1
|
Sidorov EV, Smith K, Xu C, Route M, Sanghera DK. Corroborated evidence on change of metabolome after ischemic stroke due to large vessel occlusion. Metabolomics 2025; 21:41. [PMID: 40123037 DOI: 10.1007/s11306-025-02235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/05/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION Metabolomic studies which search for acute ischemic stroke (AIS) biomarkers commonly have contradictory findings. Robust methodology is required to understand true metabolome changes after AIS. METHODS To improve validity, we obtained corroborative evidence on change of serum metabolome after AIS by: (1) focusing on patients with large vessel occlusion (LVO), (2) combining cross-sectional and longitudinal study designs, and (3) performing analysis using different metabolome platforms: Nuclear Magnetic Resonance (NMR) and Liquid Chromatography-Mass Spectrometry (LC-MS). In the cross-sectional part we compared serum metabolome of 84 AIS patients and 82 controls using NMR at 48-72 h, while in the longitudinal part we prospectively analyzed serum metabolome using LC-MS on 15 AIS patients at < 24 h, 48-72 h, 5-7 days, 80-120 days. We hypothesized that serum metabolites elevated in cross-sectional part would show rising trajectory in longitudinal part, and vice versa. RESULTS We found that glycerol, phosphatidylethanolamine (PE), ceramide, phenylalanine and their derivatives had consistent increases, while other key metabolites including histidine, tyrosine, valine, glutamine, phosphatidylcholine (PC), sphingomyelin, fatty acids (FA) had consistent decreases after AIS. CONCLUSION We identified corroborated changes in metabolome after AIS across different technologies and study designs. These changes correspond to loss of nerve cell membrane integrity and activation of alternative metabolic pathways in the setting of blood brain barrier (BBB) disruption. If proven on a larger sample, our findings may improve prediction of mortality, and functional outcomes after AIS.
Collapse
Affiliation(s)
- Evgeny V Sidorov
- Department of Neurology, University of Oklahoma Health Sciences Center (OUHSC), 920 S.L.Young Blvd #2040, Oklahoma City, 73014, USA.
- Oklahoma Center for Neuroscience, OUHSC, Oklahoma City, USA.
| | - Kyle Smith
- Department of Neurology, University of Oklahoma Health Sciences Center (OUHSC), 920 S.L.Young Blvd #2040, Oklahoma City, 73014, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, OUHSC, Oklahoma City, USA
| | - Madhusmita Route
- Oklahoma Center for Neuroscience, OUHSC, Oklahoma City, USA
- Department of Pediatrics, College of Medicine, OUHSC, 940 Stanton Y Blvd, BMSB 317D, Oklahoma City, 73014, USA
- Department of Pharmaceutical Sciences, OUHSC, Oklahoma City, USA
| | - Dharambir K Sanghera
- Oklahoma Center for Neuroscience, OUHSC, Oklahoma City, USA.
- Department of Pediatrics, College of Medicine, OUHSC, 940 Stanton Y Blvd, BMSB 317D, Oklahoma City, 73014, USA.
- Department of Pharmaceutical Sciences, OUHSC, Oklahoma City, USA.
| |
Collapse
|
2
|
Bhat OM, Mir RA, Nehvi IB, Wani NA, Dar AH, Zargar MA. Emerging role of sphingolipids and extracellular vesicles in development and therapeutics of cardiovascular diseases. IJC HEART & VASCULATURE 2024; 53:101469. [PMID: 39139609 PMCID: PMC11320467 DOI: 10.1016/j.ijcha.2024.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Sphingolipids are eighteen carbon alcohol lipids synthesized from non-sphingolipid precursors in the endoplasmic reticulum (ER). The sphingolipids serve as precursors for a vast range of moieties found in our cells that play a critical role in various cellular processes, including cell division, senescence, migration, differentiation, apoptosis, pyroptosis, autophagy, nutrition intake, metabolism, and protein synthesis. In CVDs, different subclasses of sphingolipids and other derived molecules such as sphingomyelin (SM), ceramides (CERs), and sphingosine-1-phosphate (S1P) are directly related to diabetic cardiomyopathy, dilated cardiomyopathy, myocarditis, ischemic heart disease (IHD), hypertension, and atherogenesis. Several genome-wide association studies showed an association between genetic variations in sphingolipid pathway genes and the risk of CVDs. The sphingolipid pathway plays an important role in the biogenesis and secretion of exosomes. Small extracellular vesicles (sEVs)/ exosomes have recently been found as possible indicators for the onset of CVDs, linking various cellular signaling pathways that contribute to the disease progression. Important features of EVs like biocompatibility, and crossing of biological barriers can improve the pharmacokinetics of drugs and will be exploited to develop next-generation drug delivery systems. In this review, we have comprehensively discussed the role of sphingolipids, and sphingolipid metabolites in the development of CVDs. In addition, concise deliberations were laid to discuss the role of sEVs/exosomes in regulating the pathophysiological processes of CVDs and the exosomes as therapeutic targets.
Collapse
Affiliation(s)
- Owais Mohmad Bhat
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | | | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Abid Hamid Dar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - M Afzal Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| |
Collapse
|
3
|
Hodun K, Czuba M, Płoszczyca K, Sadowski J, Langfort J, Chabowski A, Baranowski M. The effect of normobaric hypoxia on acute exercise-induced changes in blood sphingoid base-1-phosphates metabolism in cyclists. Biol Sport 2024; 41:37-45. [PMID: 38524828 PMCID: PMC10955731 DOI: 10.5114/biolsport.2024.131414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/13/2023] [Accepted: 08/17/2023] [Indexed: 03/26/2024] Open
Abstract
Extracellular sphingosine-1-phosphate (S1P) emerged as an important regulator of muscle function. We previously found that plasma S1P concentration is elevated in response to acute exercise and training. Interestingly, hypoxia, which is commonly utilized in training programs, induces a similar effect. Therefore, the aim of the current study was to determine the effect of normobaric hypoxia on exercise-induced changes in blood sphingolipid metabolism. Fifteen male competitive cyclists performed a graded cycling exercise until exhaustion (GE) and a simulated 30 km individual time trial (TT) in either normoxic or hypoxic (FiO2 = 16.5%) conditions. Blood samples were taken before the exercise, following its cessation, and after 30 min of recovery. We found that TT increased dihydrosphingosine-1-phosphate (dhS1P) concentration in plasma (both HDL- and albumin-bound) and blood cells, as well as the rate of dhS1P release from erythrocytes, regardless of oxygen availability. Plasma concentration of S1P was, however, reduced during the recovery phase, and this trend was augmented by hypoxia. On the other hand, GE in normoxia induced a selective increase in HDL-bound S1P. This effect disappeared when the exercise was performed in hypoxia, and it was associated with reduced S1P level in platelets and erythrocytes. We conclude that submaximal exercise elevates total plasma dhS1P concentration via increased availability of dihydrosphingosine resulting in enhanced dhS1P synthesis and release by blood cells. Maximal exercise, on the other hand, induces a selective increase in HDL-bound S1P, which is a consequence of mechanisms not related to blood cells. We also conclude that hypoxia reduces post-exercise plasma S1P concentration.
Collapse
Affiliation(s)
- Katarzyna Hodun
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | - Miłosz Czuba
- Faculty of Rehabilitation, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Kamila Płoszczyca
- Department of Kinesiology, Institute of Sport – National Research Institute, Warsaw, Poland
| | - Jerzy Sadowski
- Faculty of Physical Education and Health, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Józef Langfort
- Department of Sports Theory, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | - Marcin Baranowski
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
4
|
Afrin F, Mateen S, Oman J, Lai JCK, Barrott JJ, Pashikanti S. Natural Products and Small Molecules Targeting Cellular Ceramide Metabolism to Enhance Apoptosis in Cancer Cells. Cancers (Basel) 2023; 15:4645. [PMID: 37760612 PMCID: PMC10527029 DOI: 10.3390/cancers15184645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular targeting strategies have been used for years in order to control cancer progression and are often based on targeting various enzymes involved in metabolic pathways. Keeping this in mind, it is essential to determine the role of each enzyme in a particular metabolic pathway. In this review, we provide in-depth information on various enzymes such as ceramidase, sphingosine kinase, sphingomyelin synthase, dihydroceramide desaturase, and ceramide synthase which are associated with various types of cancers. We also discuss the physicochemical properties of well-studied inhibitors with natural product origins and their related structures in terms of these enzymes. Targeting ceramide metabolism exhibited promising mono- and combination therapies at preclinical stages in preventing cancer progression and cemented the significance of sphingolipid metabolism in cancer treatments. Targeting ceramide-metabolizing enzymes will help medicinal chemists design potent and selective small molecules for treating cancer progression at various levels.
Collapse
Affiliation(s)
- Farjana Afrin
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Sameena Mateen
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Jordan Oman
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - James C. K. Lai
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Jared J. Barrott
- Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA;
| | - Srinath Pashikanti
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| |
Collapse
|
5
|
Zeng K, Zhou X, Liu W, Nie C, Zhang Y. Determination of endogenous sphingolipid content in stroke rats and HT22 cells subjected to oxygen-glucose deprivation by LC‒MS/MS. Lipids Health Dis 2023; 22:13. [PMID: 36698123 PMCID: PMC9878918 DOI: 10.1186/s12944-022-01762-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Stroke is the leading cause of death in humans worldwide, and its incidence increases every year. It is well documented that lipids are closely related to stroke. Analyzing the changes in lipid content in the stroke model after absolute quantification and investigating whether changes in lipid content can predict stroke severity provides a basis for the combination of clinical stroke and quantitative lipid indicators. METHODS This paper establishes a rapid, sensitive, and reliable LC‒MS/MS analytical method for the detection of endogenous sphingolipids in rat serum and brain tissue and HT22 cells and quantifies the changes in sphingolipid content in the serum and brain tissue of rats from the normal and pMCAO groups and in cells from the normal and OGD/R groups. Using sphingosine (d17:1) as the internal standard, a chloroform: methanol (9:1) mixed system was used for protein precipitation and lipid extraction, followed by analysis by reversed-phase liquid chromatography coupled to triple quadrupole mass spectrometry. RESULTS Based on absolute quantitative analysis of lipids in multiple biological samples, our results show that compared with those in the normal group, the contents of sphinganine (d16:0), sphinganine (d18:0), and phytosphingosine were significantly increased in the model group, except sphingosine-1-phosphate, which was decreased in various biological samples. The levels of each sphingolipid component in serum fluctuate with time. CONCLUSION This isotope-free and derivatization-free LC‒MS/MS method can achieve absolute quantification of sphingolipids in biological samples, which may also help identify lipid biomarkers of cerebral ischemia.
Collapse
Affiliation(s)
- Keqi Zeng
- grid.411866.c0000 0000 8848 7685Department of Pharmaceutics, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong 51006 Guangzhou, China
| | - Xin Zhou
- grid.411866.c0000 0000 8848 7685Department of Pharmaceutics, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong 51006 Guangzhou, China
| | - Wanyi Liu
- grid.411866.c0000 0000 8848 7685Department of Pharmaceutics, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong 51006 Guangzhou, China
| | - Cong Nie
- grid.411866.c0000 0000 8848 7685Department of Pharmaceutics, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong 51006 Guangzhou, China
| | - Yingfeng Zhang
- grid.411866.c0000 0000 8848 7685Department of Pharmaceutics, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong 51006 Guangzhou, China
| |
Collapse
|
6
|
Wu J, Luo Y, Shen Y, Hu Y, Zhu F, Wu J, Liu Y. Integrated Metabonomics and Network Pharmacology to Reveal the Action Mechanism Effect of Shaoyao Decoction on Ulcerative Colitis. Drug Des Devel Ther 2022; 16:3739-3776. [PMID: 36324421 PMCID: PMC9620839 DOI: 10.2147/dddt.s375281] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Traditional Chinese medicine (TCM) has the advantage of multi-component and multi-target, which becomes a hot spot in the treatment of numerous diseases. Shaoyao decoction (SYD) is a TCM prescription, which is mainly used to treat damp-heat dysentery clinically, with small side effects and low cost. However, its mechanism remains elusive. The purpose of this study is to explore the mechanism of SYD in the treatment of mice with ulcerative colitis (UC) induced by dextran sulfate sodium (DSS) through metabolomics and network pharmacology, and verify through molecular docking and immunohistochemistry, so as to provide a scientific basis for the role of SYD in the treatment of UC. Materials and Methods Firstly, DSS-induced UC models were established and then untargeted metabolomics analysis of feces, livers, serum and urine was performed to determine biomarkers and metabolic pathways closely related to the role of SYD. Besides, network pharmacology was applied to screen the active components and UC-related targets, which was verified by molecular docking. Finally, metabonomics and network pharmacology were combined to draw the metabolite-pathway-target network and verified by immunohistochemistry. Results Metabolomics results showed that a total of 61 differential metabolites were discovered in SYD-treated UC with 3 main metabolic pathways containing glycerophospholipid metabolism, sphingolipid metabolism and biosynthesis of unsaturated fatty acids, as well as 8 core targets involving STAT3, IL1B, IL6, IL2, AKT1, IL4, ICAM1 and CCND1. Molecular docking demonstrated that the first five targets had strong affinity with quercetin, wogonin, kaempferol and baicalein. Combined with metabolomics and network pharmacology, sphingolipid signaling pathway, PI3K/AKT-mTOR signaling pathway and S1P3 pathway were identified as the main pathways. Conclusion SYD can effectively ameliorate various symptoms and alleviate intestinal mucosal damage and metabolic disorder in DSS induced UC mice. Its effect is mainly related to sphingolipid metabolism, PI3K/AKT-mTOR signaling pathway and S1P3 pathway.
Collapse
Affiliation(s)
- Jin Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Yiting Luo
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Yan Shen
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, People’s Republic of China
| | - Yuyao Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, People’s Republic of China
| | - Fangyuan Zhu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Jiaqian Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Yingchao Liu
- Academic Affairs Office, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China,Correspondence: Yingchao Liu, Academic Affairs Office, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China, Email
| |
Collapse
|
7
|
Liu Y, He L, Liu B, Ying Y, Xu J, Yu M, Dang J, Liu K. Pharmacological inhibition of sphingolipid synthesis reduces ferroptosis by stimulating the HIF-1 pathway. iScience 2022; 25:104533. [PMID: 35784791 PMCID: PMC9240796 DOI: 10.1016/j.isci.2022.104533] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/04/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Affiliation(s)
- Yang Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065 Sichuan, P.R.China
| | - Libo He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065 Sichuan, P.R.China
| | - Binghua Liu
- Laboratory of Molecular Biology, College of Medicine, Chengdu University, Chengdu 610106 Sichuan, P. R. China
| | - Yuling Ying
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065 Sichuan, P.R.China
| | - Junling Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065 Sichuan, P.R.China
| | - Meng Yu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065 Sichuan, P.R.China
| | - Jinye Dang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065 Sichuan, P.R.China
| | - Ke Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065 Sichuan, P.R.China
- Corresponding author
| |
Collapse
|
8
|
Ouro A, Correa-Paz C, Maqueda E, Custodia A, Aramburu-Núñez M, Romaus-Sanjurjo D, Posado-Fernández A, Candamo-Lourido M, Alonso-Alonso ML, Hervella P, Iglesias-Rey R, Castillo J, Campos F, Sobrino T. Involvement of Ceramide Metabolism in Cerebral Ischemia. Front Mol Biosci 2022; 9:864618. [PMID: 35531465 PMCID: PMC9067562 DOI: 10.3389/fmolb.2022.864618] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke, caused by the interruption of blood flow to the brain and subsequent neuronal death, represents one of the main causes of disability in worldwide. Although reperfusion therapies have shown efficacy in a limited number of patients with acute ischemic stroke, neuroprotective drugs and recovery strategies have been widely assessed, but none of them have been successful in clinical practice. Therefore, the search for new therapeutic approaches is still necessary. Sphingolipids consist of a family of lipidic molecules with both structural and cell signaling functions. Regulation of sphingolipid metabolism is crucial for cell fate and homeostasis in the body. Different works have emphasized the implication of its metabolism in different pathologies, such as diabetes, cancer, neurodegeneration, or atherosclerosis. Other studies have shown its implication in the risk of suffering a stroke and its progression. This review will highlight the implications of sphingolipid metabolism enzymes in acute ischemic stroke.
Collapse
Affiliation(s)
- Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Clara Correa-Paz
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Elena Maqueda
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Antía Custodia
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Marta Aramburu-Núñez
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Daniel Romaus-Sanjurjo
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Adrián Posado-Fernández
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María Candamo-Lourido
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Maria Luz Alonso-Alonso
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Campos
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
9
|
Abstract
Altered lipid metabolism is a characteristic feature and potential driving factor of acute kidney injury (AKI). Of the lipids that accumulate in injured renal tissues, ceramides are potent regulators of metabolism and cell fate. Up-regulation of ceramide synthesis is a common feature shared across several AKI etiologies in vitro and in vivo. Furthermore, ceramide accumulation is an early event in the natural history of AKI that precedes cell death and organ dysfunction. Emerging evidence suggests that inhibition of ceramide accumulation may improve renal outcomes in several models of AKI. This review examines the landscape of ceramide metabolism and regulation in the healthy and injured kidney. Furthermore, we discuss the body of literature regarding ceramides as therapeutic targets for AKI and consider potential mechanisms by which ceramides drive kidney pathogenesis.
Collapse
Affiliation(s)
- Rebekah J Nicholson
- Department of Nutrition and Integrative Physiology, Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT
| | - William L Holland
- Department of Nutrition and Integrative Physiology, Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT.
| |
Collapse
|
10
|
Yu F, Feng X, Li X, Liu Z, Liao D, Luo Y, Wei M, Huang Q, Zhang L, Xia J. Association of Plasma Metabolic Biomarker Sphingosine-1-Phosphate With Cerebral Collateral Circulation in Acute Ischemic Stroke. Front Physiol 2021; 12:720672. [PMID: 34489737 PMCID: PMC8416917 DOI: 10.3389/fphys.2021.720672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
Background: The contribution of metabolic profile to the cerebral collateral circulation in acute ischemic stroke (AIS) has not been fully outlined. In this study, we conducted a metabolomic study to assess the relationship between the metabolic biomarkers and the collateral status of AIS. Methods: A two-stage study was conducted from September 2019 to June 2021 in our hospital. There were 96 subjects including 66 patients with AIS and 30 healthy controls in the discovery stage and 80 subjects including 53 patients with AIS and 27 healthy controls in the validation stage. Collateral circulation was assessed by the Tan score based on computed tomographic angiography (CTA). Liquid chromatography-tandem mass spectrometry was used to identify differential metabolic markers. Then, an ELISA was employed to detect the plasma levels of sphingosine-1-phosphate (S1P). Results:There were 114 differential metabolites between patients with AIS and control groups and 37 differential metabolites between good collateral circulation (GCC) and poor collateral circulation (PCC) groups. The pathway enrichment analysis revealed that arginine biosynthesis was the only statistically significant pathway between AIS and control groups and sphingolipid metabolism was the only statistically significant pathway between GCC and PCC groups. The differential metabolites sphinganine-1-phosphate (SA1P) and S1P belong to the sphingolipid metabolism. In the discovery stage, when the GCC group was compared with the PCC group, the receiver operating characteristic (ROC) analysis showed that plasma SA1P relative levels demonstrated an area under the curve (AUC) of 0.719 (95% CI: 0.582–0.834), and S1P levels demonstrated an AUC of 0.701 (95% CI: 0.567–0.819). In addition, both plasma SA1P and S1P relative levels showed significant negative correlations with the 90-day modified Rankin Scale (mRS) score. In the validation sample, higher plasma S1P levels were independent predictors of GCC (p = 0.014), and plasma S1P levels demonstrated an AUC of 0.738 (95% CI: 0.599–0.849) to differentiate patients with GCC from patients with PCC. In addition, plasma S1P levels also showed significant negative correlations with the 90-day mRS score. Conclusion: We first illustrated the association between plasma metabolic profiles and cerebral collateral circulation in patients with AIS. Plasma S1P levels might be a potential diagnostic biomarker for predicting collateral circulation status in patients with AIS.
Collapse
Affiliation(s)
- Fang Yu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xianjing Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Di Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yunfang Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Minping Wei
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Amin AM. The metabolic signatures of cardiometabolic diseases: Does the shared metabotype offer new therapeutic targets? LIFESTYLE MEDICINE 2021. [DOI: 10.1002/lim2.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Arwa M. Amin
- Department of Clinical and Hospital Pharmacy College of Pharmacy Taibah University Medina Saudi Arabia
| |
Collapse
|
12
|
Li L, Dai W, Li W, Zhang Y, Wu Y, Guan C, Zhang A, Huang H, Li Y. Integrated Network Pharmacology and Metabonomics to Reveal the Myocardial Protection Effect of Huang-Lian-Jie-Du-Tang on Myocardial Ischemia. Front Pharmacol 2021; 11:589175. [PMID: 33613277 PMCID: PMC7890363 DOI: 10.3389/fphar.2020.589175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Myocardial ischemia (MI) is one of the most common cardiovascular diseases with high incidence and mortality. Huang-Lian-Jie-Du-Tang (HLJDT) is a classic traditional Chinese prescription to clear “heat” and “poison”. In this study, we used a deliberate strategy integrating the methods of network pharmacology, pharmacodynamics, and metabonomics to investigate the molecular mechanism and potential targets of HLJDT in the treatment of MI. Firstly, by a network pharmacology approach, a global view of the potential compound-target-pathway network based on network pharmacology was constructed to provide a preliminary understanding of bioactive compounds and related targets of HLJDT for elucidating its molecular mechanisms in MI. Subsequently, in vivo efficacy of HLJDT was validated in a rat model. Meanwhile, the corresponding metabonomic profiles were used to explore differentially induced metabolic markers thus providing the metabolic mechanism of HLJDT in treating MI. The results demonstrated the myocardial protection effect of HLJDT on ischemia by a multicomponent-multitarget mode. This study highlights the reliability and effectiveness of a network pharmacology-based approach that identifies and validates the complex of natural compounds in HLJDT for illustrating the mechanism for the treatment of MI.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weixing Dai
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Kowloon, China
| | - Wenting Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yumao Zhang
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yanqin Wu
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chenfeng Guan
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Anye Zhang
- Department of Gastroenterology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hui Huang
- Department of Cardiovascular, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuzhen Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
13
|
Field BC, Gordillo R, Scherer PE. The Role of Ceramides in Diabetes and Cardiovascular Disease Regulation of Ceramides by Adipokines. Front Endocrinol (Lausanne) 2020; 11:569250. [PMID: 33133017 PMCID: PMC7564167 DOI: 10.3389/fendo.2020.569250] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic dysfunction is intertwined with the pathophysiology of both diabetes and cardiovascular disease. Recently, one particular lipid class has been shown to influence the development and sustainment of these diseases: ceramides. As a subtype of sphingolipids, these species are particularly central to many sphingolipid pathways. Increased levels of ceramides are known to correlate with impaired cardiovascular and metabolic health. Furthermore, the interaction between ceramides and adipokines, most notably adiponectin and leptin, appears to play a role in the pathophysiology of these conditions. Adiponectin appears to counteract the detrimental effects of elevated ceramides, largely through activation of the ceramidase activity of its receptors. Elevated ceramides appear to worsen leptin resistance, which is an important phenomenon in the pathophysiology of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Bianca C. Field
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
14
|
The S1P-S1PR Axis in Neurological Disorders-Insights into Current and Future Therapeutic Perspectives. Cells 2020; 9:cells9061515. [PMID: 32580348 PMCID: PMC7349054 DOI: 10.3390/cells9061515] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
Sphingosine 1-phosphate (S1P), derived from membrane sphingolipids, is a pleiotropic bioactive lipid mediator capable of evoking complex immune phenomena. Studies have highlighted its importance regarding intracellular signaling cascades as well as membrane-bound S1P receptor (S1PR) engagement in various clinical conditions. In neurological disorders, the S1P–S1PR axis is acknowledged in neurodegenerative, neuroinflammatory, and cerebrovascular disorders. Modulators of S1P signaling have enabled an immense insight into fundamental pathological pathways, which were pivotal in identifying and improving the treatment of human diseases. However, its intricate molecular signaling pathways initiated upon receptor ligation are still poorly elucidated. In this review, the authors highlight the current evidence for S1P signaling in neurodegenerative and neuroinflammatory disorders as well as stroke and present an array of drugs targeting the S1P signaling pathway, which are being tested in clinical trials. Further insights on how the S1P–S1PR axis orchestrates disease initiation, progression, and recovery may hold a remarkable potential regarding therapeutic options in these neurological disorders.
Collapse
|
15
|
Del Gaudio I, Sasset L, Di Lorenzo A, Wadsack C. Sphingolipid Signature of Human Feto-Placental Vasculature in Preeclampsia. Int J Mol Sci 2020; 21:ijms21031019. [PMID: 32033121 PMCID: PMC7037072 DOI: 10.3390/ijms21031019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 01/22/2023] Open
Abstract
Bioactive sphingolipids are emerging as key regulators of vascular function and homeostasis. While most of the clinical studies have been devoted to profile circulating sphingolipids in maternal plasma, little is known about the role of the sphingolipid at the feto-placental vasculature, which is in direct contact with the offspring circulation. Our study aims to compare the sphingolipid profile of normal with preeclamptic (PE) placental chorionic arteries and isolated endothelial cells, with the goal of unveiling potential underlying pathomechanisms in the vasculature. Dihydrosphingosine and sphingomyelin (SM) concentrations (C16:0-, C18:0-, and C24:0- sphingomyelin) were significantly increased in chorionic arteries of preeclamptic placentas, whereas total ceramide, although showing a downward trend, were not statistically different. Moreover, RNA and immunofluorescence analysis showed impaired sphingosine-1-phosphate (S1P) synthesis and signaling in PE vessels. Our data reveal that the exposure to a deranged maternal intrauterine environment during PE alters the sphingolipid signature and gene expression on the fetal side of the placental vasculature. This pathological remodeling consists in increased serine palmitoyltransferase (SPT) activity and SM accrual in PE chorionic arteries, with concomitance impairment endothelial S1P signaling in the endothelium of these vessels. The increase of endothelial S1P phosphatase, lyase and S1PR2, and blunted S1PR1 expression support the onset of the pathological phenotype in chorionic arteries.
Collapse
Affiliation(s)
- Ilaria Del Gaudio
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria;
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Linda Sasset
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
- Correspondence: (C.W.); (A.D.L.); Tel.: +43-316-385-81074 (C.W.); +1-212-746-6476 (A.D.L.)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria;
- Correspondence: (C.W.); (A.D.L.); Tel.: +43-316-385-81074 (C.W.); +1-212-746-6476 (A.D.L.)
| |
Collapse
|
16
|
Nakagawa S, Aruga J. Sphingosine 1-Phosphate Signaling Is Involved in Impaired Blood-Brain Barrier Function in Ischemia-Reperfusion Injury. Mol Neurobiol 2019; 57:1594-1606. [PMID: 31802363 DOI: 10.1007/s12035-019-01844-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/22/2019] [Indexed: 12/20/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a major bioactive lipid mediator in the vascular and immune system. Here, we have shown that inhibition of S1P signaling prevents blood-brain barrier (BBB) dysfunction after ischemia both in vitro and in vivo. In the in vitro BBB models, oxygen-glucose deprivation and reoxygenation (OGD/R) enhanced the expression of an S1P synthesizing enzyme (Sphk1) and S1P transporters (Abca1, Spns2), increasing S1P in culture media. Inhibitors of Sphk1 (SKI-II) or Abca1 (probucol) attenuated the decrease in transendothelial electrical resistance and the increase in permeability caused by OGD/R. In the middle cerebral artery occlusion and reperfusion (MCAO/R) model of mice, probucol administration after MCAO operation reduced the infarction area and vascular leakage, preserving the integrity of tight junction proteins. Furthermore, MCAO/R caused activation of STAT3, a downstream mediator of S1P signaling, which was suppressed by postoperative probucol administration. Accordingly, S1P activated STAT3, both in cultured vascular endothelial cells and pericytes, and STAT3 signaling inhibitor (Stattic) protected BBB dysfunction in OGD/R-treated in vitro BBB models. These results suggest that inhibition of S1P signaling is a strategy to treat BBB impairment after cerebral ischemia and highlight the potential alternative use of probucol, a classical anti-hyperlipidemic drug, for emergency treatment of stroke.
Collapse
Affiliation(s)
- Shinsuke Nakagawa
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Jun Aruga
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
17
|
Hannich JT, Haribowo AG, Gentina S, Paillard M, Gomez L, Pillot B, Thibault H, Abegg D, Guex N, Zumbuehl A, Adibekian A, Ovize M, Martinou JC, Riezman H. 1-Deoxydihydroceramide causes anoxic death by impairing chaperonin-mediated protein folding. Nat Metab 2019; 1:996-1008. [PMID: 32694842 DOI: 10.1038/s42255-019-0123-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/10/2019] [Indexed: 11/08/2022]
Abstract
Ischaemic heart disease and stroke are the most common causes of death worldwide. Anoxia, defined as the lack of oxygen, is commonly seen in both these pathologies and triggers profound metabolic and cellular changes. Sphingolipids have been implicated in anoxia injury, but the pathomechanism is unknown. Here we show that anoxia-associated injury causes accumulation of the non-canonical sphingolipid 1-deoxydihydroceramide (DoxDHCer). Anoxia causes an imbalance between serine and alanine resulting in a switch from normal serine-derived sphinganine biosynthesis to non-canonical alanine-derived 1-deoxysphinganine. 1-Deoxysphinganine is incorporated into DoxDHCer, which impairs actin folding via the cytosolic chaperonin TRiC, leading to growth arrest in yeast, increased cell death upon anoxia-reoxygenation in worms and ischaemia-reperfusion injury in mouse hearts. Prevention of DoxDHCer accumulation in worms and in mouse hearts resulted in decreased anoxia-induced injury. These findings unravel key metabolic changes during oxygen deprivation and point to novel strategies to avoid tissue damage and death.
Collapse
Affiliation(s)
- J Thomas Hannich
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
- Swiss National Center of Competence in Research (NCCR) "Chemical Biology", Geneva, Switzerland
| | - A Galih Haribowo
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
- Swiss National Center of Competence in Research (NCCR) "Chemical Biology", Geneva, Switzerland
| | - Sébastien Gentina
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Melanie Paillard
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Ludovic Gomez
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Bruno Pillot
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Hélène Thibault
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Daniel Abegg
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Nicolas Guex
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Andreas Zumbuehl
- Swiss National Center of Competence in Research (NCCR) "Chemical Biology", Geneva, Switzerland
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | | | - Michel Ovize
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Bron, France
| | | | - Howard Riezman
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.
- Swiss National Center of Competence in Research (NCCR) "Chemical Biology", Geneva, Switzerland.
| |
Collapse
|
18
|
Sackmann V, Sinha MS, Sackmann C, Civitelli L, Bergström J, Ansell-Schultz A, Hallbeck M. Inhibition of nSMase2 Reduces the Transfer of Oligomeric α-Synuclein Irrespective of Hypoxia. Front Mol Neurosci 2019; 12:200. [PMID: 31555088 PMCID: PMC6724746 DOI: 10.3389/fnmol.2019.00200] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
Recently, extracellular vesicles (EVs), such as exosomes, have been proposed to play an influential role in the cell-to-cell spread of neurodegenerative diseases, including the intercellular transmission of α-synuclein (α-syn). However, the regulation of EV biogenesis and its relation to Parkinson’s disease (PD) is only partially understood. The generation of EVs through the ESCRT-independent pathway depends on the hydrolysis of sphingomyelin by neutral sphingomyelinase 2 (nSMase2) to produce ceramide, which causes the membrane of endosomal multivesicular bodies to bud inward. nSMase2 is sensitive to oxidative stress, a common process in PD brains; however, little is known about the role of sphingomyelin metabolism in the pathogenesis of PD. This is the first study to show that inhibiting nSMase2 decreases the transfer of oligomeric aggregates of α-syn between neuron-like cells. Furthermore, it reduced the accumulation and aggregation of high-molecular-weight α-syn. Hypoxia, as a model of oxidative stress, reduced the levels of nSMase2, but not its enzymatic activity, and significantly altered the lipid composition of cells without affecting EV abundance or the transfer of α-syn. These data show that altering sphingolipids can mitigate the spread of α-syn, even under hypoxic conditions, potentially suppressing PD progression.
Collapse
Affiliation(s)
- Valerie Sackmann
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Maitrayee Sardar Sinha
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Christopher Sackmann
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Livia Civitelli
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Joakim Bergström
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Anna Ansell-Schultz
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Martin Hallbeck
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
19
|
Chao HC, Lee TH, Chiang CS, Yang SY, Kuo CH, Tang SC. Sphingolipidomics Investigation of the Temporal Dynamics after Ischemic Brain Injury. J Proteome Res 2019; 18:3470-3478. [PMID: 31310127 DOI: 10.1021/acs.jproteome.9b00370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sphingolipids (SPLs) have been proposed as potential therapeutic targets for strokes, but no reports have ever profiled the changes of the entire range of SPLs after a stroke. This study applied sphingolipidomic methods to investigate the temporal and individual changes in the sphingolipidome including the effect of atorvastatin after ischemic brain injury. We conducted sphingolipidomic profiling of mouse brain tissue by liquid chromatography-electrospray ionization tandem mass spectrometry at 3 h and 24 h after 1 h of middle cerebral artery occlusion (MCAO), and SPL levels were compared with those of the Sham control group. At 3 h post-MCAO, ceramides (Cers) exhibited an increase in levels of long-chain Cers but a decrease in very-long-chain Cers. Moreover, sphingosine, the precursor of sphingosine-1-phosphate (S1P), decreased and S1P increased at 3 h after MCAO. In contrast to 3 h, both long-chain and very-long-chain Cers showed an increased trend at 24 h post-MCAO. Most important, the administration of atorvastatin improved the neurological function of the mice and significantly reversed the SPL changes resulting from the ischemic injury. Furthermore, we used plasma samples from nonstroke control and stroke patients at time points of 72 h after a stroke, and found a similar trend of Cers as in the MCAO model. This study successfully elucidated the overall effect of ischemic injury on SPL metabolism with and without atorvastatin treatment. The network of SPL components that change upon ischemic damage may provide novel therapeutic targets for ischemic stroke.
Collapse
Affiliation(s)
- Hsi-Chun Chao
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 100 , Taiwan.,The Metabolomics Core Laboratory, Center of Genomic Medicine , National Taiwan University , Taipei 100 , Taiwan
| | - Tsung-Heng Lee
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 100 , Taiwan.,The Metabolomics Core Laboratory, Center of Genomic Medicine , National Taiwan University , Taipei 100 , Taiwan
| | - Chien-Sung Chiang
- Stroke Center and Department of Neurology , National Taiwan University Hospital , Taipei 100 , Taiwan
| | - Sin-Yu Yang
- Stroke Center and Department of Neurology , National Taiwan University Hospital , Taipei 100 , Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 100 , Taiwan.,The Metabolomics Core Laboratory, Center of Genomic Medicine , National Taiwan University , Taipei 100 , Taiwan.,Department of Pharmacy , National Taiwan University Hospital , Taipei 100 , Taiwan
| | - Sung-Chun Tang
- Stroke Center and Department of Neurology , National Taiwan University Hospital , Taipei 100 , Taiwan
| |
Collapse
|
20
|
Tian X, Zhang G, Zou Z, Yang Z. Anticancer Drug Affects Metabolomic Profiles in Multicellular Spheroids: Studies Using Mass Spectrometry Imaging Combined with Machine Learning. Anal Chem 2019; 91:5802-5809. [PMID: 30951294 PMCID: PMC6573030 DOI: 10.1021/acs.analchem.9b00026] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multicellular spheroids (hereinafter referred to as spheroids) are 3D biological models. The metabolomic profiles inside spheroids provide crucial information reflecting the molecular phenotypes and microenvironment of cells. To study the influence of an anticancer drug on the spatially resolved metabolites, spheroids were cultured using HCT-116 colorectal cancer cells, treated with the anticancer drug Irinotecan under a series of time- and concentration-dependent conditions. The Single-probe mass spectrometry imaging (MSI) technique was utilized to conduct the experiments. The MSI data were analyzed using advanced data analysis methods to efficiently extract metabolomic information. Multivariate curve resolution alternating least square (MCR-ALS) was used to decompose each MS image into different components with grouped species. To improve the efficiency of data analysis, both supervised (Random Forest) and unsupervised (cluster large applications (CLARA)) machine learning (ML) methods were employed to cluster MS images according to their metabolomic features. Our results indicate that anticancer drug significantly affected the abundances of a variety of metabolites in different regions of spheroids. This integrated experiment and data analysis approach can facilitate the studies of metabolites in different types of 3D tumor models and tissues and potentially benefit the drug discovery, therapeutic resistance, and other biological research fields.
Collapse
Affiliation(s)
- Xiang Tian
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Genwei Zhang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zhu Zou
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
21
|
Gong W, Zhu S, Chen C, Yin Q, Li X, Du G, Zhou Y, Qin X. The Anti-depression Effect of Angelicae Sinensis Radix Is Related to the Pharmacological Activity of Modulating the Hematological Anomalies. Front Pharmacol 2019; 10:192. [PMID: 30894817 PMCID: PMC6414447 DOI: 10.3389/fphar.2019.00192] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/14/2019] [Indexed: 12/31/2022] Open
Abstract
Angelicae Sinensis Radix (AS), a well-known herb in traditional Chinese medicine (TCM), has been wildly used for replenishing the blood and promoting circulation, in Asia for thousands of years. It has been confirmed that AS also possesses the pharmacological activity of anti-depression. At the same time, recent studies suggested that depression is associated with anemia, and depression could be ameliorated via modulating the blood system. However, it is still unknown whether the anti-depression effect of AS is related to its pharmacological activity of modulating the blood system. In the current study, hematological examination and metabonomic techniques were performed to explore potential anti-depression mechanisms of AS, related to the function of modulating the blood system in a chronic unpredictable mild stress (CUMS) model. The results demonstrated that AS could significantly improve CUMS-induced depressive symptom, hematological anomalies, and hypoxia symptoms. The analysis of metabonomics demonstrated that 26 potential biomarkers in depression could be regulated by the administration of AS. Among them, eight biomarkers participate in the metabolic pathways of amino acid and sphingolipid, and energy metabolism could also be regulated in an anemia model through the administration of AS, as reported in previous literatures. Further results proved that AS modulated energy metabolism in depression through the inhibition of the expression of pyruvate dehydrogenase lipoamide kinase isozyme 1 (PDK-1) and lactate dehydrogenase A (LDHA). These results suggested that the modulation of the blood system was involved in the anti-depression effect of AS. The mechanism may be associated with the promotion of the body’s energy metabolism, the stabilization of cell membranes, the promotion of serum protein synthesis, and the enhancement of immunity.
Collapse
Affiliation(s)
- Wenxia Gong
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Shiwei Zhu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Congcong Chen
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Qicai Yin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Xiao Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Guanhua Du
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| |
Collapse
|
22
|
Magaye RR, Savira F, Hua Y, Kelly DJ, Reid C, Flynn B, Liew D, Wang BH. The role of dihydrosphingolipids in disease. Cell Mol Life Sci 2019; 76:1107-1134. [PMID: 30523364 PMCID: PMC11105797 DOI: 10.1007/s00018-018-2984-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022]
Abstract
Dihydrosphingolipids refer to sphingolipids early in the biosynthetic pathway that do not contain a C4-trans-double bond in the sphingoid backbone: 3-ketosphinganine (3-ketoSph), dihydrosphingosine (dhSph), dihydrosphingosine-1-phosphate (dhS1P) and dihydroceramide (dhCer). Recent advances in research related to sphingolipid biochemistry have shed light on the importance of sphingolipids in terms of cellular signalling in health and disease. However, dihydrosphingolipids have received less attention and research is lacking especially in terms of their molecular mechanisms of action. This is despite studies implicating them in the pathophysiology of disease, for example dhCer in predicting type 2 diabetes in obese individuals, dhS1P in cardiovascular diseases and dhSph in hepato-renal toxicity. This review gives a comprehensive summary of research in the last 10-15 years on the dihydrosphingolipids, 3-ketoSph, dhSph, dhS1P and dhCer, and their relevant roles in different diseases. It also highlights gaps in research that could be of future interest.
Collapse
Affiliation(s)
- Ruth R Magaye
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Feby Savira
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yue Hua
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Darren J Kelly
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Christopher Reid
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bernard Flynn
- Australian Translational Medicinal Chemistry Facility, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bing H Wang
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
23
|
Sidorov E, Sanghera DK, Vanamala JKP. Biomarker for Ischemic Stroke Using Metabolome: A Clinician Perspective. J Stroke 2019; 21:31-41. [PMID: 30732441 PMCID: PMC6372900 DOI: 10.5853/jos.2018.03454] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/15/2019] [Indexed: 12/14/2022] Open
Abstract
Finding ischemic stroke biomarker is highly desirable because it can improve diagnosis even before a patient arrives to the hospital. Metabolome is one of new technologies that help to find biomarkers. Most metabolome-related ischemic stroke studies were done in Asia and had exploratory designs. Although failed to find specific biomarkers, they discovered several important metabolite-stroke associations which belong to three pathophysiological mechanisms: Excitotoxicity with activation of glutamate, resulting in the increase of glutamate derivatives proline and pyroglutamate; Oxidative stress with production of free radicals and perturbed concentrations of uric acid, matrix metalloproteinase-9, branch-chained amino acids, sphingolipids, homocysteine, asymmetric dimethylarginine, nitric oxide and folate cycle metabolites; and Stroke mediated inflammation, affecting phospholipid metabolism with perturbed levels of lysophosphatidylethanolamine and lysophosphatidylcholine. The discovered metabolite-stroke associations need further evaluation in prospective, high-quality studies with patients matched for age, risk factors, and medications.
Collapse
Affiliation(s)
- Evgeny Sidorov
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Dharambir K Sanghera
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jairam K P Vanamala
- Department of Plant Science, Penn State University, University Park, PA, USA.,Department of Food Science/Center for Molecular Immunology and Infectious Diseases, Penn State University, University Park, PA, USA
| |
Collapse
|
24
|
Abstract
Ischemic stroke is a sudden loss of brain function due to the reduction of blood flow. Brain tissues cease to function with subsequent activation of the ischemic cascade. Metabolomics and lipidomics are modern disciplines that characterize the metabolites and lipid components of a biological system, respectively. Because the pathogenesis of ischemic stroke is heterogeneous and multifactorial, it is crucial to establish comprehensive metabolomic and lipidomic approaches to elucidate these alterations in this disease. Fortunately, metabolomic and lipidomic studies have the distinct advantages of identifying tissue/mechanism-specific biomarkers, predicting treatment and clinical outcome, and improving our understanding of the pathophysiologic basis of disease states. Therefore, recent applications of these analytical approaches in the early diagnosis of ischemic stroke were discussed. In addition, the emerging roles of metabolomics and lipidomics on ischemic stroke were summarized, in order to gain new insights into the mechanisms underlying ischemic stroke and in the search for novel metabolite biomarkers and their related pathways.
Collapse
|
25
|
Pang HQ, Yue SJ, Tang YP, Chen YY, Tan YJ, Cao YJ, Shi XQ, Zhou GS, Kang A, Huang SL, Shi YJ, Sun J, Tang ZS, Duan JA. Integrated Metabolomics and Network Pharmacology Approach to Explain Possible Action Mechanisms of Xin-Sheng-Hua Granule for Treating Anemia. Front Pharmacol 2018; 9:165. [PMID: 29551975 PMCID: PMC5840524 DOI: 10.3389/fphar.2018.00165] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/14/2018] [Indexed: 11/13/2022] Open
Abstract
As a well-known traditional Chinese medicine (TCM) prescription, Xin-Sheng-Hua Granule (XSHG) has been applied in China for more than 30 years to treat postpartum diseases, especially anemia. However, underlying therapeutic mechanisms of XSHG for anemia were still unclear. In this study, plasma metabolomics profiling with UHPLC-QTOF/MS and multivariate data method was firstly analyzed to discover the potential regulation mechanisms of XSHG on anemia rats induced by bleeding from the orbit. Afterward, the compound-target-pathway network of XSHG was constructed by the use of network pharmacology, thus anemia-relevant signaling pathways were dissected. Finally, the crucial targets in the shared pathways of metabolomics and network pharmacology were experimentally validated by ELISA and Western Blot analysis. The results showed that XSHG could exert excellent effects on anemia probably through regulating coenzyme A biosynthesis, sphingolipids metabolism and HIF-1α pathways, which was reflected by the increased levels of EPOR, F2, COASY, as well as the reduced protein expression of HIF-1α, SPHK1, and S1PR1. Our work successfully explained the polypharmcological mechanisms underlying the efficiency of XSHG on treating anemia, and meanwhile, it probed into the potential treatment strategies for anemia from TCM prescription.
Collapse
Affiliation(s)
- Han-Qing Pang
- College of Pharmacy and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shi-Jun Yue
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Ping Tang
- College of Pharmacy and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan-Yan Chen
- College of Pharmacy and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ya-Jie Tan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Jie Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xu-Qin Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Gui-Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - An Kang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | | | - Ya-Jun Shi
- College of Pharmacy and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Sun
- College of Pharmacy and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhi-Shu Tang
- College of Pharmacy and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
26
|
Abstract
Ceramide, a bioactive membrane sphingolipid, functions as an important second messenger in apoptosis and cell signaling. In response to stresses, it may be generated by de novo synthesis, sphingomyelin hydrolysis, and/or recycling of complex sphingolipids. It is cleared from cells through the activity of ceramidases, phosphorylation to ceramide-1-phosphate, or resynthesis into more complex sphingolipids. Ischemia/reperfusion (IR) injury occurs when oxygen/nutrition is rapidly reintroduced into ischemic tissue, resulting in cell death and tissue damage, and is a major concern in diverse clinical settings, including organ resection and transplantation. Numerous reports show that ceramide levels are markedly elevated during IR. Mitochondria are major sites of reactive oxygen species (ROS) production and play a key role in IR-induced and ceramide-mediated cell death and tissue damage. During the development of IR injury, the initial response of ROS and TNF-alpha production activates two major ceramide generating pathways (sphingomyelin hydrolysis and de novo ceramide synthesis). The increased ceramide has broad effects depending on the IR phases, including both pro- and antiapoptotic effects. Therefore, strategies that reduce the levels of ceramide, for example, by modulation of ceramidase and/or sphingomyelinases activities, may represent novel and promising therapeutic approaches to prevent or treat IR injury in diverse clinical settings.
Collapse
|
27
|
Wan Y, Jin HJ, Zhu YY, Fang Z, Mao L, He Q, Xia YP, Li M, Li Y, Chen X, Hu B. MicroRNA-149-5p regulates blood-brain barrier permeability after transient middle cerebral artery occlusion in rats by targeting S1PR2 of pericytes. FASEB J 2018; 32:3133-3148. [PMID: 29401609 DOI: 10.1096/fj.201701121r] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Blood-brain barrier (BBB) disruption caused by reperfusion injury after ischemic stroke is an intractable event conducive to further injury. Brain pericytes play a vital role in maintaining BBB integrity by interacting with other components of the BBB. In this study, we found that sphingosine-1-phosphate receptor (S1PR)2 expressed in pericytes was significantly up-regulated after ischemia in vivo and in vitro. By using a S1PR2 antagonist (JTE-013), we showed that S1PR2 plays a critical role in the induction of BBB permeability of transient middle cerebral artery occlusion (tMCAO) rats and the in vitro BBB model. Furthermore, we discovered that S1PR2 may decrease N-cadherin expression and increase pericyte migration via NF-κB p65 signal and found that S1PR2 could be regulated by miR-149-5p negatively, which was decreased in the ischemic boundary zone and cultured pericytes after ischemia. Overexpression of miR-149-5p in cultured pericytes substantially increased N-cadherin expression and decreased pericyte migration, which decreased BBB leakage in the in vitro model. Up-regulating miR-149-5p by intracerebroventricular injection of agomir-149-5p attenuated BBB permeability and improved the outcomes of tMCAO rats significantly. Thus, our data suggest that miR-149-5p may serve as a potential target for treatment of BBB disruption after ischemic stroke.-Wan, Y., Jin, H.-J., Zhu, Y.-Y., Fang, Z., Mao, L., He, Q., Xia, Y.-P., Li, M., Li, Y., Chen, X., Hu, B. MicroRNA-149-5p regulates blood-brain barrier permeability after transient middle cerebral artery occlusion in rats by targeting S1PR2 of pericytes.
Collapse
Affiliation(s)
- Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Juan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Yi Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Fang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Peng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Chen
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Chao HC, Chen GY, Hsu LC, Liao HW, Yang SY, Wang SY, Li YL, Tang SC, Tseng YJ, Kuo CH. Using precursor ion scan of 184 with liquid chromatography-electrospray ionization-tandem mass spectrometry for concentration normalization in cellular lipidomic studies. Anal Chim Acta 2017; 971:68-77. [DOI: 10.1016/j.aca.2017.03.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/20/2017] [Accepted: 03/20/2017] [Indexed: 01/08/2023]
|
29
|
Giles C, Takechi R, Mellett NA, Meikle PJ, Dhaliwal S, Mamo JC. Differential regulation of sphingolipid metabolism in plasma, hippocampus, and cerebral cortex of mice administered sphingolipid modulating agents. J Neurochem 2017; 141:413-422. [DOI: 10.1111/jnc.13964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/10/2017] [Accepted: 01/16/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Corey Giles
- Curtin Health Innovation Research Institute; Curtin University; Perth Western Australia Australia
- School of Public Health; Faculty of Health Sciences; Curtin University; Perth Western Australia Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute; Curtin University; Perth Western Australia Australia
- School of Public Health; Faculty of Health Sciences; Curtin University; Perth Western Australia Australia
| | - Natalie A. Mellett
- Metabolomics Laboratory; Baker IDI Heart and Diabetes Institute; Melbourne Victoria Australia
| | - Peter J. Meikle
- Metabolomics Laboratory; Baker IDI Heart and Diabetes Institute; Melbourne Victoria Australia
| | - Satvinder Dhaliwal
- School of Public Health; Faculty of Health Sciences; Curtin University; Perth Western Australia Australia
| | - John C. Mamo
- Curtin Health Innovation Research Institute; Curtin University; Perth Western Australia Australia
- School of Public Health; Faculty of Health Sciences; Curtin University; Perth Western Australia Australia
| |
Collapse
|
30
|
Chemical Hypoxia Brings to Light Altered Autocrine Sphingosine-1-Phosphate Signalling in Rheumatoid Arthritis Synovial Fibroblasts. Mediators Inflamm 2015; 2015:436525. [PMID: 26556954 PMCID: PMC4628658 DOI: 10.1155/2015/436525] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/26/2015] [Indexed: 01/31/2023] Open
Abstract
Emerging evidence suggests a role for sphingosine-1-phosphate (S1P) in various aspects of rheumatoid arthritis (RA) pathogenesis. In this study we compared the effect of chemical hypoxia induced by cobalt chloride (CoCl2) on the expression of S1P metabolic enzymes and cytokine/chemokine secretion in normal fibroblast-like synoviocytes (FLS) and RAFLS. RAFLS incubated with CoCl2, but not S1P, produced less IL-8 and MCP-1 than normal FLS. Furthermore, incubation with the S1P2 and S1P3 receptor antagonists, JTE-013 and CAY10444, reduced CoCl2-mediated chemokine production in normal FLS but not in RAFLS. RAFLS showed lower levels of intracellular S1P and enhanced mRNA expression of S1P phosphatase 1 (SGPP1) and S1P lyase (SPL), the enzymes that are involved in intracellular S1P degradation, when compared to normal FLS. Incubation with CoCl2 decreased SGPP1 mRNA and protein and SPL mRNA as well. Inhibition of SPL enhanced CoCl2-mediated cytokine/chemokine release and restored autocrine activation of S1P2 and S1P3 receptors in RAFLS. The results suggest that the sphingolipid pathway regulating the intracellular levels of S1P is dysregulated in RAFLS and has a significant impact on cell autocrine activation by S1P. Altered sphingolipid metabolism in FLS from patients with advanced RA raises the issue of synovial cell burnout due to chronic inflammation.
Collapse
|
31
|
Dawson G. Measuring brain lipids. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:1026-39. [PMID: 25701718 PMCID: PMC4457555 DOI: 10.1016/j.bbalip.2015.02.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/05/2015] [Accepted: 02/08/2015] [Indexed: 12/27/2022]
Abstract
The rapid development of analytical technology has made lipidomics an exciting new area and this review will focus more on modern approaches to lipidomics than on earlier technology. Although not fully comprehensive for all possible brain lipids, the intent is to at least provide a reference for the analysis of classes of lipids found in brain and nervous tissue. We will discuss problems posed by the brain because of its structural and functional heterogeneity, the development changes it undergoes (myelination, aging, pathology etc.) and its cellular heterogeneity (neurons, glia etc.). Section 2 will discuss the various ways in which brain tissue can be extracted to yield lipids for analysis and section 3 will cover a wide range of techniques used to analyze brain lipids such as chromatography and mass-spectrometry. In Section 4 we will discuss ways of analyzing some of the specific biologically active brain lipids found in very small amounts except in pathological conditions and section 5 looks to the future of experimental lipidomic modification in the brain. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Glyn Dawson
- Dept. Pediatrics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
32
|
Testai FD, Xu HL, Kilkus J, Suryadevara V, Gorshkova I, Berdyshev E, Pelligrino DA, Dawson G. Changes in the metabolism of sphingolipids after subarachnoid hemorrhage. J Neurosci Res 2015; 93:796-805. [PMID: 25597763 DOI: 10.1002/jnr.23542] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 12/31/2022]
Abstract
We previously described how ceramide (Cer), a mediator of cell death, increases in the cerebrospinal fluid (CSF) of subarachnoid hemorrhage (SAH) patients. This study investigates the alterations of biochemical pathways involved in Cer homeostasis in SAH. Cer, dihydroceramide (DHC), sphingosine-1-phosphate (S1P), and the activities of acid sphingomyelinase (ASMase), neutral sphingomyelinase (NSMase), sphingomyelinase synthase (SMS), S1P-lyase, and glucosylceramide synthase (GCS) were determined in the CSF of SAH subjects and in brain homogenate of SAH rats. Compared with controls (n = 8), SAH patients (n = 26) had higher ASMase activity (10.0 ± 3.5 IF/µl· min vs. 15.0 ± 4.6 IF/µl • min; P = 0.009) and elevated levels of Cer (11.4 ± 8.8 pmol/ml vs. 33.3 ± 48.3 pmol/ml; P = 0.001) and DHC (1.3 ± 1.1 pmol/ml vs. 3.8 ± 3.4 pmol/ml; P = 0.001) in the CSF. The activities of GCS, NSMase, and SMS in the CSF were undetectable. Brain homogenates from SAH animals had increased ASMase activity (control: 9.7 ± 1.2 IF/µg • min; SAH: 16.8 ± 1.6 IF/µg • min; P < 0.05) and Cer levels (control: 3,422 ± 26 fmol/nmol of total lipid P; SAH: 7,073 ± 2,467 fmol/nmol of total lipid P; P < 0.05) compared with controls. In addition, SAH was associated with a reduction of 60% in S1P levels, a 40% increase in S1P-lyase activity, and a twofold increase in the activity of GCS. In comparison, NSMase and SMS activities were similar to controls and SMS activities similar to controls. In conclusion, our results show an activation of ASMase, S1P-lyase, and GCS resulting in a shift in the production of protective (S1P) in favor of deleterious (Cer) sphingolipids after SAH. Additional studies are needed to determine the effect of modulators of the pathways described here in SAH.
Collapse
Affiliation(s)
- Fernando D Testai
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, Illinois
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Liu M, Zhou K, Li H, Dong X, Tan G, Chai Y, Wang W, Bi X. Potential of serum metabolites for diagnosing post-stroke cognitive impairment. MOLECULAR BIOSYSTEMS 2015; 11:3287-96. [PMID: 26490688 DOI: 10.1039/c5mb00470e] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A panel of serum metabolite markers (glutamine, kynurenine, and LysoPC(18:2)) was identified as candidate diagnostic biomarkers for post-stroke cognitive impairment.
Collapse
Affiliation(s)
- Min Liu
- Departments of Physiology
- College of Basic Medicine
- Second Military Medical University
- Shanghai 200433
- China
| | - Kaige Zhou
- Department of Neurology
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| | - Hailong Li
- Department of Neurology
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| | - Xin Dong
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- China
| | - Guangguo Tan
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Fourth Military Medical University
- Xi'an 710032
- China
| | - Yifeng Chai
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- China
| | - Weizhong Wang
- Departments of Physiology
- College of Basic Medicine
- Second Military Medical University
- Shanghai 200433
- China
| | - Xiaoying Bi
- Department of Neurology
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| |
Collapse
|