1
|
Zhang Y, He H, Fu X, Liu G, Wang H, Zhong W, Xu X, Chen B, Mei L. Glioblastoma-associated macrophages in glioblastoma: from their function and mechanism to therapeutic advances. Cancer Gene Ther 2025:10.1038/s41417-025-00905-9. [PMID: 40307579 DOI: 10.1038/s41417-025-00905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor in adults and has high mortality rates worldwide. GBM progression, treatment, and prognosis are influenced by the tumor microenvironment (TME), which includes immune, stromal, and tumor cells. Among them, glioblastoma-associated macrophages (GAMs) act as key regulators of GBM pathobiology. GAMs exhibit remarkable plasticity, as they can exhibit both protumor and antitumor effects. However, their function is determined by polarization and the TME. In this review, we provide a comprehensive overview of the current understanding of the biology of GAMs in GBM, including their origins, phenotypic diversity, and functional roles. We discuss the intricate crosstalk between GAMs and tumor cells, as well as other immune and stromal components, and highlight the mechanisms underlying GAM-mediated tumor progression, invasion, angiogenesis, and immune system evasion. Furthermore, we explore the therapeutic implications of targeting GAMs in GBM and discuss emerging strategies aimed at reprogramming GAMs toward an antitumorigenic phenotype or selectively depleting protumorigenic subsets. The final aim is to develop innovative therapeutic approaches that disrupt GBMs. By leveraging our increased understanding of GAM biology, we lay the foundation for transformative advances in GBM treatment to improve patient prognosis.
Collapse
Affiliation(s)
- Yuqin Zhang
- Department of General Practice, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hanxing He
- Department of Orthopedics and Traumatology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Xin Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ganzhi Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huiying Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen Zhong
- Department of General Practice, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xia Xu
- Department of General Practice, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Bo Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| | - Lin Mei
- Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, Tianjin, China.
| |
Collapse
|
2
|
Chaigneau T, Sha S, Roux CM, Aïd S, Faucher A, Chantran Y, Dorothée G, Krantic S. Subtle Alterations in Hippocampal Neuronal Activity Coincide With Early Sex-Specific Differences in Amyloidosis and Microglia in a Pre-Symptomatic Mouse Model of Alzheimer-Like Pathology. Glia 2025. [PMID: 40304030 DOI: 10.1002/glia.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 04/18/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
Growing evidence highlights sex-related differences in the pathogenesis of Alzheimer's disease (AD). Yet, early impact of sex on neuronal activity and microglia in the hippocampus, a main site of memory formation and one of the most vulnerable brain areas in AD, remains poorly understood. We thus assessed these issues by using APPPS1 mouse model of AD-like amyloid pathology at a pre-symptomatic stage (5-6 months). Our electrophysiological data point to opposite alterations in hippocampal CA1 neurons' basal glutamatergic neurotransmission and response to excitatory inputs between male and female APPPS1 mice. These complex changes in neuronal activity are likely to precede plasticity impairments, which do not yet translate into sexual dimorphism of Long-Term Potentiation (LTP) at the studied age. Alteration in synaptic transmission in males coincides with an increased number and coverage of microglia, together with increased plaque coverage, as compared to the female hippocampus. Such increased microgliosis in males is accompanied by complex sex-related differences in the expression of specific transcriptomic markers Disease-Associated Microglia (DAM)/Microglial neurodegenerative phenotype (MGnD), whereas homeostatic (M0) markers were unaffected. Our data show for the first time that subtle alterations in hippocampal neuronal activity coincide with early sex-related differences in amyloidosis and microglia already at the pre-symptomatic stage of AD-like pathology.
Collapse
Affiliation(s)
- Thomas Chaigneau
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Neuroimmunology, Inflammation and Therapeutics Laboratory, Hôpital Saint-Antoine, Paris, France
| | - Sha Sha
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Neuroimmunology, Inflammation and Therapeutics Laboratory, Hôpital Saint-Antoine, Paris, France
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Candice M Roux
- Normandie University, UNICAEN, INSERM, COMETE, CYCERON, CHU de Caen, Caen, France
| | - Saba Aïd
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Neuroimmunology, Inflammation and Therapeutics Laboratory, Hôpital Saint-Antoine, Paris, France
| | - Alice Faucher
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Neuroimmunology, Inflammation and Therapeutics Laboratory, Hôpital Saint-Antoine, Paris, France
| | - Yannick Chantran
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Neuroimmunology, Inflammation and Therapeutics Laboratory, Hôpital Saint-Antoine, Paris, France
| | - Guillaume Dorothée
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Neuroimmunology, Inflammation and Therapeutics Laboratory, Hôpital Saint-Antoine, Paris, France
| | - Slavica Krantic
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Neuroimmunology, Inflammation and Therapeutics Laboratory, Hôpital Saint-Antoine, Paris, France
| |
Collapse
|
3
|
Mehner LM, Munoz-Sagredo L, Sonnentag SJ, Treffert SM, Orian-Rousseau V. Targeting CD44 and other pleiotropic co-receptors as a means for broad inhibition of tumor growth and metastasis. Clin Exp Metastasis 2024; 41:599-611. [PMID: 38761292 PMCID: PMC11499327 DOI: 10.1007/s10585-024-10292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/02/2024] [Indexed: 05/20/2024]
Abstract
Although progress has been made in the treatment of cancer, particularly for the four major types of cancers affecting the lungs, colon, breast and prostate, resistance to cancer treatment often emerges upon inhibition of major signaling pathways, which leads to the activation of additional pathways as a last-resort survival mechanism by the cancer cells. This signaling plasticity provides cancer cells with a level of operational freedom, reducing treatment efficacy. Plasticity is a characteristic of cancer cells that are not only able to switch signaling pathways but also from one cellular state (differentiated cells to stem cells or vice versa) to another. It seems implausible that the inhibition of one or a few signaling pathways of heterogeneous and plastic tumors can sustain a durable effect. We propose that inhibiting molecules with pleiotropic functions such as cell surface co-receptors can be a key to preventing therapy escape instead of targeting bona fide receptors. Therefore, we ask the question whether co-receptors often considered as "accessory molecules" are an overlooked key to control cancer cell behavior.
Collapse
Affiliation(s)
- Lisa-Marie Mehner
- Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Leonel Munoz-Sagredo
- Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
- School of Medicine, Universidad de Valparaiso, Valparaiso, Chile
| | - Steffen Joachim Sonnentag
- Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sven Máté Treffert
- Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Véronique Orian-Rousseau
- Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
4
|
Sanhueza C, Vergara D, Chávez-Aravena C, Gálvez-Jiron F, Chavez-Angel E, Castro-Alvarez A. Functionalizing Dendrimers for Targeted Delivery of Bioactive Molecules to Macrophages: A Potential Treatment for Mycobacterium tuberculosis Infection-A Review. Pharmaceuticals (Basel) 2023; 16:1428. [PMID: 37895899 PMCID: PMC10609949 DOI: 10.3390/ph16101428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis that replicates inside human alveolar macrophages. This disease causes significant morbidity and mortality throughout the world. According to the World Health Organization 1.4 million people died of this disease in 2021. This indicates that despite the progress of modern medicine, improvements in diagnostics, and the development of drug susceptibility tests, TB remains a global threat to public health. In this sense, host-directed therapy may provide a new approach to the cure of TB, and the expression of miRNAs has been correlated with a change in the concentration of various inflammatory mediators whose concentrations are responsible for the pathophysiology of M. tuberculosis infection. Thus, the administration of miRNAs may help to modulate the immune response of organisms. However, direct administration of miRNAs, without adequate encapsulation, exposes nucleic acids to the activity of cytosolic nucleases, limiting their application. Dendrimers are a family of highly branched molecules with a well-defined architecture and a branched conformation which gives rise to cavities that facilitate physical immobilization, and functional groups that allow chemical interaction with molecules of interest. Additionally, dendrimers can be easily functionalized to target different cells, macrophages among them. In this sense, various studies have proposed the use of different cell receptors as target molecules to aim dendrimers at macrophages and thus release drugs or nucleic acids in the cell of interest. Based on the considerations, the primary objective of this review is to comprehensively explore the potential of functionalized dendrimers as delivery vectors for miRNAs and other therapeutic agents into macrophages. This work aims to provide insights into the use of functionalized dendrimers as an innovative approach for TB treatment, focusing on their ability to target and deliver therapeutic cargo to macrophages.
Collapse
Affiliation(s)
- Claudia Sanhueza
- Centro de Excelencia en Medicina Traslacional (CEMT), Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Daniela Vergara
- Centro de Excelencia en Medicina Traslacional (CEMT), Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Catalina Chávez-Aravena
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Felipe Gálvez-Jiron
- Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Emigdio Chavez-Angel
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Alejandro Castro-Alvarez
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
5
|
Vofo BN, Chowers I. Suppressing Inflammation for the Treatment of Diabetic Retinopathy and Age-Related Macular Degeneration: Dazdotuftide as a Potential New Multitarget Therapeutic Candidate. Biomedicines 2023; 11:1562. [PMID: 37371657 PMCID: PMC10295757 DOI: 10.3390/biomedicines11061562] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are major causes of blindness globally. The primary treatment option for DME and neovascular AMD (nAMD) is anti-vascular endothelial growth factor (VEGF) compounds, but this treatment modality often yields insufficient results, and monthly injections can place a burden on the health system and patients. Although various inflammatory pathways and mediators have been recognized as key players in the development of DR and AMD, there are limited treatment options targeting these pathways. Molecular pathways that are interlinked, or triggers of multiple inflammatory pathways, could be promising targets for drug development. This review focuses on the role of inflammation in the pathogenesis of DME and AMD and presents current anti-inflammatory compounds, as well as a potential multitarget anti-inflammatory compound (dazdotuftide) that could be a candidate treatment option for the management of DME and AMD.
Collapse
Affiliation(s)
| | - Itay Chowers
- Department of Ophthalmology, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel;
| |
Collapse
|
6
|
Yong J, Mellick AS, Whitelock J, Wang J, Liang K. A Biomolecular Toolbox for Precision Nanomotors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205746. [PMID: 36055646 DOI: 10.1002/adma.202205746] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The application of nanomotors for cancer diagnosis and therapy is a new and exciting area of research, which when combined with precision nanomedicine, promises to solve many of the issues encountered by previous development of passive nanoparticles. The goal of this article is to introduce nanomotor and nanomedicine researchers to the deep pool of knowledge available regarding cancer cell biology and biochemistry, as well as provide a greater appreciation of the complexity of cell membrane compositions, extracellular surfaces, and their functional consequences. A short description of the nanomotor state-of-art for cancer therapy and diagnosis is first provided, as well as recommendations for future directions of the field. Then, a biomolecular targeting toolbox has been collated for researchers looking to apply their nanomaterial of choice to a biological setting, as well as providing a glimpse into currently available clinical therapies and technologies. This toolbox contains an overview of different classes of targeting molecules available for high affinity and specific targeting and cell surface targets to aid researchers in the selection of a clinical disease model and targeting methodology. It is hoped that this review will provide biological context, inspiration, and direction to future nanomotor and nanomedicine research.
Collapse
Affiliation(s)
- Joel Yong
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Kensington, New South Wales, 2052, Australia
| | - Albert S Mellick
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, 2052, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, 2170, Australia
| | - John Whitelock
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, 2052, Australia
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Kensington, New South Wales, 2052, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, 2052, Australia
| |
Collapse
|
7
|
The Pathological Activation of Microglia Is Modulated by Sexually Dimorphic Pathways. Int J Mol Sci 2023; 24:ijms24054739. [PMID: 36902168 PMCID: PMC10003784 DOI: 10.3390/ijms24054739] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Microglia are the primary immunocompetent cells of the central nervous system (CNS). Their ability to survey, assess and respond to perturbations in their local environment is critical in their role of maintaining CNS homeostasis in health and disease. Microglia also have the capability of functioning in a heterogeneous manner depending on the nature of their local cues, as they can become activated on a spectrum from pro-inflammatory neurotoxic responses to anti-inflammatory protective responses. This review seeks to define the developmental and environmental cues that support microglial polarization towards these phenotypes, as well as discuss sexually dimorphic factors that can influence this process. Further, we describe a variety of CNS disorders including autoimmune disease, infection, and cancer that demonstrate disparities in disease severity or diagnosis rates between males and females, and posit that microglial sexual dimorphism underlies these differences. Understanding the mechanism behind differential CNS disease outcomes between men and women is crucial in the development of more effective targeted therapies.
Collapse
|
8
|
Zheng C, Wang H, Zhao S, Ma C, Gao H, Yang F, Zhou X, Lu J, Zhang C, Zhu H. Inhibition of neuropilin-1 enhances the therapeutic effects of lenvatinib in suppressing cholangiocarcinoma cells via the c-Met pathway. Eur J Pharmacol 2022; 935:175290. [DOI: 10.1016/j.ejphar.2022.175290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
|
9
|
Zhuang Q, Yang H, Mao Y. The Oncogenesis of Glial Cells in Diffuse Gliomas and Clinical Opportunities. Neurosci Bull 2022; 39:393-408. [PMID: 36229714 PMCID: PMC10043159 DOI: 10.1007/s12264-022-00953-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Glioma is the most common and lethal intrinsic primary tumor of the brain. Its controversial origins may contribute to its heterogeneity, creating challenges and difficulties in the development of therapies. Among the components constituting tumors, glioma stem cells are highly plastic subpopulations that are thought to be the site of tumor initiation. Neural stem cells/progenitor cells and oligodendrocyte progenitor cells are possible lineage groups populating the bulk of the tumor, in which gene mutations related to cell-cycle or metabolic enzymes dramatically affect this transformation. Novel approaches have revealed the tumor-promoting properties of distinct tumor cell states, glial, neural, and immune cell populations in the tumor microenvironment. Communication between tumor cells and other normal cells manipulate tumor progression and influence sensitivity to therapy. Here, we discuss the heterogeneity and relevant functions of tumor cell state, microglia, monocyte-derived macrophages, and neurons in glioma, highlighting their bilateral effects on tumors. Finally, we describe potential therapeutic approaches and targets beyond standard treatments.
Collapse
Affiliation(s)
- Qiyuan Zhuang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Smith GT, Radin DP, Tsirka SE. From protein-protein interactions to immune modulation: Therapeutic prospects of targeting Neuropilin-1 in high-grade glioma. Front Immunol 2022; 13:958620. [PMID: 36203599 PMCID: PMC9532003 DOI: 10.3389/fimmu.2022.958620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
In the past several years there has been a marked increase in our understanding of the pathophysiological hallmarks of glioblastoma development and progression, with specific respect to the contribution of the glioma tumor microenvironment to the rapid progression and treatment resistance of high-grade gliomas. Despite these strides, standard of care therapy still only targets rapidly dividing tumor cells in the glioma, and does little to curb the pro-tumorigenic functions of non-cancerous cells entrenched in the glioma microenvironment. This tumor promoting environment as well as the heterogeneity of high-grade gliomas contribute to the poor prognosis of this malignancy. The interaction of non-malignant cells in the microenvironment with the tumor cells accentuate phenotypes such as rapid proliferation or immunosuppression, so therapeutically modulating one target expressed on one cell type may be insufficient to restrain these rapidly developing neoplasias. With this in mind, identifying a target expressed on multiple cell types and understanding how it governs tumor-promoting functions in each cell type may have great utility in better managing this disease. Herein, we review the physiology and pathological effects of Neuropilin-1, a transmembrane co-receptor which mediates signal transduction pathways when associated with multiple other receptors. We discuss its effects on the properties of endothelial cells and on immune cell types within gliomas including glioma-associated macrophages, microglia, cytotoxic T cells and T regulatory cells. We also consider its effects when elaborated on the surface of tumor cells with respect to proliferation, stemness and treatment resistance, and review attempts to target Neuroplin-1 in the clinical setting.
Collapse
Affiliation(s)
- Gregory T. Smith
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Daniel P. Radin
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- Stony Brook Medical Scientist Training Program, Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Stella E. Tsirka
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- Stony Brook Medical Scientist Training Program, Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- *Correspondence: Stella E. Tsirka,
| |
Collapse
|
11
|
Wen E, Xin G, Li S, Dong Y, Zhu Y, Wan C, Yu X, Wei Z, Wang Y, Li F, Zhang K, Niu H, Huang W. Tuftsin ameliorates splenic inflammatory injury by promoting neuropilin-1 in severe acute pancreatitis. Biochem Pharmacol 2022; 199:115030. [PMID: 35381211 DOI: 10.1016/j.bcp.2022.115030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/08/2023]
Abstract
Severe acute pancreatitis (SAP)-associated spleen injury causing immune disturbances aggravates organs injuries, which contributes to higher mortality rate. However, there are no effective drugs to cure SAP-induced spleen injury. Here, we found that Tuftsin (TN) is effective for ameliorating SAP-induced pathological damage and inflammation of spleen, mainly via alleviating mitochondrial dysfunction, oxidative stress, ATP depletion and the expression of pro-inflammatory factors. We further found that TN promoted anti-inflammatory macrophage phenotype M2 via up-regulating NRP1 on macrophage in spleen during SAP. Meanwhile, EG00229 (an inhibitor of NRP1 bound to TN) weakened TN's therapeutic effect in SAP-associated spleen injury. And EG00229 also inhibited M2 macrophage, leading to increasing inflammasome formation. Additionally, EG00229 reduced the protective efficiency of TN on mitochondrial dysfunction, and inflammation injury via NRP1 in spleen caused by SAP. Similarly, siRNA-Nrp1 into macrophage also prevented TN's inhibition on apoptosis. These findings reveal that TN alleviates SAP-induced spleen injury by promoting NRP1.
Collapse
Affiliation(s)
- E Wen
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guang Xin
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shiyi Li
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuman Dong
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuda Zhu
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chengyu Wan
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiuxian Yu
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zeliang Wei
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yilan Wang
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fan Li
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kun Zhang
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai Niu
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen Huang
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
12
|
Host cell targeting of novel antimycobacterial 4-aminosalicylic acid derivatives with tuftsin carrier peptides. Eur J Pharm Biopharm 2022; 174:111-130. [DOI: 10.1016/j.ejpb.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022]
|
13
|
Polaryzacja mikrogleju i makrofagów w wybranych chorobach degeneracyjnych i zapalnych układu nerwowego. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstrakt
Makrofagi to komórki efektorowe układu odpornościowego zdolne do polaryzacji, czyli zmiany fenotypu powiązanej ze zmianą aktywności. Można wyróżnić: polaryzację klasyczną (M1), która służy obronie przed patogenami, a makrofagi M1 mają aktywność ogólnie prozapalną, oraz polaryzację alternatywną (M2), która sprzyja wygaszaniu stanu zapalnego i regeneracji tkanki. Makrofagi zasiedlają niemal cały organizm, więc zjawisko ich polaryzacji ma wpływ na wiele procesów zachodzących w różnych tkankach. W układzie nerwowym reprezentacją osiadłych makrofagów jest mikroglej. Jednak w wielu sytuacjach patologicznych w mózgu pojawiają się także makrofagi rekrutowane z monocytów krążących we krwi. Choroby neurodegeneracyjne, urazy i choroby autoimmunologiczne są związane z reakcją układu odpornościowego, która może mieć istotny wpływ na dalszy przebieg choroby i na tempo regeneracji tkanki. Polaryzacja makrofagów ma w związku z tym znaczenie w chorobach centralnego układu nerwowego. Aktywność komórek M1 i M2 może bowiem różnie wpływać na przeżywalność neuronów i oligodendrocytów, na wzrost aksonów, na proces demielinizacji czy na szczelność bariery krew–mózg. Wynika to z różnic między fenotypami w wytwarzaniu reaktywnych form tlenu i tlenku azotu, wydzielaniu cytokin i czynników wzrostu, bezpośrednich oddziaływaniach na sąsiednie komórki i zdolnościach do fagocytozy. W artykule omówiono to zagadnienie w: udarze mózgu, urazie rdzenia kręgowego, chorobie Alzheimera, stwardnieniu zanikowym bocznym i stwardnieniu rozsianym. W wielu spośród tych patologii obserwuje się gradient czasowy lub przestrzenny rozmieszczenia w tkance poszczególnych fenotypów mikrogleju i/lub makrofagów. Wydaje się zatem, że zmiany polaryzacji makrofagów mogą potencjalnie sprzyjać regeneracji tkanki lub hamować rozwój chorób neurodegeneracyjnych.
Collapse
|
14
|
Andersen BM, Faust Akl C, Wheeler MA, Chiocca EA, Reardon DA, Quintana FJ. Glial and myeloid heterogeneity in the brain tumour microenvironment. Nat Rev Cancer 2021; 21:786-802. [PMID: 34584243 PMCID: PMC8616823 DOI: 10.1038/s41568-021-00397-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 02/08/2023]
Abstract
Brain cancers carry bleak prognoses, with therapeutic advances helping only a minority of patients over the past decade. The brain tumour microenvironment (TME) is highly immunosuppressive and differs from that of other malignancies as a result of the glial, neural and immune cell populations that constitute it. Until recently, the study of the brain TME was limited by the lack of methods to de-convolute this complex system at the single-cell level. However, novel technical approaches have begun to reveal the immunosuppressive and tumour-promoting properties of distinct glial and myeloid cell populations in the TME, identifying new therapeutic opportunities. Here, we discuss the immune modulatory functions of microglia, monocyte-derived macrophages and astrocytes in brain metastases and glioma, highlighting their disease-associated heterogeneity and drawing from the insights gained by studying these malignancies and other neurological disorders. Lastly, we consider potential approaches for the therapeutic modulation of the brain TME.
Collapse
Affiliation(s)
- Brian M Andersen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Camilo Faust Akl
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
15
|
Lee J, Son W, Hong J, Song Y, Yang CS, Kim YH. Down-regulation of TNF-α via macrophage-targeted RNAi system for the treatment of acute inflammatory sepsis. J Control Release 2021; 336:344-353. [PMID: 34147573 DOI: 10.1016/j.jconrel.2021.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by bacterial infection. The sepsis therapy has involved prescription of adequate antibiotics, requiring several days to determine the proper type without reducing the inflammatory response. Thus, it is necessary to rapidly decrease fundamental inflammation, which can induce serious organ damage. In the inflammatory mechanism, tumor necrosis factor-alpha (TNF-α) produced by macrophages has an important role in infiltration of macrophages into infected sites and as a trigger for secretion of pro-inflammatory cytokines. However, commercialized TNF-α antibody medicines have limits such as fibrosis, cytokine storms, and high production costs. There is a growing need for anti-inflammatory sepsis treatment free from side effects. For this reason, TNF-α converting enzyme (TACE) could be an innovative target to break the positive feedback loop of inflammatory mediators (TNF-α) since it converts the inactive TNF-α membrane bound form to the activated soluble form in macrophages. A non-viral gene delivery system was developed in this study to deliver siRNA into inflammation-mediated macrophages without toxicity. The peptide-based gene carrier created by conjugating positively-charged nine arginine (9R) and the TKPR (Thr-Lys-Pro-Arg) sequence from the Fc region of Immunoglobulin G (IgG) specifically binds to the neuropilin-1 (NRP-1) receptor on the macrophage surface. Our results demonstrated that siTACE/TKPR-9R complexes were internalized in macrophages and successfully down-regulated TACE mRNA level. Finally, RNA interference with cell-targeted peptide carriers indicates a fundamental therapy for acute inflammatory sepsis free of off-target effects.
Collapse
Affiliation(s)
- Jieun Lee
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
| | - Wooic Son
- Department of Molecular and Life Science, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
| | - Juhyeong Hong
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
| | - Yoonsung Song
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea.
| | - Yong-Hee Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Perez-Miller S, Patek M, Moutal A, de Haro PD, Cabel CR, Thorne CA, Campos SK, Khanna R. Novel Compounds Targeting Neuropilin Receptor 1 with Potential To Interfere with SARS-CoV-2 Virus Entry. ACS Chem Neurosci 2021; 12:1299-1312. [PMID: 33787218 PMCID: PMC8029449 DOI: 10.1021/acschemneuro.0c00619] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
Neuropilin-1 (NRP-1) is a multifunctional transmembrane receptor for ligands that affect developmental axonal growth and angiogenesis. In addition to a role in cancer, NRP-1 is a reported entry point for several viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19). The furin cleavage product of SARS-CoV-2 Spike protein takes advantage of the vascular endothelial growth factor A (VEGF-A) binding site on NRP-1 which accommodates a polybasic stretch ending in a C-terminal arginine. This site has long been a focus of drug discovery efforts for cancer therapeutics. We recently showed that interruption of the VEGF-A/NRP-1 signaling pathway ameliorates neuropathic pain and hypothesize that interference of this pathway by SARS-CoV-2 Spike protein interferes with pain signaling. Here, we report confirmed hits from a small molecule and natural product screen of nearly 0.5 million compounds targeting the VEGF-A binding site on NRP-1. We identified nine chemical series with lead- or drug-like physicochemical properties. Using ELISA, we demonstrate that six compounds disrupt VEGF-A-NRP-1 binding more effectively than EG00229, a known NRP-1 inhibitor. Secondary validation in cells revealed that all tested compounds inhibited VEGF-A triggered VEGFR2 phosphorylation. Further, two compounds displayed robust inhibition of a recombinant vesicular stomatitis virus protein that utilizes the SARS-CoV-2 Spike for entry and fusion. These compounds represent a first step in a renewed effort to develop small molecule inhibitors of the VEGF-A/NRP-1 signaling for the treatment of neuropathic pain and cancer with the added potential of inhibiting SARS-CoV-2 virus entry.
Collapse
Affiliation(s)
- Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Marcel Patek
- Bright Rock Path Consulting, LLC, Tucson, Arizona
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Paz Duran de Haro
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Carly R. Cabel
- Department of Cellular & Molecular Medicine, College of Medicine, The University of Arizona
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
| | - Curtis A. Thorne
- Department of Cellular & Molecular Medicine, College of Medicine, The University of Arizona
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
- Bio5 Institute, University of Arizona
| | - Samuel K. Campos
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
- Bio5 Institute, University of Arizona
- Department of Immunobiology, College of Medicine, University of Arizona
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona, USA
- Regulonix LLC, Tucson, AZ, USA
| |
Collapse
|
17
|
Rocca C, Grande F, Granieri MC, Colombo B, De Bartolo A, Giordano F, Rago V, Amodio N, Tota B, Cerra MC, Rizzuti B, Corti A, Angelone T, Pasqua T. The chromogranin A 1-373 fragment reveals how a single change in the protein sequence exerts strong cardioregulatory effects by engaging neuropilin-1. Acta Physiol (Oxf) 2021; 231:e13570. [PMID: 33073482 DOI: 10.1111/apha.13570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
AIM Chromogranin A (CgA), a 439-residue long protein, is an important cardiovascular regulator and a precursor of various bioactive fragments. Under stressful/pathological conditions, CgA cleavage generates the CgA1-373 proangiogenic fragment. The present work investigated the possibility that human CgA1-373 influences the mammalian cardiac performance, evaluating the role of its C-terminal sequence. METHODS Haemodynamic assessment was performed on an ex vivo Langendorff rat heart model, while mechanistic studies were performed using perfused hearts, H9c2 cardiomyocytes and in silico. RESULTS On the ex vivo heart, CgA1-373 elicited direct dose-dependent negative inotropism and vasodilation, while CgA1-372 , a fragment lacking the C-terminal R373 residue, was ineffective. Antibodies against the PGPQLR373 C-terminal sequence abrogated the CgA1-373 -dependent cardiac and coronary modulation. Ex vivo studies showed that CgA1-373 -dependent effects were mediated by endothelium, neuropilin-1 (NRP1) receptor, Akt/NO/Erk1,2 pathways, nitric oxide (NO) production and S-nitrosylation. In vitro experiments on H9c2 cardiomyocytes indicated that CgA1-373 also induced eNOS activation directly on the cardiomyocyte component by NRP1 targeting and NO involvement and provided beneficial action against isoproterenol-induced hypertrophy, by reducing the increase in cell surface area and brain natriuretic peptide (BNP) release. Molecular docking and all-atom molecular dynamics simulations strongly supported the hypothesis that the C-terminal R373 residue of CgA1-373 directly interacts with NRP1. CONCLUSION These results suggest that CgA1-373 is a new cardioregulatory hormone and that the removal of R373 represents a critical switch for turning "off" its cardioregulatory activity.
Collapse
Affiliation(s)
- Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Patho‐Physiology Department of Biology, E. and E.S. University of Calabria Rende Italy
| | - Fedora Grande
- Laboratory of Medicinal and Analytical Chemistry Department of Pharmacy, Health and Nutritional Sciences University of Calabria Rende Italy
| | - Maria Concetta Granieri
- Laboratory of Cellular and Molecular Cardiovascular Patho‐Physiology Department of Biology, E. and E.S. University of Calabria Rende Italy
| | - Barbara Colombo
- Division of Experimental Oncology Vita‐Salute San Raffaele University–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute Milan Italy
| | - Anna De Bartolo
- Laboratory of Cellular and Molecular Cardiovascular Patho‐Physiology Department of Biology, E. and E.S. University of Calabria Rende Italy
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria Rende Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria Rende Italy
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria Rende Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine Magna Graecia University of Catanzaro Catanzaro Italy
| | - Bruno Tota
- Laboratory of Cellular and Molecular Cardiovascular Patho‐Physiology Department of Biology, E. and E.S. University of Calabria Rende Italy
- Laboratory of Organ and System Physiology Department of Biology, E. and E.S. University of Calabria Rende Italy
| | - Maria Carmela Cerra
- Laboratory of Organ and System Physiology Department of Biology, E. and E.S. University of Calabria Rende Italy
| | - Bruno Rizzuti
- CNR‐NANOTEC Licryl‐UOS Cosenza and CEMIF.Cal Department of Physics University of Calabria Rende Italy
| | - Angelo Corti
- Division of Experimental Oncology Vita‐Salute San Raffaele University–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute Milan Italy
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Patho‐Physiology Department of Biology, E. and E.S. University of Calabria Rende Italy
- National Institute of Cardiovascular Research (INRC) Bologna Italy
| | - Teresa Pasqua
- Laboratory of Cellular and Molecular Cardiovascular Patho‐Physiology Department of Biology, E. and E.S. University of Calabria Rende Italy
- "Fondazione Umberto Veronesi" Milan Italy
| |
Collapse
|
18
|
Baranyai Z, Biri-Kovács B, Krátký M, Szeder B, Debreczeni ML, Budai J, Kovács B, Horváth L, Pári E, Németh Z, Cervenak L, Zsila F, Méhes E, Kiss É, Vinšová J, Bősze S. Cellular Internalization and Inhibition Capacity of New Anti-Glioma Peptide Conjugates: Physicochemical Characterization and Evaluation on Various Monolayer- and 3D-Spheroid-Based in Vitro Platforms. J Med Chem 2021; 64:2982-3005. [PMID: 33719423 DOI: 10.1021/acs.jmedchem.0c01399] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Most therapeutic agents used for treating brain malignancies face hindered transport through the blood-brain barrier (BBB) and poor tissue penetration. To overcome these problems, we developed peptide conjugates of conventional and experimental anticancer agents. SynB3 cell-penetrating peptide derivatives were applied that can cross the BBB. Tuftsin derivatives were used to target the neuropilin-1 transport system for selectivity and better tumor penetration. Moreover, SynB3-tuftsin tandem compounds were synthesized to combine the beneficial properties of these peptides. Most of the conjugates showed high and selective efficacy against glioblastoma cells. SynB3 and tandem derivatives demonstrated superior cellular internalization. The penetration profile of the conjugates was determined on a lipid monolayer and Transwell co-culture system with noncontact HUVEC-U87 monolayers as simple ex vivo and in vitro BBB models. Importantly, in 3D spheroids, daunomycin-peptide conjugates possessed a better tumor penetration ability than daunomycin. These conjugates are promising tools for the delivery systems with tunable features.
Collapse
Affiliation(s)
- Zsuzsa Baranyai
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Beáta Biri-Kovács
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary.,Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Bálint Szeder
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Márta L Debreczeni
- 3rd Department of Medicine Research Laboratory, Semmelweis University, Kútvölgyi út 4, H-1125 Budapest, Hungary
| | - Johanna Budai
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Bence Kovács
- Centre for Ecological Research, Institute of Ecology and Botany, Alkotmány u. 2-4, H-2163 Vácrátót, Hungary
| | - Lilla Horváth
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Edit Pári
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Zsuzsanna Németh
- 3rd Department of Medicine Research Laboratory, Semmelweis University, Kútvölgyi út 4, H-1125 Budapest, Hungary
| | - László Cervenak
- 3rd Department of Medicine Research Laboratory, Semmelweis University, Kútvölgyi út 4, H-1125 Budapest, Hungary
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Előd Méhes
- Department of Biological Physics, Institute of Physics, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Éva Kiss
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Szilvia Bősze
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
19
|
Murugesan K, Srinivasan P, Mahadeva R, Gupta CM, Haq W. Tuftsin-Bearing Liposomes Co-Encapsulated with Doxorubicin and Curcumin Efficiently Inhibit EAC Tumor Growth in Mice. Int J Nanomedicine 2020; 15:10547-10559. [PMID: 33414637 PMCID: PMC7783201 DOI: 10.2147/ijn.s276336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Background Targeted multidrug-loaded delivery systems have emerged as an advanced strategy for cancer treatment. In this context, antibodies, hormones, and small peptides have been coupled to the surface of drug carriers, such as liposomes, polymeric and metallic nanoparticles loaded with drugs, as tumor-specific ligands. In the present study, we have grafted a natural macrophage stimulating peptide, tuftsin, on the surface of the liposomes (LPs) that were loaded with doxorubicin (DOX) and/or curcumin (CUR), by attaching to its C-terminus a palmitoyl residue (Thr-Lys-Pro-Arg-CO-NH-(CH2)2-NH-COC15H31, P.Tuft) to enable its grafting within the liposome’s bilayer. Methods The prepared drug-loaded liposomes (DOX LPs, CUR LPs, DOX-CUR LPs, P.Tuft-LPs, P.Tuft-DOX LPs, P.Tuft-CUR LPs, P.Tuft-DOX-CUR LPs) were thoroughly characterised in terms of particle size, drug content, encapsulation efficiency and structural properties using UV–visible spectroscopy, dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FTIR). The anti-cancer activity and drug toxicity of the liposomal formulations were examined on Ehrlich ascites carcinoma (EAC) tumor-induced mice model. Results A significant reduction in the tumor weight and volume was observed upon treating the tumor-bearing mice with palmitoyl tuftsin-grafted dual drug-loaded liposomes (P.Tuft-DOX-CUR LPs), as compared to the single drug/peptide-loaded formulation (DOX LPs, CUR LPs, DOX-CUR LPs, P.Tuft- LPs, P.Tuft-DOX LPs, P.Tuft-CUR LPs). Western blot analysis revealed that the tumor inhibition was associated with p53-mediated apoptotic pathway. Further, the biochemical and histological analysis revealed that the various liposomal preparation used in this study were non-toxic to the animals at the specified dose (10mg/kg). Conclusion In conclusion, we have developed a targeted liposomal formulation of P.Tuftsin-bearing liposomes co-encapsulated with effective anti-cancer drugs such as doxorubicin and curcumin. In experimental animals, tumor inhibition by P.Tuft-DOX-CUR LPs indicates the synergistic therapeutic effect of the peptide and the dual drug.
Collapse
Affiliation(s)
| | | | | | - Chhitar M Gupta
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, India
| | - Wahajul Haq
- Central Drug Research Institute (CDRI), Medicinal and Process Chemistry Division, Lucknow, India
| |
Collapse
|
20
|
Peng H, Wang JH, Guo F, Zhu FF, Wen ZJ, Zhong HJ, Liang DS. Legumain protease-activated tuftsin-functionalized nanoparticles for dual-targeting TAMs and cancer chemotherapy. Colloids Surf B Biointerfaces 2020; 197:111442. [PMID: 33166937 DOI: 10.1016/j.colsurfb.2020.111442] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022]
Abstract
M2 tumor-associated macrophages (TAMs) play a pivotal role in cancer progression and therapy resistance. Inhibition of TAMs is of great significance to reshape the protumor environment to benefit therapeutic outcomes. In this work, we developed a novel TAMs and tumor cells dual-targeting nanoparticle (ATpep-NPs) system for cancer chemotherapy by integrating a docetaxel (DTX)-loaded nanocarrier and a multi-function peptide ATpep, which is composed of a phagocytosis-stimulating peptide-tuftsin (Tpep) fused with a substrate peptide-alanine-alanine-asparagine (AAN) of endoprotease legumain. In vitro protelytic and cellular uptake assays confirmed ATpep-NPs can be responsively activated into Tpep-NPs by cleavage of legumain that is overexpressed in both tumor cells and TAMs, which then promoted tumor cells internalization and TAMs phagocytosis through neuropilin-1/Fc receptor pathways. Due to AAN deactivation effect, ATpep-NPs can effectively decrease the Tpep-induced non-specific uptake by M1-polarized and normal macrophage during systemic circulation. Our results of in vivo experiments demonstrated ATpep-NPs outperformed Tpep-NPs in tumor and TAMs dual-targeting delivery efficiency with markedly enhanced efficacy against both tumor growth inhibition and TAMs depletion. Overall, this study offers a novel approach for development of multitargeted delivery vehicle for improved cancer chemotherapy.
Collapse
Affiliation(s)
- Hui Peng
- School of Pharmacy, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, 330006, PR China
| | - Jia-Hui Wang
- School of Pharmacy, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, 330006, PR China
| | - Feng Guo
- School of Pharmacy, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, 330006, PR China
| | - Fang-Fang Zhu
- School of Pharmacy, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, 330006, PR China
| | - Zu-Jun Wen
- School of Pharmacy, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, 330006, PR China
| | - Hai-Jun Zhong
- School of Pharmacy, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, 330006, PR China
| | - De-Sheng Liang
- School of Pharmacy, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, 330006, PR China.
| |
Collapse
|
21
|
Perez-Miller S, Patek M, Moutal A, Cabel CR, Thorne CA, Campos SK, Khanna R. In silico identification and validation of inhibitors of the interaction between neuropilin receptor 1 and SARS-CoV-2 Spike protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.22.308783. [PMID: 32995772 PMCID: PMC7523098 DOI: 10.1101/2020.09.22.308783] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuropilin-1 (NRP-1) is a multifunctional transmembrane receptor for ligands that affect developmental axonal growth and angiogenesis. In addition to a role in cancer, NRP-1 is a reported entry point for several viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19). The furin cleavage product of SARS-CoV-2 Spike protein takes advantage of the vascular endothelial growth factor A (VEGF-A) binding site on NRP-1 which accommodates a polybasic stretch ending in a C-terminal arginine. This site has long been a focus of drug discovery efforts for cancer therapeutics. We recently showed that interruption of the VEGF-A/NRP-1 signaling pathway ameliorates neuropathic pain and hypothesize that interference of this pathway by SARS-CoV-2 spike protein interferes with pain signaling. Here, we report hits from a small molecule and natural product screen of nearly 0.5 million compounds targeting the VEGF-A binding site on NRP-1. We identified nine chemical series with lead- or drug-like physico-chemical properties. Using an ELISA, we demonstrate that six compounds disrupt VEGF-A-NRP-1 binding more effectively than EG00229, a known NRP-1 inhibitor. Secondary validation in cells revealed that almost all tested compounds inhibited VEGF-A triggered VEGFR2 phosphorylation. Two compounds displayed robust inhibition of a recombinant vesicular stomatitis virus protein that utilizes the SARS-CoV-2 Spike for entry and fusion. These compounds represent a first step in a renewed effort to develop small molecule inhibitors of the VEGF-A/NRP-1 signaling for the treatment of neuropathic pain and cancer with the added potential of inhibiting SARS-CoV-2 virus entry.
Collapse
Affiliation(s)
- Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, USA
| | - Marcel Patek
- Bright Rock Path Consulting, LLC, Tucson, Arizona
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Carly R. Cabel
- Department of Cellular & Molecular Medicine, College of Medicine, The University of Arizona
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
| | - Curtis A. Thorne
- Department of Cellular & Molecular Medicine, College of Medicine, The University of Arizona
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
- Bio5 Institute, University of Arizona
| | - Samuel K. Campos
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
- Bio5 Institute, University of Arizona
- Department of Immunobiology, College of Medicine, University of Arizona
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, USA
- Regulonix LLC, 1555 E. Entrada Segunda, Tucson, AZ 85718, USA
| |
Collapse
|
22
|
Conole D, Chou Y, Patsiarika A, Nwabo V, Dimitriou E, Soudy C, Mota F, Djordjevic S, Selwood DL. Discovery of a novel fluorescent chemical probe suitable for evaluation of neuropilin-1 binding of small molecules. Drug Dev Res 2020; 81:491-500. [PMID: 31958155 PMCID: PMC7317715 DOI: 10.1002/ddr.21641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/06/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
Neuropilin-1 (NRP1) is emerging as an important molecule in immune signaling where it has been shown to modulate the actions of TGF-β1 in macrophages and regulatory T cells. The development of cost-effective and reliable assays for NRP1 binding is therefore important. We synthesized three new NRP1 small molecule fluorophores and examined their performance as fluorescent polarization probes. One molecule DS108 exhibited favorable binding and fluorescent characteristics and allowed us to establish a simple assay suitable for medium to high throughput screening of small molecules.
Collapse
Affiliation(s)
- Daniel Conole
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | - Yi‐Tai Chou
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | | | - Valery Nwabo
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | - Eleni Dimitriou
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | - Christelle Soudy
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | - Filipa Mota
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | - Snezana Djordjevic
- Institute of Structural and Molecular BiologyUniversity College LondonLondonUK
| | - David L. Selwood
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| |
Collapse
|
23
|
Pal K, Madamsetty VS, Dutta SK, Wang E, Angom RS, Mukhopadhyay D. Synchronous inhibition of mTOR and VEGF/NRP1 axis impedes tumor growth and metastasis in renal cancer. NPJ Precis Oncol 2019; 3:31. [PMID: 31840081 PMCID: PMC6895165 DOI: 10.1038/s41698-019-0105-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is known for its highly vascular phenotype which is associated with elevated expression of vascular endothelial growth factor A (VEGF), also known as vascular permeability factor (VPF). Accordingly, VEGF has been an attractive target for antiangiogenic therapies in ccRCC. Two major strategies have hitherto been utilized for VEGF-targeted antiangiogenic therapies: targeting VEGF by antibodies, ligand traps or aptamers, and targeting the VEGF receptor signaling via antibodies or small-molecule tyrosine-kinase inhibitors (TKIs). In the present article we utilized two entirely different approaches: targeting mammalian target of rapamycin (mTOR) pathway that is known to be involved in VEGF synthesis, and disruption of VEGF/Neuroplin-1 (NRP1) axis that is known to activate proangiogenic and pro-tumorigenic signaling in endothelial and tumor cells, respectively. Everolimus (E) and a small-molecule inhibitor EG00229 (G) were used for the inhibition of mTOR and the disruption of VEGF/NRP1 axis, respectively. We also exploited a liposomal formulation decorated with a proprietary tumor-targeting-peptide (TTP) to simultaneously deliver these two agents in a tumor-targeted manner. The TTP-liposomes encapsulating both Everolimus and EG00229 (EG-L) demonstrated higher in vitro and in vivo growth retardation than the single drug-loaded liposomes (E-L and G-L) in two different ccRCC models and led to a noticeable reduction in lung metastasis in vivo. In addition, EG-L displayed remarkable inhibition of tumor growth in a highly aggressive syngeneic immune-competent mouse model of ccRCC developed in Balb/c mice. Taken together, this study demonstrates an effective approach to achieve improved therapeutic outcome in ccRCC.
Collapse
Affiliation(s)
- Krishnendu Pal
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224 USA
| | - Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224 USA
| | - Shamit Kumar Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224 USA
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224 USA
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224 USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224 USA
| |
Collapse
|
24
|
Zou B, Xia S, Du X, Xu Y, Ning N, Li S, Teng D, Li H, Hu Z, Hu S, Wang Y. Treatment Effect of Tuftsin and Antigen Peptide Combined with Immune Cells on Colorectal Cancer. Med Sci Monit 2019; 25:5465-5472. [PMID: 31333222 PMCID: PMC6668490 DOI: 10.12659/msm.915037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The aim of this study was to investigate the effect of antigenic peptides on dendritic cell maturation and activation as well as the role of dendritic cell induced cell function. The tumor-specific cytotoxic T lymphocytes induced by activation of the dendritic cells were also evaluated. Material/Methods SW-480 cell lysate and peptide antigens were selected as adjuvants in dendritic cell sensitization, and tuftsin was used to induce the phagocytosis of dendritic cells. Immature dendritic cells were stimulated with the antigen and adjuvant as follows: group A was negative control; group B was SW-480 (20 μg/mL); group C was SW-480 (20 μg/mL)+tumor necrosis factor (TNF)-α (10 μg/mL); group D was SW-480 (20 μg/mL)+tuftsin (20 μg/mL); group E was antigen peptide (2 μg/mL); group F was antigen peptide (2 μg/mL)+TNF-α (10 μg/mL); group G was antigen peptide (2 μg/mL)+tuftsin (20 μg/mL). Cytotoxic T lymphocytes activation and in vitro anti-tumor effects were examined by detecting the maturation marks of dendritic cells as well as interleukin (IL)-10 and IL-12 levels secreted by dendritic cells. Cells with the strongest immunizing effects were injected into nude mice and tumor suppression status was evaluated. Results Group D (SW-480+tuftsin), group E (antigen peptides), group F (antigen peptide+TNF-α), and group G (antigen peptides+tuftsin) displayed significant differences compared to the control group (P<0.05). Group G (antigen peptides+tuftsin) could also promote the secretion of cytokines IL-12, as well as inhibit cytokine IL-10 secretion, compared to the other experimental groups (P<0.05). In the in vivo experiments of tumor inhibitions, antigenic polypeptide+tuftsin was the most effective (P<0.05). Conclusions Combination of cytotoxic T lymphocytes and T peptide therapy in treating human colorectal cancer might be used as a new treatment strategy based on adoptive cellular immunotherapy.
Collapse
Affiliation(s)
- Boyuan Zou
- Department of Retroperitoneal Tumor Surgery, Peking University International Hospital, Beijing, China (mainland).,Department of General Surgery, The General Hospital of People's Liberation Army, Beijing, China (mainland)
| | - Shaoyou Xia
- Department of General Surgery, The General Hospital of People's Liberation Army, Beijing, China (mainland)
| | - Xiaohui Du
- Department of General Surgery, The General Hospital of People's Liberation Army, Beijing, China (mainland)
| | - Yingxin Xu
- Department of General Surgery, The General Hospital of People's Liberation Army, Beijing, China (mainland)
| | - Ning Ning
- Department of General Surgery, The General Hospital of People's Liberation Army, Beijing, China (mainland).,Department of Gastrointestinal Surgery, Peking University International Hospital, Beijing, China (mainland)
| | - Songyan Li
- Department of General Surgery, The General Hospital of People's Liberation Army, Beijing, China (mainland)
| | - Da Teng
- Department of General Surgery, The General Hospital of People's Liberation Army, Beijing, China (mainland)
| | - Hao Li
- Department of General Surgery, The General Hospital of People's Liberation Army, Beijing, China (mainland)
| | - Zilong Hu
- Department of General Surgery, The General Hospital of People's Liberation Army, Beijing, China (mainland)
| | - Shidong Hu
- Department of General Surgery, The General Hospital of People's Liberation Army, Beijing, China (mainland)
| | - Yufeng Wang
- Department of General Surgery, The General Hospital of People's Liberation Army, Beijing, China (mainland)
| |
Collapse
|
25
|
Croci S, Bonacini M, Muratore F, Caruso A, Fontana A, Boiardi L, Soriano A, Cavazza A, Cimino L, Belloni L, Perry O, Fridkin M, Parmeggiani M, Blank M, Shoenfeld Y, Salvarani C. The therapeutic potential of tuftsin-phosphorylcholine in giant cell arteritis. J Autoimmun 2019; 98:113-121. [PMID: 30638709 DOI: 10.1016/j.jaut.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/09/2018] [Accepted: 01/02/2019] [Indexed: 01/13/2023]
Abstract
Tuftsin-PhosphorylCholine (TPC) is a novel bi-specific molecule which links tuftsin and phosphorylcholine. TPC has shown immunomodulatory activities in experimental mouse models of autoimmune diseases. We studied herein the effects of TPC ex vivo on both peripheral blood mononuclear cells (PBMCs) and temporal artery biopsies (TABs) obtained from patients with giant cell arteritis (GCA) and age-matched disease controls. GCA is an immune-mediated disease affecting large vessels. Levels of 18 cytokines in supernatants, PBMC viability, T helper (Th) cell differentiation of PBMCs and gene expression in TABs were analyzed. Treatment ex vivo with TPC decreased the production of IL-1β, IL-2, IL-5, IL-6, IL-9, IL-12(p70), IL-13, IL-17A, IL-18, IL-21, IL-22, IL-23, IFNγ, TNFα, GM-CSF by CD3/CD28 activated PBMCs whereas it negligibly affected cell viability. It reduced Th1 and Th17 differentiation while did not impact Th22 differentiation in PBMCs stimulated by phorbol 12-myristate 13-acetate plus ionomycin. In inflamed TABs, treatment with TPC down-regulated the production of IL-1β, IL-6, IL-13, IL-17A and CD68 gene expression. The effects of TPC were comparable to the effects of dexamethasone, included as the standard of care, with the exception of a greater reduction of IL-2, IL-18, IFNγ in CD3/CD28 activated PBMCs and CD68 gene in inflamed TABs. In conclusion our results warrant further investigations regarding TPC as an immunotherapeutic agent in GCA and potentially other autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Stefania Croci
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| | - Martina Bonacini
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesco Muratore
- Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Caruso
- Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Antonio Fontana
- Unit of Vascular Surgery, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Luigi Boiardi
- Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessandra Soriano
- Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Campus Bio-Medico, University of Rome, Rome, Italy
| | - Alberto Cavazza
- Unit of Pathology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Luca Cimino
- Unit of Ocular Immunology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Lucia Belloni
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Ori Perry
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Mati Fridkin
- Department of Organic Chemistry, The Weizmann Institute of Sciences, Rehovot, Israel
| | - Maria Parmeggiani
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Miri Blank
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - Yehuda Shoenfeld
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - Carlo Salvarani
- Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
26
|
Thompson KK, Nissen JC, Pretory A, Tsirka SE. Tuftsin Combines With Remyelinating Therapy and Improves Outcomes in Models of CNS Demyelinating Disease. Front Immunol 2018; 9:2784. [PMID: 30555470 PMCID: PMC6283261 DOI: 10.3389/fimmu.2018.02784] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
Though promoting remyelination in multiple sclerosis (MS) has emerged as a promising therapeutic strategy, it does not address inflammatory signals that continue to induce neuronal damage and inhibit effectiveness of repair mechanisms. Our lab has previously characterized the immunomodulatory tetrapeptide, tuftsin, which induces an anti-inflammatory shift in microglia and macrophages. This targeted anti-inflammatory agent improves physical deficits in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Here, we sought to determine whether tuftsin is also effective in combination with benztropine, an FDA-approved drug that stimulates remyelination, in both EAE and in the cuprizone model of demyelination. We show that combining these two agents to promote anti-inflammatory and remyelinating mechanisms alleviates symptoms in EAE and lessens pathological hallmarks in both MS models. Importantly, tuftsin is required to transform the inflammatory CNS environment normally present in EAE/MS into one of an anti-inflammatory nature, and benztropine is required in the cuprizone model to improve remyelination. Our data further support tuftsin's beneficial immunomodulatory activity in the context of EAE, and show that when studying remyelination in the absence of an autoimmune insult, tuftsin still activated microglia toward an anti-inflammatory fate, but benztropine was necessary for significant repair of the damaged myelin. Overall, tuftsin effectively combined with benztropine to significantly improve MS-like pathologies in both models.
Collapse
Affiliation(s)
- Kaitlyn K Thompson
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Jillian C Nissen
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States.,Department of Biological Sciences, State University of New York, College at Old Westbury, Old Westbury, NY, United States
| | - Amanda Pretory
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Stella E Tsirka
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
27
|
Powell J, Mota F, Steadman D, Soudy C, Miyauchi JT, Crosby S, Jarvis A, Reisinger T, Winfield N, Evans G, Finniear A, Yelland T, Chou YT, Chan AWE, O'Leary A, Cheng L, Liu D, Fotinou C, Milagre C, Martin JF, Jia H, Frankel P, Djordjevic S, Tsirka SE, Zachary IC, Selwood DL. Small Molecule Neuropilin-1 Antagonists Combine Antiangiogenic and Antitumor Activity with Immune Modulation through Reduction of Transforming Growth Factor Beta (TGFβ) Production in Regulatory T-Cells. J Med Chem 2018; 61:4135-4154. [PMID: 29648813 PMCID: PMC5957473 DOI: 10.1021/acs.jmedchem.8b00210] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
We
report the design, synthesis, and biological evaluation of some
potent small-molecule neuropilin-1 (NRP1) antagonists. NRP1 is implicated
in the immune response to tumors, particularly in Treg cell fragility,
required for PD1 checkpoint blockade. The design of these compounds
was based on a previously identified compound EG00229. The design
of these molecules was informed and supported by X-ray crystal structures.
Compound 1 (EG01377) was identified as having properties
suitable for further investigation. Compound 1 was then
tested in several in vitro assays and was shown to have antiangiogenic,
antimigratory, and antitumor effects. Remarkably, 1 was
shown to be selective for NRP1 over the closely related protein NRP2.
In purified Nrp1+, FoxP3+, and CD25+ populations of Tregs from mice, 1 was able to block
a glioma-conditioned medium-induced increase in TGFβ production.
This comprehensive characterization of a small-molecule NRP1 antagonist
provides the basis for future in vivo studies.
Collapse
Affiliation(s)
- Jonathan Powell
- NCE Discovery (Domainex Ltd) , Chesterford Research Park, Little Chesterford , Saffron Walden , Essex CB10 1XL , U.K
| | - Filipa Mota
- The Wolfson Institute for Biomedical Research , University College London , Gower Street , London WC1E 6BT , U.K
| | - David Steadman
- The Wolfson Institute for Biomedical Research , University College London , Gower Street , London WC1E 6BT , U.K
| | - Christelle Soudy
- The Wolfson Institute for Biomedical Research , University College London , Gower Street , London WC1E 6BT , U.K
| | - Jeremy T Miyauchi
- Department of Pharmacology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Stuart Crosby
- NCE Discovery (Domainex Ltd) , Chesterford Research Park, Little Chesterford , Saffron Walden , Essex CB10 1XL , U.K
| | - Ashley Jarvis
- NCE Discovery (Domainex Ltd) , Chesterford Research Park, Little Chesterford , Saffron Walden , Essex CB10 1XL , U.K
| | - Tifelle Reisinger
- NCE Discovery (Domainex Ltd) , Chesterford Research Park, Little Chesterford , Saffron Walden , Essex CB10 1XL , U.K
| | - Natalie Winfield
- NCE Discovery (Domainex Ltd) , Chesterford Research Park, Little Chesterford , Saffron Walden , Essex CB10 1XL , U.K
| | - Graham Evans
- Park Place Research Ltd , Unit 5/6 Willowbrook Technology Park, Llandogo Road, St. Mellons , Cardiff CF3 0EF , U.K
| | - Aled Finniear
- Park Place Research Ltd , Unit 5/6 Willowbrook Technology Park, Llandogo Road, St. Mellons , Cardiff CF3 0EF , U.K
| | | | - Yi-Tai Chou
- The Wolfson Institute for Biomedical Research , University College London , Gower Street , London WC1E 6BT , U.K
| | - A W Edith Chan
- The Wolfson Institute for Biomedical Research , University College London , Gower Street , London WC1E 6BT , U.K
| | - Andrew O'Leary
- Centre for Cardiovascular Biology and Medicine, Division of Medicine , University College London , 5 University Street , London WC1E 6JJ , U.K
| | - Lili Cheng
- Centre for Cardiovascular Biology and Medicine, Division of Medicine , University College London , 5 University Street , London WC1E 6JJ , U.K
| | - Dan Liu
- Centre for Cardiovascular Biology and Medicine, Division of Medicine , University College London , 5 University Street , London WC1E 6JJ , U.K
| | - Constantina Fotinou
- Institute of Structural and Molecular Biology , University College London , Gower Street , London WC1E 6BT , U.K
| | - Carla Milagre
- Centre for Cardiovascular Biology and Medicine, Division of Medicine , University College London , 5 University Street , London WC1E 6JJ , U.K
| | - John F Martin
- Centre for Cardiovascular Biology and Medicine, Division of Medicine , University College London , 5 University Street , London WC1E 6JJ , U.K
| | - Haiyan Jia
- Centre for Cardiovascular Biology and Medicine, Division of Medicine , University College London , 5 University Street , London WC1E 6JJ , U.K
| | - Paul Frankel
- Centre for Cardiovascular Biology and Medicine, Division of Medicine , University College London , 5 University Street , London WC1E 6JJ , U.K
| | - Snezana Djordjevic
- Institute of Structural and Molecular Biology , University College London , Gower Street , London WC1E 6BT , U.K
| | - Stella E Tsirka
- Department of Pharmacology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Ian C Zachary
- Centre for Cardiovascular Biology and Medicine, Division of Medicine , University College London , 5 University Street , London WC1E 6JJ , U.K
| | - David L Selwood
- The Wolfson Institute for Biomedical Research , University College London , Gower Street , London WC1E 6BT , U.K
| |
Collapse
|
28
|
Gong C, Valduga J, Chateau A, Richard M, Pellegrini-Moïse N, Barberi-Heyob M, Chastagner P, Boura C. Stimulation of medulloblastoma stem cells differentiation by a peptidomimetic targeting neuropilin-1. Oncotarget 2018; 9:15312-15325. [PMID: 29632646 PMCID: PMC5880606 DOI: 10.18632/oncotarget.24521] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 02/10/2018] [Indexed: 12/19/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Despite the progress of new treatments, the risk of recurrence, morbidity, and death remains important. The neuropilin-1 (NRP-1) receptor has recently been implicated in tumor progression of MB, which seems to play an important role in the phenotype of cancer stem cells. Targeting this receptor appears as an interesting strategy to promote MB stem cells differentiation. Cancer stem-like cells of 3 MB cell lines (DAOY, D283-Med and D341-Med), classified in the more pejorative molecular subgroups, were obtained by in vitro enrichment. These models were characterized by an increase of NRP-1 and cancer stem cell markers (CD15, CD133 and Sox2), meanwhile a decrease of the differentiated cell marker Neurofilament-M (NF-M) was observed. Our previous work investigated potential innovative peptidomimetics that specifically target NRP-1 and showed that MR438 had a good affinity for NRP-1. This small molecule decreased the self-renewal capacity of MB stem cells for the 3 cell lines and reduced the invasive ability of DAOY and D283 stem cells while NRP-1 expression and cancer stem cell markers decreased at the same time. Possible molecular mechanisms were explored and showed that the activation of PI3K/AKT and MAPK pathways significantly decreased for DAOY cells after treatment. Finally, our results highlighted that targeting NRP-1 with MR438 could be a potential new strategy to differentiate MB stem cells and could limit medulloblastoma progression.
Collapse
Affiliation(s)
- Caifeng Gong
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | - Julie Valduga
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.,Service d'Onco-Hématologie Pédiatrique, CHRU-Nancy, F-54000 Nancy, France
| | - Alicia Chateau
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | - Mylène Richard
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | | | | | - Pascal Chastagner
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.,Service d'Onco-Hématologie Pédiatrique, CHRU-Nancy, F-54000 Nancy, France
| | - Cédric Boura
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| |
Collapse
|
29
|
NRPa-308, a new neuropilin-1 antagonist, exerts in vitro anti-angiogenic and anti-proliferative effects and in vivo anti-cancer effects in a mouse xenograft model. Cancer Lett 2018; 414:88-98. [DOI: 10.1016/j.canlet.2017.10.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022]
|
30
|
Caponegro MD, Miyauchi JT, Tsirka SE. Contributions of immune cell populations in the maintenance, progression, and therapeutic modalities of glioma. AIMS ALLERGY AND IMMUNOLOGY 2018; 2:24-44. [PMID: 32914058 PMCID: PMC7480949 DOI: 10.3934/allergy.2018.1.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Immunotherapies are becoming a promising strategy for malignant disease. Selectively directing host immune responses to target cancerous tissue is a milestone of human health care. The roles of the innate and adaptive immune systems in both cancer progression and elimination are now being realized. Defining the immune cell environment and identifying the contributions of each sub-population of these cells has lead to an understanding of the immunotherapeutic processes, and demonstrated the potential of the immune system to drive cancer shrinkage and sustained immunity against disease. Poorly treated diseases, such as high-grade glioma, suffer from lack of therapeutic efficacy and rapid progression. Immunotherapeutic success in other solid malignancies, such as melanoma, now provides the principals for which this treatment paradigm can be adapted for primary brain cancers. The central nervous system is complex, and relative contributions of immune sub-populations to high grade glioma progression are not fully characterized. Here, we summarize recent research in both animal and humans which add to the knowledge base of how innate and adaptive immune cells contribute to glioma progression, and outline work which has demonstrated their potential to elicit anti-tumorigenic responses. Additionally, we highlight Neuropilin 1, a cell surface receptor protein, describe its signaling functions in the context of immunity, and point to its potential to slow glioma progression.
Collapse
Affiliation(s)
- Michael D Caponegro
- Department of Pharmacological Sciences, BioMedical Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Jeremy Tetsuo Miyauchi
- Department of Pharmacological Sciences, BioMedical Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Stella E Tsirka
- Department of Pharmacological Sciences, BioMedical Sciences, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
31
|
Roy S, Bag AK, Singh RK, Talmadge JE, Batra SK, Datta K. Multifaceted Role of Neuropilins in the Immune System: Potential Targets for Immunotherapy. Front Immunol 2017; 8:1228. [PMID: 29067024 PMCID: PMC5641316 DOI: 10.3389/fimmu.2017.01228] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022] Open
Abstract
Neuropilins (NRPs) are non-tyrosine kinase cell surface glycoproteins expressed in all vertebrates and widely conserved across species. The two isoforms, such as neuropilin-1 (NRP1) and neuropilin-2 (NRP2), mainly act as coreceptors for class III Semaphorins and for members of the vascular endothelial growth factor family of molecules and are widely known for their role in a wide array of physiological processes, such as cardiovascular, neuronal development and patterning, angiogenesis, lymphangiogenesis, as well as various clinical disorders. Intriguingly, additional roles for NRPs occur with myeloid and lymphoid cells, in normal physiological as well as different pathological conditions, including cancer, immunological disorders, and bone diseases. However, little is known concerning the molecular pathways that govern these functions. In addition, NRP1 expression has been characterized in different immune cellular phenotypes including macrophages, dendritic cells, and T cell subsets, especially regulatory T cell populations. By contrast, the functions of NRP2 in immune cells are less well known. In this review, we briefly summarize the genomic organization, structure, and binding partners of the NRPs and extensively discuss the recent advances in their role and function in different immune cell subsets and their clinical implications.
Collapse
Affiliation(s)
- Sohini Roy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Arup K Bag
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Rakesh K Singh
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, NE, United States
| | - James E Talmadge
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
32
|
Thompson KK, Tsirka SE. The Diverse Roles of Microglia in the Neurodegenerative Aspects of Central Nervous System (CNS) Autoimmunity. Int J Mol Sci 2017; 18:ijms18030504. [PMID: 28245617 PMCID: PMC5372520 DOI: 10.3390/ijms18030504] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases of the central nervous system (CNS) involve inflammatory components and result in neurodegenerative processes. Microglia, the resident macrophages of the CNS, are the first responders after insults to the CNS and comprise a major link between the inflammation and neurodegeneration. Here, we will focus on the roles of microglia in two autoimmune diseases: the prevalent condition of multiple sclerosis (MS) and the much rarer Rasmussen’s encephalitis (RE). Although there is an abundance of evidence that microglia actively contribute to neuronal damage in pathological states such as MS and RE, there is also evidence of important reparative functions. As current research supports a more complex and diverse array of functions and phenotypes that microglia can assume, it is an especially interesting time to examine what is known about both the damaging and restorative roles that microglia can play in the inflammatory CNS setting. We will also discuss the pharmacological approaches to modulating microglia towards a more neuroprotective state.
Collapse
Affiliation(s)
- Kaitlyn K Thompson
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA.
| | - Stella E Tsirka
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA.
| |
Collapse
|
33
|
Miyauchi JT, Chen D, Choi M, Nissen JC, Shroyer KR, Djordevic S, Zachary IC, Selwood D, Tsirka SE. Ablation of Neuropilin 1 from glioma-associated microglia and macrophages slows tumor progression. Oncotarget 2016; 7:9801-14. [PMID: 26755653 PMCID: PMC4891085 DOI: 10.18632/oncotarget.6877] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/03/2016] [Indexed: 01/09/2023] Open
Abstract
Gliomas are the most commonly diagnosed primary tumors of the central nervous system (CNS). Median times of survival are dismal regardless of the treatment approach, underlying the need to develop more effective therapies. Modulation of the immune system is a promising strategy as innate and adaptive immunity play important roles in cancer progression. Glioma associated microglia and macrophages (GAMs) can comprise over 30% of the cells in glioma biopsies. Gliomas secrete cytokines that suppress the anti-tumorigenic properties of GAMs, causing them to secrete factors that support the tumor's spread and growth. Neuropilin 1 (Nrp1) is a transmembrane receptor that in mice both amplifies pro-angiogenic signaling in the tumor microenvironment and affects behavior of innate immune cells. Using a Cre-lox system, we generated mice that lack expression of Nrp1 in GAMs. We demonstrate, using an in vivo orthotopic glioma model, that tumors in mice with Nrp1-deficient GAMs exhibit less vascularity, grow at a slower pace, and are populated by increased numbers of anti-tumorigenic GAMs. Moreover, glioma survival times in mice with Nrp1-deficient GAMs were significantly longer. Treating wild-type mice with a small molecule inhibitor of Nrp1's b1 domain, EG00229, which we show here is selective for Nrp1 over Nrp2, yielded an identical outcome. Nrp1-deficient or EG00229-treated wild-type microglia exhibited a shift towards anti-tumorigenicity as evident by altered inflammatory marker profiles in vivo and decreased SMAD2/3 activation when conditioned in the presence of glioma-derived factors. These results provide support for the proposal that pharmacological inhibition of Nrp1 constitutes a potential strategy for suppressing glioma progression.
Collapse
Affiliation(s)
- Jeremy T Miyauchi
- Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | - Danling Chen
- Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | - Matthew Choi
- Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | - Jillian C Nissen
- Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | - Kenneth R Shroyer
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Snezana Djordevic
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Ian C Zachary
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, London, UK
| | - David Selwood
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Stella E Tsirka
- Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
34
|
Wei Q, Cheng Y, Zhu WT, Lv XT, Ou K, Chen QP. Role of tuftsin and its inhibitor in progression of acute pancreatitis. Shijie Huaren Xiaohua Zazhi 2016; 24:3404-3409. [DOI: 10.11569/wcjd.v24.i22.3404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of tuftsin and its inhibitor in acute pancreatitis (AP).
METHODS: Twenty-four SD rats were randomly divided into five groups: a blank control group, a tuftsin group, an AP group, an AP + tuftsin group, and an AP + tuftsin inhibitor group. AP was induced in rats by injecting sodium taurocholate in the pancreatic duct. Tuftsin or its inhibitor (75 μg/kg) was injected via the femoral vein at 20 min after model induction. At 3, 6, and 12 h after model induction, pancreatic samples were taken for HE staining to detect pancreatic pathology, and serum samples were taken for tumor necrosis factor (TNF) and interleukin-1 (IL-1) measurement by ELISA.
RESULTS: Serum levels of TNF and IL-1 were significantly higher in the AP group than in the control group, and in the AP + tuftsin group than in the AP group. Serum levels of TNF and IL-1 were significantly decreased in the AP + tuftsin inhibitor group at 6 h and 12 h, but showed no significant change at 3 h. Correlation analysis showed that serum levels of TNF/IL-1 were positively correlated with pancreatic pathology.
CONCLUSION: Tuftsin accelerates the deve-lopment of AP by inducing TNF and IL-1. The inhibitor of tuftsin can alleviate AP by downregulating TNF and IL-1.
Collapse
|
35
|
Lewis CS, Torres L, Miyauchi JT, Rastegar C, Patete JM, Smith JM, Wong SS, Tsirka SE. Absence of Cytotoxicity towards Microglia of Iron Oxide (α-Fe 2O 3) Nanorhombohedra. Toxicol Res (Camb) 2016; 5:836-847. [PMID: 27274811 PMCID: PMC4890976 DOI: 10.1039/c5tx00421g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/04/2016] [Indexed: 12/11/2022] Open
Abstract
Understanding the nature of interactions between nanomaterials, such as commercially ubiquitous hematite (α-Fe2O3) Nanorhombohedra (N-Rhomb) and biological systems is of critical importance for gaining insight into the practical applicability of nanomaterials. Microglia represent the first line of defense in the central nervous system (CNS) during severe injury or disease such as Parkinson's and Alzheimer's disease as illustrative examples. Hence, to analyze the potential cytotoxic effect of nanorhombohedra exposure in the presence of microglia, we have synthesized Rhodamine B (RhB) labeled-α-Fe2O3 N-Rhomb, with lengths of 47 ± 10 nm and widths of 35 ± 8 nm. Internalization of RhB labeled-α-Fe2O3 N-Rhomb by microglia in the mouse brain was observed, and a dose-dependent increase in the cellular iron content as probed by cellular fluorescence was detected in cultured microglia after nanoparticle exposure. The cells maintained clear functional viability, exhibiting little to no cytotoxic effects after 24 and 48 hours at acceptable, physiological concentrations. Importantly, the nanoparticle exposure did not induce microglial cells to produce either tumor necrosis factor alpha (TNFα) or interleukin 1-beta (IL1β), two pro-inflammatory cytokines, nor did exposure induce the production of nitrites and reactive oxygen species (ROS), which are common indicators for the onset of inflammation. Finally, we propose that under the conditions of our experiments, i.e. in the presence of RhB labeled-α-Fe2O3 N-Rhomb maintaining concentrations of up to 100 µg/mL after 48 hours of incubation, the in vitro and in vivo internalization of RhB labeled-α-Fe2O3 N-Rhomb are likely to be clathrin-dependent, which represents a conventional mechanistic uptake route for most cells. Given the crucial role that microglia play in many neurological disorders, understanding the potential cytotoxic effects of these nanostructures is of fundamental importance if they are to be used in a therapeutic setting.
Collapse
Affiliation(s)
- Crystal S. Lewis
- Department of Chemistry
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-3400
, USA
.
| | - Luisa Torres
- Department of Pharmacological Sciences
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-8651
, USA
.
| | - Jeremy T. Miyauchi
- Department of Pharmacological Sciences
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-8651
, USA
.
| | - Cyrus Rastegar
- Department of Pharmacological Sciences
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-8651
, USA
.
| | - Jonathan M. Patete
- Department of Chemistry
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-3400
, USA
.
| | - Jacqueline M. Smith
- Department of Chemistry
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-3400
, USA
.
| | - Stanislaus S. Wong
- Department of Chemistry
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-3400
, USA
.
- Condensed Matter Physics and Materials Science Department
, Building 480
, Brookhaven National Laboratory
,
Upton
, New York 11973
, USA
| | - Stella E. Tsirka
- Department of Pharmacological Sciences
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-8651
, USA
.
| |
Collapse
|
36
|
Nissen JC, Tsirka SE. Tuftsin-driven experimental autoimmune encephalomyelitis recovery requires neuropilin-1. Glia 2016; 64:923-36. [PMID: 26880314 DOI: 10.1002/glia.22972] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 12/31/2015] [Accepted: 01/12/2016] [Indexed: 01/01/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model of demyelinating autoimmune disease, such as multiple sclerosis (MS), which is characterized by central nervous system white matter lesions, microglial activation, and peripheral T-cell infiltration secondary to blood-brain barrier disruption. We have previously shown that treatment with tuftsin, a tetrapeptide generated from IgG proteolysis, dramatically improves disease symptoms in EAE. Here, we report that microglial expression of Neuropilin-1 (Nrp1) is required for tuftsin-driven amelioration of EAE symptoms. Nrp1 ablation in microglia blocks microglial signaling and polarization to the anti-inflammatory M2 phenotype, and ablation in either the microglia or immunosuppressive regulatory T cells (Tregs) reduces extended functional contacts between them and Treg activation, implicating a role for microglia in the activation process, and more generally, how immune surveillance is conducted in the CNS. Taken together, our findings delineate the mechanistic action of tuftsin as a candidate therapeutic against immune-mediated demyelinating lesions.
Collapse
Affiliation(s)
- Jillian C Nissen
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, New York, New York
| | - Stella E Tsirka
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, New York, New York
| |
Collapse
|
37
|
VEGF-A acts via neuropilin-1 to enhance epidermal cancer stem cell survival and formation of aggressive and highly vascularized tumors. Oncogene 2016; 35:4379-87. [PMID: 26804163 DOI: 10.1038/onc.2015.507] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/09/2015] [Accepted: 12/14/2015] [Indexed: 12/20/2022]
Abstract
We identify a limited subpopulation of epidermal cancer stem cells (ECS cells), in squamous cell carcinoma, that form rapidly growing, invasive and highly vascularized tumors, as compared with non-stem cancer cells. These ECS cells grow as non-attached spheroids, and display enhanced migration and invasion. We show that ECS cell-produced vascular endothelial growth factor (VEGF)-A is required for the maintenance of this phenotype, as knockdown of VEGF-A gene expression or treatment with VEGF-A-inactivating antibody reduces these responses. In addition, treatment with bevacizumab reduces tumor vascularity and growth. Surprisingly, the classical mechanism of VEGF-A action via interaction with VEGF receptors does not mediate these events, as these cells lack VEGFR1 and VEGFR2. Instead, VEGF-A acts via the neuropilin-1 (NRP-1) co-receptor. Knockdown of NRP-1 inhibits ECS cell spheroid formation, invasion and migration, and attenuates tumor formation. These studies suggest that VEGF-A acts via interaction with NRP-1 to trigger intracellular events leading to ECS cell survival and formation of aggressive, invasive and highly vascularized tumors.
Collapse
|
38
|
Tuftsin-derived T-peptide prevents cellular immunosuppression and improves survival rate in septic mice. Sci Rep 2015; 5:16725. [PMID: 26577833 PMCID: PMC4649719 DOI: 10.1038/srep16725] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/19/2015] [Indexed: 12/29/2022] Open
Abstract
The primary mechanisms of sepsis induced cellular immunesuppression involve immune dysfunction of T lymphocytes and negative immunoregulation of regulatory T cells (Tregs). It has been found that tuftsin is an immune modulating peptide derived from IgG in spleen. T-peptide is one of tuftsin analogs. Herein, we examined the effect of T-peptide on cell-mediated immunity in the presence of lipopolysaccharide (LPS) and the survival rate in septic mice. T-peptide regulated the proliferative ability of CD4+CD25− T cells in dual responses. Meanwhile, 10 and 100 μg/ml T-peptides were able to enhance the apoptotic rate of CD4+CD25− T cells compared with 1 μg/ml T-peptide, but markedly lowered interleukin (IL)-2 levels. When CD4+CD25+ Tregs were treated with T-peptide for 24 hours, and co-cultured with normal CD4+CD25− T cells, the suppressive ability of CD4+CD25+ Tregs on CD4+CD25− T cells was significantly lowered, along with decreased expression in forkhead/winged helix transcription factor p-3 (Foxp-3) as well as cytotoxic T lymphocyte-associated antigen (CTLA)-4, and secretion of transforming growth factor (TGF)-β. Moreover, T-peptide has the ability to improve outcome of septic mice in a dose- and time- dependent manner, and associated with improvement in the microenvironment of cellular immunosuppression in septic mice.
Collapse
|
39
|
Januchta W, Serocki M, Dzierzbicka K, Cholewiński G, Skladanowski A. Synthesis of functionalized new conjugates of batracylin with tuftsin/retro-tuftsin derivatives and their biological evaluation. Eur J Med Chem 2015; 106:85-94. [PMID: 26520842 DOI: 10.1016/j.ejmech.2015.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/29/2015] [Accepted: 10/06/2015] [Indexed: 12/26/2022]
Abstract
New batracylin conjugates with tuftsin/retro-tuftsin derivatives were designed and synthesized using T3P as a coupling agent. The conjugates possess an amide bond formed between the carboxyl group of heterocyclic molecule and the N-termini of the tuftsin/retro-tuftsin chain. The in vitro cytotoxic activity of the new analogues and their precursors was evaluated using a series of human and murine tumor cells. BAT conjugates containing retro-tuftsin with branched side aminoacid chain, in particular with leucine or isoleucine, were about 10-fold more cytotoxic toward two human tumor cell lines (lung adenocarcinoma (A549) and myeloblastic leukemia (HL-60)). These compounds showed about 10-fold increased cytotoxicity against the two types of tumor cells compared to parent BAT. We have not observed important differences in the mechanism of action between BAT and its cytotoxic tuftsin/retro-tuftsin conjugates. We propose that high biological activity of the most active BAT conjugates is a result of their greatly increased intracellular accumulation.
Collapse
Affiliation(s)
- Wioleta Januchta
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdansk, Poland
| | - Marcin Serocki
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdansk, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdansk, Poland.
| | - Grzegorz Cholewiński
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdansk, Poland
| | - Andrzej Skladanowski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdansk, Poland
| |
Collapse
|
40
|
Gu R, He Y, Han S, Yuan S, An Y, Meng Z, Zhu X, Gan H, Wu Z, Li J, Zheng Y, Zhang L, Gao L, Dou G. Pharmacokinetics and bioavailability of tuftsin-derived T peptide, a promising antitumor agent, in beagles. Drug Metab Pharmacokinet 2015; 31:51-56. [PMID: 26775850 DOI: 10.1016/j.dmpk.2015.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/27/2015] [Accepted: 08/16/2015] [Indexed: 12/09/2022]
Abstract
Tuftsin, a natural phagocytosis-stimulating tetrapeptide, had aroused much interest in tumor immunotherapy, but the poor pharmacokinetics hampered its clinical developments, for that it was extremely susceptible to degradation by enzymolysis in vivo. T Peptide (TP) was a newly designed tuftsin derivative aimed to enhance stability and was proved to have significant antitumor activity. In this study, the pharmacokinetics and bioavailability of TP was first clarified in beagles with subcutaneous administration, by using a simple and robust competitive ELISA method. Dose-dependency and non-linear dynamics of TP after single-dose (2, 6 and 18 mg kg(-1), respectively) were found, and the half-time of TP was proved to reach 1.3-2.8 h. Multiple dosing of 6 mg kg(-1) once a day for 7 days resulted in a slight accumulation (accumulation index was 1.92 ± 0.43), indicating that the dosing interval in the following clinical trial needs to be extended. The absolute bioavailability of TP was 31.1 ± 6.2% after subcutaneous administration. These results first demonstrated the pharmacokinetics and bioavailability data of TP in vivo, which illustrated the potential druggability of TP and provided useful information for the dosage regimen design in the following clinical trials, as well as a simple and feasible analytical method for clinical sample analysis.
Collapse
Affiliation(s)
- Ruolan Gu
- State Key Laboratory of Drug Metabolism, Hematological Pharmacology, Beijing Institute of Transfusion Medicine, 27, Taiping Road, Beijing 100850, PR China
| | - Yanlin He
- State Key Laboratory of Drug Metabolism, Hematological Pharmacology, Beijing Institute of Transfusion Medicine, 27, Taiping Road, Beijing 100850, PR China
| | - Su Han
- College of Pharmacy, Nankai University, 94, Weijin Road, Tianjin 300071, PR China
| | - Shoujun Yuan
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, 27, Taiping Road, Beijing 100850, PR China
| | - Yinghong An
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, 27, Taiping Road, Beijing 100850, PR China; Center for Clinical Laboratory, Airforce General Hospital of Chinese PLA, 30, Fucheng Road, Beijing 100142, PR China
| | - Zhiyun Meng
- State Key Laboratory of Drug Metabolism, Hematological Pharmacology, Beijing Institute of Transfusion Medicine, 27, Taiping Road, Beijing 100850, PR China
| | - Xiaoxia Zhu
- State Key Laboratory of Drug Metabolism, Hematological Pharmacology, Beijing Institute of Transfusion Medicine, 27, Taiping Road, Beijing 100850, PR China
| | - Hui Gan
- State Key Laboratory of Drug Metabolism, Hematological Pharmacology, Beijing Institute of Transfusion Medicine, 27, Taiping Road, Beijing 100850, PR China
| | - Zhuona Wu
- State Key Laboratory of Drug Metabolism, Hematological Pharmacology, Beijing Institute of Transfusion Medicine, 27, Taiping Road, Beijing 100850, PR China
| | - Jian Li
- State Key Laboratory of Drug Metabolism, Hematological Pharmacology, Beijing Institute of Transfusion Medicine, 27, Taiping Road, Beijing 100850, PR China
| | - Ying Zheng
- State Key Laboratory of Drug Metabolism, Hematological Pharmacology, Beijing Institute of Transfusion Medicine, 27, Taiping Road, Beijing 100850, PR China
| | - Ling Zhang
- State Key Laboratory of Drug Metabolism, Hematological Pharmacology, Beijing Institute of Transfusion Medicine, 27, Taiping Road, Beijing 100850, PR China
| | - Lei Gao
- State Key Laboratory of Drug Metabolism, Hematological Pharmacology, Beijing Institute of Transfusion Medicine, 27, Taiping Road, Beijing 100850, PR China
| | - Guifang Dou
- State Key Laboratory of Drug Metabolism, Hematological Pharmacology, Beijing Institute of Transfusion Medicine, 27, Taiping Road, Beijing 100850, PR China.
| |
Collapse
|
41
|
Gao Z, Nissen JC, Legakis L, Tsirka SE. Nicotine modulates neurogenesis in the central canal during experimental autoimmune encephalomyelitis. Neuroscience 2015; 297:11-21. [PMID: 25813705 DOI: 10.1016/j.neuroscience.2015.03.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/15/2022]
Abstract
Nicotine has been shown to attenuate experimental autoimmune encephalomyelitis (EAE) through inhibiting inflammation in microglial populations during the disease course. In this study, we investigated whether nicotine modified the regenerative process in EAE by examining nestin-expressing neural stem cells (NSCs) in the spinal cord, which is the primary area of demyelination and inflammation in EAE. Our results show that the endogenous neurogenic responses in the spinal cord after EAE are limited and delayed: while nestin expression is increased, the proliferation of ependymal cells is inhibited compared to healthy animals. Nicotine application significantly reduced nestin expression and partially allowed for the proliferation of ependymal cells. We found that reduction of ependymal cell proliferation correlated with inflammation in the same area, which was relieved by the administration of nicotine. Further, increased numbers of oligodendrocytes (OLs) were observed after nicotine treatment. These findings give a new insight into the mechanism of how nicotine functions to attenuate EAE.
Collapse
Affiliation(s)
- Z Gao
- Program in Neuroscience, Stony Brook University, Stony Brook, NY, United States; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| | - J C Nissen
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| | - L Legakis
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| | - S E Tsirka
- Program in Neuroscience, Stony Brook University, Stony Brook, NY, United States; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
42
|
Liu WJ, Liu XJ, Li L, Li Y, Zhang SH, Zhen YS. Tuftsin-based, EGFR-targeting fusion protein and its enediyne-energized analog show high antitumor efficacy associated with CD47 down-regulation. Cancer Immunol Immunother 2014; 63:1261-72. [PMID: 25164878 PMCID: PMC11029470 DOI: 10.1007/s00262-014-1604-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 08/15/2014] [Indexed: 01/13/2023]
Abstract
Tuftsin (TF) is an immunomodulator tetrapeptide (Thr-Lys-Pro-Arg) that binds to the receptor neuropilin-1 (Nrp1) on the surface of cells. Many reports have described anti-tumor activity of tuftsin to relate with nonspecific activation of the host immune system. Lidamycin (LDM) that displays extremely potent cytotoxicity to cancer cells is composed of an apoprotein (LDP) and an enediyne chromophore (AE). In addition, Ec is an EGFR-targeting oligopeptide. In the present study, LDP was used as protein scaffold and the specific carrier for the highly potent AE. Genetically engineered fusion proteins LDP-TF and Ec-LDP-TF were prepared; then, the enediyne-energized fusion protein Ec-LDM-TF was generated by integration of AE into Ec-LDP-TF. The tuftsin-based fusion proteins LDP-TF and Ec-LDP-TF significantly enhanced the phagocytotic activity of macrophages as compared with LDP (P < 0.05). Ec-LDP-TF effectively bound to tumor cells and macrophages; furthermore, it markedly suppressed the growth of human epidermoid carcinoma A431 xenograft in athymic mice by 84.2 % (P < 0.05) with up-regulated expression of TNF-α and IFN-γ. Ec-LDM-TF further augmented the therapeutic efficacy, inhibiting the growth of A431 xenograft by 90.9 % (P < 0.05); notably, the Ec-LDM-TF caused marked down-regulation of CD47 in A431 cells. Moreover, the best therapeutic effect was recorded in the group of animals treated with the combination of Ec-LDP-TF with Ec-LDM-TF. The results suggest that tuftsin-based, enediyne-energized, and EGFR-targeting fusion proteins exert highly antitumor efficacy with CD47 modulation. Tuftsin-based fusion proteins are potentially useful for treatment of EGFR- and CD47-overexpressing cancers.
Collapse
Affiliation(s)
- Wen-Juan Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Tiantan Xili, Beijing, 100050 China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, 250117 Shandong China
| | - Xiu-Jun Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Tiantan Xili, Beijing, 100050 China
| | - Liang Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Tiantan Xili, Beijing, 100050 China
| | - Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Tiantan Xili, Beijing, 100050 China
| | - Sheng-Hua Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Tiantan Xili, Beijing, 100050 China
| | - Yong-Su Zhen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Tiantan Xili, Beijing, 100050 China
| |
Collapse
|
43
|
Jiang X, Yu M, Qiao X, Liu M, Tang L, Jiang Y, Cui W, Li Y. Up-regulation of MDP and tuftsin gene expression in Th1 and Th17 cells as an adjuvant for an oral Lactobacillus casei vaccine against anti-transmissible gastroenteritis virus. Appl Microbiol Biotechnol 2014; 98:8301-12. [PMID: 24993357 DOI: 10.1007/s00253-014-5893-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/07/2014] [Accepted: 06/10/2014] [Indexed: 11/26/2022]
Abstract
The role of muramyl dipeptide (MDP) and tuftsin in oral immune adjustment remains unclear, particularly in a Lactobacillus casei (L. casei) vaccine. To address this, we investigated the effects of different repetitive peptides expressed by L. casei, specifically the MDP and tuftsin fusion protein (MT) repeated 20 and 40 times (20MT and 40MT), in mice also expressing the D antigenic site of the spike (S) protein of transmissible gastroenteritis virus (TGEV) on intestinal and systemic immune responses and confirmed the immunoregulation of these peptides. Treatment of mice with a different vaccine consisting of L. casei expressing MDP and tuftsin stimulated humoral and cellular immune responses. Both 20MT and 40MT induced an increase in IgG and IgA levels against TGEV, as determined using enzyme-linked immunosorbent assay. Increased IgG and IgA resulted in the activation of TGEV-neutralising antibody activity in vitro. In addition, 20MT and 40MT stimulated the differentiation of innate immune cells, including T helper cell subclasses and regulatory T (Treg) cells, which induced robust T helper type 1 and T helper type 17 (Th17) responses and reduced Treg T cell immune responses in the 20MT and 40MT groups, respectively. Notably, treatment of mice with L. casei expressing 20MT and 40MT enhanced the anti-TGEV antibody immune responses of both the humoral and mucosal immune systems. These findings suggest that L. casei expressing MDP and tuftsin possesses substantial immunopotentiating properties, as it can induce humoral and T cell-mediated immune responses upon oral administration, and it may be useful in oral vaccines against TGEV challenge.
Collapse
MESH Headings
- Acetylmuramyl-Alanyl-Isoglutamine/administration & dosage
- Acetylmuramyl-Alanyl-Isoglutamine/genetics
- Acetylmuramyl-Alanyl-Isoglutamine/immunology
- Administration, Oral
- Animals
- Female
- Gastroenteritis, Transmissible, of Swine/immunology
- Gastroenteritis, Transmissible, of Swine/prevention & control
- Gastroenteritis, Transmissible, of Swine/virology
- Lacticaseibacillus casei/genetics
- Lacticaseibacillus casei/immunology
- Male
- Mice
- Spike Glycoprotein, Coronavirus/administration & dosage
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Swine
- Th1 Cells/immunology
- Th17 Cells/immunology
- Transmissible gastroenteritis virus/genetics
- Transmissible gastroenteritis virus/immunology
- Tuftsin/administration & dosage
- Tuftsin/genetics
- Tuftsin/immunology
- Up-Regulation
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Xinpeng Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|