular genetics and regulatory mechanisms of storage protein synthesis has greatly advanced. Here, we systematically and comprehensively summarize breakthroughs on the conservation and divergence of storage protein synthesis in dicot and monocot plants. With regard to storage protein accumulation, we discuss evolutionary origins, developmental processes, characteristics of main storage protein fractions, regulatory networks, and genetic modifications. In addition, we discuss potential breeding strategies to improve storage protein accumulation and provide perspectives on some key unanswered problems that need to be addressed.
Collapse
Affiliation(s)
- Tao Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xingguo Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Wenqin Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
33
|
Deng J, Zhao J, Huang J, Damaris RN, Li H, Shi T, Zhu L, Cai F, Zhang X, Chen Q. Comparative proteomic analyses of Tartary buckwheat (Fagopyrum tataricum) seeds at three stages of development. Funct Integr Genomics 2022; 22:1449-1458. [DOI: 10.1007/s10142-022-00912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Tartary buckwheat is among the valuable crops, utilized as both food and Chinese herbal medicine. To uncover the accumulation dynamics of the main nutrients and their regulatory mechanism of Tartary buckwheat seeds, microscopic observations and nutrient analysis were conducted which suggested that starch, proteins as well as flavonoid gradually accumulated among seed development. Comparative proteomic analysis of rice Tartary buckwheat at three different developmental stages was performed. A total of 78 protein spots showed differential expression with 74 of them being successfully identified by MALDI-TOF/TOF MS. Among them, granule bound starch synthase (GBSS1) might be the critical enzyme that determines starch biosynthesis, while 11 S seed storage protein and vicilin seemed to be the main globulin and affect seed storage protein accumulation in Tartary buckwheat seeds. Two enzymes, flavanone 3-hydroxylase (F3H) and anthocyanidin reductase (ANR), involved in the flavonoid biosynthesis pathway were identified. Further analysis on the expression profiles of flavonoid biosynthetic genes revealed that F3H might be the key enzyme that promote flavonoid accumulation. This study provides insights into the mechanism of nutrition accumulation at the protein level in Tartary buckwheat seeds and may facilitate in the breeding and enhancement of Tartary buckwheat germplasm.
Collapse
|
34
|
Yang Y, Shen Z, Li Y, Xu C, Xia H, Zhuang H, Sun S, Guo M, Yan C. Rapid improvement of rice eating and cooking quality through gene editing toward glutelin as target. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1860-1865. [PMID: 35906898 DOI: 10.1111/jipb.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Rice eating and cooking quality (ECQ) is a major concern of breeders and consumers, determining market competitiveness worldwide. Rice grain protein content (GPC) is negatively related to ECQ, making it possible to improve ECQ by manipulating GPC. However, GPC is genetically complex and sensitive to environmental conditions; therefore, little progress has been made in traditional breeding for ECQ. Here, we report that CRISPR/Cas9-mediated knockout of genes encoding the grain storage protein glutelin rapidly produced lines with downregulated GPC and improved ECQ. Our finding provides a new strategy for improving rice ECQ.
Collapse
Affiliation(s)
- Yihao Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College, Yangzhou University, Yangzhou, 225009, China
| | - Ziyan Shen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
| | - Youguang Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
| | - Chenda Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
| | - Han Xia
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
| | - Hao Zhuang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
| | - Shengyuan Sun
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College, Yangzhou University, Yangzhou, 225009, China
| | - Min Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College, Yangzhou University, Yangzhou, 225009, China
| | - Changjie Yan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
35
|
Zhang Y, Han E, Peng Y, Wang Y, Wang Y, Geng Z, Xu Y, Geng H, Qian Y, Ma S. Rice co-expression network analysis identifies gene modules associated with agronomic traits. PLANT PHYSIOLOGY 2022; 190:1526-1542. [PMID: 35866684 PMCID: PMC9516743 DOI: 10.1093/plphys/kiac339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Identifying trait-associated genes is critical for rice (Oryza sativa) improvement, which usually relies on map-based cloning, quantitative trait locus analysis, or genome-wide association studies. Here we show that trait-associated genes tend to form modules within rice gene co-expression networks, a feature that can be exploited to discover additional trait-associated genes using reverse genetics. We constructed a rice gene co-expression network based on the graphical Gaussian model using 8,456 RNA-seq transcriptomes, which assembled into 1,286 gene co-expression modules functioning in diverse pathways. A number of the modules were enriched with genes associated with agronomic traits, such as grain size, grain number, tiller number, grain quality, leaf angle, stem strength, and anthocyanin content, and these modules are considered to be trait-associated gene modules. These trait-associated gene modules can be used to dissect the genetic basis of rice agronomic traits and to facilitate the identification of trait genes. As an example, we identified a candidate gene, OCTOPUS-LIKE 1 (OsOPL1), a homolog of the Arabidopsis (Arabidopsis thaliana) OCTOPUS gene, from a grain size module and verified it as a regulator of grain size via functional studies. Thus, our network represents a valuable resource for studying trait-associated genes in rice.
Collapse
Affiliation(s)
- Yu Zhang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Ershang Han
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yuming Peng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yuzhou Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yifan Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Zhenxing Geng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yupu Xu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Haiying Geng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | | | | |
Collapse
|
36
|
Yu SX, Jiang YT, Lin WH. Ovule initiation: the essential step controlling offspring number in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1469-1486. [PMID: 35713236 DOI: 10.1111/jipb.13314] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Seed is the offspring of angiosperms. Plants produce large numbers of seeds to ensure effective reproduction and survival in varying environments. Ovule is a fundamentally important organ and is the precursor of the seed. In Arabidopsis and other plants characterized by multi-ovulate ovaries, ovule initiation determines the maximal ovule number, thus greatly affecting seed number per fruit and seed yield. Investigating the regulatory mechanism of ovule initiation has both scientific and economic significance. However, the genetic and molecular basis underlying ovule initiation remains unclear due to technological limitations. Very recently, rules governing the multiple ovules initiation from one placenta have been identified, the individual functions and crosstalk of phytohormones in regulating ovule initiation have been further characterized, and new regulators of ovule boundary are reported, therefore expanding the understanding of this field. In this review, we present an overview of current knowledge in ovule initiation and summarize the significance of ovule initiation in regulating the number of plant offspring, as well as raise insights for the future study in this field that provide potential routes for the improvement of crop yield.
Collapse
Affiliation(s)
- Shi-Xia Yu
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu-Tong Jiang
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wen-Hui Lin
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
37
|
Yan M, Pan T, Zhu Y, Jiang X, Yu M, Wang R, Zhang F, Luo S, Bao X, Chen Y, Zhang B, Jing R, Cheng Z, Zhang X, Lei C, Lin Q, Zhu S, Guo X, Ren Y, Wan J. FLOURY ENDOSPERM20 encoding SHMT4 is required for rice endosperm development. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1438-1440. [PMID: 35596204 PMCID: PMC9342610 DOI: 10.1111/pbi.13858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Mengyuan Yan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Tian Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Yun Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xiaokang Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Mingzhou Yu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Rongqi Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Feng Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Sheng Luo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xiuhao Bao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Yu Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Binglei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Ruonan Jing
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
38
|
The molecular basis of cereal grain proteostasis. Essays Biochem 2022; 66:243-253. [PMID: 35818971 PMCID: PMC9400069 DOI: 10.1042/ebc20210041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
Storage proteins deposited in the endosperm of cereal grains are both a nitrogen reserve for seed germination and seedling growth and a primary protein source for human nutrition. Detailed surveys of the patterns of storage protein accumulation in cereal grains during grain development have been undertaken, but an in-depth understanding of the molecular mechanisms that regulate these patterns is still lacking. Accumulation of storage proteins in cereal grains involves a series of subcellular compartments, a set of energy-dependent events that compete with other cellular processes, and a balance of protein synthesis and protein degradation rates at different times during the developmental process. In this review, we focus on the importance of rates in cereal grain storage protein accumulation during grain development and outline the potential implications and applications of this information to accelerate modern agriculture breeding programmes and optimize energy use efficiency in proteostasis.
Collapse
|
39
|
Zhao D, Zhang C, Li Q, Liu Q. Genetic control of grain appearance quality in rice. Biotechnol Adv 2022; 60:108014. [PMID: 35777622 DOI: 10.1016/j.biotechadv.2022.108014] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/27/2022] [Accepted: 06/23/2022] [Indexed: 02/08/2023]
Abstract
Grain appearance, one of the key determinants of rice quality, reflects the ability to attract consumers, and is characterized by four major properties: grain shape, chalkiness, transparency, and color. Mining of valuable genes, genetic mechanisms, and breeding cultivars with improved grain appearance are essential research areas in rice biology. However, grain appearance is a complex and comprehensive trait, making it challenging to understand the molecular details, and therefore, achieve precise improvement. This review highlights the current findings of grain appearance control, including a detailed description of the key genes involved in the formation of grain appearance, and the major environmental factors affecting chalkiness. We also discuss the integration of current knowledge on valuable genes to enable accurate breeding strategies for generation of rice grains with superior appearance quality.
Collapse
Affiliation(s)
- Dongsheng Zhao
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Changquan Zhang
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Li
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
40
|
Zheng C, Yu Y, Deng G, Li H, Li F. Network and Evolutionary Analysis Reveals Candidate Genes of Membrane Trafficking Involved in Maize Seed Development and Immune Response. FRONTIERS IN PLANT SCIENCE 2022; 13:883961. [PMID: 35812963 PMCID: PMC9263852 DOI: 10.3389/fpls.2022.883961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
The plant membrane-trafficking system plays a crucial role in maintaining proper cellular functions and responding to various developmental and environmental cues. Thus far, our knowledge of the maize membrane-trafficking system is still limited. In this study, we systematically identified 479 membrane-trafficking genes from the maize genome using orthology search and studied their functions by integrating transcriptome and evolution analyses. These genes encode the components of coated vesicles, AP complexes, autophagy, ESCRTs, retromers, Rab GTPases, tethering factors, and SNAREs. The maize genes exhibited diverse but coordinated expression patterns, with 249 genes showing elevated expression in reproductive tissues. Further WGCNA analysis revealed that five COPII components and four Rab GTPases had high connectivity with protein biosynthesis during endosperm development and that eight components of autophagy, ESCRT, Rab, and SNARE were strongly co-upregulated with defense-related genes and/or with secondary metabolic processes to confer basal resistance to Fusarium graminearum. In addition, we identified 39 membrane-trafficking genes with strong selection signals during maize domestication and/or improvement. Among them, ZmSec23a and ZmVPS37A were selected for kernel oil production during improvement and pathogen resistance during domestication, respectively. In summary, these findings will provide important hints for future appreciation of the functions of membrane-trafficking genes in maize.
Collapse
Affiliation(s)
- Chunyan Zheng
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yin Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Guiling Deng
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Hanjie Li
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Faqiang Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
41
|
Liu Z, Jiang S, Jiang L, Li W, Tang Y, He W, Wang M, Xing J, Cui Y, Lin Q, Yu F, Wang L. Transcription factor OsSGL is a regulator of starch synthesis and grain quality in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3417-3430. [PMID: 35182423 DOI: 10.1093/jxb/erac068] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Starch biosynthesis during rice endosperm development is important for grain quality, as it influences grain size and physico-chemical properties, which together determine rice eating quality. Cereal starch biosynthetic pathways have been comprehensively investigated; however, their regulation, especially by transcriptional repressors remains largely unknown. Here, we identified a DUF1645 domain-containing protein, STRESS_tolerance and GRAIN_LENGTH (OsSGL), that participates in regulating rice starch biosynthesis. Overexpression of OsSGL reduced total starch and amylose content in the endosperm compared with the wild type. Chromatin immunoprecipitation sequencing and RNA-seq analyses indicated that OsSGL targets the transcriptional activity of several starch and sucrose metabolism genes. In addition, ChIP-qPCR, yeast one-hybrid, EMSA and dual-luciferase assays demonstrated that OsSGL directly inhibits the expression of SUCROSE SYNTHASE 1 (OsSUS1) in the endosperm. Furthermore, OsSUS1 interacts with OsSGL to release its transcriptional repression ability. Unexpectedly, our results also show that knock down and mutation of OsSGL disrupts the starch biosynthetic pathway, causing lower starch and amylose content. Therefore, our findings demonstrate that accurate control of OsSGL homeostasis is essential for starch synthesis and grain quality. In addition, we revealed the molecular mechanism of OsSGL in regulating starch biosynthesis-related genes, which are required for grain quality.
Collapse
Affiliation(s)
- Zhenming Liu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, P. R. China
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, P. R. China
| | - Shun Jiang
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, P. R. China
| | - Lingli Jiang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, P. R. China
| | - Wanjing Li
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, P. R. China
| | - Yuqin Tang
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, P. R. China
| | - Wei He
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, P. R. China
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, P. R. China
| | - Manling Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, P.R. China
| | - Junjie Xing
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, P.R. China
| | - Yanchun Cui
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, P.R. China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, P. R. China
| | - Feng Yu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, P. R. China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, P.R. China
| | - Long Wang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, P. R. China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, P.R. China
| |
Collapse
|
42
|
Ren Y, Wang Y, Zhang Y, Pan T, Duan E, Bao X, Zhu J, Teng X, Zhang P, Gu C, Dong H, Wang F, Wang Y, Bao Y, Wang Y, Wan J. Endomembrane-mediated storage protein trafficking in plants: Golgi-dependent or Golgi-independent? FEBS Lett 2022; 596:2215-2230. [PMID: 35615915 DOI: 10.1002/1873-3468.14374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Abstract
Seed storage proteins (SSPs) accumulated within plant seeds constitute the major protein nutrition sources for human and livestock. SSPs are synthesized on the endoplasmic reticulum (ER) and then deposited in plant-specific protein bodies (PBs), including ER-derived PBs and protein storage vacuoles (PSVs). Plant seeds have evolved a distinct endomembrane system to accomplish SSP transport. There are two distinct types of trafficking pathways contributing to SSP delivery to PSVs, one Golgi-dependent and the other Golgi-independent. In recent years, molecular, genetic and biochemical studies have shed light on the complex network controlling SSP trafficking, to which both evolutionarily conserved molecular machineries and plant-unique regulators contribute. In this review, we discuss current knowledge of PB biogenesis and endomembrane-mediated SSP transport, focusing on ER export and post-Golgi traffic. These knowledges support a dominant role for the Golgi-dependent pathways in SSP transport in Arabidopsis and rice. In addition, we describe cutting-edge strategies to dissect the endomembrane trafficking system in plant seeds to advance the field.
Collapse
Affiliation(s)
- Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongfei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tian Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Erchao Duan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiuhao Bao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianping Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Teng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pengcheng Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuanwei Gu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Dong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fan Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
43
|
Vitale A, Pedrazzini E. StresSeed: The Unfolded Protein Response During Seed Development. FRONTIERS IN PLANT SCIENCE 2022; 13:869008. [PMID: 35432435 PMCID: PMC9008589 DOI: 10.3389/fpls.2022.869008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
During seed development, the endoplasmic reticulum (ER) takes care of the synthesis and structural maturation of very high amounts of storage proteins in a relatively short time. The ER must thus adjust its extension and machinery to optimize this process. The major signaling mechanism to maintain ER homeostasis is the unfolded protein response (UPR). Both storage proteins that assemble into ER-connected protein bodies and those that are delivered to protein storage vacuoles stimulate the UPR, but its extent and features are specific for the different storage protein classes and even for individual members of each class. Furthermore, evidence exists for anticipatory UPR directly connected to the development of storage seed cells and for selective degradation of certain storage proteins soon after their synthesis, whose signaling details are however still largely unknown. All these events are discussed, also in the light of known features of mammalian UPR.
Collapse
|
44
|
Li P, Chen YH, Lu J, Zhang CQ, Liu QQ, Li QF. Genes and Their Molecular Functions Determining Seed Structure, Components, and Quality of Rice. RICE (NEW YORK, N.Y.) 2022; 15:18. [PMID: 35303197 PMCID: PMC8933604 DOI: 10.1186/s12284-022-00562-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/01/2022] [Indexed: 05/14/2023]
Abstract
With the improvement of people's living standards and rice trade worldwide, the demand for high-quality rice is increasing. Therefore, breeding high quality rice is critical to meet the market demand. However, progress in improving rice grain quality lags far behind that of rice yield. This might be because of the complexity of rice grain quality research, and the lack of consensus definition and evaluation standards for high quality rice. In general, the main components of rice grain quality are milling quality (MQ), appearance quality (AQ), eating and cooking quality (ECQ), and nutritional quality (NQ). Importantly, all these quality traits are determined directly or indirectly by the structure and composition of the rice seeds. Structurally, rice seeds mainly comprise the spikelet hull, seed coat, aleurone layer, embryo, and endosperm. Among them, the size of spikelet hull is the key determinant of rice grain size, which usually affects rice AQ, MQ, and ECQ. The endosperm, mainly composed of starch and protein, is the major edible part of the rice seed. Therefore, the content, constitution, and physicochemical properties of starch and protein are crucial for multiple rice grain quality traits. Moreover, the other substances, such as lipids, minerals, vitamins, and phytochemicals, included in different parts of the rice seed, also contribute significantly to rice grain quality, especially the NQ. Rice seed growth and development are precisely controlled by many genes; therefore, cloning and dissecting these quality-related genes will enhance our knowledge of rice grain quality and will assist with the breeding of high quality rice. This review focuses on summarizing the recent progress on cloning key genes and their functions in regulating rice seed structure and composition, and their corresponding contributions to rice grain quality. This information will facilitate and advance future high quality rice breeding programs.
Collapse
Affiliation(s)
- Pei Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yu-Hao Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jun Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|