1
|
Charli A, Chang YT, Luo J, Palanisamy B, Malovic E, Riaz Z, Miller C, Samidurai M, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Mitochondrial stress disassembles nuclear architecture through proteolytic activation of PKCδ and Lamin B1 phosphorylation in neuronal cells: implications for pathogenesis of age-related neurodegenerative diseases. Front Cell Neurosci 2025; 19:1549265. [PMID: 40313592 PMCID: PMC12043892 DOI: 10.3389/fncel.2025.1549265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Mitochondrial dysfunction and oxidative stress are central to the pathogenesis of neurodegenerative diseases, including Parkinson's, Alzheimer's and Huntington's diseases. Neurons, particularly dopaminergic (DAergic) ones, are highly vulnerable to mitochondrial stress; however, the cellular and molecular mechanisms underlying this vulnerability remain poorly understood. Previously, we demonstrated that protein kinase C delta (PKCδ) is highly expressed in DAergic neurons and mediates apoptotic cell death during neurotoxic stress via caspase-3-mediated proteolytic activation. Herein, we further uncovered a key downstream molecular event of PKCδ signaling following mitochondrial dysfunction that governs neuronal cell death by dissembling nuclear architecture. Exposing N27 DAergic cells to the mitochondrial complex-1 inhibitor tebufenpyrad (Tebu) induced PKCδ phosphorylation at the T505 activation loop accompanied by caspase-3-dependent proteolytic activation. High-resolution 3D confocal microscopy revealed that proteolytically activated cleaved PKCδ translocates to the nucleus, colocalizing with Lamin B1. Electron microscopy also visualized nuclear membrane damage in Tebu-treated N27 cells. In silico analyses identified threonine site on Lamin B1 (T575) as a phosphorylation site of PKCδ. Interestingly, N27 DAergic cells stably expressing a PKCδ cleavage-resistant mutant failed to induce nuclear damage, PKCδ activation, and Lamin B1 phosphorylation. Furthermore, CRISPR/Cas9-based stable knockdown of PKCδ greatly attenuated Tebu-induced Lamin B1 phosphorylation. Also, studies using the Lamin B1T575G phosphorylation mutant and PKCδ-ΔNLS-overexpressing N27 cells showed that PKCδ activation and translocation to the nuclear membrane are essential for phosphorylating Lamin B1 at T575 to induce nuclear membrane damage during Tebu insult. Additionally, Tebu failed to induce Lamin B1 damage and Lamin B1 phosphorylation in organotypic midbrain slices cultured from PKCδ-/- mouse pups. Postmortem analyses of PD brains revealed significantly higher PKCδ activation, Lamin B1 phosphorylation, and Lamin B1 loss in nigral DAergic neurons compared to age-matched healthy controls, demonstrating the translational relevance of these findings. Collectively, our data reveal that PKCδ functions as a Lamin B1 kinase to disassemble the nuclear membrane during mitochondrial stress-induced neuronal death. This mechanistic insight may have important implications for the etiology of age-related neurodegenerative diseases resulting from mitochondrial dysfunction as well as for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Adhithiya Charli
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Yuan-Teng Chang
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Jie Luo
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Bharathi Palanisamy
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Emir Malovic
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Zainab Riaz
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Cameron Miller
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Manikandan Samidurai
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Gary Zenitsky
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Huajun Jin
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Vellareddy Anantharam
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Arthi Kanthasamy
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Anumantha G. Kanthasamy
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
Charli A, Luo J, Palanisamy B, Malovic E, Riaz Z, Miller C, Chang YT, Samidurai M, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Mitochondrial Stress Disassembles Nuclear Architecture through Proteolytic Activation of PKCδ and Lamin B1 Phosphorylation in Neuronal Cells: Implications for Pathogenesis of Age-related Neurodegenerative Diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621517. [PMID: 39554109 PMCID: PMC11565982 DOI: 10.1101/2024.11.01.621517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mitochondrial dysfunction and oxidative stress are hallmarks of pathophysiological processes in age-related neurodegenerative diseases including Parkinson's, Alzheimer's and Huntington's diseases. Neuronal cells are highly vulnerable to mitochondrial stress, however, the cellular and molecular mechanisms underlying the enhanced vulnerability are not well understood. Previously, we demonstrated that the novel PKC isoform PKCδ is highly expressed in dopamin(DA)ergic neurons and plays a key role in inducing apoptotic cell death during neurotoxic stress via caspase-3-mediated proteolytic activation. Herein, we further uncovered a key downstream molecular event of PKCδ signaling following mitochondrial dysfunction that governs neuronal cell death by dissembling nuclear architecture. Exposing N27 DAergic cell line to the mitochondrial complex-1 inhibitor tebufenpyrad induced PKCδ phosphorylation at the T505 activation loop accompanied by caspase-3-dependent proteolytic activation of the kinase. Subcellular analysis using high-resolution 3D confocal microscopy revealed that proteolytically activated cleaved PKCδ translocates to the nuclear compartment, colocalizing with Lamin B1. Electron microscopy also enabled the visualization of nuclear membrane damage triggered by subjecting the DAergic neuronal cells by Tebufenpyrad (Tebu) toxicity. In silico analyses identified that the threonine site on Lamin B1 (T575) is likely phosphorylated by PKCδ, suggesting that Lamin B1 serves as a key downstream target of the kinase. Interestingly, N27 DAergic cells stably expressing the PKCδ proteolytic cleavage site-resistant mutant failed to induce nuclear damage, PKCδ activation, and Lamin B1 phosphorylation. Furthermore, CRISPR/Cas9-based stable knockdown of PKCδ greatly attenuated Tebu-induced Lamin B1 phosphorylation. Also, studies using Lamin B1 T575G mutated at phosphorylation and PKCδ-ΔNLS-overexpressing N27 cells showed that PKCδ activation and translocation to the nuclear membrane are critically required for phosphorylating Lamin B1 at T575 to induce nuclear membrane damage during Tebu insult. Additionally, Tebu failed to induce Lamin B1 damage and Lamin B1 phosphorylation in organotypic midbrain slices cultured from PKCδ -/- mouse pups. More importantly, we observed higher PKCδ activation, Lamin B1 phosphorylation and Lamin B1 loss in nigral DAergic neurons from the postmortem brains of PD patients as compared to age-matched healthy control brains, thus providing translational relevance of our finding. Collectively, our data reveal that PKCδ functions as a Lamin B1 kinase to disassemble the nuclear membrane during the neuronal cell death process triggered by mitochondrial stress. This mechanistic insight may have important implications for the etiology of age-related neurodegenerative diseases resulting from mitochondrial dysfunction as well as for the development of novel treatment strategies.
Collapse
|
3
|
Sindi G, Ismael S, Uddin R, Slepchenko KG, Colvin RA, Lee D. Endogenous tau released from human ReNCell VM cultures by neuronal activity is phosphorylated at multiple sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597022. [PMID: 38854111 PMCID: PMC11160771 DOI: 10.1101/2024.06.02.597022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Tau is an intracellular protein but also known to be released into the extracellular fluid. Tau release mechanisms have drawn intense attention as these are known to play a key role in Alzheimer's disease (AD) pathology. However, tau can also be released under physiological conditions although its physiological function and release mechanisms have been poorly characterized, especially in human neuronal cells. We investigated endogenous tau release in ReNCell VM, a human neuroprogenitor cell line, under physiological conditions and found that tau is spontaneously released from cells. To study activity-dependent release of endogenous tau, human ReNCell VM culture was stimulated by 100μM AMPA or 50mM KCl for one-hour, tau was actively released to the culture medium. The released tau was highly phosphorylated at nine phosphorylation sites (pSites) detected by phospho-specific tau antibodies including AT270 (T175/T181), AT8 (S202/T205), AT100 (T212/S214), AT180 (T231), and PHF-1 (S396/S404), showing that these pSites are important for activity-dependent tau release from human ReNCell VM. Intracellular tau showed various phosphorylation status across these sites, with AT270 and PHF-1 highly phosphorylated while AT8 and AT180 were minimally phosphorylated, suggesting that AT8 and AT180 pSites exhibit a propensity for secretion rather than being retained intracellularly. This activity-dependent tau release was significantly decreased by inhibition of GSK-3β, demonstrating that GSK3β-dependent phosphorylation of tau plays an important role in its release by neuronal activity. In this study, we showed that ReNCell VM serves as a valuable model for studying endogenous physiological tau release. Further, ReNCell model can be also used to study pathological release of human tau that will contribute to our understanding of the progression of AD and related dementias.
Collapse
Affiliation(s)
| | - Sazan Ismael
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Reaz Uddin
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Kira G. Slepchenko
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Robert A. Colvin
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Daewoo Lee
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
4
|
Kurnik-Łucka M, Latacz G, Bucki A, Rivera-Meza M, Khan N, Konwar J, Skowron K, Kołaczkowski M, Gil K. Neuroprotective Activity of Enantiomers of Salsolinol and N-Methyl-( R)-salsolinol: In Vitro and In Silico Studies. ACS OMEGA 2023; 8:38566-38576. [PMID: 37867702 PMCID: PMC10586258 DOI: 10.1021/acsomega.3c05527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023]
Abstract
Salsolinol (1-methyl-1,2,3,4-tetrahydroisoquinoline-6,7-diol) is a close structural analogue of dopamine with an asymmetric center at the C1 position, and its presence in vivo, both in humans and rodents, has already been proven. Yet, given the fact that salsolinol colocalizes with dopamine-rich regions and was first detected in the urine of Parkinson's disease patients, its direct role in the process of neurodegeneration has been proposed. Here, we report that R and S enantiomers of salsolinol, which we purified from commercially available racemic mixture by means of high-performance liquid chromatography, exhibited neuroprotective properties (at the concentration of 50 μM) toward the human dopaminergic SH-SY5Y neuroblastoma cell line. Furthermore, within the study, we observed no toxic effect of N-methyl-(R)-salsolinol on SH-SY5Y neuroblastoma cells up to the concentration of 750 μM, either. Additionally, our molecular docking analysis showed that enantiomers of salsolinol should exhibit a distinct ability to interact with dopamine D2 receptors. Thus, we postulate that our results highlight the need to acknowledge salsolinol as an active dopamine metabolite and to further explore the neuroregulatory role of enantiomers of salsolinol.
Collapse
Affiliation(s)
- Magdalena Kurnik-Łucka
- Department
of Pathophysiology, Jagiellonian University
Medical College, 31-008 Krakow, Poland
| | - Gniewomir Latacz
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Adam Bucki
- Department
of Medicinal Chemistry, Jagiellonian University
Medical College, 31-008 Krakow, Poland
| | - Mario Rivera-Meza
- Laboratory
of Experimental Pharmacology, Faculty of Chemical Sciences and Pharmaceutical
Sciences, University of Chile, 8380494 Santiago, Chile
| | - Nadia Khan
- Department
of Pathophysiology, Jagiellonian University
Medical College, 31-008 Krakow, Poland
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Jahnobi Konwar
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Kamil Skowron
- Department
of Pathophysiology, Jagiellonian University
Medical College, 31-008 Krakow, Poland
| | - Marcin Kołaczkowski
- Department
of Medicinal Chemistry, Jagiellonian University
Medical College, 31-008 Krakow, Poland
| | - Krzysztof Gil
- Department
of Pathophysiology, Jagiellonian University
Medical College, 31-008 Krakow, Poland
| |
Collapse
|
5
|
Quinpirole ameliorates nigral dopaminergic neuron damage in Parkinson's disease mouse model through activating GHS-R1a/D 2R heterodimers. Acta Pharmacol Sin 2023:10.1038/s41401-023-01063-0. [PMID: 36899113 PMCID: PMC10374575 DOI: 10.1038/s41401-023-01063-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/12/2023] [Indexed: 03/12/2023]
Abstract
Growth hormone secretagogue receptor 1a (GHS-R1a) is an important G protein-coupled receptor (GPCR) that regulates a variety of functions by binding to ghrelin. It has been shown that the dimerization of GHS-R1a with other receptors also affects ingestion, energy metabolism, learning and memory. Dopamine type 2 receptor (D2R) is a GPCR mainly distributed in the ventral tegmental area (VTA), substantia nigra (SN), striatum and other brain regions. In this study we investigated the existence and function of GHS-R1a/D2R heterodimers in nigral dopaminergic neurons in Parkinson's disease (PD) models in vitro and in vivo. By conducting immunofluorescence staining, FRET and BRET analyses, we confirmed that GHS-R1a and D2R could form heterodimers in PC-12 cells and in the nigral dopaminergic neurons of wild-type mice. This process was inhibited by MPP+ or MPTP treatment. Application of QNP (10 μM) alone significantly increased the viability of MPP+-treated PC-12 cells, and administration of quinpirole (QNP, 1 mg/kg, i.p. once before and twice after MPTP injection) significantly alleviated motor deficits in MPTP-induced PD mice model; the beneficial effects of QNP were abolished by GHS-R1a knockdown. We revealed that the GHS-R1a/D2R heterodimers could increase the protein levels of tyrosine hydroxylase in the SN of MPTP-induced PD mice model through the cAMP response element binding protein (CREB) signaling pathway, ultimately promoting dopamine synthesis and release. These results demonstrate a protective role for GHS-R1a/D2R heterodimers in dopaminergic neurons, providing evidence for the involvement of GHS-R1a in PD pathogenesis independent of ghrelin.
Collapse
|
6
|
Rosikon KD, Bone MC, Lawal HO. Regulation and modulation of biogenic amine neurotransmission in Drosophila and Caenorhabditis elegans. Front Physiol 2023; 14:970405. [PMID: 36875033 PMCID: PMC9978017 DOI: 10.3389/fphys.2023.970405] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Neurotransmitters are crucial for the relay of signals between neurons and their target. Monoamine neurotransmitters dopamine (DA), serotonin (5-HT), and histamine are found in both invertebrates and mammals and are known to control key physiological aspects in health and disease. Others, such as octopamine (OA) and tyramine (TA), are abundant in invertebrates. TA is expressed in both Caenorhabditis elegans and Drosophila melanogaster and plays important roles in the regulation of essential life functions in each organism. OA and TA are thought to act as the mammalian homologs of epinephrine and norepinephrine respectively, and when triggered, they act in response to the various stressors in the fight-or-flight response. 5-HT regulates a wide range of behaviors in C. elegans including egg-laying, male mating, locomotion, and pharyngeal pumping. 5-HT acts predominantly through its receptors, of which various classes have been described in both flies and worms. The adult brain of Drosophila is composed of approximately 80 serotonergic neurons, which are involved in modulation of circadian rhythm, feeding, aggression, and long-term memory formation. DA is a major monoamine neurotransmitter that mediates a variety of critical organismal functions and is essential for synaptic transmission in invertebrates as it is in mammals, in which it is also a precursor for the synthesis of adrenaline and noradrenaline. In C. elegans and Drosophila as in mammals, DA receptors play critical roles and are generally grouped into two classes, D1-like and D2-like based on their predicted coupling to downstream G proteins. Drosophila uses histamine as a neurotransmitter in photoreceptors as well as a small number of neurons in the CNS. C. elegans does not use histamine as a neurotransmitter. Here, we review the comprehensive set of known amine neurotransmitters found in invertebrates, and discuss their biological and modulatory functions using the vast literature on both Drosophila and C. elegans. We also suggest the potential interactions between aminergic neurotransmitters systems in the modulation of neurophysiological activity and behavior.
Collapse
Affiliation(s)
- Katarzyna D Rosikon
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | - Megan C Bone
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | - Hakeem O Lawal
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, United States
| |
Collapse
|
7
|
Tian X. Enhancing mask activity in dopaminergic neurons extends lifespan in flies. Aging Cell 2021; 20:e13493. [PMID: 34626525 PMCID: PMC8590106 DOI: 10.1111/acel.13493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/05/2021] [Accepted: 09/19/2021] [Indexed: 12/11/2022] Open
Abstract
Dopaminergic neurons (DANs) are essential modulators for brain functions involving memory formation, reward processing, and decision‐making. Here I demonstrate a novel and important function of the DANs in regulating aging and longevity. Overexpressing the putative scaffolding protein Mask in two small groups of DANs in flies can significantly extend the lifespan in flies and sustain adult locomotor and fecundity at old ages. This Mask‐induced beneficial effect requires dopaminergic transmission but cannot be recapitulated by elevating dopamine production alone in the DANs. Independent activation of Gαs in the same two groups of DANs via the drug‐inducible DREADD system also extends fly lifespan, further indicating the connection of specific DANs to aging control. The Mask‐induced lifespan extension appears to depend on the function of Mask to regulate microtubule (MT) stability. A structure–function analysis demonstrated that the ankyrin repeats domain in the Mask protein is both necessary for regulating MT stability (when expressed in muscles and motor neurons) and sufficient to prolong longevity (when expressed in the two groups of DANs). Furthermore, DAN‐specific overexpression of Unc‐104 or knockdown of p150Glued, two independent interventions previously shown to impact MT dynamics, also extends lifespan in flies. Together, these data demonstrated a novel DANs‐dependent mechanism that, upon the tuning of their MT dynamics, modulates systemic aging and longevity in flies.
Collapse
Affiliation(s)
- Xiaolin Tian
- Neuroscience Center of Excellence Department of Cell Biology and Anatomy Louisiana State University Health Sciences Center New Orleans Louisiana USA
| |
Collapse
|
8
|
Ismael S, Sindi G, Colvin RA, Lee D. Activity-dependent release of phosphorylated human tau from Drosophila neurons in primary culture. J Biol Chem 2021; 297:101108. [PMID: 34473990 PMCID: PMC8455371 DOI: 10.1016/j.jbc.2021.101108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022] Open
Abstract
Neuronal activity can enhance tau release and thus accelerate tauopathies. This activity-dependent tau release can be used to study the progression of tau pathology in Alzheimer's disease (AD), as hyperphosphorylated tau is implicated in AD pathogenesis and related tauopathies. However, our understanding of the mechanisms that regulate activity-dependent tau release from neurons and the role that tau phosphorylation plays in modulating activity-dependent tau release is still rudimentary. In this study, Drosophila neurons in primary culture expressing human tau (hTau) were used to study activity-dependent tau release. We found that hTau release was markedly increased by 50 mM KCl treatment for 1 h. A similar level of release was observed using optogenetic techniques, where genetically targeted neurons were stimulated for 30 min using blue light (470 nm). Our results showed that activity-dependent release of phosphoresistant hTauS11A was reduced when compared with wildtype hTau. In contrast, release of phosphomimetic hTauE14 was increased upon activation. We found that released hTau was phosphorylated in its proline-rich and C-terminal domains using phosphorylation site-specific tau antibodies (e.g., AT8). Fold changes in detectable levels of total or phosphorylated hTau in cell lysates or following immunopurification from conditioned media were consistent with preferential release of phosphorylated hTau after light stimulation. This study establishes an excellent model to investigate the mechanism of activity-dependent hTau release and to better understand the role of phosphorylated tau release in the pathogenesis of AD since it relates to alterations in the early stage of neurodegeneration associated with increased neuronal activity.
Collapse
Affiliation(s)
- Sazan Ismael
- Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA
| | - Ghadir Sindi
- Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA
| | - Robert A Colvin
- Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA
| | - Daewoo Lee
- Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA.
| |
Collapse
|
9
|
Dagra A, Miller DR, Lin M, Gopinath A, Shaerzadeh F, Harris S, Sorrentino ZA, Støier JF, Velasco S, Azar J, Alonge AR, Lebowitz JJ, Ulm B, Bu M, Hansen CA, Urs N, Giasson BI, Khoshbouei H. α-Synuclein-induced dysregulation of neuronal activity contributes to murine dopamine neuron vulnerability. NPJ Parkinsons Dis 2021; 7:76. [PMID: 34408150 PMCID: PMC8373893 DOI: 10.1038/s41531-021-00210-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pathophysiological damages and loss of function of dopamine neurons precede their demise and contribute to the early phases of Parkinson's disease. The presence of aberrant intracellular pathological inclusions of the protein α-synuclein within ventral midbrain dopaminergic neurons is one of the cardinal features of Parkinson's disease. We employed molecular biology, electrophysiology, and live-cell imaging to investigate how excessive α-synuclein expression alters multiple characteristics of dopaminergic neuronal dynamics and dopamine transmission in cultured dopamine neurons conditionally expressing GCaMP6f. We found that overexpression of α-synuclein in mouse (male and female) dopaminergic neurons altered neuronal firing properties, calcium dynamics, dopamine release, protein expression, and morphology. Moreover, prolonged exposure to the D2 receptor agonist, quinpirole, rescues many of the alterations induced by α-synuclein overexpression. These studies demonstrate that α-synuclein dysregulation of neuronal activity contributes to the vulnerability of dopaminergic neurons and that modulation of D2 receptor activity can ameliorate the pathophysiology. These findings provide mechanistic insights into the insidious changes in dopaminergic neuronal activity and neuronal loss that characterize Parkinson's disease progression with significant therapeutic implications.
Collapse
Affiliation(s)
- Abeer Dagra
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Douglas R. Miller
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Min Lin
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Adithya Gopinath
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Fatemeh Shaerzadeh
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Sharonda Harris
- grid.15276.370000 0004 1936 8091Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL USA
| | - Zachary A. Sorrentino
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Jonatan Fullerton Støier
- grid.5254.60000 0001 0674 042XMolecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sophia Velasco
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Janelle Azar
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Adetola R. Alonge
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Joseph J. Lebowitz
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Brittany Ulm
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Mengfei Bu
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Carissa A. Hansen
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Nikhil Urs
- grid.15276.370000 0004 1936 8091Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL USA
| | - Benoit I. Giasson
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Habibeh Khoshbouei
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| |
Collapse
|
10
|
Calmodulin and Its Binding Proteins in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22063016. [PMID: 33809535 PMCID: PMC8001340 DOI: 10.3390/ijms22063016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that manifests with rest tremor, muscle rigidity and movement disturbances. At the microscopic level it is characterized by formation of specific intraneuronal inclusions, called Lewy bodies (LBs), and by a progressive loss of dopaminergic neurons in the striatum and substantia nigra. All living cells, among them neurons, rely on Ca2+ as a universal carrier of extracellular and intracellular signals that can initiate and control various cellular processes. Disturbances in Ca2+ homeostasis and dysfunction of Ca2+ signaling pathways may have serious consequences on cells and even result in cell death. Dopaminergic neurons are particularly sensitive to any changes in intracellular Ca2+ level. The best known and studied Ca2+ sensor in eukaryotic cells is calmodulin. Calmodulin binds Ca2+ with high affinity and regulates the activity of a plethora of proteins. In the brain, calmodulin and its binding proteins play a crucial role in regulation of the activity of synaptic proteins and in the maintenance of neuronal plasticity. Thus, any changes in activity of these proteins might be linked to the development and progression of neurodegenerative disorders including PD. This review aims to summarize published results regarding the role of calmodulin and its binding proteins in pathology and pathogenesis of PD.
Collapse
|
11
|
Yang P, Knight WC, Li H, Guo Y, Perlmutter JS, Benzinger TLS, Morris JC, Xu J. Dopamine D1 + D3 receptor density may correlate with parkinson disease clinical features. Ann Clin Transl Neurol 2020; 8:224-237. [PMID: 33348472 PMCID: PMC7818081 DOI: 10.1002/acn3.51274] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Objective Dopamine D2‐like receptors – mainly dopamine D2 receptors (D2R) and dopamine D3 receptors (D3R) – are believed to be greatly involved in the pathology of Parkinson disease (PD) progression. However, these receptors have not been precisely examined in PD patients. Our aim was to quantitatively calculate the exact densities of dopamine D1 receptors (D1R), D2R, and D3R in control, Alzheimer disease (AD), and Lewy body disease (LBD) patients (including PD, Dementia with Lewy bodies, and Parkinson disease dementia); and analyze the relationship between dopamine receptors and clinical PD manifestations. Methods We analyzed the densities of D1R, D2R, and D3R in the striatum and substantia nigra (SN) using a novel quantitative autoradiography procedure previously developed by our group. We also examined the expression of D2R and D3R mRNA in the striatum by in situ hybridization. Results The results showed that although no differences of striatal D1R were found among all groups; D2R was significantly decreased in the striatum of PD patients when compared with control and AD patients. Some clinical manifestations: age of onset, PD stage, dopamine responsiveness, and survival time after onset; showed a better correlation with striatal D1R + D3R densities combined compared to D1R or D3R alone. Interpretation There is a possibility that we may infer the results in diagnosis, treatment, and prognosis of PD by detecting D1R + D3R as opposed to using dopamine D1 or D3 receptors alone. This is especially true for elderly patients with low D2R expression as is common in this disease.
Collapse
Affiliation(s)
- Pengfei Yang
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - William C Knight
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Huifangjie Li
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Yingqiu Guo
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.,Department of Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.,Department of Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| |
Collapse
|
12
|
Blosser JA, Podolsky E, Lee D. L-DOPA-Induced Dyskinesia in a Genetic Drosophila Model of Parkinson's Disease. Exp Neurobiol 2020; 29:273-284. [PMID: 32921640 PMCID: PMC7492844 DOI: 10.5607/en20028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/05/2023] Open
Abstract
Motor symptoms in Parkinson’s disease (PD) are directly related to the reduction of a neurotransmitter dopamine. Therefore, its precursor L-DOPA became the gold standard for PD treatment. However, chronic use of L-DOPA causes uncontrollable, involuntary movements, called L-DOPA-induced dyskinesia (LID) in the majority of PD patients. LID is complicated and very difficult to manage. Current rodent and non-human primate models have been developed to study LID mainly using neurotoxins. Therefore, it is necessary to develop a LID animal model with defects in genetic factors causing PD in order to study the relation between LID and PD genes such as α-synuclein. In this study, we first showed that a low concentration of L-DOPA (100 µM) rescues locomotion defects (i.e., speed, angular velocity, pause time) in Drosophila larvae expressing human mutant α-synuclein (A53T). This A53T larval model of PD was used to further examine dyskinetic behaviors. High concentrations of L-DOPA (5 or 10 mM) causes hyperactivity such as body bending behavior (BBB) in A53T larva, which resembles axial dyskinesia in rodents. Using ImageJ plugins and other third party software, dyskinetic BBB has been accurately and efficiently quantified. Further, we showed that a dopamine agonist pramipexole (PRX) partially rescues BBB caused by high L-DOPA. Our Drosophila genetic LID model will provide an important experimental platform to examine molecular and cellular mechanisms underlying LID, to study the role of PD causing genes in the development of LID, and to identify potential targets to slow/reverse LID pathology.
Collapse
Affiliation(s)
- Joshua A Blosser
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Eric Podolsky
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Daewoo Lee
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
13
|
Regulation of Social Stress and Neural Degeneration by Activity-Regulated Genes and Epigenetic Mechanisms in Dopaminergic Neurons. Mol Neurobiol 2020; 57:4500-4510. [PMID: 32748368 PMCID: PMC7515954 DOI: 10.1007/s12035-020-02037-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/22/2020] [Indexed: 02/08/2023]
Abstract
Transcriptional and epigenetic regulation of both dopaminergic neurons and their accompanying glial cells is of great interest in the search for therapies for neurodegenerative disorders such as Parkinson’s disease (PD). In this review, we collate transcriptional and epigenetic changes identified in adult Drosophila melanogaster dopaminergic neurons in response to either prolonged social deprivation or social enrichment, and compare them with changes identified in mammalian dopaminergic neurons during normal development, stress, injury, and neurodegeneration. Surprisingly, a small set of activity-regulated genes (ARG) encoding transcription factors, and a specific pattern of epigenetic marks on gene promoters, are conserved in dopaminergic neurons over the long evolutionary period between mammals and insects. In addition to their classical function as immediate early genes to mark acute neuronal activity, these ARG transcription factors are repurposed in both insects and mammals to respond to chronic perturbations such as social enrichment, social stress, nerve injury, and neurodegeneration. We suggest that these ARG transcription factors and epigenetic marks may represent important targets for future therapeutic intervention strategies in various neurodegenerative disorders including PD.
Collapse
|
14
|
Silva B, Hidalgo S, Campusano JM. Dop1R1, a type 1 dopaminergic receptor expressed in Mushroom Bodies, modulates Drosophila larval locomotion. PLoS One 2020; 15:e0229671. [PMID: 32101569 PMCID: PMC7043742 DOI: 10.1371/journal.pone.0229671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
As in vertebrates, dopaminergic neural systems are key regulators of motor programs in insects, including the fly Drosophila melanogaster. Dopaminergic systems innervate the Mushroom Bodies (MB), an important association area in the insect brain primarily associated to olfactory learning and memory, but that has been also implicated with the execution of motor programs. The main objectives of this work is to assess the idea that dopaminergic systems contribute to the execution of motor programs in Drosophila larvae, and then, to evaluate the contribution of specific dopaminergic receptors expressed in MB to these programs. Our results show that animals bearing a mutation in the dopamine transporter show reduced locomotion, while mutants for the dopaminergic biosynthetic enzymes or the dopamine receptor Dop1R1 exhibit increased locomotion. Pan-neuronal expression of an RNAi for the Dop1R1 confirmed these results. Further studies show that animals expressing the RNAi for Dop1R1 in the entire MB neuronal population or only in the MB γ-lobe forming neurons, exhibit an increased motor output, as well. Interestingly, our results also suggest that other dopaminergic receptors do not contribute to larval motor behavior. Thus, our data support the proposition that CNS dopamine systems innervating MB neurons modulate larval locomotion and that Dop1R1 mediates this effect.
Collapse
Affiliation(s)
- Bryon Silva
- Laboratorio Neurogenética de la Conducta, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Sergio Hidalgo
- Laboratorio Neurogenética de la Conducta, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Bristol, United Kingdom
| | - Jorge M. Campusano
- Laboratorio Neurogenética de la Conducta, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
15
|
Chu Y, Muller S, Tavares A, Barret O, Alagille D, Seibyl J, Tamagnan G, Marek K, Luk KC, Trojanowski JQ, Lee VMY, Kordower JH. Intrastriatal alpha-synuclein fibrils in monkeys: spreading, imaging and neuropathological changes. Brain 2019; 142:3565-3579. [PMID: 31580415 PMCID: PMC7962904 DOI: 10.1093/brain/awz296] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/17/2019] [Accepted: 08/01/2019] [Indexed: 12/29/2022] Open
Abstract
Several studies have demonstrated that intrastriatal injections of fibrillar α-synuclein in rodent brain induced a Parkinson's disease-like propagation of Lewy body pathology with significant nigrostriatal neurodegeneration. This study evaluated the pathological features when exogenous α-synuclein preformed fibrils were injected into the putamen of non-human primates. Eight cynomolgus monkeys received unilateral intraputamen injections of α-synuclein preformed fibrils and four monkeys received sham surgery. Monkeys were assessed with 123I-PE2I single-photon emission computerized tomography scans targeting the dopamine transprter at baseline, 3, 6, 9, 12, and 15 months. Imaging revealed a robust increase in dopamine transporter binding, an effect confirmed by port-mortem immunohistochemical analyses, suggesting that upregulation of dopamine transporter occurs as part of an early pathological process. Histochemistry and immunohistochemistry revealed that α-synuclein preformed fibrils injections into the putamen induced intraneuronal inclusions positive for phosphorylated α-synuclein in ipsilateral substantia nigra and adjacent to the injection site. α-Synuclein inclusions were thioflavin-S-positive suggesting that the inclusions induced by α-synuclein preformed fibrils exhibited pathological properties similar to amyloid-like Lewy body pathology in Parkinson's disease brains. The α-synuclein preformed fibrils resulted in Lewy pathology in the ipsilateral substantia nigra with significant reduction (-29.30%) of dopaminergic neurons as compared with controls. Nigral neurons with α-synuclein inclusions exhibited a phenotypic downregulation of the dopamine markers tyrosine hydroxylase and Nurr1. Taken together, our findings demonstrate that α-synuclein preformed fibrils induce a synucleinopathy in non-human primates with authentic Lewy pathology and nigrostriatal changes indicative of early Parkinson's disease.
Collapse
Affiliation(s)
- Yaping Chu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Scott Muller
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | | | | | | | - John Seibyl
- Molecular NeuroImaging, LLC New Haven, CT, USA
| | | | - Ken Marek
- Molecular NeuroImaging, LLC New Haven, CT, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Virginia M Y Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
16
|
Yu M, Huang F, Wang W, Zhao C. Association between the DRD2 TaqIA gene polymorphism and Parkinson disease risk: an updated meta-analysis. Medicine (Baltimore) 2019; 98:e17136. [PMID: 31517853 PMCID: PMC6750301 DOI: 10.1097/md.0000000000017136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND DRD2 TaqIA polymorphism may be associated with an increased risk of developing Parkinson disease (PD). However, the individual study's results are still inconsistent. METHODS A meta-analysis of 4232 cases and 4774 controls from 14 separate studies were performed to explore the possible relationship between the DRD2 TaqIA gene polymorphism and PD. Pooled odds ratios (ORs) for the association and the corresponding 95% confidence intervals (CIs) were evaluated by a fixed-effect model. RESULTS The pooled results revealed a significant association between DRD2 gene TaqIA polymorphism under recessive genetic model (OR: 0.91, 95% CI:0.83,0.99, P = .031) and additive genetic models (OR:0.93,95%CI:0.87,0.99, P = .032), but not associated with PD susceptibility under other genetic models in the whole population. Moreover, subgroups based on ethnicity and genotyping methods showed this association in the Caucasian subgroup under recessive genetic model (OR: 0.85, 95% CI:0.76,0.95, P = .003) and additive genetic models (OR:0.87,95%CI:0.79,0.96, P = .004) were existed. Besides, no significant association was detected under 6 genetic models in the Asian populations and PCR-RFLP subgroup. CONCLUSIONS The current meta-analysis suggested that a significant association between DRD2 TaqIA polymorphism and PD under the recessive genetic mode, and additive genetic models, especially in Caucasians.
Collapse
Affiliation(s)
- Ming Yu
- Department of Neurology, The Affiliated Hospital of Jiangsu University
- Jiangsu University, Zhenjiang
| | - Feiran Huang
- Department of Neurology, The Affiliated Hospital of Jiangsu University
- Jiangsu University, Zhenjiang
| | - Wei Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Xuzhou Medical University
- Medical Technology School, Xuzhou Medical University, Xuzhou
| | - Chen Zhao
- Jiangsu University, Zhenjiang
- Department of Gastroenterology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
17
|
Wang L, Lee G, Kuei C, Yao X, Harrington A, Bonaventure P, Lovenberg TW, Liu C. GPR139 and Dopamine D2 Receptor Co-express in the Same Cells of the Brain and May Functionally Interact. Front Neurosci 2019; 13:281. [PMID: 30971885 PMCID: PMC6443882 DOI: 10.3389/fnins.2019.00281] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/11/2019] [Indexed: 01/11/2023] Open
Abstract
GPR139, a Gq-coupled receptor that is activated by the essential amino acids L-tryptophan and L-phenylalanine, is predominantly expressed in the brain and pituitary. The physiological function of GPR139 remains elusive despite the availability of pharmacological tool agonist compounds and knock-out mice. Whole tissue RNA sequencing data from human, mouse and rat tissues revealed that GPR139 and the dopamine D2 receptor (DRD2) exhibited some similarities in their distribution patterns in the brain and pituitary gland. To determine if there was true co-expression of these two receptors, we applied double in situ hybridization in mouse tissues using the RNAscope® technique. GPR139 and DRD2 mRNA co-expressed in a majority of same cells within part of the dopaminergic mesolimbic pathways (ventral tegmental area and olfactory tubercle), the nigrostriatal pathway (compact part of substantia nigra and caudate putamen), and also the tuberoinfundibular pathway (arcuate hypothalamic nucleus and anterior lobe of pituitary). Both receptors mRNA also co-express in the same cells of the brain regions involved in responses to negative stimulus and stress, such as lateral habenula, lateral septum, interpeduncular nucleus, and medial raphe nuclei. GPR139 mRNA expression was detected in the dentate gyrus and the pyramidal cell layer of the hippocampus as well as the paraventricular hypothalamic nucleus. The functional interaction between GPR139 and DRD2 was studied in vitro using a calcium mobilization assay in cells co-transfected with both receptors from several species (human, rat, and mouse). The dopamine DRD2 agonist did not stimulate calcium response in cells expressing DRD2 alone consistent with the Gi signaling transduction pathway of this receptor. In cells co-transfected with DRD2 and GPR139 the DRD2 agonist was able to stimulate calcium response and its effect was blocked by either a DRD2 or a GPR139 antagonist supporting an in vitro interaction between GPR139 and DRD2. Taken together, these data showed that GPR139 and DRD2 are in position to functionally interact in native tissue.
Collapse
Affiliation(s)
- Lien Wang
- Janssen Research and Development, LLC, San Diego, CA, United States
| | - Grace Lee
- Janssen Research and Development, LLC, San Diego, CA, United States
| | - Chester Kuei
- Janssen Research and Development, LLC, San Diego, CA, United States
| | - Xiang Yao
- Janssen Research and Development, LLC, San Diego, CA, United States
| | | | | | | | - Changlu Liu
- Janssen Research and Development, LLC, San Diego, CA, United States
| |
Collapse
|
18
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 394] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
19
|
Djikic T, Martí Y, Spyrakis F, Lau T, Benedetti P, Davey G, Schloss P, Yelekci K. Human dopamine transporter: the first implementation of a combined in silico/in vitro approach revealing the substrate and inhibitor specificities. J Biomol Struct Dyn 2018; 37:291-306. [PMID: 29334320 DOI: 10.1080/07391102.2018.1426044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Parkinson's disease (PD) is characterized by the loss of dopamine-generating neurons in the substantia nigra and corpus striatum. Current treatments alleviate PD symptoms rather than exerting neuroprotective effect on dopaminergic neurons. New drugs targeting the dopaminergic neurons by specific uptake through the human dopamine transporter (hDAT) could represent a viable strategy for establishing selective neuroprotection. Molecules able to increase the bioactive amount of extracellular dopamine, thereby enhancing and compensating a loss of dopaminergic neurotransmission, and to exert neuroprotective response because of their accumulation in the cytoplasm, are required. By means of homology modeling, molecular docking, and molecular dynamics simulations, we have generated 3D structure models of hDAT in complex with substrate and inhibitors. Our results clearly reveal differences in binding affinity of these compounds to the hDAT in the open and closed conformations, critical for future drug design. The established in silico approach allowed the identification of promising substrate compounds that were subsequently analyzed for their efficiency in inhibiting hDAT-dependent fluorescent substrate uptake, through in vitro live cell imaging experiments. Taken together, our work presents the first implementation of a combined in silico/in vitro approach enabling the selection of promising dopaminergic neuron-specific substrates.
Collapse
Affiliation(s)
- Teodora Djikic
- a Department of Bioinformatics and Genetics , Kadir Has University , Cibali campus, Fatih 34083 , Istanbul , Turkey
| | - Yasmina Martí
- b Hector Institute for Translational Brain Research, Central Institute of Mental Health, Medical Faculty Mannheim , Heidelberg University , Mannheim J5, 68159 , Germany.,f Biochemical Laboratory, Psychiatry and Psychotherapy Department, Central Institute of Mental Health, Medical Faculty Mannheim , Heidelberg University , Mannheim J5, 68159 , Germany
| | - Francesca Spyrakis
- c Department of Drug Science and Technology , University of Turin , via P. Giuria 9, Turin 10125 , Italy
| | - Thorsten Lau
- b Hector Institute for Translational Brain Research, Central Institute of Mental Health, Medical Faculty Mannheim , Heidelberg University , Mannheim J5, 68159 , Germany
| | - Paolo Benedetti
- d Department of Chemistry, Biology and Biotechnology , University of Perugia , via Elce di sotto 8, Perugia 06123 , Italy
| | - Gavin Davey
- e School of Biochemistry and Immunology , Trinity College Dublin , Dublin 2, Ireland
| | - Patrick Schloss
- f Biochemical Laboratory, Psychiatry and Psychotherapy Department, Central Institute of Mental Health, Medical Faculty Mannheim , Heidelberg University , Mannheim J5, 68159 , Germany
| | - Kemal Yelekci
- a Department of Bioinformatics and Genetics , Kadir Has University , Cibali campus, Fatih 34083 , Istanbul , Turkey
| |
Collapse
|
20
|
Xu G, Wu SF, Gu GX, Teng ZW, Ye GY, Huang J. Pharmacological characterization of dopamine receptors in the rice striped stem borer, Chilo suppressalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:80-93. [PMID: 28302436 DOI: 10.1016/j.ibmb.2017.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/10/2017] [Accepted: 03/12/2017] [Indexed: 06/06/2023]
Abstract
Dopamine is an important neurotransmitter and neuromodulator in both vertebrates and invertebrates and is the most abundant monoamine present in the central nervous system of insects. A complement of functionally distinct dopamine receptors mediate the signal transduction of dopamine by modifying intracellular Ca2+ and cAMP levels. In the present study, we pharmacologically characterized three types of dopamine receptors, CsDOP1, CsDOP2 and CsDOP3, from the rice striped stem borer, Chilo suppressalis. All three receptors show considerable sequence identity with orthologous dopamine receptors. The phylogenetic analysis also clusters the receptors within their respective groups. Transcript levels of CsDOP1, CsDOP2 and CsDOP3 were all expressed at high levels in the central nervous system, indicating their important roles in neural processes. After heterologous expression in HEK 293 cells, CsDOP1, CsDOP2 and CsDOP3 were dose-dependently activated by dopamine and synthetic dopamine receptor agonists. They can also be blocked by different series of antagonists. This study offers important information on three dopamine receptors from C. suppressalis that will provide the basis for forthcoming studies investigating their roles in behaviors and physiology, and facilitate the development of new insecticides for pest control.
Collapse
Affiliation(s)
- Gang Xu
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Shun-Fan Wu
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| | - Gui-Xiang Gu
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zi-Wen Teng
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jia Huang
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Kinin Peptides Enhance Inflammatory and Oxidative Responses Promoting Apoptosis in a Parkinson's Disease Cellular Model. Mediators Inflamm 2016; 2016:4567343. [PMID: 27721576 PMCID: PMC5046043 DOI: 10.1155/2016/4567343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/06/2016] [Accepted: 08/09/2016] [Indexed: 01/06/2023] Open
Abstract
Kinin peptides ubiquitously occur in nervous tissue and participate in inflammatory processes associated with distinct neurological disorders. These substances have also been demonstrated to promote the oxidative stress. On the other hand, the importance of oxidative stress and inflammation has been emphasized in disorders that involve the neurodegenerative processes such as Parkinson's disease (PD). A growing number of reports have demonstrated the increased expression of kinin receptors in neurodegenerative diseases. In this study, the effect of bradykinin and des-Arg10-kallidin, two representative kinin peptides, was analyzed with respect to inflammatory response and induction of oxidative stress in a PD cellular model, obtained after stimulation of differentiated SK-N-SH cells with a neurotoxin, 1-methyl-4-phenylpyridinium. Kinin peptides caused an increased cytokine release and enhanced production of reactive oxygen species and NO by cells. These changes were accompanied by a loss of cell viability and a greater activation of caspases involved in apoptosis progression. Moreover, the neurotoxin and kinin peptides altered the dopamine receptor 2 expression. Kinin receptor expression was also changed by the neurotoxin. These results suggest a mediatory role of kinin peptides in the development of neurodegeneration and may offer new possibilities for its regulation by using specific antagonists of kinin receptors.
Collapse
|
22
|
El-Tarras AES, Attia HF, Soliman MM, El Awady MA, Amin AA. Neuroprotective effect of grape seed extract against cadmium toxicity in male albino rats. Int J Immunopathol Pharmacol 2016; 29:398-407. [PMID: 27271977 PMCID: PMC5806757 DOI: 10.1177/0394632016651447] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/03/2016] [Indexed: 11/15/2022] Open
Abstract
Cadmium toxicity can disturb brain chemistry leading to depression, anxiety, and weakened immunity. Cadmium disturbs the neurotransmitter dopamine, resulting in low energy, lack of motivation, and depression, which are predisposing factors for violence. The purpose of this study was to evaluate the ameliorative effect of grape seed extract (GSE) on the brain of 40 male albino rats after exposure to cadmium chloride (Cd) toxicity. The rats were separated into either the control group, the Cd group, the GSE group, or the GSE and Cd mixture (treated) group. The cerebrum showed evidence of degeneration of some nerve fibers and cells. Fibrosis, vacuolations, and congestion in the blood vessels were demonstrated. Satelletosis was located in the capsular cells. Immunohistochemical expression of Bax was strongly positive in the Cd group and decreased in the treated group. These histopathological changes were decreased in the brain tissue of the treated group, but a few blood vessels still had evidence of congestion. Cadmium administration increased the level of MDA and decreased MAO-A, acetylcholinesterase, and glutathione reductase (GR), while the treatment with GSE affected the alterations in these parameters. In addition, cadmium downregulated the mRNA expression levels of GST and GPx, while GSE treatment normalized the transcript levels. The expression of both dopamine and 5-hydroxytryptamine transporter was downregulated in the rats administered cadmium and the addition of GSE normalized the expression of these aggression associated genes.
Collapse
Affiliation(s)
- Adel El-Sayed El-Tarras
- Al-Saedan Research Chair for Genetic Behavioral Disorders, Taif University, Kingdom of Saudi Arabia Biotechnology and Genetic Engineering Unit, Scientific Research Deanship, Taif University, Kingdom of Saudi Arabia Genetics Dep., Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Hossam Fouad Attia
- Al-Saedan Research Chair for Genetic Behavioral Disorders, Taif University, Kingdom of Saudi Arabia Medical Laboratories Department Faculty of Applied Medical Science, Taif University, Kingdom of Saudi Arabia Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Mohammed Mohamed Soliman
- Al-Saedan Research Chair for Genetic Behavioral Disorders, Taif University, Kingdom of Saudi Arabia Medical Laboratories Department Faculty of Applied Medical Science, Taif University, Kingdom of Saudi Arabia Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Mohammed Abdelhamid El Awady
- Al-Saedan Research Chair for Genetic Behavioral Disorders, Taif University, Kingdom of Saudi Arabia Biotechnology and Genetic Engineering Unit, Scientific Research Deanship, Taif University, Kingdom of Saudi Arabia Genetics Dep., Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Adnan Abelghani Amin
- Al-Saedan Research Chair for Genetic Behavioral Disorders, Taif University, Kingdom of Saudi Arabia College of Medicine, Taif University, Kingdom of Saudi Arabia
| |
Collapse
|
23
|
Wiemerslage L, Ismael S, Lee D. Early alterations of mitochondrial morphology in dopaminergic neurons from Parkinson's disease-like pathology and time-dependent neuroprotection with D2 receptor activation. Mitochondrion 2016; 30:138-47. [PMID: 27423787 DOI: 10.1016/j.mito.2016.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/07/2016] [Accepted: 07/12/2016] [Indexed: 01/09/2023]
Abstract
Neuroprotection, to prevent vulnerable cell populations from dying, is perhaps the main strategy for treating Parkinson's disease (PD). Yet in clinical practice, therapy is introduced after the disease is well established and many neurons have already disappeared, while experimentally, treatment is typically added at the same time that PD pathology is instigated. This study uses an already established Drosophila melanogaster model of PD to test for early markers of neurodegeneration and if those markers are reversible following neuroprotective treatment. Specifically, we treat primary neuronal cultures with the neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) and track neuritic, dopaminergic mitochondria over time, observing a fragmenting change in their morphology before cell death. We then add a neuroprotective treatment (quinpirole, a D2 receptor agonist) at different timepoints to determine if the changes in mitochondrial morphology are reversible. We find that neuroprotective treatment must be added concomitantly to prevent changes in mitochondrial morphology and subsequent cell death. This work further supports Drosophila's use as a model organism and mitochondria's use as a biomarker for neurodegenerative disease. But mainly, this work highlights an import factor for experiments in neuroprotection - time of treatment. Our results highlight the problem that current neuroprotective treatments for PD may not be used the same way that they are tested experimentally.
Collapse
Affiliation(s)
- Lyle Wiemerslage
- Uppsala University, Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum, Husargatan 3, Box 593, 75124 Uppsala, Sweden.
| | - Sazan Ismael
- Ohio University, Neuroscience Program, Department of Biological Sciences, Athens, OH 45701, United States
| | - Daewoo Lee
- Ohio University, Neuroscience Program, Department of Biological Sciences, Athens, OH 45701, United States
| |
Collapse
|
24
|
Colvin RA, Lai B, Holmes WR, Lee D. Understanding metal homeostasis in primary cultured neurons. Studies using single neuron subcellular and quantitative metallomics. Metallomics 2016; 7:1111-23. [PMID: 25894020 DOI: 10.1039/c5mt00084j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The purpose of this study was to demonstrate how single cell quantitative and subcellular metallomics inform us about both the spatial distribution and cellular mechanisms of metal buffering and homeostasis in primary cultured neurons from embryonic rat brain, which are often used as models of human disease involving metal dyshomeostasis. The present studies utilized synchrotron radiation X-ray fluorescence (SRXRF) and focused primarily on zinc and iron, two abundant metals in neurons that have been implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Total single cell contents for calcium, iron, zinc, copper, manganese, and nickel were determined. Resting steady state zinc showed a diffuse distribution in both soma and processes, best defined by the mass profile of the neuron with an enrichment in the nucleus compared with the cytoplasm. Zinc buffering and homeostasis was studied using two modes of cellular zinc loading - transporter and ionophore (pyrithione) mediated. Single neuron zinc contents were shown to statistically significantly increase by either loading method - ionophore: 160 million to 7 billion; transporter 160 million to 280 million atoms per neuronal soma. The newly acquired and buffered zinc still showed a diffuse distribution. Soma and processes have about equal abilities to take up zinc via transporter mediated pathways. Copper levels are distributed diffusely as well, but are relatively higher in the processes relative to zinc levels. Prior studies have observed iron puncta in certain cell types, but others have not. In the present study, iron puncta were characterized in several primary neuronal types. The results show that iron puncta could be found in all neuronal types studied and can account for up to 50% of the total steady state content of iron in neuronal soma. Although other metals can be present in iron puncta, they are predominantly iron containing and do not appear to be associated with ferritin cages or transferrin receptor endosomes. The iron content and its distribution in puncta were similar in all neuron types studied including primary dopaminergic neurons. In summary, quantitative measurements of steady state metal levels in single primary cultured neurons made possible by SRXRF analyses provide unique information on the relative levels of each metal in neuronal soma and processes, subcellular location of zinc loads, and have confirmed and extended the characterization of heretofore poorly understood cytoplasmic iron puncta.
Collapse
Affiliation(s)
- Robert A Colvin
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | | | | | | |
Collapse
|
25
|
Wiemerslage L, Lee D. Quantification of mitochondrial morphology in neurites of dopaminergic neurons using multiple parameters. J Neurosci Methods 2016; 262:56-65. [PMID: 26777473 DOI: 10.1016/j.jneumeth.2016.01.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/12/2015] [Accepted: 01/02/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Studies of mitochondrial morphology vary in techniques. Most use one morphological parameter while others describe mitochondria qualitatively. Because mitochondria are so dynamic, a single parameter does not capture the true state of the network and may lead to erroneous conclusions. Thus, a gestalt method of analysis is warranted. NEW METHOD This work describes a method combining immunofluorescence assays with computerized image analysis to measure the mitochondrial morphology within neuritic projections of a specific population of neurons. Six parameters of mitochondrial morphology were examined utilizing ImageJ to analyze colocalized signals. RESULTS Using primary neuronal cultures from Drosophila, we tested mitochondrial morphology in neurites of dopaminergic (DA) neurons. We validate our model using mutants with known defects in mitochondrial morphology. Furthermore, we show a difference in mitochondrial morphology between cells treated as control or with a neurotoxin inducing PD (Parkinson's Disease in humans)-like pathology. We also show interactions between morphological parameters and experimental treatment. COMPARISON WITH EXISTING METHODS Our method is a significant improvement of previously described methods. Six morphometric parameters are quantified, providing a gestalt analysis of mitochondrial morphology. Also it can target specific populations of mitochondria using immunofluorescence assay and image analysis. CONCLUSIONS We found that our method adequately detects differences in mitochondrial morphology between treatment groups. We conclude that some parameters may be unique to a mutation or a disease state, and the relationship between parameters is altered by experimental treatment. We suggest at least four variables should be considered when using mitochondrial structure as an experimental endpoint.
Collapse
Affiliation(s)
- Lyle Wiemerslage
- Functional Pharmacology, Department of Neuroscience, Biomedicinska Centrum, Uppsala University, Husargatan 3, Box 593, 75124 Uppsala, Sweden.
| | - Daewoo Lee
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, United States.
| |
Collapse
|
26
|
Li P, Snyder GL, Vanover KE. Dopamine Targeting Drugs for the Treatment of Schizophrenia: Past, Present and Future. Curr Top Med Chem 2016; 16:3385-3403. [PMID: 27291902 PMCID: PMC5112764 DOI: 10.2174/1568026616666160608084834] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 01/18/2023]
Abstract
Schizophrenia is a chronic and debilitating neuropsychiatric disorder affecting approximately 1% of the world's population. This disease is associated with considerable morbidity placing a major financial burden on society. Antipsychotics have been the mainstay of the pharmacological treatment of schizophrenia for decades. The traditional typical and atypical antipsychotics demonstrate clinical efficacy in treating positive symptoms, such as hallucinations and delusions, while are largely ineffective and may worsen negative symptoms, such as blunted affect and social withdrawal, as well as cognitive function. The inability to treat these latter symptoms may contribute to social function impairment associated with schizophrenia. The dysfunction of multiple neurotransmitter systems in schizophrenia suggests that drugs selectively targeting one neurotransmission pathway are unlikely to meet all the therapeutic needs of this heterogeneous disorder. Often, however, the unintentional engagement of multiple pharmacological targets or even the excessive engagement of intended pharmacological targets can lead to undesired consequences and poor tolerability. In this article, we will review marketed typical and atypical antipsychotics and new therapeutic agents targeting dopamine receptors and other neurotransmitters for the treatment of schizophrenia. Representative typical and atypical antipsychotic drugs and new investigational drug candidates will be systematically reviewed and compared by reviewing structure-activity relationships, pharmacokinetic properties, drug metabolism and safety, pharmacological properties, preclinical data in animal models, clinical outcomes and associated side effects.
Collapse
Affiliation(s)
- Peng Li
- Intra-Cellular Therapies Inc, 430 East 29th Street, Suite 900, New York, NY 10016, United States.
| | | | | |
Collapse
|
27
|
Differential Expression of Tyrosine Hydroxylase Protein and Apoptosis-Related Genes in Differentiated and Undifferentiated SH-SY5Y Neuroblastoma Cells Treated with MPP(.). Neurol Res Int 2015; 2015:734703. [PMID: 26634154 PMCID: PMC4655072 DOI: 10.1155/2015/734703] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/20/2015] [Accepted: 10/25/2015] [Indexed: 11/21/2022] Open
Abstract
The human neuroblastoma SH-SY5Y cell line has been used as a dopaminergic cell model for Parkinson's disease research. Whether undifferentiated or differentiated SH-SY5Y cells are more suitable remains controversial. This study aims to evaluate the expression of apoptosis-related mRNAs activated by MPP+ and evaluate the differential expression of tyrosine hydroxylase (TH) in undifferentiated and retinoic acid- (RA-) induced differentiated cells. The western blot results showed a gradual decrease in TH in undifferentiated cells and a gradual increase in TH in differentiated cells from days 4 to 10 after cell plating. Immunostaining revealed a gradual increase in TH along with neuritic outgrowth in differentiated cells on days 4 and 7 of RA treatment. For the study on cell susceptibility to MPP+ and the expression of apoptosis-related genes, MTT assay showed a decrease in cell viability to approximately 50% requiring 500 and 1000 μM of MPP+ for undifferentiated and RA-differentiated cells, respectively. Using real-time RT-PCR, treatment with 500 μM MPP+ led to significant increases in the Bax/Bcl-2 ratio, p53, and caspase-3 in undifferentiated cells but was without significance in differentiated cells. In conclusion, differentiated cells may be more suitable, and the shorter duration of RA differentiation may make the SH-SY5Y cell model more accessible.
Collapse
|
28
|
Vanderwerf SM, Buck DC, Wilmarth PA, Sears LM, David LL, Morton DB, Neve KA. Role for Rab10 in Methamphetamine-Induced Behavior. PLoS One 2015; 10:e0136167. [PMID: 26291453 PMCID: PMC4546301 DOI: 10.1371/journal.pone.0136167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/31/2015] [Indexed: 11/18/2022] Open
Abstract
Lipid rafts are specialized, cholesterol-rich membrane compartments that help to organize transmembrane signaling by restricting or promoting interactions with subsets of the cellular proteome. The hypothesis driving this study was that identifying proteins whose relative abundance in rafts is altered by the abused psychostimulant methamphetamine would contribute to fully describing the pathways involved in acute and chronic effects of the drug. Using a detergent-free method for preparing rafts from rat brain striatal membranes, we identified density gradient fractions enriched in the raft protein flotillin but deficient in calnexin and the transferrin receptor, markers of non-raft membranes. Dopamine D1- and D2-like receptor binding activity was highly enriched in the raft fractions, but pretreating rats with methamphetamine (2 mg/kg) once or repeatedly for 11 days did not alter the distribution of the receptors. LC-MS analysis of the protein composition of raft fractions from rats treated once with methamphetamine or saline identified methamphetamine-induced changes in the relative abundance of 23 raft proteins, including the monomeric GTP-binding protein Rab10, whose abundance in rafts was decreased 2.1-fold by acute methamphetamine treatment. Decreased raft localization was associated with a selective decrease in the abundance of Rab10 in a membrane fraction that includes synaptic vesicles and endosomes. Inhibiting Rab10 activity by pan-neuronal expression of a dominant-negative Rab10 mutant in Drosophila melanogaster decreased methamphetamine-induced activity and mortality and decreased caffeine-stimulated activity but not mortality, whereas inhibiting Rab10 activity selectively in cholinergic neurons had no effect. These results suggest that activation and redistribution of Rab10 is critical for some of the behavioral effects of psychostimulants.
Collapse
Affiliation(s)
- Scott M. Vanderwerf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, Oregon, United States of America
| | - David C. Buck
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Phillip A. Wilmarth
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Leila M. Sears
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Larry L. David
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - David B. Morton
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Kim A. Neve
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States of America
- Research Service, VA Portland Health Care System, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
29
|
Lee D. Global and local missions of cAMP signaling in neural plasticity, learning, and memory. Front Pharmacol 2015; 6:161. [PMID: 26300775 PMCID: PMC4523784 DOI: 10.3389/fphar.2015.00161] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/20/2015] [Indexed: 01/08/2023] Open
Abstract
The fruit fly Drosophila melanogaster has been a popular model to study cAMP signaling and resultant behaviors due to its powerful genetic approaches. All molecular components (AC, PDE, PKA, CREB, etc) essential for cAMP signaling have been identified in the fly. Among them, adenylyl cyclase (AC) gene rutabaga and phosphodiesterase (PDE) gene dunce have been intensively studied to understand the role of cAMP signaling. Interestingly, these two mutant genes were originally identified on the basis of associative learning deficits. This commentary summarizes findings on the role of cAMP in Drosophila neuronal excitability, synaptic plasticity and memory. It mainly focuses on two distinct mechanisms (global versus local) regulating excitatory and inhibitory synaptic plasticity related to cAMP homeostasis. This dual regulatory role of cAMP is to increase the strength of excitatory neural circuits on one hand, but to act locally on postsynaptic GABA receptors to decrease inhibitory synaptic plasticity on the other. Thus the action of cAMP could result in a global increase in the neural circuit excitability and memory. Implications of this cAMP signaling related to drug discovery for neural diseases are also described.
Collapse
Affiliation(s)
- Daewoo Lee
- Neuroscience Program, Department of Biological Sciences, Ohio University , Athens, OH, USA
| |
Collapse
|
30
|
Segura-Aguilar J, Kostrzewa RM. Neurotoxin mechanisms and processes relevant to Parkinson's disease: an update. Neurotox Res 2015; 27:328-54. [PMID: 25631236 DOI: 10.1007/s12640-015-9519-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 12/14/2022]
Abstract
The molecular mechanism responsible for degenerative process in the nigrostriatal dopaminergic system in Parkinson's disease (PD) remains unknown. One major advance in this field has been the discovery of several genes associated to familial PD, including alpha synuclein, parkin, LRRK2, etc., thereby providing important insight toward basic research approaches. There is an consensus in neurodegenerative research that mitochon dria dysfunction, protein degradation dysfunction, aggregation of alpha synuclein to neurotoxic oligomers, oxidative and endoplasmic reticulum stress, and neuroinflammation are involved in degeneration of the neuromelanin-containing dopaminergic neurons that are lost in the disease. An update of the mechanisms relating to neurotoxins that are used to produce preclinical models of Parkinson´s disease is presented. 6-Hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and rotenone have been the most wisely used neurotoxins to delve into mechanisms involved in the loss of dopaminergic neurons containing neuromelanin. Neurotoxins generated from dopamine oxidation during neuromelanin formation are likewise reviewed, as this pathway replicates neurotoxin-induced cellular oxidative stress, inactivation of key proteins related to mitochondria and protein degradation dysfunction, and formation of neurotoxic aggregates of alpha synuclein. This survey of neurotoxin modeling-highlighting newer technologies and implicating a variety of processes and pathways related to mechanisms attending PD-is focused on research studies from 2012 to 2014.
Collapse
Affiliation(s)
- Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, 70000, Santiago 7, Chile,
| | | |
Collapse
|
31
|
Role of Drosophila calcium channel cacophony in dopaminergic neurodegeneration and neuroprotection. Neurosci Lett 2015; 584:342-6. [DOI: 10.1016/j.neulet.2014.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/17/2014] [Accepted: 11/04/2014] [Indexed: 12/30/2022]
|
32
|
Verlinden H, Vleugels R, Verdonck R, Urlacher E, Vanden Broeck J, Mercer A. Pharmacological and signalling properties of a D2-like dopamine receptor (Dop3) in Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 56:9-20. [PMID: 25449128 DOI: 10.1016/j.ibmb.2014.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 06/04/2023]
Abstract
Dopamine is an important neurotransmitter in the central nervous system of vertebrates and invertebrates. Despite their evolutionary distance, striking parallels exist between deuterostomian and protostomian dopaminergic systems. In both, signalling is achieved via a complement of functionally distinct dopamine receptors. In this study, we investigated the sequence, pharmacology and tissue distribution of a D2-like dopamine receptor from the red flour beetle Tribolium castaneum (TricaDop3) and compared it with related G protein-coupled receptors in other invertebrate species. The TricaDop3 receptor-encoding cDNA shows considerable sequence similarity with members of the Dop3 receptor class. Real time qRT-PCR showed high expression in both the central brain and the optic lobes, consistent with the role of dopamine as neurotransmitter. Activation of TricaDop3 expressed in mammalian cells increased intracellular Ca(2+) signalling and decreased NKH-477 (a forskolin analogue)-stimulated cyclic AMP levels in a dose-dependent manner. We studied the pharmacological profile of the TricaDop3 receptor and demonstrated that the synthetic vertebrate dopamine receptor agonists, 2 - amino- 6,7 - dihydroxy - 1,2,3,4 - tetrahydronaphthalene hydrobromide (6,7-ADTN) and bromocriptine acted as agonists. Methysergide was the most potent of the antagonists tested and showed competitive inhibition in the presence of dopamine. This study offers important information on the Dop3 receptor from Tribolium castaneum that will facilitate functional analyses of dopamine receptors in insects and other invertebrates.
Collapse
Affiliation(s)
- Heleen Verlinden
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; Department of Zoology, University of Otago, 340 Great King Street, Dunedin, New Zealand.
| | - Rut Vleugels
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Rik Verdonck
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Elodie Urlacher
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, New Zealand
| | - Jozef Vanden Broeck
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Alison Mercer
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, New Zealand
| |
Collapse
|
33
|
Pre- and Postsynaptic Role of Dopamine D2 Receptor DD2R in Drosophila Olfactory Associative Learning. BIOLOGY 2014; 3:831-45. [PMID: 25422852 PMCID: PMC4280513 DOI: 10.3390/biology3040831] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/29/2014] [Accepted: 11/12/2014] [Indexed: 11/17/2022]
Abstract
Dopaminergic neurons in Drosophila play critical roles in diverse brain functions such as motor control, arousal, learning, and memory. Using genetic and behavioral approaches, it has been firmly established that proper dopamine signaling is required for olfactory classical conditioning (e.g., aversive and appetitive learning). Dopamine mediates its functions through interaction with its receptors. There are two different types of dopamine receptors in Drosophila: D1-like (dDA1, DAMB) and D2-like receptors (DD2R). Currently, no study has attempted to characterize the role of DD2R in Drosophila learning and memory. Using a DD2R-RNAi transgenic line, we have examined the role of DD2R, expressed in dopamine neurons (i.e., the presynaptic DD2R autoreceptor), in larval olfactory learning. The function of postsynaptic DD2R expressed in mushroom body (MB) was also studied as MB is the center for Drosophila learning, with a function analogous to that of the mammalian hippocampus. Our results showed that suppression of presynaptic DD2R autoreceptors impairs both appetitive and aversive learning. Similarly, postsynaptic DD2R in MB neurons appears to be involved in both appetitive and aversive learning. The data confirm, for the first time, that DD2R plays an important role in Drosophila olfactory learning.
Collapse
|
34
|
Varga SJ, Qi C, Podolsky E, Lee D. A new Drosophila model to study the interaction between genetic and environmental factors in Parkinson's disease. Brain Res 2014; 1583:277-86. [PMID: 25130663 DOI: 10.1016/j.brainres.2014.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/08/2014] [Accepted: 08/09/2014] [Indexed: 12/21/2022]
Abstract
The fruit fly Drosophila melanogaster has long been used as a model organism for human diseases, including Parkinson׳s disease (PD). Its short lifespan, simple maintenance, and the widespread availability of genetic tools allow researchers to study disease mechanisms as well as potential drug therapies. Many different PD models have already been developed, including ones utilizing mutated α-Syn and chronic exposure to rotenone. However, few animal models have been used to study interaction between the PD causing factors. In this study, we developed a new model of PD for use in the larval stage in order to study interaction between genetic and environmental factors. First, the 3rd instar larvae (90-94 hours after egg laying) expressing a mutated form of human α-Syn (A53T) in dopaminergic (DA) neurons were video-taped and quantified for locomotion (e.g. crawling pattern and speed) using ImageJ software. A53T mutant larvae showed locomotion deficits and also loss of DA neurons in age-dependent manner. Similarly, larvae chronically exposed to rotenone (10 μM in food) showed age-dependent decline in locomotion accompanied by loss of DA neurons. We further show that combining the two models, by exposing A53T mutant larvae to rotenone, causes a much more severe PD phenotype (i.e. locomotor deficit). Our finding shows interaction between genetic and environmental factors underlying development of PD symptoms. This model can be used to further study mechanisms underlying the interaction between genes and different environmental PD factors, as well as to explore potential therapies for PD treatment.
Collapse
Affiliation(s)
- Scott J Varga
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Cheng Qi
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Eric Podolsky
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Daewoo Lee
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|