1
|
Weymouth L, Smith AR, Lunnon K. DNA Methylation in Alzheimer's Disease. Curr Top Behav Neurosci 2025; 69:149-178. [PMID: 39455499 DOI: 10.1007/7854_2024_530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
To date, DNA methylation is the best characterized epigenetic modification in Alzheimer's disease. Involving the addition of a methyl group to the fifth carbon of the cytosine pyrimidine base, DNA methylation is generally thought to be associated with the silencing of gene expression. It has been hypothesized that epigenetics may mediate the interaction between genes and the environment in the manifestation of Alzheimer's disease, and therefore studies investigating DNA methylation could elucidate novel disease mechanisms. This chapter comprehensively reviews epigenomic studies, undertaken in human brain tissue and purified brain cell types, focusing on global methylation levels, candidate genes, epigenome wide approaches, and recent meta-analyses. We discuss key differentially methylated genes and pathways that have been highlighted to date, with a discussion on how new technologies and the integration of multiomic data may further advance the field.
Collapse
Affiliation(s)
- Luke Weymouth
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Adam R Smith
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Katie Lunnon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
2
|
Zhang W, Young JI, Gomez L, Schmidt MA, Lukacsovich D, Kunkle BW, Chen X, Martin ER, Wang L. Blood DNA Methylation Signature for Incident Dementia: Evidence from Longitudinal Cohorts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.03.24316667. [PMID: 39649611 PMCID: PMC11623760 DOI: 10.1101/2024.11.03.24316667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
INTRODUCTION Distinguishing between molecular changes that precede dementia onset and those resulting from the disease is challenging with cross-sectional studies. METHODS We studied blood DNA methylation (DNAm) differences and incident dementia in two large longitudinal cohorts: the Offspring cohort of the Framingham Heart Study (FHS) and the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. We analyzed blood DNAm samples from over 1,000 cognitively unimpaired subjects. RESULTS Meta-analysis identified 44 CpGs and 44 differentially methylated regions consistently associated with time to dementia in both cohorts. Our integrative analysis identified early processes in dementia, such as immune responses and metabolic dysfunction. Furthermore, we developed a Methylation-based Risk Score, which successfully predicted future cognitive decline in an independent validation set, even after accounting for age, sex, APOE ε4, years of education, baseline diagnosis, and baseline MMSE score. DISCUSSION DNA methylation offers a promising source of biomarker for early detection of dementia.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Juan I. Young
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lissette Gomez
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael A. Schmidt
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David Lukacsovich
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Brian W. Kunkle
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xi Chen
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Eden R. Martin
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lily Wang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
3
|
Yang CH, Huang JL, Tsai LK, Taniar D, Pai TW. An Effective DNA Methylation Biomarker Screening Mechanism for Amyotrophic Lateral Sclerosis (ALS) Based on Comorbidities and Gene Function Analysis. Bioengineering (Basel) 2024; 11:1020. [PMID: 39451396 PMCID: PMC11505182 DOI: 10.3390/bioengineering11101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
This study used epigenomic methylation differential expression analysis to identify primary biomarkers in patients with amyotrophic lateral sclerosis (ALS). We combined electronic medical record datasets from MIMIC-IV (United States) and NHIRD (Taiwan) to explore ALS comorbidities in depth and discover any comorbidity-related biomarkers. We also applied word2vec to these two clinical diagnostic medical databases to measure similarities between ALS and other similar diseases and evaluated the statistical assessment of the odds ratio to discover significant comorbidities for ALS subjects. Important and representative DNA methylation biomarker candidates could be effectively selected by cross-comparing similar diseases to ALS, comorbidity-related genes, and differentially expressed methylation loci for ALS subjects. The screened epigenomic and comorbidity-related biomarkers were clustered based on their genetic functions. The candidate DNA methylation biomarkers associated with ALS were comprehensively discovered. Gene ontology annotations were then applied to analyze and cluster the candidate biomarkers into three different groups based on gene function annotations. The results showed that a potential testing kit for ALS detection can be composed of SOD3, CACNA1H, and ERBB4 for effective early screening of ALS using blood samples. By developing an effective DNA methylation biomarker screening mechanism, early detection and prophylactic treatment of high-risk ALS patients can be achieved.
Collapse
Affiliation(s)
- Cing-Han Yang
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung City 202301, Taiwan; (C.-H.Y.); (J.-L.H.)
| | - Jhen-Li Huang
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung City 202301, Taiwan; (C.-H.Y.); (J.-L.H.)
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei City 100229, Taiwan;
| | - David Taniar
- Faculty of Information Technology, Monash University, Clayton, VIC 3800, Australia;
| | - Tun-Wen Pai
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung City 202301, Taiwan; (C.-H.Y.); (J.-L.H.)
- Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 106344, Taiwan
| |
Collapse
|
4
|
Lukacsovich D, O’Shea D, Huang H, Zhang W, Young J, Chen XS, Dietrich ST, Kunkle B, Martin E, Wang L. MIAMI-AD (Methylation in Aging and Methylation in AD): an integrative knowledgebase that facilitates explorations of DNA methylation across sex, aging, and Alzheimer's disease. Database (Oxford) 2024; 2024:baae061. [PMID: 39028752 PMCID: PMC11259044 DOI: 10.1093/database/baae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder with a significant impact on aging populations. DNA methylation (DNAm) alterations have been implicated in both the aging processes and the development of AD. Given that AD affects more women than men, it is also important to explore DNAm changes that occur specifically in each sex. We created MIAMI-AD, a comprehensive knowledgebase containing manually curated summary statistics from 98 published tables in 38 studies, all of which included at least 100 participants. MIAMI-AD enables easy browsing, querying, and downloading DNAm associations at multiple levels-at individual CpG, gene, genomic regions, or genome-wide, in one or multiple studies. Moreover, it also offers tools to perform integrative analyses, such as comparing DNAm associations across different phenotypes or tissues, as well as interactive visualizations. Using several use case examples, we demonstrated that MIAMI-AD facilitates our understanding of age-associated CpGs in AD and the sex-specific roles of DNAm in AD. This open-access resource is freely available to the research community, and all the underlying data can be downloaded. MIAMI-AD facilitates integrative explorations to better understand the interplay between DNAm across aging, sex, and AD. Database URL: https://miami-ad.org/.
Collapse
Affiliation(s)
- David Lukacsovich
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, 1120 NW 14th Street, Miami, FL 33136, USA
| | - Deirdre O’Shea
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami, Miller School of Medicine, 7700 W Camino Real, Boca Raton, FL 33433, USA
| | - Hanchen Huang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, 1120 NW 14th Street, Miami, FL 33136, USA
| | - Wei Zhang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, 1120 NW 14th Street, Miami, FL 33136, USA
| | - Juan Young
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA
| | - X Steven Chen
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, 1120 NW 14th Street, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136, USA
| | - Sven-Thorsten Dietrich
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA
| | - Brian Kunkle
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA
| | - Eden Martin
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA
| | - Lily Wang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, 1120 NW 14th Street, Miami, FL 33136, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136, USA
| |
Collapse
|
5
|
Kanwal H, Sangineto M, Ciarnelli M, Castaldo P, Villani R, Romano AD, Serviddio G, Cassano T. Potential Therapeutic Targets to Modulate the Endocannabinoid System in Alzheimer's Disease. Int J Mol Sci 2024; 25:4050. [PMID: 38612861 PMCID: PMC11012768 DOI: 10.3390/ijms25074050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease (NDD), is characterized by chronic neuronal cell death through progressive loss of cognitive function. Amyloid beta (Aβ) deposition, neuroinflammation, oxidative stress, and hyperphosphorylated tau proteins are considered the hallmarks of AD pathology. Different therapeutic approaches approved by the Food and Drug Administration can only target a single altered pathway instead of various mechanisms that are involved in AD pathology, resulting in limited symptomatic relief and almost no effect in slowing down the disease progression. Growing evidence on modulating the components of the endocannabinoid system (ECS) proclaimed their neuroprotective effects by reducing neurochemical alterations and preventing cellular dysfunction. Recent studies on AD mouse models have reported that the inhibitors of the fatty acid amide hydrolase (FAAH) and monoacylglycerol (MAGL), hydrolytic enzymes for N-arachidonoyl ethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), respectively, might be promising candidates as therapeutical intervention. The FAAH and MAGL inhibitors alone or in combination seem to produce neuroprotection by reversing cognitive deficits along with Aβ-induced neuroinflammation, oxidative responses, and neuronal death, delaying AD progression. Their exact signaling mechanisms need to be elucidated for understanding the brain intrinsic repair mechanism. The aim of this review was to shed light on physiology and pathophysiology of AD and to summarize the experimental data on neuroprotective roles of FAAH and MAGL inhibitors. In this review, we have also included CB1R and CB2R modulators with their diverse roles to modulate ECS mediated responses such as anti-nociceptive, anxiolytic, and anti-inflammatory actions in AD. Future research would provide the directions in understanding the molecular mechanisms and development of new therapeutic interventions for the treatment of AD.
Collapse
Affiliation(s)
- Hina Kanwal
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Moris Sangineto
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Martina Ciarnelli
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Pasqualina Castaldo
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica delle Marche”, 60126 Ancona, Italy;
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Antonino Davide Romano
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Tommaso Cassano
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| |
Collapse
|
6
|
Lukacsovich D, O’Shea D, Huang H, Zhang W, Young JI, Steven Chen X, Dietrich ST, Kunkle B, Martin ER, Wang L. MIAMI-AD (Methylation in Aging and Methylation in AD): an integrative knowledgebase that facilitates explorations of DNA methylation across sex, aging, and Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.04.23299412. [PMID: 38105943 PMCID: PMC10723513 DOI: 10.1101/2023.12.04.23299412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder with a significant impact on aging populations. DNA methylation (DNAm) alterations have been implicated in both the aging processes and the development of AD. Given that AD affects more women than men, it is also important to explore DNAm changes that occur specifically in each sex. We created MIAMI-AD, a comprehensive knowledge base containing manually curated summary statistics from 97 published tables in 37 studies, all of which included at least 100 participants. MIAMI-AD enables easy browsing, querying, and downloading DNAm associations at multiple levels - at individual CpG, gene, genomic regions, or genome-wide, in one or multiple studies. Moreover, it also offers tools to perform integrative analyses, such as comparing DNAm associations across different phenotypes or tissues, as well as interactive visualizations. Using several use case examples, we demonstrated that MIAMI-AD facilitates our understanding of age-associated CpGs in AD and the sex-specific roles of DNAm in AD. This open-access resource is freely available to the research community, and all the underlying data can be downloaded. MIAMI-AD (https://miami-ad.org/) facilitates integrative explorations to better understand the interplay between DNAm across aging, sex, and AD.
Collapse
Affiliation(s)
- David Lukacsovich
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Deirdre O’Shea
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, FL, 33433
| | - Hanchen Huang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Wei Zhang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Juan I. Young
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - X. Steven Chen
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Sven-Thorsten Dietrich
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Brian Kunkle
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Eden R. Martin
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lily Wang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
7
|
Torso M, Ridgway GR, Valotti M, Hardingham I, Chance SA. In vivo cortical diffusion imaging relates to Alzheimer's disease neuropathology. Alzheimers Res Ther 2023; 15:165. [PMID: 37794477 PMCID: PMC10548768 DOI: 10.1186/s13195-023-01309-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/17/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND There has been increasing interest in cortical microstructure as a complementary and earlier measure of neurodegeneration than macrostructural atrophy, but few papers have related cortical diffusion imaging to post-mortem neuropathology. This study aimed to characterise the associations between the main Alzheimer's disease (AD) neuropathological hallmarks and multiple cortical microstructural measures from in vivo diffusion MRI. Comorbidities and co-pathologies were also investigated. METHODS Forty-three autopsy cases (8 cognitively normal, 9 mild cognitive impairment, 26 AD) from the National Alzheimer's Coordinating Center and Alzheimer's Disease Neuroimaging Initiative databases were included. Structural and diffusion MRI scans were analysed to calculate cortical minicolumn-related measures (AngleR, PerpPD+, and ParlPD) and mean diffusivity (MD). Neuropathological hallmarks comprised Thal phase, Braak stage, neuritic plaques, and combined AD neuropathological changes (ADNC-the "ABC score" from NIA-AA recommendations). Regarding comorbidities, relationships between cortical microstructure and severity of white matter rarefaction (WMr), cerebral amyloid angiopathy (CAA), atherosclerosis of the circle of Willis (ACW), and locus coeruleus hypopigmentation (LCh) were investigated. Finally, the effect of coexistent pathologies-Lewy body disease and TAR DNA-binding protein 43 (TDP-43)-on cortical microstructure was assessed. RESULTS Cortical diffusivity measures were significantly associated with Thal phase, Braak stage, ADNC, and LCh. Thal phase was associated with AngleR in temporal areas, while Braak stage was associated with PerpPD+ in a wide cortical pattern, involving mainly temporal and limbic areas. A similar association was found between ADNC (ABC score) and PerpPD+. LCh was associated with PerpPD+, ParlPD, and MD. Co-existent neuropathologies of Lewy body disease and TDP-43 exhibited significantly reduced AngleR and MD compared to ADNC cases without co-pathology. CONCLUSIONS Cortical microstructural diffusion MRI is sensitive to AD neuropathology. The associations with the LCh suggest that cortical diffusion measures may indirectly reflect the severity of locus coeruleus neuron loss, perhaps mediated by the severity of microglial activation and tau spreading across the brain. Recognizing the impact of co-pathologies is important for diagnostic and therapeutic decision-making. Microstructural markers of neurodegeneration, sensitive to the range of histopathological features of amyloid, tau, and monoamine pathology, offer a more complete picture of cortical changes across AD than conventional structural atrophy.
Collapse
|
8
|
Wang E, Wang M, Guo L, Fullard JF, Micallef C, Bendl J, Song WM, Ming C, Huang Y, Li Y, Yu K, Peng J, Bennett DA, De Jager PL, Roussos P, Haroutunian V, Zhang B. Genome-wide methylomic regulation of multiscale gene networks in Alzheimer's disease. Alzheimers Dement 2023; 19:3472-3495. [PMID: 36811307 PMCID: PMC10440222 DOI: 10.1002/alz.12969] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/19/2022] [Indexed: 02/24/2023]
Abstract
INTRODUCTION Recent studies revealed the association of abnormal methylomic changes with Alzheimer's disease (AD) but there is a lack of systematic study of the impact of methylomic alterations over the molecular networks underlying AD. METHODS We profiled genome-wide methylomic variations in the parahippocampal gyrus from 201 post mortem control, mild cognitive impaired, and AD brains. RESULTS We identified 270 distinct differentially methylated regions (DMRs) associated with AD. We quantified the impact of these DMRs on each gene and each protein as well as gene and protein co-expression networks. DNA methylation had a profound impact on both AD-associated gene/protein modules and their key regulators. We further integrated the matched multi-omics data to show the impact of DNA methylation on chromatin accessibility, which further modulates gene and protein expression. DISCUSSION The quantified impact of DNA methylation on gene and protein networks underlying AD identified potential upstream epigenetic regulators of AD. HIGHLIGHTS A cohort of DNA methylation data in the parahippocampal gyrus was developed from 201 post mortem control, mild cognitive impaired, and Alzheimer's disease (AD) brains. Two hundred seventy distinct differentially methylated regions (DMRs) were found to be associated with AD compared to normal control. A metric was developed to quantify methylation impact on each gene and each protein. DNA methylation was found to have a profound impact on not only the AD-associated gene modules but also key regulators of the gene and protein networks. Key findings were validated in an independent multi-omics cohort in AD. The impact of DNA methylation on chromatin accessibility was also investigated by integrating the matched methylomic, epigenomic, transcriptomic, and proteomic data.
Collapse
Affiliation(s)
- Erming Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Lei Guo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - John F Fullard
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Courtney Micallef
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jaroslav Bendl
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute of Genomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Chen Ming
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Yong Huang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Yuxin Li
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Kaiwen Yu
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute, Columbia University Medical Center, New York, New York, USA
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute of Genomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
- The Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute of Genomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| |
Collapse
|
9
|
Cerasuolo M, Di Meo I, Auriemma MC, Trojsi F, Maiorino MI, Cirillo M, Esposito F, Polito R, Colangelo AM, Paolisso G, Papa M, Rizzo MR. Iron and Ferroptosis More than a Suspect: Beyond the Most Common Mechanisms of Neurodegeneration for New Therapeutic Approaches to Cognitive Decline and Dementia. Int J Mol Sci 2023; 24:9637. [PMID: 37298586 PMCID: PMC10253771 DOI: 10.3390/ijms24119637] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Neurodegeneration is a multifactorial process that involves multiple mechanisms. Examples of neurodegenerative diseases are Parkinson's disease, multiple sclerosis, Alzheimer's disease, prion diseases such as Creutzfeldt-Jakob's disease, and amyotrophic lateral sclerosis. These are progressive and irreversible pathologies, characterized by neuron vulnerability, loss of structure or function of neurons, and even neuron demise in the brain, leading to clinical, functional, and cognitive dysfunction and movement disorders. However, iron overload can cause neurodegeneration. Dysregulation of iron metabolism associated with cellular damage and oxidative stress is reported as a common event in several neurodegenerative diseases. Uncontrolled oxidation of membrane fatty acids triggers a programmed cell death involving iron, ROS, and ferroptosis, promoting cell death. In Alzheimer's disease, the iron content in the brain is significantly increased in vulnerable regions, resulting in a lack of antioxidant defenses and mitochondrial alterations. Iron interacts with glucose metabolism reciprocally. Overall, iron metabolism and accumulation and ferroptosis play a significant role, particularly in the context of diabetes-induced cognitive decline. Iron chelators improve cognitive performance, meaning that brain iron metabolism control reduces neuronal ferroptosis, promising a novel therapeutic approach to cognitive impairment.
Collapse
Affiliation(s)
- Michele Cerasuolo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| | - Irene Di Meo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| | - Maria Chiara Auriemma
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| | - Maria Ida Maiorino
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Anna Maria Colangelo
- Laboratory of Neuroscience “R. Levi-Montalcini”, Department of Biotechnology and Biosciences, NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy;
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| | - Michele Papa
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| |
Collapse
|
10
|
Histone Modifications in Alzheimer's Disease. Genes (Basel) 2023; 14:genes14020347. [PMID: 36833274 PMCID: PMC9956192 DOI: 10.3390/genes14020347] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Since Late-onset Alzheimer's disease (LOAD) derives from a combination of genetic variants and environmental factors, epigenetic modifications have been predicted to play a role in the etiopathology of LOAD. Along with DNA methylation, histone modifications have been proposed as the main epigenetic modifications that contribute to the pathologic mechanisms of LOAD; however, little is known about how these mechanisms contribute to the disease's onset or progression. In this review, we highlighted the main histone modifications and their functional role, including histone acetylation, histone methylation, and histone phosphorylation, as well as changes in such histone modifications that occur in the aging process and mainly in Alzheimer's disease (AD). Furthermore, we pointed out the main epigenetic drugs tested for AD treatment, such as those based on histone deacetylase (HDAC) inhibitors. Finally, we remarked on the perspectives around the use of such epigenetics drugs for treating AD.
Collapse
|
11
|
Targeted Methylation Profiling of Single Laser-Capture Microdissected Post-Mortem Brain Cells by Adapted Limiting Dilution Bisulfite Pyrosequencing (LDBSP). Int J Mol Sci 2022; 23:ijms232415571. [PMID: 36555213 PMCID: PMC9779089 DOI: 10.3390/ijms232415571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
A reoccurring issue in neuroepigenomic studies, especially in the context of neurodegenerative disease, is the use of (heterogeneous) bulk tissue, which generates noise during epigenetic profiling. A workable solution to this issue is to quantify epigenetic patterns in individually isolated neuronal cells using laser capture microdissection (LCM). For this purpose, we established a novel approach for targeted DNA methylation profiling of individual genes that relies on a combination of LCM and limiting dilution bisulfite pyrosequencing (LDBSP). Using this approach, we determined cytosine-phosphate-guanine (CpG) methylation rates of single alleles derived from 50 neurons that were isolated from unfixed post-mortem brain tissue. In the present manuscript, we describe the general workflow and, as a showcase, demonstrate how targeted methylation analysis of various genes, in this case, RHBDF2, OXT, TNXB, DNAJB13, PGLYRP1, C3, and LMX1B, can be performed simultaneously. By doing so, we describe an adapted data analysis pipeline for LDBSP, allowing one to include and correct CpG methylation rates derived from multi-allele reactions. In addition, we show that the efficiency of LDBSP on DNA derived from LCM neurons is similar to the efficiency obtained in previously published studies using this technique on other cell types. Overall, the method described here provides the user with a more accurate estimation of the DNA methylation status of each target gene in the analyzed cell pools, thereby adding further validity to this approach.
Collapse
|
12
|
Hüls A, Wedderburn CJ, Groenewold NA, Gladish N, Jones MJ, Koen N, MacIsaac JL, Lin DTS, Ramadori KE, Epstein MP, Donald KA, Kobor MS, Zar HJ, Stein DJ. Newborn differential DNA methylation and subcortical brain volumes as early signs of severe neurodevelopmental delay in a South African Birth Cohort Study. World J Biol Psychiatry 2022; 23:601-612. [PMID: 34895032 PMCID: PMC9273810 DOI: 10.1080/15622975.2021.2016955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Early detection of neurodevelopmental delay is crucial for intervention and treatment strategies. We analysed associations between newborn DNA methylation (DNAm), neonatal magnetic resonance imaging (MRI) neuroimaging data, and neurodevelopment. METHODS Neurodevelopment was assessed in 161 children from the South African Drakenstein Child Health Study at 2 years of age using the Bayley Scales of Infant and Toddler Development III. We performed an epigenome-wide association study of neurodevelopmental delay using DNAm from cord blood. Subsequently, we analysed if associations between DNAm and neurodevelopmental delay were mediated by altered neonatal brain volumes (subset of 51 children). RESULTS Differential DNAm at SPTBN4 (cg26971411, Δbeta = -0.024, p-value = 3.28 × 10-08), and two intergenic regions (chromosome 11: cg00490349, Δbeta = -0.036, p-value = 3.02 × 10-08; chromosome 17: cg15660740, Δbeta = -0.078, p-value = 6.49 × 10-08) were significantly associated with severe neurodevelopmental delay. While these associations were not mediated by neonatal brain volume, neonatal caudate volumes were independently associated with neurodevelopmental delay, particularly in language (Δcaudate volume = 165.30 mm3, p = 0.0443) and motor (Δcaudate volume = 365.36 mm3, p-value = 0.0082) domains. CONCLUSIONS Differential DNAm from cord blood and increased neonatal caudate volumes were independently associated with severe neurodevelopmental delay at 2 years of age. These findings suggest that neurobiological signals for severe developmental delay may be detectable in very early life.
Collapse
Affiliation(s)
- Anke Hüls
- Department of Epidemiology and Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nynke A Groenewold
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Nicole Gladish
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Nastassja Koen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Julia L MacIsaac
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - David T S Lin
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Katia E Ramadori
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Michael P Epstein
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
Milicic L, Vacher M, Porter T, Doré V, Burnham SC, Bourgeat P, Shishegar R, Doecke J, Armstrong NJ, Tankard R, Maruff P, Masters CL, Rowe CC, Villemagne VL, Laws SM. Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume. GeroScience 2022; 44:1807-1823. [PMID: 35445885 PMCID: PMC9213584 DOI: 10.1007/s11357-022-00558-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/30/2022] [Indexed: 12/21/2022] Open
Abstract
The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer's Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer's Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer's disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes.
Collapse
Affiliation(s)
- Lidija Milicic
- Centre for Precision Health, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia, 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| | - Michael Vacher
- Centre for Precision Health, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia, 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
- CSIRO Health and Biosecurity, Australian E-Health Research Centre, Floreat, Western Australia, 6014, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia, 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, 6102, Australia
| | - Vincent Doré
- Australian E-Health Research Centre, CSIRO, Parkville, Victoria, 3052, Australia
- Department of Molecular Imaging and Therapy and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Samantha C Burnham
- Centre for Precision Health, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia, 6027, Australia
- Australian E-Health Research Centre, CSIRO, Parkville, Victoria, 3052, Australia
| | - Pierrick Bourgeat
- Australian E-Health Research Centre, CSIRO, Herston, Queensland, 4029, Australia
| | - Rosita Shishegar
- Australian E-Health Research Centre, CSIRO, Parkville, Victoria, 3052, Australia
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - James Doecke
- Centre for Precision Health, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia, 6027, Australia
- Australian E-Health Research Centre, CSIRO, Herston, Queensland, 4029, Australia
| | - Nicola J Armstrong
- Department of Mathematics and Statistics, Curtin University, Bentley, Western Australia, Australia
| | - Rick Tankard
- School of Mathematics and Statistics, Murdoch University, Perth, Western Australia, Australia
| | - Paul Maruff
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Cogstate Ltd, Melbourne, VIC, Australia
| | - Colin L Masters
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Victor L Villemagne
- Centre for Precision Health, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia, 6027, Australia
- Department of Molecular Imaging and Therapy and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia, 6027, Australia.
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia.
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, 6102, Australia.
| |
Collapse
|
14
|
Santana DA, Bedrat A, Puga RD, Turecki G, Mechawar N, Faria TC, Gigek CO, Payão SL, Smith MA, Lemos B, Chen ES. The role of H3K9 acetylation and gene expression in different brain regions of Alzheimer's disease patients. Epigenomics 2022; 14:651-670. [PMID: 35588246 DOI: 10.2217/epi-2022-0096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: To evaluate H3K9 acetylation and gene expression profiles in three brain regions of Alzheimer's disease (AD) patients and elderly controls, and to identify AD region-specific abnormalities. Methods: Brain samples of auditory cortex, hippocampus and cerebellum from AD patients and controls underwent chromatin immunoprecipitation sequencing, RNA sequencing and network analyses. Results: We found a hyperacetylation of AD cerebellum and a slight hypoacetylation of AD hippocampus. The transcriptome revealed differentially expressed genes in the hippocampus and auditory cortex. Network analysis revealed Rho GTPase-mediated mechanisms. Conclusions: These findings suggest that some crucial mechanisms, such as Rho GTPase activity and cytoskeletal organization, are differentially dysregulated in brain regions of AD patients at the epigenetic and transcriptomic levels, and might contribute toward future research on AD pathogenesis.
Collapse
Affiliation(s)
- Daliléia A Santana
- Department of Morphology & Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo,SP, 04023-062, Brazil
| | - Amina Bedrat
- Department of Environmental Health & Molecular & Integrative Physiological Sciences Program, Harvard TH Chan School of Public Health, Boston, MA 02115-5810, USA
| | - Renato D Puga
- Hermes Pardini Institute, São Paulo, SP, 04038-030, Brazil
| | - Gustavo Turecki
- Department of Psychiatry, Douglas Hospital Research Center, McGill University, Montreal, QC, H4H1R3, Canada
| | - Naguib Mechawar
- Department of Psychiatry, Douglas Hospital Research Center, McGill University, Montreal, QC, H4H1R3, Canada
| | - Tathyane C Faria
- Department of Morphology & Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo,SP, 04023-062, Brazil
| | - Carolina O Gigek
- Department of Pathology, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, 04023-062, Brazil
| | - Spencer Lm Payão
- Department of Genetics, Blood Center, Faculdade de Medicina de Marília (FAMEMA), Marília, SP, 17519-050, Brazil
| | - Marília Ac Smith
- Department of Morphology & Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo,SP, 04023-062, Brazil
| | - Bernardo Lemos
- Department of Environmental Health & Molecular & Integrative Physiological Sciences Program, Harvard TH Chan School of Public Health, Boston, MA 02115-5810, USA
| | - Elizabeth S Chen
- Department of Morphology & Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo,SP, 04023-062, Brazil.,Department of Environmental Health & Molecular & Integrative Physiological Sciences Program, Harvard TH Chan School of Public Health, Boston, MA 02115-5810, USA
| |
Collapse
|
15
|
Guemri J, Pierre-Jean M, Brohard S, Oussada N, Horgues C, Bonnet E, Mauger F, Deleuze JF. Methylated ccfDNA from plasma biomarkers of Alzheimer's disease using targeted bisulfite sequencing. Epigenomics 2022; 14:451-468. [PMID: 35416052 DOI: 10.2217/epi-2021-0491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Noninvasive biomarkers such as methylated ccfDNA from plasma could help to support the diagnosis of Alzheimer's disease (AD). Methods: A targeted sequencing protocol was developed to identify candidate biomarkers of AD in methylated ccfDNA extracted from plasma. Results: The authors identified differentially methylated CpGs, regions of which were the same as those identified in previous AD studies. Specifically, a differentially methylated CpG of the LHX2 gene previously identified in a plasma study of AD was replicated in the study. The MBP and DUSP22 regions have been identified in other brain studies of AD and in the authors' study. Conclusion: Although these biomarkers must be validated in other cohorts, methylated ccfDNA could be a relevant noninvasive biomarker in AD.
Collapse
Affiliation(s)
- Julien Guemri
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, Evry, 91057, France
| | - Morgane Pierre-Jean
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, Evry, 91057, France
| | - Solène Brohard
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, Evry, 91057, France
| | - Nouara Oussada
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, Evry, 91057, France
| | - Caroline Horgues
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, Evry, 91057, France
| | - Eric Bonnet
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, Evry, 91057, France
| | - Florence Mauger
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, Evry, 91057, France
| | - Jean-François Deleuze
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, Evry, 91057, France
| |
Collapse
|
16
|
Agarwal D, Kumari R, Ilyas A, Tyagi S, Kumar R, Poddar NK. Crosstalk between epigenetics and mTOR as a gateway to new insights in pathophysiology and treatment of Alzheimer's disease. Int J Biol Macromol 2021; 192:895-903. [PMID: 34662652 DOI: 10.1016/j.ijbiomac.2021.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/19/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
Epigenetics in the current times has become a gateway to acquire answers to questions that were left unanswered by classical and modern genetics, be it resolving the complex mystery behind neurodegenerative disorders or understanding the complexity behind life-threatening cancers. It has presented to the world an entirely new dimension and has added a dynamic angle to an otherwise static field of genetics. Alzheimer's disease is one of the most prevalent neurodegenerative disorders is largely found to be a result of alterations in epigenetic pathways. These changes majorly comprise an imbalance in DNA methylation levels and altered acetylation and methylation of histones. They are often seen to cross-link with metabolic regulatory pathways such as that of mTOR, contributing significantly to the pathophysiology of AD. This review focusses on the study of the interplay of the mTOR regulatory pathway with that of epigenetic machinery that may elevate the rate of early diagnosis and prove to be a gateway to the development of an efficient and novel therapeutic strategy for the treatment of Alzheimer's disease at an early stage.
Collapse
Affiliation(s)
- Disha Agarwal
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Ruchika Kumari
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Ashal Ilyas
- Department of Biotechnology, Invertis University, Bareilly 243 123, India
| | - Shweta Tyagi
- HNo-88, Ranjit Avenue, Bela Chowk, Kota Nihang, Punjab 140001, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh. India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India.
| |
Collapse
|
17
|
Peng Y, Chang X, Lang M. Iron Homeostasis Disorder and Alzheimer's Disease. Int J Mol Sci 2021; 22:12442. [PMID: 34830326 PMCID: PMC8622469 DOI: 10.3390/ijms222212442] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Iron is an essential trace metal for almost all organisms, including human; however, oxidative stress can easily be caused when iron is in excess, producing toxicity to the human body due to its capability to be both an electron donor and an electron acceptor. Although there is a strict regulation mechanism for iron homeostasis in the human body and brain, it is usually inevitably disturbed by genetic and environmental factors, or disordered with aging, which leads to iron metabolism diseases, including many neurodegenerative diseases such as Alzheimer's disease (AD). AD is one of the most common degenerative diseases of the central nervous system (CNS) threatening human health. However, the precise pathogenesis of AD is still unclear, which seriously restricts the design of interventions and treatment drugs based on the pathogenesis of AD. Many studies have observed abnormal iron accumulation in different regions of the AD brain, resulting in cognitive, memory, motor and other nerve damages. Understanding the metabolic balance mechanism of iron in the brain is crucial for the treatment of AD, which would provide new cures for the disease. This paper reviews the recent progress in the relationship between iron and AD from the aspects of iron absorption in intestinal cells, storage and regulation of iron in cells and organs, especially for the regulation of iron homeostasis in the human brain and prospects the future directions for AD treatments.
Collapse
Affiliation(s)
- Yu Peng
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.P.); (X.C.)
| | - Xuejiao Chang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.P.); (X.C.)
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.P.); (X.C.)
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
18
|
Khajebishak Y, Alivand M, Faghfouri AH, Moludi J, Payahoo L. The effects of vitamins and dietary pattern on epigenetic modification of non-communicable diseases. INT J VITAM NUTR RES 2021. [PMID: 34643416 DOI: 10.1024/0300-9831/a000735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background: Non-communicable diseases (NCDs) have received more attention because of high prevalence and mortality rate. Besides genetic and environmental factors, the epigenetic abnormality is also involved in the pathogenesis of NCDs. Methylation of DNA, chromatin remodeling, modification of histone, and long non-coding RNAs are the main components of epigenetic phenomena. Methodology: In this review paper, the mechanistic role of vitamins and dietary patterns on epigenetic modification was discussed. All papers indexed in scientific databases, including PubMed, Scopus, Embase, Google Scholar, and Elsevier were searched during 2000 - 2021 using, vitamins, diet, epigenetic repression, histones, methylation, acetylation, and NCDs as keywords. Results: The components of healthy dietary patterns like Mediterranean and dietary approaches to stop hypertension diets have a beneficial effect on epigenetic hemostasis. Both quality and quantity of dietary components influence epigenetic phenomena. A diet with calorie deficiency in protein content and methyl-donor agents in a long time, with a high level of fat, disrupts epigenetic hemostasis and finally, causes genome instability. Also, soluble and insoluble vitamins have an obvious role in epigenetic modifications. Most vitamins interact directly with methylation, acetylation, and phosphorylation pathways of histone and DNA. However, numerous indirect functions related to the cell cycle stability and genome integrity have been recognized. Conclusion: Considering the crucial role of a healthy diet in epigenetic homeostasis, adherence to a healthy dietary pattern containing enough levels of vitamin and avoiding the western diet seems to be necessary. Having a healthy diet and consuming the recommended dietary level of vitamins can also contribute to epigenetic stability.
Collapse
Affiliation(s)
- Yaser Khajebishak
- Department of Nutrition and Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammadreza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Jalal Moludi
- School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Laleh Payahoo
- Department of Nutrition and Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
19
|
Shea TB. Improvement of cognitive performance by a nutraceutical formulation: Underlying mechanisms revealed by laboratory studies. Free Radic Biol Med 2021; 174:281-304. [PMID: 34352370 DOI: 10.1016/j.freeradbiomed.2021.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/28/2022]
Abstract
Cognitive decline, decrease in neuronal function and neuronal loss that accompany normal aging and dementia are the result of multiple mechanisms, many of which involve oxidative stress. Herein, we review these various mechanisms and identify pharmacological and non-pharmacological approaches, including modification of diet, that may reduce the risk and progression of cognitive decline. The optimal degree of neuronal protection is derived by combinations of, rather than individual, compounds. Compounds that provide antioxidant protection are particularly effective at delaying or improving cognitive performance in the early stages of Mild Cognitive Impairment and Alzheimer's disease. Laboratory studies confirm alleviation of oxidative damage in brain tissue. Lifestyle modifications show a degree of efficacy and may augment pharmacological approaches. Unfortunately, oxidative damage and resultant accumulation of biomarkers of neuronal damage can precede cognitive decline by years to decades. This underscores the importance of optimization of dietary enrichment, antioxidant supplementation and other lifestyle modifications during aging even for individuals who are cognitively intact.
Collapse
Affiliation(s)
- Thomas B Shea
- Laboratory for Neuroscience, Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
20
|
Wu C, Bradley J, Li Y, Wu L, Deng HW. A gene-level methylome-wide association analysis identifies novel Alzheimer's disease genes. Bioinformatics 2021; 37:1933–1940. [PMID: 33523132 PMCID: PMC8337007 DOI: 10.1093/bioinformatics/btab045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/31/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
MOTIVATION Transcriptome-wide association studies (TWAS) have successfully facilitated the discovery of novel genetic risk loci for many complex traits, including late-onset Alzheimer's disease (AD). However, most existing TWAS methods rely only on gene expression and ignore epigenetic modification (i.e., DNA methylation) and functional regulatory information (i.e., enhancer-promoter interactions), both of which contribute significantly to the genetic basis of AD. RESULTS We develop a novel gene-level association testing method that integrates genetically regulated DNA methylation and enhancer-target gene pairs with genome-wide association study (GWAS) summary results. Through simulations, we show that our approach, referred to as the CMO (cross methylome omnibus) test, yielded well controlled type I error rates and achieved much higher statistical power than competing methods under a wide range of scenarios. Furthermore, compared with TWAS, CMO identified an average of 124% more associations when analyzing several brain imaging-related GWAS results. By analyzing to date the largest AD GWAS of 71,880 cases and 383,378 controls, CMO identified six novel loci for AD, which have been ignored by competing methods. AVAILABILITY Software: https://github.com/ChongWuLab/CMO. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chong Wu
- Department of Statistics, Florida State University
| | | | - Yanming Li
- Department of Biostatistics & Data Science, University of Kansas Medical Center
| | - Lang Wu
- Population Sciences in the Pacific Program, University of Hawaii Cancer center
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine
| |
Collapse
|
21
|
Murthy M, Cheng YY, Holton JL, Bettencourt C. Neurodegenerative movement disorders: An epigenetics perspective and promise for the future. Neuropathol Appl Neurobiol 2021; 47:897-909. [PMID: 34318515 PMCID: PMC9291277 DOI: 10.1111/nan.12757] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/12/2021] [Indexed: 02/02/2023]
Abstract
Neurodegenerative movement disorders (NMDs) are age‐dependent disorders that are characterised by the degeneration and loss of neurons, typically accompanied by pathological accumulation of different protein aggregates in the brain, which lead to motor symptoms. NMDs include Parkinson's disease, multiple system atrophy, progressive supranuclear palsy, and Huntington's disease, among others. Epigenetic modifications are responsible for functional gene regulation during development, adult life and ageing and have progressively been implicated in complex diseases such as cancer and more recently in neurodegenerative diseases, such as NMDs. DNA methylation is by far the most widely studied epigenetic modification and consists of the reversible addition of a methyl group to the DNA without changing the DNA sequence. Although this research field is still in its infancy in relation to NMDs, an increasing number of studies point towards a role for DNA methylation in disease processes. This review addresses recent advances in epigenetic and epigenomic research in NMDs, with a focus on human brain DNA methylation studies. We discuss the current understanding of the DNA methylation changes underlying these disorders, the potential for use of these DNA modifications in peripheral tissues as biomarkers in early disease detection, classification and progression as well as a promising role in future disease management and therapy.
Collapse
Affiliation(s)
- Megha Murthy
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Yun Yung Cheng
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Conceição Bettencourt
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
22
|
Coppedè F. One-carbon epigenetics and redox biology of neurodegeneration. Free Radic Biol Med 2021; 170:19-33. [PMID: 33307166 DOI: 10.1016/j.freeradbiomed.2020.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
One-carbon metabolism provides the methyl groups for both DNA and histone tail methylation reactions, two of the main epigenetic processes that tightly regulate the chromatin structure and gene expression levels. Several enzymes involved in one-carbon metabolism, as well as several epigenetic enzymes, are regulated by intracellular metabolites and redox cofactors, but their expression levels are in turn regulated by epigenetic modifications, in such a way that metabolism and gene expression reciprocally regulate each other to maintain homeostasis and regulate cell growth, survival, differentiation and response to environmental stimuli. Increasing evidence highlights the contribution of impaired one-carbon metabolism and epigenetic modifications in neurodegeneration. This article provides an overview of DNA and histone tail methylation changes in major neurodegenerative disorders, namely Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis, discussing the contribution of oxidative stress and impaired one-carbon and redox metabolism to their onset and progression.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| |
Collapse
|
23
|
Sharma VK, Mehta V, Singh TG. Alzheimer's Disorder: Epigenetic Connection and Associated Risk Factors. Curr Neuropharmacol 2021; 18:740-753. [PMID: 31989902 PMCID: PMC7536832 DOI: 10.2174/1570159x18666200128125641] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/26/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
The gene based therapeutics and drug targets have shown incredible and appreciable advances in alleviating human sufferings and complexities. Epigenetics simply means above genetics or which controls the organism beyond genetics. At present it is very clear that all characteristics of an individual are not determined by DNA alone, rather the environment, stress, life style and nutrition play a vital part in determining the response of an organism. Thus, nature (genetic makeup) and nurture (exposure) play equally important roles in the responses observed, both at the cellular and organism levels. Epigenetics influence plethora of complications at cellular and molecular levels that includes cancer, metabolic and cardiovascular complications including neurological (psychosis) and neurodegenerative disorders (Alzheimer’s disease, Parkinson disease etc.). The epigenetic mechanisms include DNA methylation, histone modification and non coding RNA which have substantial impact on progression and pathways linked to Alzheimer’s disease. The epigenetic mechanism gets deregulated in Alzheimer’s disease and is characterized by DNA hyper methylation, deacetylation of histones and general repressed chromatin state which alter gene expression at the transcription level by upregulation, downregulation or silencing of genes. Thus, the processes or modulators of these epigenetic processes have shown vast potential as a therapeutic target in Alzheimer’s disease.
Collapse
Affiliation(s)
| | - Vineet Mehta
- Govt. College of Pharmacy, Rohru, District Shimla, Himachal Pradesh-171207, India
| | | |
Collapse
|
24
|
Early-life nutrition and metabolic disorders in later life: a new perspective on energy metabolism. Chin Med J (Engl) 2021; 133:1961-1970. [PMID: 32826460 PMCID: PMC7462214 DOI: 10.1097/cm9.0000000000000976] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Type 2 diabetes mellitus and metabolic disorders have become an epidemic globally. However, the pathogenesis remains largely unclear and the prevention and treatment are still limited. In addition to environmental factors during adulthood, early life is the critical developmental window with high tissue plasticity, which might be modified by external environmental cues. Substantial evidence has demonstrated the vital role of early-life nutrition in programming the metabolic disorders in later life. In this review, we aim to overview the concepts of fetal programming and investigate the effects of early-life nutrition on energy metabolism in later life and the potential epigenetic mechanism. The related studies published on PubMed database up to March 2020 were included. The results showed that both maternal overnutrition and undernutrition increased the riskes of metabolic disorders in offspring and epigenetic modifications, including DNA methylation, miRNAs, and histone modification, might be the vital mediators. The beneficial effects of early-life lifestyle modifications as well as dietary and nutritional interventions on these deleterious metabolic remolding were initially observed. Overall, characterizing the early-life malnutrition that reshapes metabolic disease trajectories may yield novel targets for early prevention and intervention and provide a new point of view to the energy metabolism.
Collapse
|
25
|
Nabais MF, Laws SM, Lin T, Vallerga CL, Armstrong NJ, Blair IP, Kwok JB, Mather KA, Mellick GD, Sachdev PS, Wallace L, Henders AK, Zwamborn RAJ, Hop PJ, Lunnon K, Pishva E, Roubroeks JAY, Soininen H, Tsolaki M, Mecocci P, Lovestone S, Kłoszewska I, Vellas B, Furlong S, Garton FC, Henderson RD, Mathers S, McCombe PA, Needham M, Ngo ST, Nicholson G, Pamphlett R, Rowe DB, Steyn FJ, Williams KL, Anderson TJ, Bentley SR, Dalrymple-Alford J, Fowder J, Gratten J, Halliday G, Hickie IB, Kennedy M, Lewis SJG, Montgomery GW, Pearson J, Pitcher TL, Silburn P, Zhang F, Visscher PM, Yang J, Stevenson AJ, Hillary RF, Marioni RE, Harris SE, Deary IJ, Jones AR, Shatunov A, Iacoangeli A, van Rheenen W, van den Berg LH, Shaw PJ, Shaw CE, Morrison KE, Al-Chalabi A, Veldink JH, Hannon E, Mill J, Wray NR, McRae AF. Meta-analysis of genome-wide DNA methylation identifies shared associations across neurodegenerative disorders. Genome Biol 2021; 22:90. [PMID: 33771206 PMCID: PMC8004462 DOI: 10.1186/s13059-021-02275-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND People with neurodegenerative disorders show diverse clinical syndromes, genetic heterogeneity, and distinct brain pathological changes, but studies report overlap between these features. DNA methylation (DNAm) provides a way to explore this overlap and heterogeneity as it is determined by the combined effects of genetic variation and the environment. In this study, we aim to identify shared blood DNAm differences between controls and people with Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease. RESULTS We use a mixed-linear model method (MOMENT) that accounts for the effect of (un)known confounders, to test for the association of each DNAm site with each disorder. While only three probes are found to be genome-wide significant in each MOMENT association analysis of amyotrophic lateral sclerosis and Parkinson's disease (and none with Alzheimer's disease), a fixed-effects meta-analysis of the three disorders results in 12 genome-wide significant differentially methylated positions. Predicted immune cell-type proportions are disrupted across all neurodegenerative disorders. Protein inflammatory markers are correlated with profile sum-scores derived from disease-associated immune cell-type proportions in a healthy aging cohort. In contrast, they are not correlated with MOMENT DNAm-derived profile sum-scores, calculated using effect sizes of the 12 differentially methylated positions as weights. CONCLUSIONS We identify shared differentially methylated positions in whole blood between neurodegenerative disorders that point to shared pathogenic mechanisms. These shared differentially methylated positions may reflect causes or consequences of disease, but they are unlikely to reflect cell-type proportion differences.
Collapse
Grants
- U24 AG021886 NIA NIH HHS
- U01 AG016976 NIA NIH HHS
- Department of Health
- U01 AG024904 NIA NIH HHS
- 108890/Z/15/Z Wellcome Trust
- 503480 Medical Research Council
- TURNER/OCT15/972-797 Motor Neurone Disease Association
- U01 AG032984 NIA NIH HHS
- 082604/2/07/Z Wellcome Trust
- R01 AG033193 NIA NIH HHS
- R01 HL105756 NHLBI NIH HHS
- MR/R024804/1 Medical Research Council
- National Health and Medical Research Council
- Motor Neurone Disease Research Institute of Australia Ice Bucket Challenge
- Medical Research Council (UK)
- Economic and Social Research Council
- National Institute for Health Research (NIHR)
- the European Community’s Health Seventh Framework Programme
- Horizon 2020 Programme
- MND Association and the Wellcome Trust.
- European Research Council (ERC)
- EU Joint Programme – Neurodegenerative Disease Research ()
- EU Joint Programme - Neurodegenerative Disease Research (JPND)
- Australian Research Council
- Mater Foundation
- ForeFront - NHMRC
- Australian National Health and Medical Research Council
- University of Otago Research Grant, together with financial support from the Jim and Mary Carney Charitable Trust
- Commonwealth Scientific Industrial and research Organization (CSIRO), Edith Cowan University (ECU), Mental Health Research institute (MHRI), National Ageing Research Institute (NARI), Austin Health, CogState Ltd
- National Health and Medical Research Council and the Dementia Collaborative Research Centres program (DCRC2), as well as funding from the Science and Industry Endowment Fund (SIEF) and the Cooperative Research Centre (CRC) for Mental Health – funded throug
- EU Joint Programme - Neurodegenerative Disease Research (JPND), co-funded through the Australian National Health and Medical Research (NHMRC) Council, Motor Neurone Disease Research Institute of Australia Ice Bucket Challenge,
- EU Joint Programme - Neurodegenerative Disease Research (JPND), United Kingdom Medical Research Council, Economic and Social Research Council, Motor Neuro Disease Association (GB), National Institute for Health Research (NIHR) Biomedical Research Centre at
- EU Joint Programme - Neurodegenerative Disease Research (JPND), European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program, PPP Allowance made available by Health~Holland, Top Sector Life Sciences & Health, Unit
- National Health and Medical Research Council, Australian Research Council, Mater Foundation,
- Australian National Health and Medical Research Council (
- University of Otago Research Grant, Jim and Mary Carney Charitable Trust
- Commonwealth Scientific Industrial and research Organization (CSIRO), Edith Cowan University (ECU), Mental Health Research institute (MHRI), National Ageing Research Institute (NARI), Austin Health, CogState Ltd., National Health and Medical Research Counc
- EFPIA companies and SMEs as part of InnoMed (Innovative Medicines in Europe), an Integrated Project funded by the European Union of the Sixth Framework program
Collapse
Affiliation(s)
- Marta F Nabais
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | - Simon M Laws
- School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA, 6027, Australia
| | - Tian Lin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Costanza L Vallerga
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Internal Medicine, Erasmus MC, University Medical Center, 3015GD, Rotterdam, The Netherlands
| | | | - Ian P Blair
- Australian Centre for Precision Health, University of South Australia Cancer Research Institute, School of Health Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - John B Kwok
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, 2031, Australia
- Neuroscience Research Australia Institute, Randwick, NSW, 2031, Australia
| | - George D Mellick
- Griffith Institute for Drug Discovery (GRIDD), Griffith University, Brisbane, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, 2031, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, UNSW, Randwick, NSW, 2031, Australia
| | - Leanne Wallace
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Anjali K Henders
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ramona A J Zwamborn
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Paul J Hop
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Katie Lunnon
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | - Ehsan Pishva
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | - Janou A Y Roubroeks
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | - Hilkka Soininen
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Magda Tsolaki
- 1st Department of Neurology, Memory and Dementia Unit, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Patrizia Mecocci
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Simon Lovestone
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | | | - Bruno Vellas
- INSERM U 558, University of Toulouse, Toulouse, France
| | - Sarah Furlong
- Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW, 2109, Australia
| | - Fleur C Garton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Robert D Henderson
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, 4019, Australia
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, 4029, Australia
| | - Susan Mathers
- Calvary Health Care Bethlehem, Parkdale, VIC, 3195, Australia
| | - Pamela A McCombe
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, 4019, Australia
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, 4029, Australia
| | - Merrilee Needham
- Fiona Stanley Hospital, Perth, WA, 6150, Australia
- Notre Dame University, Fremantle, WA, 6160, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, 6150, Australia
| | - Shyuan T Ngo
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, 4019, Australia
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Garth Nicholson
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, NSW, 2139, Australia
| | - Roger Pamphlett
- Discipline of Pathology and Department of Neuropathology, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Dominic B Rowe
- Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW, 2109, Australia
| | - Frederik J Steyn
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, 4029, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kelly L Williams
- Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW, 2109, Australia
| | - Tim J Anderson
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Steven R Bentley
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - John Dalrymple-Alford
- New Zealand Brain Research Institute, Christchurch, New Zealand
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Javed Fowder
- Griffith Institute for Drug Discovery (GRIDD), Griffith University, Brisbane, Australia
| | - Jacob Gratten
- Mater Research, Translational Research Institute, Brisbane, Australia
- Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Glenda Halliday
- Brain and Mind Research Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Ian B Hickie
- Brain and Mind Research Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Martin Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Simon J G Lewis
- Brain and Mind Research Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - John Pearson
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Toni L Pitcher
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Peter Silburn
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Futao Zhang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jian Yang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Anna J Stevenson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Sarah E Harris
- Department of Psychology, Lothian Birth Cohorts group, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Ian J Deary
- Department of Psychology, Lothian Birth Cohorts group, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Ashley R Jones
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, SE5 9RX, UK
| | - Aleksey Shatunov
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, SE5 9RX, UK
| | - Alfredo Iacoangeli
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, SE5 9RX, UK
| | - Wouter van Rheenen
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | | | - Cristopher E Shaw
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, SE5 9RX, UK
| | | | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, SE5 9RX, UK
- King's College Hospital, London, SE5 9RS, UK
| | - Jan H Veldink
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Eilis Hannon
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | - Jonathan Mill
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
26
|
Smith AR, Smith RG, Macdonald R, Marzi SJ, Burrage J, Troakes C, Al-Sarraj S, Mill J, Lunnon K. The histone modification H3K4me3 is altered at the ANK1 locus in Alzheimer's disease brain. Future Sci OA 2021; 7:FSO665. [PMID: 33815817 PMCID: PMC8015672 DOI: 10.2144/fsoa-2020-0161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/04/2020] [Indexed: 01/24/2023] Open
Abstract
Several epigenome-wide association studies of DNA methylation have highlighted altered DNA methylation in the ANK1 gene in Alzheimer's disease (AD) brain samples. However, no study has specifically examined ANK1 histone modifications in the disease. We use chromatin immunoprecipitation-qPCR to quantify tri-methylation at histone 3 lysine 4 (H3K4me3) and 27 (H3K27me3) in the ANK1 gene in entorhinal cortex from donors with high (n = 59) or low (n = 29) Alzheimer's disease pathology. We demonstrate decreased levels of H3K4me3, a marker of active gene transcription, with no change in H3K27me3, a marker of inactive genes. H3K4me3 is negatively correlated with DNA methylation in specific regions of the ANK1 gene. Our study suggests that the ANK1 gene shows altered epigenetic marks indicative of reduced gene activation in Alzheimer's disease.
Collapse
Affiliation(s)
- Adam R Smith
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Rebecca G Smith
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Ruby Macdonald
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Sarah J Marzi
- The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Joe Burrage
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Claire Troakes
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Safa Al-Sarraj
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Katie Lunnon
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| |
Collapse
|
27
|
Coda DM, Gräff J. Neurogenetic and Neuroepigenetic Mechanisms in Cognitive Health and Disease. Front Mol Neurosci 2020; 13:205. [PMID: 33343294 PMCID: PMC7745653 DOI: 10.3389/fnmol.2020.589109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/05/2020] [Indexed: 01/02/2023] Open
Abstract
Over the last two decades, the explosion of experimental, computational, and high-throughput technologies has led to critical insights into how the brain functions in health and disease. It has become increasingly clear that the vast majority of brain activities result from the complex entanglement of genetic factors, epigenetic changes, and environmental stimuli, which, when altered, can lead to neurodegenerative and neuropsychiatric disorders. Nevertheless, a complete understanding of the molecular mechanisms underlying neuronal activities and higher-order cognitive processes continues to elude neuroscientists. Here, we provide a concise overview of how the interaction between the environment and genetic as well as epigenetic mechanisms shapes complex neuronal processes such as learning, memory, and synaptic plasticity. We then consider how this interaction contributes to the development of neurodegenerative and psychiatric disorders, and how it can be modeled to predict phenotypic variability and disease risk. Finally, we outline new frontiers in neurogenetic and neuroepigenetic research and highlight the challenges these fields will face in their quest to decipher the molecular mechanisms governing brain functioning.
Collapse
Affiliation(s)
- Davide Martino Coda
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
28
|
Hoare J, Stein DJ, Heany SJ, Fouche JP, Phillips N, Er S, Myer L, Zar HJ, Horvath S, Levine AJ. Accelerated epigenetic aging in adolescents from low-income households is associated with altered development of brain structures. Metab Brain Dis 2020; 35:1287-1298. [PMID: 32671535 PMCID: PMC7606536 DOI: 10.1007/s11011-020-00589-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/23/2020] [Indexed: 10/23/2022]
Abstract
The relationship between cognitive performance, macro and microstructural brain anatomy and accelerated aging as measured by a highly accurate epigenetic biomarker of aging known as the epigenetic clock in healthy adolescents has not been studied. Healthy adolescents enrolled in the Cape Town Adolescent Antiretroviral Cohort Study were studied cross sectionally. The Illumina Infinium Methylation EPIC array was used to generate DNA methylation data from the blood samples of 44 adolescents aged 9 to 12 years old. The epigenetic clock software and method was used to estimate two measures, epigenetic age acceleration residual (AAR) and extrinsic epigenetic age acceleration (EEAA). Each participant underwent neurocognitive testing, T1 structural magnetic resonance imaging (MRI), and diffusion tensor imaging (DTI). Correlation tests were run between the two epigenetic aging measures and 10 cognitive functioning domains, to assess for differences in cognitive performance as epigenetic aging increases. In order to investigate the associations of epigenetic age acceleration on brain structure, we developed stepwise multiple regression models in R (version 3.4.3, 2017) including grey and white matter volumes, cortical thickness, and cortical surface area, as well as DTI measures of white matter microstructural integrity. In addition to negatively affecting two cognitive domains, visual memory (p = .026) and visual spatial acuity (p = .02), epigenetic age acceleration was associated with alterations of brain volumes, cortical thickness, cortical surface areas and abnormalities in neuronal microstructure in a range of regions. Stress was a significant predictor (p = .029) of AAR. Understanding the drivers of epigenetic age acceleration in adolescents could lead to valuable insights into the development of neurocognitive impairment in adolescents.
Collapse
Affiliation(s)
- Jacqueline Hoare
- Department of Psychiatry and Mental Health, University of Cape Town, Groote Schuur Hospital, Observatory, Cape Town, 7925, South Africa.
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Groote Schuur Hospital, Observatory, Cape Town, 7925, South Africa
- SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, South Africa
| | - Sarah J Heany
- Department of Psychiatry and Mental Health, University of Cape Town, Groote Schuur Hospital, Observatory, Cape Town, 7925, South Africa
| | - Jean-Paul Fouche
- Department of Psychiatry and Mental Health, University of Cape Town, Groote Schuur Hospital, Observatory, Cape Town, 7925, South Africa
| | - Nicole Phillips
- Department of Psychiatry and Mental Health, University of Cape Town, Groote Schuur Hospital, Observatory, Cape Town, 7925, South Africa
| | - Sebnem Er
- Department of Statistics, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Landon Myer
- Centre for Infectious Disease Epidemiology and Research, School of Public Health & Family Medicine, University of Cape Town, Cape Town, South Africa
- Division of Epidemiology and Biostatistics, School of Public Health & Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
- SA Medical Research Council Unit on Child and Adolescent Health, Cape Town, South Africa
| | - Steve Horvath
- Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Andrew J Levine
- SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, South Africa
- Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| |
Collapse
|
29
|
Mitsumori R, Sakaguchi K, Shigemizu D, Mori T, Akiyama S, Ozaki K, Niida S, Shimoda N. Lower DNA methylation levels in CpG island shores of CR1, CLU, and PICALM in the blood of Japanese Alzheimer's disease patients. PLoS One 2020; 15:e0239196. [PMID: 32991610 PMCID: PMC7523949 DOI: 10.1371/journal.pone.0239196] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 09/01/2020] [Indexed: 11/18/2022] Open
Abstract
The aim of the present study was to (1) investigate the relationship between late-onset Alzheimer’s disease (AD) and DNA methylation levels in six of the top seven AD-associated genes identified through a meta-analysis of recent genome wide association studies, APOE, BIN1, PICALM, CR1, CLU, and ABCA7, in blood, and (2) examine its applicability to the diagnosis of AD. We examined methylation differences at CpG island shores in the six genes using Sanger sequencing, and one of two groups of 48 AD patients and 48 elderly controls was used for a test or replication analysis. We found that methylation levels in three out of the six genes, CR1, CLU, and PICALM, were significantly lower in AD subjects. The combination of CLU methylation levels and the APOE genotype classified AD patients with AUC = 0.84 and 0.80 in the test and replication analyses, respectively. Our study implicates methylation differences at the CpG island shores of AD-associated genes in the onset of AD and suggests their diagnostic value.
Collapse
Affiliation(s)
- Risa Mitsumori
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kazuya Sakaguchi
- Department of Regenerative Medicine, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Daichi Shigemizu
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Taiki Mori
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Shintaro Akiyama
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kouichi Ozaki
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Shumpei Niida
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Nobuyoshi Shimoda
- Department of Regenerative Medicine, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| |
Collapse
|
30
|
Smith AR, Wheildon G, Lunnon K. Invited Review – A 5‐year update on epigenome‐wide association studies of DNA modifications in Alzheimer’s disease: progress, practicalities and promise. Neuropathol Appl Neurobiol 2020; 46:641-653. [DOI: 10.1111/nan.12650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022]
Affiliation(s)
- A. R. Smith
- University of Exeter Medical School College of Medicine and Health Exeter University Exeter UK
| | - G. Wheildon
- University of Exeter Medical School College of Medicine and Health Exeter University Exeter UK
| | - K. Lunnon
- University of Exeter Medical School College of Medicine and Health Exeter University Exeter UK
| |
Collapse
|
31
|
Ren JX, Sun X, Yan XL, Guo ZN, Yang Y. Ferroptosis in Neurological Diseases. Front Cell Neurosci 2020; 14:218. [PMID: 32754017 PMCID: PMC7370841 DOI: 10.3389/fncel.2020.00218] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis is mechanism for non-apoptotic, iron-dependent, oxidative cell death that is characterized by glutathione consumption and lipid peroxides accumulation. Ferroptosis is crucially involved in neurological diseases, including neurodegeneration, stroke and neurotrauma. This review provides detailed discussions of the ferroptosis mechanisms in these neurological diseases. Moreover, it summarizes recent drugs that target ferroptosis for neurological disease treatment. Furthermore, it compares the differences and relationships among the various cell death mechanisms involved in neurological diseases. Elucidating the ferroptosis role in the brain can improve the understanding of neurological disease mechanism and provide potential prevention and treatment interventions for acute and chronic neurological diseases.
Collapse
Affiliation(s)
- Jia-Xin Ren
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,School of Clinical Medicine, Jilin University, Changchun, China
| | - Xin Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
32
|
Guo Q, He J, Zhang H, Yao L, Li H. Oleanolic acid alleviates oxidative stress in Alzheimer's disease by regulating stanniocalcin-1 and uncoupling protein-2 signalling. Clin Exp Pharmacol Physiol 2020; 47:1263-1271. [PMID: 32100892 DOI: 10.1111/1440-1681.13292] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/12/2022]
Abstract
Oxidative stress is thought to play an important role in the occurrence and development of Alzheimer's disease (AD) and antioxidants may delay or even treat AD. Oleanolic acid (OA) exhibits antioxidant properties against many diseases. However, its effects on oxidative stress in AD remain unclear. Here, we explored the role and mechanism of action of OA in N2a/APP695swe cells exposed to oxidative stress. The cells were incubated with different concentrations of OA (0, 5, 8, 10, 15, and 25 μmol/L) for 24 hours. Higher concentrations of OA (10, 15, and 25 μmol/L) significantly suppressed the apoptosis, caspase-3 activity, reactive oxygen species level, and β amyloid (Aβ) content and increased the viability of these cells. OA (10 μmol/L) also increased the expression of stanniocalcin-1 (STC-1) and uncoupling protein-2 (UCP2) in N2a/APP695swe cells. STC-1 interference markedly reversed the effect of OA on UCP2, indicating that OA may regulate UCP2 expression in N2a/APP695swe cells via STC-1. Moreover, UCP2 inhibition significantly reversed the OA-mediated effects on cell viability, caspase-3 activity, reactive oxygen species, and Aβ level. Thus, OA regulates UCP2 expression via STC-1 to alleviate oxidative stress and Aβ level in N2a/APP695swe cells.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Neurology, Xidian Group Hospital, Xi'an, China
| | - Jianbo He
- Department of Neurology, Xidian Group Hospital, Xi'an, China
| | - Heng Zhang
- Department of Neurology, Xidian Group Hospital, Xi'an, China
| | - Li Yao
- Department of Neurology, Xidian Group Hospital, Xi'an, China
| | - Huiqi Li
- Department of Neurology, Xidian Group Hospital, Xi'an, China
| |
Collapse
|
33
|
Vasanthakumar A, Davis JW, Idler K, Waring JF, Asque E, Riley-Gillis B, Grosskurth S, Srivastava G, Kim S, Nho K, Nudelman KNH, Faber K, Sun Y, Foroud TM, Estrada K, Apostolova LG, Li QS, Saykin AJ. Harnessing peripheral DNA methylation differences in the Alzheimer's Disease Neuroimaging Initiative (ADNI) to reveal novel biomarkers of disease. Clin Epigenetics 2020; 12:84. [PMID: 32539856 PMCID: PMC7294637 DOI: 10.1186/s13148-020-00864-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic progressive neurodegenerative disease impacting an estimated 44 million adults worldwide. The causal pathology of AD (accumulation of amyloid-beta and tau), precedes hallmark symptoms of dementia by more than a decade, necessitating development of early diagnostic markers of disease onset, particularly for new drugs that aim to modify disease processes. To evaluate differentially methylated positions (DMPs) as novel blood-based biomarkers of AD, we used a subset of 653 individuals with peripheral blood (PB) samples in the Alzheimer's disease Neuroimaging Initiative (ADNI) consortium. The selected cohort of AD, mild cognitive impairment (MCI), and age-matched healthy controls (CN) all had imaging, genetics, transcriptomics, cerebrospinal protein markers, and comprehensive clinical records, providing a rich resource of concurrent multi-omics and phenotypic information on a well-phenotyped subset of ADNI participants. RESULTS In this manuscript, we report cross-diagnosis differential peripheral DNA methylation in a cohort of AD, MCI, and age-matched CN individuals with longitudinal DNA methylation measurements. Epigenome-wide association studies (EWAS) were performed using a mixed model with repeated measures over time with a P value cutoff of 1 × 10-5 to test contrasts of pairwise differential peripheral methylation in AD vs CN, AD vs MCI, and MCI vs CN. The most highly significant differentially methylated loci also tracked with Mini Mental State Examination (MMSE) scores. Differentially methylated loci were enriched near brain and neurodegeneration-related genes (e.g., BDNF, BIN1, APOC1) validated using the genotype tissue expression project portal (GTex). CONCLUSIONS Our work shows that peripheral differential methylation between age-matched subjects with AD relative to healthy controls will provide opportunities to further investigate and validate differential methylation as a surrogate of disease. Given the inaccessibility of brain tissue, the PB-associated methylation marks may help identify the stage of disease and progression phenotype, information that would be central to bringing forward successful drugs for AD.
Collapse
Affiliation(s)
| | - Justin W Davis
- Genomics Research Center, AbbVie, North Chicago, IL, USA
| | - Kenneth Idler
- Genomics Research Center, AbbVie, North Chicago, IL, USA
| | | | | | | | | | | | - Sungeun Kim
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Electrical and Computer Engineering, State University of New York, Oswego, NY, 13126, USA
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kelly N H Nudelman
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- National Centralized Repository for Alzheimer's Disease and Related Dementias, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kelley Faber
- National Centralized Repository for Alzheimer's Disease and Related Dementias, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yu Sun
- Neuroscience Therapeutic Area, Janssen Research & Development, Pennington, NJ, 08534, USA
- Research Information Technology, Janssen Research & Development, Pennington, NJ, 08534, USA
| | - Tatiana M Foroud
- National Centralized Repository for Alzheimer's Disease and Related Dementias, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Karol Estrada
- Biogen, Cambridge, MA, 02142, USA
- Currently at Biomarin Pharmaceuticals, Novato, CA, 94949, USA
| | - Liana G Apostolova
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Qingqin S Li
- Neuroscience Therapeutic Area, Janssen Research & Development, Pennington, NJ, 08534, USA
- Research Information Technology, Janssen Research & Development, Pennington, NJ, 08534, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
34
|
Appleby-Mallinder C, Schaber E, Kirby J, Shaw PJ, Cooper-Knock J, Heath PR, Highley JR. TDP43 proteinopathy is associated with aberrant DNA methylation in human amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 2020; 47:61-72. [PMID: 32365404 DOI: 10.1111/nan.12625] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neurone (MN) degeneration and death. ALS can be sporadic (sALS) or familial, with a number of associated gene mutations, including C9orf72 (C9ALS). DNA methylation is an epigenetic mechanism whereby a methyl group is attached to a cytosine (5mC), resulting in gene expression repression. 5mC can be further oxidized to 5-hydroxymethylcytosine (5hmC). DNA methylation has been studied in other neurodegenerative diseases, but little work has been conducted in ALS. AIMS To assess differences in DNA methylation in individuals with ALS and the relationship between DNA methylation and TDP43 pathology. METHODS Post mortem tissue from controls, sALS cases and C9ALS cases were assessed by immunohistochemistry for 5mC and 5hmC in spinal cord, motor cortex and prefrontal cortex. LMNs were extracted from a subset of cases using laser capture microdissection. DNA from these underwent analysis using the MethylationEPIC array to determine which molecular processes were most affected. RESULTS There were higher levels of 5mC and 5hmC in sALS and C9ALS in the residual lower motor neurones (LMNs) of the spinal cord. Importantly, in LMNs with TDP43 pathology there was less nuclear 5mC and 5hmC compared to the majority of residual LMNs that lacked TDP43 pathology. Enrichment analysis of the array data suggested RNA metabolism was particularly affected. CONCLUSIONS DNA methylation is a contributory factor in ALS LMN pathology. This is not so for glia or neocortical neurones.
Collapse
Affiliation(s)
- C Appleby-Mallinder
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - E Schaber
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - J Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - P J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - J Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - P R Heath
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - J R Highley
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Department of Cellular Pathology, Hull Royal Infirmary, Hull, United Kingdom
| |
Collapse
|
35
|
Piaceri I, Chiari A, Galli C, Bagnoli S, Ferrari C, Saavedra ST, Molinari MA, Vinceti G, Sorbi S, Nacmias B. Incomplete penetrance in familial Alzheimer’s disease with PSEN1 Ala260Gly mutation. Neurol Sci 2020; 41:2263-2266. [DOI: 10.1007/s10072-020-04421-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/13/2020] [Indexed: 01/06/2023]
|
36
|
Li Q, Cai M, Wang J, Gao Q, Guo X, Jia X, Xu S, Zhu H. Decreased ovarian function and autophagy gene methylation in aging rats. J Ovarian Res 2020; 13:12. [PMID: 32014030 PMCID: PMC6998822 DOI: 10.1186/s13048-020-0615-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/22/2020] [Indexed: 01/23/2023] Open
Abstract
Background Degeneration of ovarian function is an obvious feature of female aging. In addition, studies have shown that autophagy decreases with age, and DNA methylation is a hallmark epigenetic pattern during aging. However, it is not clear whether the expression and DNA methylation of autophagy genes are involved in the declines in ovarian function that occur during aging. Results Three groups of rats were used: 6-month-old (6 M) rats, 12-month-old (12 M) rats and 24-month-old (24 M) rats. Serum E2 levels and the mRNA and protein expression levels of Atg5, Atg12, Atg16L, Beclin1 and Lc3B were significantly decreased in aged rats. In addition, the methylation levels of the Atg5 gene were significantly increased in aged rats. The expression of the Dnmt1 and Dnmt2 genes decreased with aging; however, the expression of the Dnmt3A and Dnmt3B genes gradually increased with aging. Conclusions Decreased autophagic activity was involved in the declines in ovarian function in aging rats. Upregulation of the DNA methyltransferases Dnmt3A and Dnmt3B may have led to methylation of the autophagy genes Atg5 and Lc3B to ultimately cause the observed decreases in autophagic activity.
Collapse
Affiliation(s)
- Qiuyuan Li
- Department of Physiology, Harbin Medical University, Harbin, 150086, China
| | - Minghui Cai
- Department of Physiology, Harbin Medical University, Harbin, 150086, China
| | - Jiao Wang
- Department of Physiology, Harbin Medical University, Harbin, 150086, China
| | - Qiang Gao
- Department of Physiology, Harbin Medical University, Harbin, 150086, China
| | - Xiaocheng Guo
- Department of Physiology, Harbin Medical University, Harbin, 150086, China
| | - Xiaotong Jia
- Department of Physiology, Harbin Medical University, Harbin, 150086, China
| | - Shanshan Xu
- Department of Physiology, Harbin Medical University, Harbin, 150086, China
| | - Hui Zhu
- Department of Physiology, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
37
|
Yan N, Zhang J. Iron Metabolism, Ferroptosis, and the Links With Alzheimer's Disease. Front Neurosci 2020; 13:1443. [PMID: 32063824 PMCID: PMC7000453 DOI: 10.3389/fnins.2019.01443] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
Iron is an essential transition metal for numerous biologic processes in mammals. Iron metabolism is regulated via several coordination mechanisms including absorption, utilization, recycling, and storage. Iron dyshomeostasis can result in intracellular iron retention, thereby damaging cells, tissues, and organs through free oxygen radical generation. Numerous studies have shown that brain iron overload is involved in the pathological mechanism of neurodegenerative disease including Alzheimer’s disease (AD). However, the underlying mechanisms have not been fully elucidated. Ferroptosis, a newly defined iron-dependent form of cell death, which is distinct from apoptosis, necrosis, autophagy, and other forms of cell death, may provide us a new viewpoint. Here, we set out to summarize the current knowledge of iron metabolism and ferroptosis, and review the contributions of iron and ferroptosis to AD.
Collapse
Affiliation(s)
- Nao Yan
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - JunJian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Abstract
As the worldwide population ages, the prevalence of Alzheimer's disease (AD) increases. However, the results of promising medications have been unsatisfactory. Chinese acupuncture has a long history of treating dementia, but lack of evidence from well-designed randomized controlled trials that validate its efficacy and safety, as well as its lack of clear underlying mechanisms, contribute to its limited application in clinical practice. In recent years, brain imaging technologies, such as functional magnetic resonance imaging and positron emission tomography, have been used to assess brain responses to acupuncture in a dynamic, visual, and objective way. These techniques are frequently used to explore neurological mechanisms of responses to acupuncture in AD and provide neuroimaging evidence as well as starting points to elucidate the possible mechanisms. This review summarizes the existing brain imaging evidence that explains the effects of acupuncture for AD and analyzes brain responses to acupuncture at cognitive-related acupoints [Baihui (GV 20), Shenmen (HT 7), Zusanli (ST 36), Neiguan (PC 6), and Taixi (KI 3)] from perspectives of acupoint specificity and acupoint combinations. Key issues and directions to consider in future studies are also put forward. This review should deepen our understanding of how brain imaging studies can be used to explore the underlying mechanisms of acupuncture in AD.
Collapse
|
39
|
Bhatti GK, Reddy AP, Reddy PH, Bhatti JS. Lifestyle Modifications and Nutritional Interventions in Aging-Associated Cognitive Decline and Alzheimer's Disease. Front Aging Neurosci 2020; 11:369. [PMID: 31998117 PMCID: PMC6966236 DOI: 10.3389/fnagi.2019.00369] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a type of incurable neurodegenerative disease that is characterized by the accumulation of amyloid-β (Aβ; plaques) and tau hyperphosphorylation as neurofibrillary tangles (NFTs) in the brain followed by neuronal death, cognitive decline, and memory loss. The high prevalence of AD in the developed world has become a major public health challenge associated with social and economic burdens on individuals and society. Due to there being limited options for early diagnosis and determining the exact pathophysiology of AD, finding effective therapeutic strategies has become a great challenge. Several possible risk factors associated with AD pathology have been identified; however, their roles are still inconclusive. Recent clinical trials of the drugs targeting Aβ and tau have failed to find a cure for the AD pathology. Therefore, effective preventive strategies should be followed to reduce the exponential increase in the prevalence of cognitive decline and dementia, especially AD. Although the search for new therapeutic targets is a great challenge for the scientific community, the roles of lifestyle interventions and nutraceuticals in the prevention of many metabolic and neurodegenerative diseases are highly appreciated in the literature. In this article, we summarize the molecular mechanisms involved in AD pathology and the possible ameliorative action of lifestyle and nutritional interventions including diet, exercise, Calorie restriction (CR), and various bioactive compounds on cognitive decline and dementia. This article will provide insights into the role of non-pharmacologic interventions in the modulation of AD pathology, which may offer the benefit of improving quality of life by reducing cognitive decline and incident AD.
Collapse
Affiliation(s)
- Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Arubala P. Reddy
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - P. Hemachandra Reddy
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Speech, Language and Hearing Sciences Department, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jasvinder Singh Bhatti
- Department of Biotechnology and Microbial Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| |
Collapse
|
40
|
Mrdjen D, Fox EJ, Bukhari SA, Montine KS, Bendall SC, Montine TJ. The basis of cellular and regional vulnerability in Alzheimer's disease. Acta Neuropathol 2019; 138:729-749. [PMID: 31392412 PMCID: PMC6802290 DOI: 10.1007/s00401-019-02054-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) differentially and specifically affects brain regions and neuronal cell types in a predictable pattern. Damage to the brain appears to spread and worsens with time, taking over more regions and activating multiple stressors that can converge to promote vulnerability of certain cell types. At the same time, other cell types and brain regions remain intact in the face of this onslaught of neuropathology. Although neuropathologic descriptions of AD have been extensively expanded and mapped over the last several decades, our understanding of the mechanisms underlying how certain regions and cell populations are specifically vulnerable or resistant has lagged behind. In this review, we detail what is known about the selectivity of local initiation of AD pathology in the hippocampus, its proposed spread via synaptic connections, and the diversity of clinical phenotypes and brain atrophy patterns that may arise from different fibrillar strains of pathologic proteins or genetic predispositions. We summarize accumulated and emerging knowledge of the cellular and molecular basis for neuroanatomic selectivity, consider potential disease-relevant differences between vulnerable and resistant neuronal cell types and isolate molecular markers to identify them.
Collapse
Affiliation(s)
- Dunja Mrdjen
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Edward J Fox
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Syed A Bukhari
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Kathleen S Montine
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Sean C Bendall
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Thomas J Montine
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
41
|
Tiane A, Schepers M, Rombaut B, Hupperts R, Prickaerts J, Hellings N, van den Hove D, Vanmierlo T. From OPC to Oligodendrocyte: An Epigenetic Journey. Cells 2019; 8:E1236. [PMID: 31614602 PMCID: PMC6830107 DOI: 10.3390/cells8101236] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Oligodendrocytes provide metabolic and functional support to neuronal cells, rendering them key players in the functioning of the central nervous system. Oligodendrocytes need to be newly formed from a pool of oligodendrocyte precursor cells (OPCs). The differentiation of OPCs into mature and myelinating cells is a multistep process, tightly controlled by spatiotemporal activation and repression of specific growth and transcription factors. While oligodendrocyte turnover is rather slow under physiological conditions, a disruption in this balanced differentiation process, for example in case of a differentiation block, could have devastating consequences during ageing and in pathological conditions, such as multiple sclerosis. Over the recent years, increasing evidence has shown that epigenetic mechanisms, such as DNA methylation, histone modifications, and microRNAs, are major contributors to OPC differentiation. In this review, we discuss how these epigenetic mechanisms orchestrate and influence oligodendrocyte maturation. These insights are a crucial starting point for studies that aim to identify the contribution of epigenetics in demyelinating diseases and may thus provide new therapeutic targets to induce myelin repair in the long run.
Collapse
Affiliation(s)
- Assia Tiane
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Melissa Schepers
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Ben Rombaut
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Raymond Hupperts
- Department of Neurology, Zuyderland Medical Center, Sittard-Geleen 6130 MB, The Netherlands.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Niels Hellings
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
| | - Daniel van den Hove
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg 97080, Germany.
| | - Tim Vanmierlo
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| |
Collapse
|
42
|
Xu Y, Xu L, Han M, Liu X, Li F, Zhou X, Wang Y, Bi J. Altered mitochondrial DNA methylation and mitochondrial DNA copy number in an APP/PS1 transgenic mouse model of Alzheimer disease. Biochem Biophys Res Commun 2019; 520:41-46. [PMID: 31564416 DOI: 10.1016/j.bbrc.2019.09.094] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/21/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease and mitochondrial impairment is a key feature of AD. The mitochondrial DNA (mtDNA) epigenetic mechanism is a relatively new field compared to nuclear DNA. The relationship between mtDNA epigenetic mechanism and AD hasn't been established. So we analyzed the mtDNA methylation in D-loop region and 12 S rRNA gene in the hippocampi in amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice by bisulfite pyrosequencing. Mitochondrial DNA copy number and gene expression were studied by quantitative real-time PCR (qRT-PCR). We observed a decrease in the displacement loop (D-loop) methylation and an increase in 12 S rRNA gene methylation, while both the mtDNA copy number and the mitochondrial gene expression were reduced in APP/PS1 transgenic mice. In summary, the present finding suggest that mtDNA methylation may play a role in AD pathology, which warrants larger future investigations.
Collapse
Affiliation(s)
- YingYing Xu
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - LinLin Xu
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - Min Han
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - XiangTian Liu
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - Fan Li
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - XiaoYan Zhou
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - Yun Wang
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China.
| | - JianZhong Bi
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| |
Collapse
|
43
|
Konki M, Malonzo M, Karlsson IK, Lindgren N, Ghimire B, Smolander J, Scheinin NM, Ollikainen M, Laiho A, Elo LL, Lönnberg T, Röyttä M, Pedersen NL, Kaprio J, Lähdesmäki H, Rinne JO, Lund RJ. Peripheral blood DNA methylation differences in twin pairs discordant for Alzheimer's disease. Clin Epigenetics 2019; 11:130. [PMID: 31477183 PMCID: PMC6721173 DOI: 10.1186/s13148-019-0729-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Alzheimer's disease results from a neurodegenerative process that starts well before the diagnosis can be made. New prognostic or diagnostic markers enabling early intervention into the disease process would be highly valuable. Environmental and lifestyle factors largely modulate the disease risk and may influence the pathogenesis through epigenetic mechanisms, such as DNA methylation. As environmental and lifestyle factors may affect multiple tissues of the body, we hypothesized that the disease-associated DNA methylation signatures are detectable in the peripheral blood of discordant twin pairs. RESULTS Comparison of 23 disease discordant Finnish twin pairs with reduced representation bisulfite sequencing revealed peripheral blood DNA methylation differences in 11 genomic regions with at least 15.0% median methylation difference and FDR adjusted p value ≤ 0.05. Several of the affected genes are primarily associated with neuronal functions and pathologies and do not display disease-associated differences in gene expression in blood. The DNA methylation mark in ADARB2 gene was found to be differentially methylated also in the anterior hippocampus, including entorhinal cortex, of non-twin cases and controls. Targeted bisulfite pyrosequencing of the DNA methylation mark in ADARB2 gene in 62 Finnish and Swedish twin pairs revealed that, in addition to the disease status, DNA methylation of this region is influenced by gender, age, zygosity, APOE genotype, and smoking. Further analysis of 120 Swedish twin pairs indicated that this specific DNA methylation mark is not predictive for Alzheimer's disease and becomes differentially methylated after disease onset. CONCLUSIONS DNA methylation differences can be detected in the peripheral blood of twin pairs discordant for Alzheimer's disease. These DNA methylation signatures may have value as disease markers and provide insights into the molecular mechanisms of pathogenesis. We found no evidence that the DNA methylation marks would be associated with gene expression in blood. Further studies are needed to elucidate the potential importance of the associated genes in neuronal functions and to validate the prognostic or diagnostic value of the individual marks or marker panels.
Collapse
Affiliation(s)
- Mikko Konki
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FIN-20520, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, University of Turku, FI-20014, Turku, Finland
| | - Maia Malonzo
- Department of Computer Science, Aalto University School of Science, FI-00076, Helsinki, Finland
| | - Ida K Karlsson
- Institute of Gerontology and Aging Research Network-Jönköping (ARN-J), School of Health and Welfare, Jönköping University, SE-55111, Jönköping, Sweden.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Noora Lindgren
- Drug Research Doctoral Program, University of Turku, FI-20014, Turku, Finland.,Turku PET Centre, University of Turku, FI-20520, Turku, Finland
| | - Bishwa Ghimire
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FIN-20520, Turku, Finland.,Institute for Molecular Medicine Finland, University of Helsinki, FI-00014, Helsinki, Finland
| | - Johannes Smolander
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FIN-20520, Turku, Finland
| | - Noora M Scheinin
- Turku PET Centre, University of Turku, FI-20520, Turku, Finland.,Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Institute of Clinical Medicine, University of Turku, FI-20014, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, FI-20014, Turku, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland, University of Helsinki, FI-00014, Helsinki, Finland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FIN-20520, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FIN-20520, Turku, Finland
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FIN-20520, Turku, Finland
| | - Matias Röyttä
- Department of Pathology/Neuropathology, Turku University Hospital, University of Turku, FI-20014, Turku, Finland
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-17177, Stockholm, Sweden.,Department of Psychology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, University of Helsinki, FI-00014, Helsinki, Finland.,Department of Public Health, University of Helsinki, FI-00271, Helsinki, Finland
| | - Harri Lähdesmäki
- Department of Computer Science, Aalto University School of Science, FI-00076, Helsinki, Finland
| | - Juha O Rinne
- Turku PET Centre, University of Turku, FI-20520, Turku, Finland.,Division of Clinical Neurosciences, Turku University Hospital, FI-20014, Turku, Finland
| | - Riikka J Lund
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FIN-20520, Turku, Finland.
| |
Collapse
|
44
|
Does SCFD1 rs10139154 Polymorphism Decrease Alzheimer’s Disease Risk? J Mol Neurosci 2019; 69:343-350. [DOI: 10.1007/s12031-019-01363-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022]
|
45
|
Kehoe PG. The Coming of Age of the Angiotensin Hypothesis in Alzheimer's Disease: Progress Toward Disease Prevention and Treatment? J Alzheimers Dis 2019; 62:1443-1466. [PMID: 29562545 PMCID: PMC5870007 DOI: 10.3233/jad-171119] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is wide recognition of a complex association between midlife hypertension and cardiovascular disease and later development of Alzheimer’s disease (AD) and cognitive impairment. While significant progress has been made in reducing rates of mortality and morbidity due to cardiovascular disease over the last thirty years, progress towards effective treatments for AD has been slower. Despite the known association between hypertension and dementia, research into each disease has largely been undertaken in parallel and independently. Yet over the last decade and a half, the emergence of converging findings from pre-clinical and clinical research has shown how the renin angiotensin system (RAS), which is very important in blood pressure regulation and cardiovascular disease, warrants careful consideration in the pathogenesis of AD. Numerous components of the RAS have now been found to be altered in AD such that the multifunctional and potent vasoconstrictor angiotensin II, and similarly acting angiotensin III, are greatly altered at the expense of other RAS signaling peptides considered to contribute to neuronal and cognitive function. Collectively these changes may contribute to many of the neuropathological hallmarks of AD, as well as observed progressive deficiencies in cognitive function, while also linking elements of a number of the proposed hypotheses for the cause of AD. This review discusses the emergence of the RAS and its likely importance in AD, not only because of the multiple facets of its involvement, but also perhaps fortuitously because of the ready availability of numerous RAS-acting drugs, that could be repurposed as interventions in AD.
Collapse
Affiliation(s)
- Patrick Gavin Kehoe
- Dementia Research Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| |
Collapse
|
46
|
|
47
|
Chen X, Yu C, Guo M, Zheng X, Ali S, Huang H, Zhang L, Wang S, Huang Y, Qie S, Wang J. Down-Regulation of m6A mRNA Methylation Is Involved in Dopaminergic Neuronal Death. ACS Chem Neurosci 2019; 10:2355-2363. [PMID: 30835997 DOI: 10.1021/acschemneuro.8b00657] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
N6-Methyladenosine (m6A) is the most prevalent internal modification that occurs in the mRNA of eukaryotes and plays a vital role in the post-transcriptional regulation. Recent studies highlighted the biological significance of m6A modification in the nervous system, and its dysregulation has been shown to be related to degenerative and neurodevelopmental diseases. Parkinson's disease (PD) is a common age-related neurological disorder with its pathogenesis still not fully elucidated. Reports have shown that epigenetic mechanisms including DNA methylation and histone acetylation, which alter gene expression, are associated with PD. In this study, we found that global m6A modification of mRNAs is down-regulated in 6-OHDA-induced PC12 cells and the striatum of PD rat brain. To further explore the relationship between m6A mRNA methylation and molecular mechanism of PD, we decreased m6A in dopaminergic cells by overexpressing a nucleic acid demethylase, FTO, or by m6A inhibitor. The results showed that m6A reduction could induce the expression of N-methyl-d-aspartate (NMDA) receptor 1, and elevate oxidative stress and Ca2+ influx, resulting in dopaminergic neuron apoptosis. Collectively, m6A modification may play a vital role in the death of dopaminergic neuron, which provides a novel view of mRNA methylation to understand the epigenetic regulation of Parkinson's disease.
Collapse
Affiliation(s)
- Xuechai Chen
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100122, China
| | - Chunyu Yu
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100122, China
| | - Minjun Guo
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100122, China
| | - Xiaotong Zheng
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100122, China
| | - Sakhawat Ali
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100122, China
| | - Hua Huang
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100122, China
| | - Lihua Zhang
- Beijing Municipal Center for Food Safety Monitoring and Risk Assessment, 64 Shixing Street, Shijingshan District, Beijing 100041, China
| | - Shensen Wang
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100122, China
| | - Yinghui Huang
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100122, China
| | - Shuyan Qie
- Department of Rehabilitation, Beijing Rehabilitation Hospital affiliated to Capital Medical University, Xixiazhuang, Badachu Road, Shijingshan
District, Beijing 100144, China
| | - Juan Wang
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100122, China
| |
Collapse
|
48
|
Egervari G, Kozlenkov A, Dracheva S, Hurd YL. Molecular windows into the human brain for psychiatric disorders. Mol Psychiatry 2019; 24:653-673. [PMID: 29955163 PMCID: PMC6310674 DOI: 10.1038/s41380-018-0125-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/14/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022]
Abstract
Delineating the pathophysiology of psychiatric disorders has been extremely challenging but technological advances in recent decades have facilitated a deeper interrogation of molecular processes in the human brain. Initial candidate gene expression studies of the postmortem brain have evolved into genome wide profiling of the transcriptome and the epigenome, a critical regulator of gene expression. Here, we review the potential and challenges of direct molecular characterization of the postmortem human brain, and provide a brief overview of recent transcriptional and epigenetic studies with respect to neuropsychiatric disorders. Such information can now be leveraged and integrated with the growing number of genome-wide association databases to provide a functional context of trait-associated genetic variants linked to psychiatric illnesses and related phenotypes. While it is clear that the field is still developing and challenges remain to be surmounted, these recent advances nevertheless hold tremendous promise for delineating the neurobiological underpinnings of mental diseases and accelerating the development of novel medication strategies.
Collapse
Affiliation(s)
- Gabor Egervari
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Addiction Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, School of Medicine at Mount Sinai, New York, NY, USA
- Epigenetics Institute and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexey Kozlenkov
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Stella Dracheva
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Yasmin L Hurd
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Addiction Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
49
|
Wang F, Chen D, Wu P, Klein C, Jin C. Formaldehyde, Epigenetics, and Alzheimer's Disease. Chem Res Toxicol 2019; 32:820-830. [PMID: 30964647 DOI: 10.1021/acs.chemrestox.9b00090] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. The accumulation of β-amyloid plaques and intracellular neurofibrillary tangles of hyperphosphorylated tau protein are two hallmarks of AD. The β-amyloid and tau proteins have been at the center of AD research and drug development for decades. However, most of the clinical trials targeting β-amyloid have failed. Whereas the safety and efficacy of most tau-targeting drugs have not yet been completely assessed, the first tau aggregation inhibitor, LMTX, failed in a late-stage trial, leading to further recognition of the complexities of AD and reconsideration of the amyloid hypothesis and perhaps the tau hypothesis as well. Multilevel complex interactions between genetic, epigenetic, and environmental factors contribute to the occurrence and progression of AD. Formaldehyde (FA) is a widespread environmental organic pollutant. It is also an endogenous metabolite in the human body. Recent studies suggest that elevation of FA in the body by endogenous and/or exogenous exposure may play important roles in AD development. We have demonstrated that FA reduces lysine acetylation of cytosolic histones, thereby compromising chromatin assembly and resulting in the loss of histone content in chromatin, a conserved feature of aging from yeast to humans. Aging is an important factor for AD progression. Therefore, FA-induced inhibition of chromatin assembly and the loss of histones may contribute to AD initiation and/or development. This review will briefly summarize current knowledge on mechanistic insights into AD, focusing on epigenetic alterations and the involvement of FA in AD development. The exploration of chemical exposures as contributing factors to AD may provide new insights into AD mechanisms and could identify potential novel therapeutic targets.
Collapse
Affiliation(s)
- Fei Wang
- School of Public Health , China Medical University , Shenyang 110122 , China
| | | | | | | | | |
Collapse
|
50
|
Román GC, Mancera-Páez O, Bernal C. Epigenetic Factors in Late-Onset Alzheimer's Disease: MTHFR and CTH Gene Polymorphisms, Metabolic Transsulfuration and Methylation Pathways, and B Vitamins. Int J Mol Sci 2019; 20:E319. [PMID: 30646578 PMCID: PMC6359124 DOI: 10.3390/ijms20020319] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/17/2022] Open
Abstract
DNA methylation and other epigenetic factors are important in the pathogenesis of late-onset Alzheimer's disease (LOAD). Methylenetetrahydrofolate reductase (MTHFR) gene mutations occur in most elderly patients with memory loss. MTHFR is critical for production of S-adenosyl-l-methionine (SAM), the principal methyl donor. A common mutation (1364T/T) of the cystathionine-γ-lyase (CTH) gene affects the enzyme that converts cystathionine to cysteine in the transsulfuration pathway causing plasma elevation of total homocysteine (tHcy) or hyperhomocysteinemia-a strong and independent risk factor for cognitive loss and AD. Other causes of hyperhomocysteinemia include aging, nutritional factors, and deficiencies of B vitamins. We emphasize the importance of supplementing vitamin B12 (methylcobalamin), vitamin B₉ (folic acid), vitamin B₆ (pyridoxine), and SAM to patients in early stages of LOAD.
Collapse
Affiliation(s)
- Gustavo C Román
- Department of Neurology, Methodist Neurological Institute, Institute for Academic Medicine Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA.
- Weill Cornell Medical College, Department of Neurology, Cornell University, New York, NY 10065, USA.
| | - Oscar Mancera-Páez
- Universidad Nacional de Colombia, Hospital Universitario Nacional, Faculty of Medicine, Department of Neurology, Bogotá ZC 57, Colombia.
- David Cabello International Alzheimer Disease Scholarship Fund, Houston Methodist Hospital, Houston, TX77030, USA.
| | - Camilo Bernal
- Universidad Nacional de Colombia, Hospital Universitario Nacional, Faculty of Medicine, Department of Neurology, Bogotá ZC 57, Colombia.
| |
Collapse
|