1
|
Zhang Q, Wang SS, Zhang Z, Chu SF. PKM2-mediated metabolic reprogramming of microglia in neuroinflammation. Cell Death Discov 2025; 11:149. [PMID: 40189596 PMCID: PMC11973174 DOI: 10.1038/s41420-025-02453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/16/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Microglia, the resident immune cells of the central nervous system, undergo metabolic reprogramming during neuroinflammation, playing a crucial role in the pathogenesis of neurological disorders such as Parkinson's disease. This review focuses on Pyruvate Kinase M2 (PKM2), a key glycolytic enzyme, and its impact on microglial metabolic reprogramming and subsequent neuroinflammation. We explore the regulatory mechanisms governing PKM2 activity, its influence on microglial activation and immune responses, and its contribution to the progression of various neurological diseases. Finally, we highlight the therapeutic potential of targeting PKM2 as a novel strategy for treating neuroinflammation-driven neurological disorders. This review provides insights into the molecular mechanisms of PKM2 in neuroinflammation, aiming to inform the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Qi Zhang
- Basic medicine college, China Three Gorges University, Yichang, China
| | - Sha-Sha Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shi-Feng Chu
- Basic medicine college, China Three Gorges University, Yichang, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Chen H, Li N, Liu N, Zhu H, Ma C, Ye Y, Shi X, Luo G, Dong X, Tan T, Wei X, Yin H. Photobiomodulation modulates mitochondrial energy metabolism and ameliorates neurological damage in an APP/PS1 mousmodel of Alzheimer's disease. Alzheimers Res Ther 2025; 17:72. [PMID: 40188044 PMCID: PMC11971757 DOI: 10.1186/s13195-025-01714-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/10/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease. Amyloid β-protein (Aβ) is one of the key pathological features of AD, which is cytotoxic and can damage neurons, thereby causing cognitive dysfunction. Photobiomodulation (PBM) is a non-invasive physical therapy that induces changes in the intrinsic mechanisms of cells and tissues through low-power light exposure. Although PBM has been employed in the treatment of AD, the effect and precise mechanism of PBM on AD-induced neurological damage are still unclear. METHODS In vivo experiments, PBM (808 nm, 20 mW/cm2) was used to continuously interfere with APP/PS1 mice for 6 weeks, and then their cognitive function and AD pathological changes were evaluated. In vitro experiments, lipopolysaccharide (LPS) was used to induce microglia to model inflammation, and the effect of PBM treatment on microglia polarization status and phagocytic Aβ ability was evaluated. Hexokinase 2 (HK2) inhibitor 3-bromopyruvate (3BP) was used to study the effect of PBM treatment on mitochondrial energy metabolism in microglia. RESULTS PBM further ameliorates AD-induced cognitive impairment by alleviating neuroinflammation and neuronal apoptosis, thereby attenuating nerve damage. In addition, PBM can also reduce neuroinflammation by promoting microglial anti-inflammatory phenotypic polarization; Promotes Aβ clearance by enhancing the ability of microglia to engulf Aβ. Among them, PBM regulates microglial polarization and inhibits neuronal apoptosis, which may be related to its regulation of mitochondrial energy metabolism, promotion of oxidative phosphorylation, and inhibition of glycolysis. CONCLUSION PBM regulates neuroinflammatory response and inhibits neuronal apoptosis, thereby repairing Aβ-induced neuronal damage and cognitive dysfunction. Mitochondrial energy metabolism plays an important role in PBM in improving nerve injury in AD mice. This study provides theoretical support for the subsequent application of PBM in the treatment of AD.
Collapse
Affiliation(s)
- Hongli Chen
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Integrative Regeneration Laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, 300387, China.
- Cangzhou Institute of Tiangong University, Cangzhou, 061000, China.
| | - Na Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Integrative Regeneration Laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Na Liu
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, 300387, China
- Cangzhou Institute of Tiangong University, Cangzhou, 061000, China
| | - Hongyu Zhu
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Chunyan Ma
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Integrative Regeneration Laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Yutong Ye
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Integrative Regeneration Laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Xinyu Shi
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Guoshuai Luo
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Xiaoxi Dong
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Integrative Regeneration Laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Tao Tan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. 325000, China
| | - Xunbin Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Cancer Hospital & Institute, International Cancer Institute, Institute of Medical Technology, Peking University Health Science Center, Biomedical Engineering Department, Peking University, Beijing, 100142, China.
| | - Huijuan Yin
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Integrative Regeneration Laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
3
|
Bai G, Ke S, Lu J, Yu S, Li S, Fang M, Ling J. Hexokinase 2 promotes ISGylation of Acyl-CoA synthetase long-chain family member 4 in sepsis-induced microglia cells. J Lipid Res 2025; 66:100776. [PMID: 40086696 PMCID: PMC12018552 DOI: 10.1016/j.jlr.2025.100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/19/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025] Open
Abstract
Metabolic reprogramming is often observed in sepsis-associated microglial cells. However, little is known about the aberrant metabolic genes involved in neuroinflammation and lipid accumulation in microglial cells of sepsis-associated encephalopathy (SAE). Here, we show that hexokinase 2 (HK2) is upregulated and strongly associated with the inflammatory response and lipid metabolism in lipopolysaccharide-induced BV2 cells. Downregulation of HK2 lowered the activation of NOD-like receptor signaling family pyrin domain containing 3, both in BV2 cells and in the hippocampus of cecal ligation and puncture-induced male septic mice. Moreover, the inhibition of HK2 promoted lipid droplet reduction. Mechanistically, HK2 knockdown in microglial cells reduced the ISGylation of Acyl-CoA Synthetase Long-chain Family Member 4 (ACSL4) by interferon-stimulated gene 15 (ISG15). Notably, siISG15 effectively down-regulated the expression of ACSL4 in lipopolysaccharide-induced BV2 cells. Our findings provide new mechanistic insights into HK2 in microglial cells through regulation of ACSL4 ISGylation, suggesting a promising therapeutic strategy for treating SAE by targeting HK2. Our findings suggest that HK2 modulates ISGylation of ACSL4 in sepsis-induced microglial cells, indicating that therapeutic targeting of HK2 may constitute a promising strategy for SAE.
Collapse
Affiliation(s)
- Guangyang Bai
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Ke
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Lu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Yu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shusheng Li
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghao Fang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jianmin Ling
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Li W, Yong-Yan X, Jia-Xin M, Shu-Chao G, Li-Ping H. Senescent microglia: The hidden culprits accelerating Alzheimer's disease. Brain Res 2025; 1851:149480. [PMID: 39884491 DOI: 10.1016/j.brainres.2025.149480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/07/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Ageing is a major risk factor for neurodegenerative diseases like Alzheimer's disease (AD). Microglia, as the principal innate immune cells within the brain, exert homeostatic and active immunological defense functions throughout human lifespan. The age-related dysfunction of microglia is currently recognized as a pivotal trigger for brain diseases associated with aging. In AD, microglia exhibit alterations in gene expression, cellular morphology, and functional behavior. By focusing on the immunomodulatory functions of factors secreted by senescent microglia, such as cytokines, chemokines, complement factors, and reactive oxygen species (ROS), we explore the diverse detrimental effects of microglia in aging and AD pathogenesis, including Aβ accumulation, Tau deposition, synaptic dysfunction, and neuroinflammation. These collectively contribute to hastening the progression of. In this review, we highlight the key role of senescent microglia in the pathological processes of AD. Then we propose that targeting senescent microglia holds great promise for therapeutic interventions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Wu Li
- School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, NanChang, China
| | - Xie Yong-Yan
- School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, NanChang, China
| | - Mu Jia-Xin
- School of Pharmacy, Jiangxi University of Chinese Medicine, NanChang, China
| | - Ge Shu-Chao
- School of Pharmacy, Jiangxi University of Chinese Medicine, NanChang, China.
| | - Huang Li-Ping
- Jiangxi Provincial Key Laboratory of Pharmacology of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, NanChang, China; School of Pharmacy, Jiangxi University of Chinese Medicine, NanChang, China.
| |
Collapse
|
5
|
Liu N, Jiang Y, Xiu Y, Tortelote GG, Xia W, Wang Y, Li Y, Shi S, Han J, Vidoudez C, Niamnud A, Kilgore MD, Zhou D, Shi M, Graziose SA, Fan J, Katakam PVG, Dumont AS, Wang X. Itaconate restrains acute proinflammatory activation of microglia after traumatic brain injury in mice. Sci Transl Med 2025; 17:eadn2635. [PMID: 40073156 DOI: 10.1126/scitranslmed.adn2635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 08/18/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025]
Abstract
Traumatic brain injury (TBI) rapidly triggers proinflammatory activation of microglia, contributing to secondary brain damage post-TBI. Although the governing role of energy metabolism in shaping the inflammatory phenotype and function of immune cells has been increasingly recognized, the specific alterations in microglial bioenergetics post-TBI remain poorly understood. Itaconate, a metabolite produced by the enzyme aconitate decarboxylase 1 [IRG1; encoded by immune responsive gene 1 (Irg1)], is a pivotal metabolic regulator in immune cells, particularly in macrophages. Because microglia are macrophages of the brain parenchyma, the IRG1/itaconate pathway likely modulates microglial inflammatory responses. In this study, we explored the role of the IRG1/itaconate pathway in regulating microglial bioenergetics and inflammatory activation post-TBI using a mouse controlled cortical impact (CCI) model. We isolated microglia before and 4 and 12 hours after TBI and observed a swift but transient increase in glycolysis coupled with a prolonged disruption of mitochondrial metabolism after injury. Despite an up-regulation of Irg1 expression, itaconate in microglia declined after TBI. Microglia-specific Irg1 gene knockout (Irg1-Mi-KO) exacerbated metabolic changes, intensified proinflammatory activation and neurodegeneration, and worsened certain long-term neurological deficits. Supplementation with 4-octyl itaconate (OI) reinstated the use and oxidative metabolism of glucose, glutamine, and fatty acid, thereby enhancing microglial bioenergetics post-TBI. OI supplementation also attenuated proinflammatory activation and neurodegeneration and improved long-term neurological outcomes. These results suggest that therapeutically targeting the itaconate pathway could improve microglial energy metabolism and neurological outcomes after TBI.
Collapse
Affiliation(s)
- Ning Liu
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane University Translational Sciences Institute, New Orleans, LA 70112, USA
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
| | - Yinghua Jiang
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Yuwen Xiu
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Giovane G Tortelote
- Department of Pediatrics and Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Winna Xia
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Yingjie Wang
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Yadan Li
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Samuel Shi
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jinrui Han
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Charles Vidoudez
- Harvard Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Aim Niamnud
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mitchell D Kilgore
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Di Zhou
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mengxuan Shi
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Stephen A Graziose
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Prasad V G Katakam
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Aaron S Dumont
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
6
|
Xia X, Chen W, Zhou T, Zhou F, Lu C, Yan Z, Zhao Q, Su Q. TEPP-46 inhibits glycolysis to promote M2 polarization of microglia after ischemic stroke. Int Immunopharmacol 2025; 149:114148. [PMID: 39904037 DOI: 10.1016/j.intimp.2025.114148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Following an ischemic stroke, neuroinflammation is triggered and is often typified by microglial activation. According to recent research, increased glycolysis metabolism frequently occurs when microglia become activated in an inflammatory response. In this study, we found that the PKM2 expression of microglia was gradually increased during the activation of microglia in ischemic stroke. TEPP-46, the activator of PKM2, enhanced the M2 polarization and promoted phagocytosis of microglia both in vivo and in vitro. Meanwhile, TEPP-46 administration ameliorated neuroinflammation and neuronal injuries and reduced the infarct volume of tMCAO mice. Mechanistically, we demonstrated that TEPP-46 suppressed the nuclear translocation of PKM2 and the interaction of PKM2 and HIF-1α, and inhibited glycolysis of microglia. According to our research, PKM2 modulation in microglia may be a viable therapeutic approach to lessen neuroinflammation following ischemic stroke, and TEPP-46 may be able to polarize microglia from an M1 to an M2 phenotype after ischemia/reperfusion damage.
Collapse
Affiliation(s)
- Xiaomei Xia
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang 222000 China; Department of Rehabilitation Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000 China
| | - Wenli Chen
- Department of Rehabilitation Medicine, ZhongDa Hospital Southeast University, Nanjing 210009 China
| | - Ting Zhou
- Department of Rehabilitation Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000 China
| | - Fang Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang 222000 China
| | - Can Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang 222000 China
| | - Zhenzhuang Yan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang 222000 China
| | - Qin Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang 222000 China.
| | - Qinglun Su
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang 222000 China.
| |
Collapse
|
7
|
Wang Y, Wang Q, Sui X, Guo M, Li L, Jia W, Tian Y, Lu Q, Wang B. Catalpalactone protects rats nerve function from hypoxic lesion by polarizing microglial cells toward M2 phenotype. Eur J Med Res 2025; 30:96. [PMID: 39940010 PMCID: PMC11823218 DOI: 10.1186/s40001-025-02321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/22/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Ischemic brain injury results in high disability due to neuroinflammation and oxidative stress, and M1/M2 polarization of glial cells plays a key role in neuroinflammation. This research explored the protective effect of Catalpalactone on middle cerebral artery occlusion (MCAO)-induced brain injury and its underlying regulation mechanism in rats. METHODS The ischemic lesions were induced by the MCAO, and the oxygen and glucose deprivation/reoxygenation (OGD/R) was used for BV2 microglial cell induction. The polarization of glial cells was determined via immunohistochemistry staining assessment. Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) assays were used for the glycolysis and oxidative phosphorylation test. After that, the cell counting kit-8 (CCK-8) for cell viability test and flow cytometry for apoptosis and phosphorylation analysis were performed. Furthermore, a co-culture model of BV2 and PC12 cells was used for the purpose of exploring the effects of Catalpalactone on the interaction and of microglia and neurons in ischemic brain injury. Finally, the Modified Neurological Severity Score (mNSS) analysis was used for the analysis on the neurological function. RESULTS After MCAO induction, the infiltration of microglial cells were significantly increased in the injury area, and its M1 phenotype was enhanced (up-regulated Cd86). In vitro, the OGD/R-induced BV2 microglial cell also exhibited the increasing M1 phenotype with higher glycolysis activity, but lower oxidative phosphorylation through the activating JAK-SATA signaling pathway. Finally, we determined that 15 μM Catalpalactone optimally induces M2 microglial polarization with increased cell viability and decreased apoptosis in the OGD/R-induced BV2 cell model, while also reducing mNSS scores and improving neurological function in the MCAO rat model. CONCLUSION We clarified the underlying mechanism of Catalpalactone treatment for ischemic lesions through promoting M2 microglial cells phenotype.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neurology Ward 2, The Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, 161000, China.
| | - Qi Wang
- Department of Immunology, College of Medical Technology, Qiqihar Medical University, Qiqihar, 161006, China
| | - Xin Sui
- Department of Neurology Ward 2, The Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, 161000, China
| | - Mingxing Guo
- Department of Neurology Ward 2, The Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, 161000, China
| | - Li Li
- Basic Medical Department, Qiqihar Medical University, Qiqihar, 161006, China
| | - Weiwei Jia
- Research Laboratory of Basic Medical School, Qiqihar Medical University, Qiqihar, 161006, China
| | - Yinan Tian
- Department of Neurology Ward 2, The Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, 161000, China
| | - Qi Lu
- Department of Neurology Ward 2, The Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, 161000, China
| | - Bo Wang
- Department of Neurology Ward 3, The Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, 161000, China
| |
Collapse
|
8
|
Qi Y, Zhao X, Wu W, Wang N, Ge P, Guo S, Lei S, Zhou P, Zhao L, Tang Z, Duan J, Yang N, Guo R, Dong Y, Chai X, Zhang Q, Snijders AM, Zhu H. Coptisine improves LPS-induced anxiety-like behaviors by regulating the Warburg effect in microglia via PKM2. Biomed Pharmacother 2025; 183:117837. [PMID: 39823725 DOI: 10.1016/j.biopha.2025.117837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
Neuroinflammation mediated by microglia is considered the primary cause and pathological process of anxiety. Abnormal glycolysis of microglia is observed during microglia activation. However, whether regulating the Warburg effect in microglia can effectively intervene anxiety and its potential mechanisms have not been elucidated. This study focused on coptisine (Cop), a natural alkaloid that regulates the glycolysis and function of microglia affecting anxiety. The effects of Cop on anxiety-like behaviors, hippocampal synaptic function, and excessive activation of microglia were assessed in lipopolysaccharide (LPS) induced mouse models of anxiety. Microglia expressing mutant pyruvate kinase isoform M2 (PKM2) were used to further investigate the molecular mechanism by which Cop regulates the phenotype of microglia. neuroinflammatory is emerging Further research revealed that Cop attaches to the amino acid residue phenylalanine 26 of PKM2, shifting the dynamic equilibrium of PKM2 towards tetramers, and enhancing its pyruvate kinase activity. This interaction prevented LPS-induced Warburg effect and inactivated PKM2/hypoxia-inducible factor-1α (HIF-1α) pathway in microglia. In conclusion, Cop attenuates anxiety by regulating the Warburg effect in microglia. Our work revealed the role of PKM2/(HIF-1α) pathway in anxiety for the first time. Importantly, the molecular mechanism by which Cop ameliorates anxiety-like behaviors is through modulation of the dimeric/tetrameric form of PKM2, indicating the usefulness of PKM2 as a key potential target for the treatment of anxiety.
Collapse
Affiliation(s)
- Yiyu Qi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China; College of Chemical and Materials Engineering, Zhejiang A&F University, Lin'an 311300, China
| | - Xin Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Weizhen Wu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Ningjing Wang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Pingyuan Ge
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Siqi Guo
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Shaohua Lei
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Peng Zhou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Li Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Zhishu Tang
- Shanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xixian Rd., Xianyang 712046, China
| | - Jin'ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Nianyun Yang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Rui Guo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Yinfeng Dong
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Xin Chai
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qichun Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China.
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| | - Huaxu Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China.
| |
Collapse
|
9
|
Liu Y, Hu P, Cheng H, Xu F, Ye Y. The impact of glycolysis on ischemic stroke: from molecular mechanisms to clinical applications. Front Neurol 2025; 16:1514394. [PMID: 39926015 PMCID: PMC11802445 DOI: 10.3389/fneur.2025.1514394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/10/2025] [Indexed: 02/11/2025] Open
Abstract
Ischemic stroke (IS), a leading cause of disability and mortality worldwide, remains a significant challenge due to its complex pathogenesis. Glycolysis, a central metabolic pathway, plays a critical role in bridging the gap between metabolic dysfunction and neurological impairment. During ischemic conditions, glycolysis replaces oxidative phosphorylation as the primary energy source for brain tissue. However, in the ischemia-reperfusion state, neuronal cells show a particular reliance on aerobic glycolysis. Immune cells, such as monocytes, also contribute to atheromatous plaque formation and thrombi through increased aerobic glycolysis. Given glycolysis's involvement in various pathological stages of IS, it offers the potential for improved diagnosis, treatment, and prevention. This review comprehensively explores the role of glycolysis in different phases of IS, addresses existing controversies, and discusses its diagnostic and therapeutic applications. By elucidating the intricate relationship between glycolysis and IS, this review aims to provide novel insights for future research and clinical advancements.
Collapse
Affiliation(s)
- Yingquan Liu
- The First Clinical College of Anhui University of Chinese Medicine, Hefei, China
| | - Peijia Hu
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hongliang Cheng
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Fangyuan Xu
- The First Clinical College of Anhui University of Chinese Medicine, Hefei, China
| | - Yu Ye
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
10
|
Colombo G, Monsorno K, Paolicelli RC. Metabolic control of microglia in health and disease. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:143-159. [PMID: 40122622 DOI: 10.1016/b978-0-443-19104-6.00009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Metabolic states within cells are tightly linked to functional outcomes and finely regulated by nutrient availability. A growing body of the literature supports the idea that various metabolites can influence cellular functions, such as cell differentiation, migration, and proliferation in different contexts, with ample evidence coming from the immune system. Additionally, certain functional programs can trigger significant metabolic changes within cells, which are crucial not only to meet high energy demands, but also to produce intermediate metabolites necessary to support specific tasks. Microglia, the resident innate immune cells of the central nervous system, are constantly active, surveying the brain parenchyma and providing support to neighboring cells in the brain. They exhibit high metabolic flexibility, capable of quickly undergoing metabolic reprogramming based on nutrient availability and functional requirements. In this chapter, we will discuss the major metabolic pathways within cells and provide examples of how relevant enzymes and metabolites can impact microglial function in physiologic and pathologic contexts.
Collapse
Affiliation(s)
- Gloria Colombo
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Katia Monsorno
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Rosa C Paolicelli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Rahimpour S, Clary BL, Nasoohi S, Berhanu YS, Brown CM. Immunometabolism In Brain Aging and Neurodegeneration: Bridging Metabolic Pathways and Immune Responses. Aging Dis 2024:AD.2024.1293. [PMID: 39751865 DOI: 10.14336/ad.2024.1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
The complex set of interactions between the immune system and metabolism, known as immunometabolism, has emerged as a critical regulator of disease outcomes in the central nervous system. Numerous studies have linked metabolic disturbances to impaired immune responses in brain aging, neurodegenerative disorders, and brain injury. In this review, we will discuss how disruptions in brain immunometabolism balance contribute to the pathophysiology of brain dysfunction. The first part of the review summarizes the contributions of critical immune cell populations such as microglia, astrocytes, and infiltrating immune cells in mediating inflammation and metabolism in CNS disorders. The remainder of the review addresses the impact of metabolic changes on immune cell activation and disease progression in brain aging, Alzheimer's disease, Parkinson's disease, multiple sclerosis, stroke, spinal cord injury, and traumatic brain injury. Furthermore, we also address the therapeutic potential of targeting immunometabolic pathways to reduce neuroinflammation and slow disease progression. By focusing on the interactions among brain immune cells and the metabolic mechanisms they recruit in disease, we present a comprehensive overview of brain immunometabolism in human health and disease.
Collapse
Affiliation(s)
- Shokofeh Rahimpour
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Briana L Clary
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| | - Sanaz Nasoohi
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| | - Yohanna S Berhanu
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Candice M Brown
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
12
|
Zhang G, Zhao A, Zhang X, Zeng M, Wei H, Yan X, Wang J, Jiang X, Dai Y. Glycolytic reprogramming in microglia: A potential therapeutic target for ischemic stroke. Cell Signal 2024; 124:111466. [PMID: 39419195 DOI: 10.1016/j.cellsig.2024.111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Ischemic stroke is currently the second leading cause of mortality worldwide, with limited treatment options available. As resident immune cells, microglia promptly respond to cerebral ischemic injury, influencing neuroinflammatory damage and neurorepair. Studies suggest that microglia undergo metabolic reprogramming from mitochondrial oxidative phosphorylation to glycolysis in response to ischemia, significantly impacting their function during ischemic stroke. Therefore, this study aims to investigate the roles and regulatory mechanisms involved in this process, aiming to identify a new therapeutic target or potential drug candidate.
Collapse
Affiliation(s)
- Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
13
|
Sadeghdoust M, Das A, Kaushik DK. Fueling neurodegeneration: metabolic insights into microglia functions. J Neuroinflammation 2024; 21:300. [PMID: 39551788 PMCID: PMC11571669 DOI: 10.1186/s12974-024-03296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
Microglia, the resident immune cells of the central nervous system, emerge in the brain during early embryonic development and persist throughout life. They play essential roles in brain homeostasis, and their dysfunction contributes to neuroinflammation and the progression of neurodegenerative diseases. Recent studies have uncovered an intricate relationship between microglia functions and metabolic processes, offering fresh perspectives on disease mechanisms and possible treatments. Despite these advancements, there are still significant gaps in our understanding of how metabolic dysregulation affects microglial phenotypes in these disorders. This review aims to address these gaps, laying the groundwork for future research on the topic. We specifically examine how metabolic shifts in microglia, such as the transition from oxidative phosphorylation and mitochondrial metabolism to heightened glycolysis during proinflammatory states, impact the disease progression in Alzheimer's disease, multiple sclerosis, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Additionally, we explore the role of iron, fatty and amino acid metabolism in microglial homeostasis and repair. Identifying both distinct and shared metabolic adaptations in microglia across neurodegenerative diseases could reveal common therapeutic targets and provide a deeper understanding of disease-specific mechanisms underlying multiple CNS disorders.
Collapse
Affiliation(s)
- Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Phillip Dr. St. John's, St. John's, NL, A1B 3V6, Canada
| | - Aysika Das
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Phillip Dr. St. John's, St. John's, NL, A1B 3V6, Canada
| | - Deepak Kumar Kaushik
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Phillip Dr. St. John's, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
14
|
Li MC, Jia JT, Wang YX, Zhuang YM, Wang HY, Lin ZY, Lu Y, Li MZ, Wang ZJ, Zhao H. Astragaloside IV promotes cerebral tissue restoration through activating AMPK- mediated microglia polarization in ischemic stroke rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118532. [PMID: 38972527 DOI: 10.1016/j.jep.2024.118532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragaloside IV (AS), a key active ingredient obtained from Chinese herb Astragalus mongholicus Bunge, exerts potent neuroprotective and anti-inflammatory effects for treating neurodegenerative diseases. However, mechanisms of AS on improvement of ischemic brain tissue repair remain unclear. AIM OF THE STUDY This research aims at using magnetic resonance imaging (MRI) to noninvasively determine whether AS facilitates brain tissue repair, and investigating whether AS exerts brain remodeling through adenosine monophosphate-activated protein kinase (AMPK) metabolic signaling regulating key glycolytic enzymes and energy transporters, thereby impacting microglia polarization. MATERIALS AND METHODS Ischemic stroke model in male Sprague-Dawley rats were induced through permanent occlusion of the middle cerebral artery (MCAO). Infarct volume, the alterations of brain microstructure and nerve fibers reorganization were examined by multi-parametric MRI. The pathological damages of myelinated axons and microglia polarization surrounding infarct tissue were detected using pathological techniques. Furthermore, M1/M2 microglia polarization associated protein, glycolytic rate-limiting enzymes, energy transporters and AMPK/mammalian target of rapamycin (mTOR)/hypoxia inducible factor-1α (HIF-1α) signal were examined both in ischemic stroke rats and BV2 microglia treated with lipopolysaccharide (LPS) + interferon-γ (IFN-γ) by western blotting. RESULTS MRI revealed that AS obviously decreased infarct volume, relieved brain microstructure damage and improved nerve fibers reorganization in ischemic stroke rats. Histological tests supported MRI findings. Notably, AS promoted microglia M2 and reduced M1 polarization, induced the AMPK activation accompanied with decreased levels of phosphorylated mTOR and HIF-1α. Moreover, AS suppressed the expression of glycolytic rate-limiting enzymes and energy transporters in ischemic stroke rats and BV2 microglia. In contrast, these beneficial effects were greatly blocked by AMPK inhibitor compound C. CONCLUSION Overall, these results collectively suggested that AS facilitated tissue remodeling that may be partially through modulating polarization of microglia in AMPK- dependent metabolic pathways after ischemic stroke.
Collapse
Affiliation(s)
- Ming-Cong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Jing-Ting Jia
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Yu-Xuan Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Yu-Ming Zhuang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Han-Yu Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Zi-Yue Lin
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Man-Zhong Li
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China; Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, 100038, China
| | - Zhan-Jing Wang
- Medical Imaging Laboratory of Core Facility Center, Capital Medical University, Beijing, 100069, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| |
Collapse
|
15
|
Yagi H, Boeck M, Petrishka-Lozenska M, Lundgren P, Kasai T, Cagnone G, Neilsen K, Wang C, Lee J, Tomita Y, Singh SA, Joyal JS, Aikawa M, Negishi K, Fu Z, Hellström A, Smith LEH. Timed topical dexamethasone eye drops improve mitochondrial function to prevent severe retinopathy of prematurity. Angiogenesis 2024; 27:903-917. [PMID: 39287727 PMCID: PMC11564262 DOI: 10.1007/s10456-024-09948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Pathological neovascularization in retinopathy of prematurity (ROP) can cause visual impairment in preterm infants. Current ROP treatments which are not preventative and only address late neovascular ROP, are costly and can lead to severe complications. We showed that topical 0.1% dexamethasone eye drops administered prior to peak neovessel formation prevented neovascularization in five extremely preterm infants at high risk for ROP and suppressed neovascularization by 30% in mouse oxygen-induced retinopathy (OIR) modeling ROP. In contrast, in OIR, topical dexamethasone treatment before any neovessel formation had limited efficacy in preventing later neovascularization, while treatment after peak neovessel formation had a non-statistically significant trend to exacerbating disease. Optimally timed topical dexamethasone suppression of neovascularization in OIR was associated with increased retinal mitochondrial gene expression and decreased inflammatory marker expression, predominantly found in immune cells. Blocking mitochondrial ATP synthetase reversed the inhibitory effect of dexamethasone on neovascularization in OIR. This study provides new insights into topical steroid effects in retinal neovascularization and into mitochondrial function in phase II ROP, and suggests a simple clinical approach to prevent severe ROP.
Collapse
Affiliation(s)
- Hitomi Yagi
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Myriam Boeck
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Mariya Petrishka-Lozenska
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Pia Lundgren
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Taku Kasai
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Gael Cagnone
- CHU Sainte-Justine Research Center, Montreal, QC, CA, H3T 1C5, Canada
- Department of Pediatrics, Ophthalmology, and Pharmacology, CHU Sainte-Justine, Université de Montréal, Montreal, QC, CA, H3T 1C5, Canada
| | - Katherine Neilsen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
| | - Chaomei Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
| | - Jeff Lee
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
| | - Yohei Tomita
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jean-Sébastien Joyal
- CHU Sainte-Justine Research Center, Montreal, QC, CA, H3T 1C5, Canada
- Department of Pediatrics, Ophthalmology, and Pharmacology, CHU Sainte-Justine, Université de Montréal, Montreal, QC, CA, H3T 1C5, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC, CA, H3T 1J4, Canada
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
| | - Ann Hellström
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden.
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Wang H, Liu S, Sun Y, Chen C, Hu Z, Li Q, Long J, Yan Q, Liang J, Lin Y, Yang S, Lin M, Liu X, Wang H, Yu J, Yi F, Tan Y, Yang Y, Chen N, Ai Q. Target modulation of glycolytic pathways as a new strategy for the treatment of neuroinflammatory diseases. Ageing Res Rev 2024; 101:102472. [PMID: 39233146 DOI: 10.1016/j.arr.2024.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/06/2024]
Abstract
Neuroinflammation is an innate and adaptive immune response initiated by the release of inflammatory mediators from various immune cells in response to harmful stimuli. While initially beneficial and protective, prolonged or excessive neuroinflammation has been identified in clinical and experimental studies as a key pathological driver of numerous neurological diseases and an accelerant of the aging process. Glycolysis, the metabolic process that converts glucose to pyruvate or lactate to produce adenosine 5'-triphosphate (ATP), is often dysregulated in many neuroinflammatory disorders and in the affected nerve cells. Enhancing glucose availability and uptake, as well as increasing glycolytic flux through pharmacological or genetic manipulation of glycolytic enzymes, has shown potential protective effects in several animal models of neuroinflammatory diseases. Modulating the glycolytic pathway to improve glucose metabolism and ATP production may help alleviate energy deficiencies associated with these conditions. In this review, we examine six neuroinflammatory diseases-stroke, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and depression-and provide evidence supporting the role of glycolysis in their treatment. We also explore the potential link between inflammation-induced aging and glycolysis. Additionally, we briefly discuss the critical role of glycolysis in three types of neuronal cells-neurons, microglia, and astrocytes-within physiological processes. This review highlights the significance of glycolysis in the pathology of neuroinflammatory diseases and its relevance to the aging process.
Collapse
Affiliation(s)
- Hanlong Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ziyi Hu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qinqin Li
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huiqin Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingbo Yu
- Technology Innovation Center/National Key Laboratory Breeding Base of Chinese Medicine Powders and Innovative Drugs, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
17
|
An X, He J, Xie P, Li C, Xia M, Guo D, Bi B, Wu G, Xu J, Yu W, Ren Z. The effect of tau K677 lactylation on ferritinophagy and ferroptosis in Alzheimer's disease. Free Radic Biol Med 2024; 224:685-706. [PMID: 39307193 DOI: 10.1016/j.freeradbiomed.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Alzheimer's disease (AD) is characterized by cognitive decline and the accumulation of amyloid-beta plaques and hyperphosphorylated tau protein. The role of tau lactylation at the K677 site in AD progression is not well understood. This study explores how tau K677 lactylation affects ferritinophagy, ferroptosis, and their functions in an AD mouse model. Results show that mutating the K677 site to R reduces tau lactylation and inhibits ferroptosis by regulating iron metabolism factors like NCOA4 and FTH1.Tau-mutant mice showed improved memory and learning skills compared to wild-type mice. The mutation also reduced neuronal damage and was associated with decreased tau lactylation at the K677 site, regardless of phosphorylated tau levels. Gene set enrichment analysis showed that lactylation at this site was linked to the MAPK pathway, which was important for ferritinophagy in AD mice. In summary, our research indicates that the K677 mutation in tau protein may protect against AD by influencing ferritinophagy and ferroptosis through MAPK signaling pathways. Understanding these modifications in tau could lead to new treatments for AD.
Collapse
Affiliation(s)
- Xiaoqiong An
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, 550004, PR China
| | - Jun He
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, 550004, PR China; Guizhou Provincial Center for Clinical Laboratory, Guiyang, 550002, PR China
| | - Peng Xie
- Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550001, Guizhou, PR China
| | - Chengpeng Li
- College of Pharmacy, Guizhou University, Guiyang, 550025, PR China
| | - Mingyan Xia
- Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550001, Guizhou, PR China
| | - Dongfen Guo
- Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550001, Guizhou, PR China
| | - Bin Bi
- Psychosomatic Department, The Second People's Hospital of Guizhou Province, Guiyang, 550004, PR China
| | - Gang Wu
- Psychosomatic Department, The Second People's Hospital of Guizhou Province, Guiyang, 550004, PR China
| | - Jianwei Xu
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guian New Area, 561113, PR China; Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guian New Area, 561113, PR China.
| | - Wenfeng Yu
- Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550001, Guizhou, PR China; Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China.
| | - Zhenkui Ren
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, 550004, PR China.
| |
Collapse
|
18
|
Wang L, Cai Z, Gu Q, Xu C. cGAS Deficiency Regulates the Phenotypic Polarization and Glycolysis of Microglia Through Lactylation in Hypoxic-Ischemic Encephalopathy Cell Model. Biochem Genet 2024; 62:3961-3976. [PMID: 38246965 DOI: 10.1007/s10528-023-10631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Promoting the M2 phenotype polarization of microglia is of great significance in alleviating hypoxic-ischemic encephalopathy (HIE). The umbilical artery blood sample was collected to evaluate the expression of cGAS, and the aberrant expressed cGAS was verified in the oxygen glucose deprivation (OGD) microglia which was established to mimic HIE in vitro. Then the regulating role of cGAS on the transformation of microglia M2 phenotype polarization and glycolysis was investigated. Moreover, the lactylation of cGAS in OGD treated microglia was evaluated by western blot. cGAS was found to be highly expressed in umbilical artery blood of HIE group, and OGD treated microglia. OGD interference activated microglia into M1 phenotype by enhancing CD86 and suppressing CD206 levels; meanwhile, the microglia in OGD group highly expressed IL-1β, iNOS and TNF-α, and lowly expressed IL-4, IL-10, and Arg-1. Inhibition of cGAS promotes the transformation of microglia from M1 to M2 phenotype. Meanwhile, OGD increased ECAR and decreased OCR to regulate glycolysis, cGAS deficiency inhibits glycolysis in OGD treated microglia. Moreover, the pan lysine lactylation (Pan-Kla) levels and lactated cGAS levels in microglia were upregulated in the OGD group. Lactate reversed the effects of cGAS knockdown on microglia polarization and glycolysis. The present study reveals that the cGAS-mediated neuron injury is associated with high level of cGAS lactylation. Inhibition of cGAS promotes the M2 phenotype polarization of microglia and suppress glycolysis. Thereby, targeting cGAS provides a new strategy for the development of therapeutic agents against HIE.
Collapse
Affiliation(s)
- Lisheng Wang
- Department of Pediatrics, Funing County People's Hospital, No.111, Fucheng Street, Funing County, Yancheng, 224400, China
| | - Zhonghua Cai
- Department of Pediatrics, Funing County People's Hospital, No.111, Fucheng Street, Funing County, Yancheng, 224400, China
| | - Qi Gu
- Department of Pediatrics, Funing County People's Hospital, No.111, Fucheng Street, Funing County, Yancheng, 224400, China
| | - Changli Xu
- Department of Pediatrics, Funing County People's Hospital, No.111, Fucheng Street, Funing County, Yancheng, 224400, China.
| |
Collapse
|
19
|
Kuhn MK, Proctor EA. Microglial Drivers of Alzheimer's Disease Pathology: An Evolution of Diverse Participating States. Proteins 2024:10.1002/prot.26723. [PMID: 39219300 PMCID: PMC11871049 DOI: 10.1002/prot.26723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 09/04/2024]
Abstract
Microglia, the resident immune-competent cells of the brain, become dysfunctional in Alzheimer's disease (AD), and their aberrant immune responses contribute to the accumulation of pathological proteins and neuronal injury. Genetic studies implicate microglia in the development of AD, prompting interest in developing immunomodulatory therapies to prevent or ameliorate disease. However, microglia take on diverse functional states in disease, playing both protective and detrimental roles in AD, which largely overlap and may shift over the disease course, complicating the identification of effective therapeutic targets. Extensive evidence gathered using transgenic mouse models supports an active role of microglia in pathology progression, though results vary and can be contradictory between different types of models and the degree of pathology at the time of study. Here, we review microglial immune signaling and responses that contribute to the accumulation and spread of pathological proteins or directly affect neuronal health. We additionally explore the use of induced pluripotent stem cell (iPSC)-derived models to study living human microglia and how they have contributed to our knowledge of AD and may begin to fill in the gaps left by mouse models. Ultimately, mouse and iPSC-derived models have their own limitations, and a comprehensive understanding of microglial dysfunction in AD will only be established by an integrated view across models and an appreciation for their complementary viewpoints and limitations.
Collapse
Affiliation(s)
- Madison K. Kuhn
- Department of Biomedical Engineering, Penn State University
- Department of Neurosurgery, Penn State College of Medicine
- Department of Pharmacology, Penn State College of Medicine
- Center for Neural Engineering, Penn State University
| | - Elizabeth A. Proctor
- Department of Biomedical Engineering, Penn State University
- Department of Neurosurgery, Penn State College of Medicine
- Department of Pharmacology, Penn State College of Medicine
- Center for Neural Engineering, Penn State University
- Department of Engineering Science & Mechanics, Penn State University
| |
Collapse
|
20
|
Mora-Romero B, Capelo-Carrasco N, Pérez-Moreno JJ, Alvarez-Vergara MI, Trujillo-Estrada L, Romero-Molina C, Martinez-Marquez E, Morano-Catalan N, Vizuete M, Lopez-Barneo J, Nieto-Gonzalez JL, Garcia-Junco-Clemente P, Vitorica J, Gutierrez A, Macias D, Rosales-Nieves AE, Pascual A. Microglia mitochondrial complex I deficiency during development induces glial dysfunction and early lethality. Nat Metab 2024; 6:1479-1491. [PMID: 39048800 DOI: 10.1038/s42255-024-01081-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
Primary mitochondrial diseases (PMDs) are associated with pediatric neurological disorders and are traditionally related to oxidative phosphorylation system (OXPHOS) defects in neurons. Interestingly, both PMD mouse models and patients with PMD show gliosis, and pharmacological depletion of microglia, the innate immune cells of the brain, ameliorates multiple symptoms in a mouse model. Given that microglia activation correlates with the expression of OXPHOS genes, we studied whether OXPHOS deficits in microglia may contribute to PMDs. We first observed that the metabolic rewiring associated with microglia stimulation in vitro (via IL-33 or TAU treatment) was partially changed by complex I (CI) inhibition (via rotenone treatment). In vivo, we generated a mouse model deficient for CI activity in microglia (MGcCI). MGcCI microglia showed metabolic rewiring and gradual transcriptional activation, which led to hypertrophy and dysfunction in juvenile (1-month-old) and adult (3-month-old) stages, respectively. MGcCI mice presented widespread reactive astrocytes, a decrease of synaptic markers accompanied by an increased number of parvalbumin neurons, a behavioral deficit characterized by prolonged periods of immobility, loss of weight and premature death that was partially rescued by pharmacologic depletion of microglia. Our data demonstrate that microglia development depends on mitochondrial CI and suggest a direct microglial contribution to PMDs.
Collapse
Affiliation(s)
- Bella Mora-Romero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Biología Celular, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Nicolas Capelo-Carrasco
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Juan J Pérez-Moreno
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Department of Biología Celular, Facultad de Biología, Universidad de Sevilla, Seville, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - María I Alvarez-Vergara
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Biología Celular, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Institute for Neurovascular Cell Biology, University Hospital Bonn, Bonn, Germany
| | - Laura Trujillo-Estrada
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Carmen Romero-Molina
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emilio Martinez-Marquez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Noelia Morano-Catalan
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marisa Vizuete
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Jose Lopez-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Jose L Nieto-Gonzalez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Pablo Garcia-Junco-Clemente
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Javier Vitorica
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Antonia Gutierrez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - David Macias
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Alicia E Rosales-Nieves
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
21
|
Oft HC, Simon DW, Sun D. New insights into metabolism dysregulation after TBI. J Neuroinflammation 2024; 21:184. [PMID: 39075578 PMCID: PMC11288120 DOI: 10.1186/s12974-024-03177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Traumatic brain injury (TBI) remains a leading cause of death and disability that places a great physical, social, and financial burden on individuals and the health system. In this review, we summarize new research into the metabolic changes described in clinical TBI trials, some of which have already shown promise for informing injury classification and staging. We focus our discussion on derangements in glucose metabolism, cell respiration/mitochondrial function and changes to ketone and lipid metabolism/oxidation to emphasize potentially novel biomarkers for clinical outcome prediction and intervention and offer new insights into possible underlying mechanisms from preclinical research of TBI pathology. Finally, we discuss nutrition supplementation studies that aim to harness the gut/microbiome-brain connection and manipulate systemic/cellular metabolism to improve post-TBI recovery. Taken together, this narrative review summarizes published TBI-associated changes in glucose and lipid metabolism, highlighting potential metabolite biomarkers for clinical use, the cellular processes linking these markers to TBI pathology as well as the limitations and future considerations for TBI "omics" work.
Collapse
Affiliation(s)
- Helena C Oft
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dennis W Simon
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
22
|
Yagi H, Boeck M, Petrishka-Lozenska M, Lundgren P, Kasai T, Cagnone G, Wang C, Lee J, Tomita Y, Singh SA, Joyal JS, Aikawa M, Negishi K, Fu Z, Hellström A, Smith LEH. Timed topical dexamethasone eye drops improve mitochondrial function to prevent severe retinopathy of prematurity. RESEARCH SQUARE 2024:rs.3.rs-4619093. [PMID: 38978601 PMCID: PMC11230485 DOI: 10.21203/rs.3.rs-4619093/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Pathological neovascularization in retinopathy of prematurity (ROP) can cause visual impairment in preterm infants. Current ROP treatments which are not preventative and only address late neovascular ROP, are costly and can lead to severe complications. We showed that topical 0.1% dexamethasone eye drops administered prior to peak neovessel formation prevented neovascularization in five extremely preterm infants at high risk for ROP and suppressed neovascularization by 30% in mouse oxygen-induced retinopathy (OIR) modeling ROP. In contrast, in OIR, topical dexamethasone treatment before any neovessel formation had limited efficacy in preventing later neovascularization, while treatment after peak neovessel formation had a non-statistically significant trend to exacerbating disease. Optimally timed topical dexamethasone suppression of neovascularization in OIR was associated with increased retinal mitochondrial gene expression and decreased inflammatory marker expression, predominantly found in immune cells. Blocking mitochondrial ATP synthetase reversed the inhibitory effect of dexamethasone on neovascularization in OIR. This study provides new insights into topical steroid effects in retinal neovascularization and into mitochondrial function in phase II ROP, and suggests a simple clinical approach to prevent severe ROP.
Collapse
Affiliation(s)
| | | | | | | | | | - Gael Cagnone
- CHU Sainte-Justine, Université de Montréal
- Boston Children's Hospital
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
He C, Li Z, Yu W, Luo R, Zhou J, He J, Chen Q, Song Z, Cheng S. LncRNA TUG1 mediates microglial inflammatory activation by regulating glucose metabolic reprogramming. Sci Rep 2024; 14:12143. [PMID: 38802677 PMCID: PMC11130314 DOI: 10.1038/s41598-024-62966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
Microglia are natural immune cells in the central nervous system, and the activation of microglia is accompanied by a reprogramming of glucose metabolism. In our study, we investigated the role of long non-coding RNA taurine-upregulated gene 1 (TUG1) in regulating microglial glucose metabolism reprogramming and activation. BV2 cells were treated with Lipopolysaccharides (LPS)/Interferon-γ (IFN-γ) to establish a microglial activation model. The glycolysis inhibitor 2-Deoxy-D-glucose (2-DG) was used as a control. The expression levels of TUG1 mRNA and proinflammatory cytokines such as Interleukin-1β (IL-1β), Interleukin -6, and Tumor Necrosis Factor-α mRNA and anti-inflammatory cytokines such as IL-4, Arginase 1(Arg1), CD206, and Ym1 were detected by RT-qPCR. TUG1 was silenced using TUG1 siRNA and knocked out using CRISPR/Cas9. The mRNA and protein expression levels of key enzymes involved in glucose metabolism, such as Hexokinase2, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Lactate dehydrogenase, Glucose 6 phosphate dehydrogenase, and Pyruvate dehydrogenase (PDH), were determined by RT-qPCR and Western blotting. The glycolytic rate of microglial cells was measured using Seahorse. Differential metabolites were determined by metabolomics, and pathway enrichment was performed using these differential metabolites. Our findings revealed that the expression of TUG1 was elevated in proinflammatory-activated microglia and positively correlated with the levels of inflammatory factors. The expression of anti-inflammatory cytokines such as IL-4, Arg1, CD206, and Ym1 were decreased when induced with LPS/IFN-γ. However, this decrease was reversed by the treatment with 2-DG. Silencing of GAPDH led to an increase in the expression of TUG1 and inflammatory factors. TUG1 knockout (TUG1KO) inhibited the expression of glycolytic key enzymes and promoted the expression of oxidative phosphorylation key enzymes, shifting the metabolic profile of activated microglia from glycolysis to oxidative phosphorylation. Additionally, TUG1KO reduced the accumulation of metabolites, facilitating the restoration of the tricarboxylic acid cycle and enhancing oxidative phosphorylation in microglia. Furthermore, the downregulation of TUG1 was found to reduce the expression of both proinflammatory and anti-inflammatory cytokines under normal conditions. Interestingly, when induced with LPS/IFN-γ, TUG1 downregulation showed a potentially beneficial effect on microglia in terms of inflammation. Downregulation of TUG1 expression inhibits glycolysis and facilitates the shift of microglial glucose metabolism from glycolysis to oxidative phosphorylation, promoting their transformation towards an anti-inflammatory phenotype and exerting anti-inflammatory effects in BV2.
Collapse
Affiliation(s)
- Chunxiang He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine On Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Ze Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine On Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Wenjing Yu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine On Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Rongsiqing Luo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine On Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Jinyong Zhou
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine On Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Jiawei He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine On Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Qi Chen
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine On Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Zhenyan Song
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine On Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Shaowu Cheng
- Office of Science & Technology, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
24
|
Chung J, Jernigan J, Menees KB, Lee JK. RGS10 mitigates high glucose-induced microglial inflammation via the reactive oxidative stress pathway and enhances synuclein clearance in microglia. Front Cell Neurosci 2024; 18:1374298. [PMID: 38812790 PMCID: PMC11133718 DOI: 10.3389/fncel.2024.1374298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Microglia play a critical role in maintaining brain homeostasis but become dysregulated in neurodegenerative diseases. Regulator of G-protein Signaling 10 (RGS10), one of the most abundant homeostasis proteins in microglia, decreases with aging and functions as a negative regulator of microglia activation. RGS10-deficient mice exhibit impaired glucose tolerance, and high-fat diet induces insulin resistance in these mice. In this study, we investigated whether RGS10 modulates microglia activation in response to hyperglycemic conditions, complementing our previous findings of its role in inflammatory stimuli. In RGS10 knockdown (KD) BV2 cells, TNF production increased significantly in response to high glucose, particularly under proinflammatory conditions. Additionally, glucose uptake and GLUT1 mRNA levels were significantly elevated in RGS10 KD BV2 cells. These cells produced higher ROS and displayed reduced sensitivity to the antioxidant N-Acetyl Cysteine (NAC) when exposed to high glucose. Notably, both BV2 cells and primary microglia that lack RGS10 exhibited impaired uptake of alpha-synuclein aggregates. These findings suggest that RGS10 acts as a negative regulator of microglia activation not only in response to inflammation but also under hyperglycemic conditions.
Collapse
Affiliation(s)
| | | | | | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| |
Collapse
|
25
|
Rae CD, Baur JA, Borges K, Dienel G, Díaz-García CM, Douglass SR, Drew K, Duarte JMN, Duran J, Kann O, Kristian T, Lee-Liu D, Lindquist BE, McNay EC, Robinson MB, Rothman DL, Rowlands BD, Ryan TA, Scafidi J, Scafidi S, Shuttleworth CW, Swanson RA, Uruk G, Vardjan N, Zorec R, McKenna MC. Brain energy metabolism: A roadmap for future research. J Neurochem 2024; 168:910-954. [PMID: 38183680 PMCID: PMC11102343 DOI: 10.1111/jnc.16032] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.
Collapse
Affiliation(s)
- Caroline D. Rae
- School of Psychology, The University of New South Wales, NSW 2052 & Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Gerald Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Carlos Manlio Díaz-García
- Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Kelly Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - João M. N. Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, & Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, Baltimore, Maryland, USA
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dasfne Lee-Liu
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Región Metropolitana, Chile
| | - Britta E. Lindquist
- Department of Neurology, Division of Neurocritical Care, Gladstone Institute of Neurological Disease, University of California at San Francisco, San Francisco, California, USA
| | - Ewan C. McNay
- Behavioral Neuroscience, University at Albany, Albany, New York, USA
| | - Michael B. Robinson
- Departments of Pediatrics and System Pharmacology & Translational Therapeutics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas L. Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Benjamin D. Rowlands
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Timothy A. Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA
| | - Joseph Scafidi
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susanna Scafidi
- Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine Albuquerque, Albuquerque, New Mexico, USA
| | - Raymond A. Swanson
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Gökhan Uruk
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Nina Vardjan
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mary C. McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Hua T, Kong E, Zhang H, Lu J, Huang K, Ding R, Wang H, Li J, Han C, Yuan H. PRMT6 deficiency or inhibition alleviates neuropathic pain by decreasing glycolysis and inflammation in microglia. Brain Behav Immun 2024; 118:101-114. [PMID: 38402915 DOI: 10.1016/j.bbi.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 02/27/2024] Open
Abstract
Microglia induced chronic inflammation is the critical pathology of Neuropathic pain (NP). Metabolic reprogramming of macrophage has been intensively reported in various chronic inflammation diseases. However, the metabolic reprogramming of microglia in chronic pain remains to be elusive. Here, we reported that immuno-metabolic markers (HIF-1α, PKM2, GLUT1 and lactate) were related with increased expression of PRMT6 in the ipsilateral spinal cord dorsal horn of the chronic construction injury (CCI) mice. PRMT6 deficiency or prophylactic and therapeutic intrathecal administration of PRMT6 inhibitor (EPZ020411) ameliorated CCI-induced NP, inflammation and glycolysis in the ipsilateral spinal cord dorsal horn. PRMT6 knockout or knockdown inhibited LPS-induced inflammation, proliferation and glycolysis in microglia cells. While PRMT6 overexpression exacerbated LPS-induced inflammation, proliferation and glycolysis in BV2 cells. Recent research revealed that PRMT6 could interact with and methylate HIF-1α, which increased HIF-1α protein stability. In sum, increased expression of PRMT6 exacerbates NP progress by increasing glycolysis and neuroinflammation through interacting with and stabilizing HIF-1α in a methyltransferase manner, which outlines novel pathological mechanism and drug target for NP.
Collapse
Affiliation(s)
- Tong Hua
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Erliang Kong
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China; Department of Anesthesiology, The No. 988 Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou, China
| | - Hailing Zhang
- Department of Neurology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jinfang Lu
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Kesheng Huang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ruifeng Ding
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Haowei Wang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jian Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chaofeng Han
- Department of Histology and Embryology, and Shanghai Key Laboratory of Cell Engineering, Naval Medical University, Shanghai, China.
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
27
|
Yang J, Dong L, Wang Y, Gong L, Gao H, Xie Y. Targeted degradation of hexokinase 2 for anti‑inflammatory treatment in acute lung injury. Mol Med Rep 2024; 29:83. [PMID: 38516767 PMCID: PMC10975098 DOI: 10.3892/mmr.2024.13206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
Acute lung injury (ALI) is an acute inflammatory lung disease associated with both innate and adaptive immune responses. Hexokinase 2 (HK2) is specifically highly expressed in numerous types of inflammation‑related diseases and models. In the present study in vitro and in vivo effects of targeted degradation of HK2 on ALI were explored. The degradation of HK2 by the targeting peptide TAT (transactivator of transcription protein of HIV‑1)‑ataxin 1 (ATXN1)‑chaperone‑mediated autophagy‑targeting motif (CTM) was demonstrated by ELISA and western blotting in vitro and in vivo. The inhibitory effects of TAT‑ATXN1‑CTM on lipopolysaccharide (LPS)‑induced inflammatory responses were examined using ELISAs. The therapeutic effects of TAT‑ATXN1‑CTM on LPS‑induced ALI were examined via histological examination and ELISAs in mice. 10 µM TAT‑ATXN1‑CTM administration decreased HK2 protein expression and the secretion of proinflammatory cytokines (TNF‑α and IL‑1β) without altering HK2 mRNA expression in LPS‑treated both in vitro and in vivo, while pathological lung tissue damage and the accumulation of leukocytes, neutrophils, macrophages and lymphocytes in ALI were also significantly suppressed by 10 µM TAT‑ATXN1‑CTM treatment. TAT‑ATXN1‑CTM exhibited anti‑inflammatory activity in vitro and decreased the severity of ALI in vivo. HK2 degradation may represent a novel therapeutic approach for ALI.
Collapse
Affiliation(s)
- Jiayan Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region 530000, P.R. China
| | - Liangliang Dong
- Department of Pulmonology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Yifan Wang
- Department of Pulmonology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Lifen Gong
- Department of Pulmonology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region 530000, P.R. China
| | - Yicheng Xie
- Department of Pulmonology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| |
Collapse
|
28
|
Li Y, Yin C, Jiang J, Yang H, Zhang F, Xing Y, Wang W, Lu C. Tumor necrosis factor α-induced protein 8-like-2 controls microglia phenotype via metabolic reprogramming in BV2 microglial cells and responses to neuropathic pain. Int J Biochem Cell Biol 2024; 169:106541. [PMID: 38309648 DOI: 10.1016/j.biocel.2024.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/07/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Microglial are major players in neuroinflammation that have recently emerged as potential therapeutic targets for neuropathic pain. Glucose metabolic programming has been linked to differential activation state and function in microglia. Tumor necrosis factor α-induced protein 8-like-2 (TNFAIP8L2) is an important component in regulating the anti-inflammatory response. However, the role of TNFAIP8L2 in microglia differential state during neuropathic pain and its interplay with glucose metabolic reprogramming in microglia has not yet been determined. Thus, we aimed to investigate the role of TNFAIP8L2 in the status of microglia in vitro and in vivo. BV2 microglial cells were treated with lipopolysaccharides plus interferon-gamma (LPS/IFNγ) or interleukin-4 (IL-4) to induce the two different phenotypes of microglia in vitro. In vivo experiments were conducted by chronic constriction injury of the sciatic nerve (CCI). We investigated whether TNFAIP8L2 regulates glucose metabolic programming in BV2 microglial cells. The data in vitro showed that TNFAIP8L2 lowers glycolysis and increases mitochondrial oxidative phosphorylation (OXPHOS) in inflammatory microglia. Blockade of glycolytic pathway abolished TNFAIP8L2-mediated differential activation of microglia. TNFAIP8L2 suppresses inflammatory microglial activation and promotes restorative microglial activation in BV2 microglial cells and in spinal cord microglia after neuropathic pain. Furthermore, TNFAIP8L2 controls differential activation of microglia and glucose metabolic reprogramming through the MAPK/mTOR/HIF-1α signaling axis. This study reveals that TNFAIP8L2 plays a critical role in neuropathic pain, providing important insights into glucose metabolic reprogramming and microglial phenotypic transition, which indicates that TNFAIP8L2 may be used as a potential drug target for the prevention of neuropathic pain.
Collapse
Affiliation(s)
- Yeqi Li
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cui Yin
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jinhong Jiang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huan Yang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feifei Zhang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanhong Xing
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wuyang Wang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Chen Lu
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
29
|
Chen H, Zeng Y, Wang D, Li Y, Xing J, Zeng Y, Liu Z, Zhou X, Fan H. Neuroinflammation of Microglial Regulation in Alzheimer's Disease: Therapeutic Approaches. Molecules 2024; 29:1478. [PMID: 38611758 PMCID: PMC11013124 DOI: 10.3390/molecules29071478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Alzheimer's disease (AD) is a complex degenerative disease of the central nervous system that is clinically characterized by a progressive decline in memory and cognitive function. The pathogenesis of AD is intricate and not yet fully understood. Neuroinflammation, particularly microglial activation-mediated neuroinflammation, is believed to play a crucial role in increasing the risk, triggering the onset, and hastening the progression of AD. Modulating microglial activation and regulating microglial energy metabolic disorder are seen as promising strategies to intervene in AD. The application of anti-inflammatory drugs and the targeting of microglia for the prevention and treatment of AD has emerged as a new area of research interest. This article provides a comprehensive review of the role of neuroinflammation of microglial regulation in the development of AD, exploring the connection between microglial energy metabolic disorder, neuroinflammation, and AD development. Additionally, the advancements in anti-inflammatory and microglia-regulating therapies for AD are discussed.
Collapse
Affiliation(s)
- Haiyun Chen
- College of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.C.)
| | - Yuhan Zeng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (Y.Z.)
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Dan Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (Y.Z.)
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Yichen Li
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China;
| | - Jieyu Xing
- College of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.C.)
| | - Yuejia Zeng
- College of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.C.)
| | - Zheng Liu
- School of Medicine, Foshan University, Foshan 528000, China;
| | - Xinhua Zhou
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Hui Fan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (Y.Z.)
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
30
|
Ferreira C, Vieira P, Sá H, Malva J, Castelo-Branco M, Reis F, Viana S. Polyphenols: immunonutrients tipping the balance of immunometabolism in chronic diseases. Front Immunol 2024; 15:1360065. [PMID: 38558823 PMCID: PMC10978763 DOI: 10.3389/fimmu.2024.1360065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Mounting evidence progressively appreciates the vital interplay between immunity and metabolism in a wide array of immunometabolic chronic disorders, both autoimmune and non-autoimmune mediated. The immune system regulates the functioning of cellular metabolism within organs like the brain, pancreas and/or adipose tissue by sensing and adapting to fluctuations in the microenvironment's nutrients, thereby reshaping metabolic pathways that greatly impact a pro- or anti-inflammatory immunophenotype. While it is agreed that the immune system relies on an adequate nutritional status to function properly, we are only just starting to understand how the supply of single or combined nutrients, all of them termed immunonutrients, can steer immune cells towards a less inflamed, tolerogenic immunophenotype. Polyphenols, a class of secondary metabolites abundant in Mediterranean foods, are pharmacologically active natural products with outstanding immunomodulatory actions. Upon binding to a range of receptors highly expressed in immune cells (e.g. AhR, RAR, RLR), they act in immunometabolic pathways through a mitochondria-centered multi-modal approach. First, polyphenols activate nutrient sensing via stress-response pathways, essential for immune responses. Second, they regulate mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) balance in immune cells and are well-tolerated caloric restriction mimetics. Third, polyphenols interfere with the assembly of NLR family pyrin domain containing 3 (NLRP3) in endoplasmic reticulum-mitochondria contact sites, inhibiting its activation while improving mitochondrial biogenesis and autophagosome-lysosome fusion. Finally, polyphenols impact chromatin remodeling and coordinates both epigenetic and metabolic reprogramming. This work moves beyond the well-documented antioxidant properties of polyphenols, offering new insights into the multifaceted nature of these compounds. It proposes a mechanistical appraisal on the regulatory pathways through which polyphenols modulate the immune response, thereby alleviating chronic low-grade inflammation. Furthermore, it draws parallels between pharmacological interventions and polyphenol-based immunonutrition in their modes of immunomodulation across a wide spectrum of socioeconomically impactful immunometabolic diseases such as Multiple Sclerosis, Diabetes (type 1 and 2) or even Alzheimer's disease. Lastly, it discusses the existing challenges that thwart the translation of polyphenols-based immunonutritional interventions into long-term clinical studies. Overcoming these limitations will undoubtedly pave the way for improving precision nutrition protocols and provide personalized guidance on tailored polyphenol-based immunonutrition plans.
Collapse
Affiliation(s)
- Carolina Ferreira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Pedro Vieira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Helena Sá
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - João Malva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)/Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sofia Viana
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| |
Collapse
|
31
|
Cantando I, Centofanti C, D’Alessandro G, Limatola C, Bezzi P. Metabolic dynamics in astrocytes and microglia during post-natal development and their implications for autism spectrum disorders. Front Cell Neurosci 2024; 18:1354259. [PMID: 38419654 PMCID: PMC10899402 DOI: 10.3389/fncel.2024.1354259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by elusive underlying mechanisms. Recent attention has focused on the involvement of astrocytes and microglia in ASD pathology. These glial cells play pivotal roles in maintaining neuronal homeostasis, including the regulation of metabolism. Emerging evidence suggests a potential association between ASD and inborn errors of metabolism. Therefore, gaining a comprehensive understanding of the functions of microglia and astrocytes in ASD is crucial for the development of effective therapeutic interventions. This review aims to provide a summary of the metabolism of astrocytes and microglia during post-natal development and the evidence of disrupted metabolic pathways in ASD, with particular emphasis on those potentially important for the regulation of neuronal post-natal maturation by astrocytes and microglia.
Collapse
Affiliation(s)
- Iva Cantando
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
| | - Cristiana Centofanti
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
| | - Giuseppina D’Alessandro
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed Via Atinese 18, Pozzilli, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed Via Atinese 18, Pozzilli, Italy
| | - Paola Bezzi
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
32
|
Fu R, Zhao L, Guo Y, Qin X, Xu W, Cheng X, Zhang Y, Xu S. AIM2 inflammasome: A potential therapeutic target in ischemic stroke. Clin Immunol 2024; 259:109881. [PMID: 38142900 DOI: 10.1016/j.clim.2023.109881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Ischemic stroke (IS) is a significant global public health issue with a high incidence, disability, and mortality rate. A robust inflammatory cascade with complex and wide-ranging mechanisms occurs following ischemic brain injury. Inflammasomes are multiprotein complexes in the cytoplasm that modulate the inflammatory response by releasing pro-inflammatory cytokines and inducing cellular pyroptosis. Among these inflammasomes, the Absent in Melanoma 2 (AIM2) inflammasome shows the ability to detect a wide range of pathogen DNAs, thereby triggering an inflammatory response. Recent studies have indicated that the aberrant expression of AIM2 inflammasome in various cells is closely associated with the pathological processes of ischemic brain injury. This paper summarizes the expression and regulatory role of AIM2 in CNS and peripheral immune cells and discusses current therapeutic approaches targeting AIM2 inflammasome. These findings aim to serve as a reference for future research in this field.
Collapse
Affiliation(s)
- Rong Fu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Yuying Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Xiaoli Qin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenzhe Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xueqi Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
33
|
Wang S, Jiang C, Cao K, Li R, Gao Z, Wang Y. HK2 in microglia and macrophages contribute to the development of neuropathic pain. Glia 2024; 72:396-410. [PMID: 37909251 DOI: 10.1002/glia.24482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
Neuropathic pain is a complex pain condition accompanied by prominent neuroinflammation involving activation of both central and peripheral immune cells. Metabolic switch to glycolysis is an important feature of activated immune cells. Hexokinase 2 (HK2), a key glycolytic enzyme enriched in microglia, has recently been shown important in regulating microglial functions. Whether and how HK2 is involved in neuropathic pain-related neuroinflammation remains unknown. Using a HK2-tdTomato reporter line, we found that HK2 was prominently elevated in spinal microglia. Pharmacological inhibition of HK2 effectively alleviated nerve injury-induced acute mechanical pain. However, selective ablation of Hk2 in microglia reduced microgliosis in the spinal dorsal horn (SDH) with little analgesic effects. Further analyses showed that nerve injury also significantly induced HK2 expression in dorsal root ganglion (DRG) macrophages. Deletion of Hk2 in myeloid cells, including both DRG macrophages and spinal microglia, led to the alleviation of mechanical pain during the first week after injury, along with attenuated microgliosis in the ipsilateral SDH, macrophage proliferation in DRGs, and suppressed inflammatory responses in DRGs. These data suggest that HK2 plays an important role in regulating neuropathic pain-related immune cell responses at acute phase and that HK2 contributes to neuropathic pain onset primarily through peripheral monocytes and DRG macrophages rather than spinal microglia.
Collapse
Affiliation(s)
- Siyuan Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Jiang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelei Cao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
- The MOE Frontier Research Center of Brain & Brain-machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Run Li
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihua Gao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
- The MOE Frontier Research Center of Brain & Brain-machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yue Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
34
|
Chen J, Li G, Sun D, Li H, Chen L. Research progress of hexokinase 2 in inflammatory-related diseases and its inhibitors. Eur J Med Chem 2024; 264:115986. [PMID: 38011767 DOI: 10.1016/j.ejmech.2023.115986] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
Hexokinase 2 (HK2) is a crucial enzyme involved in glycolysis, which converts glucose into glucose-6-phosphate and plays a significant role in glucose metabolism. HK2 can mediate glycolysis, which is linked to the release of inflammatory factors. The over-expression of HK2 increases the production of pro-inflammatory cytokines, exacerbating the inflammatory reaction. Consequently, HK2 is closely linked to various inflammatory-related diseases affecting multiple systems, including the digestive, nervous, circulatory, respiratory, reproductive systems, as well as rheumatoid arthritis. HK2 is regarded as a novel therapeutic target for inflammatory-related diseases, and this article provides a comprehensive review of its roles in these conditions. Furthermore, the development of potent HK2 inhibitors has garnered significant attention in recent years. Therefore, this review also presents a summary of potential HK2 inhibitors, offering promising prospects for the treatment of inflammatory-related diseases in the future.
Collapse
Affiliation(s)
- Jinxia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Guirong Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
35
|
Gong L, Liang J, Xie L, Zhang Z, Mei Z, Zhang W. Metabolic Reprogramming in Gliocyte Post-cerebral Ischemia/ Reperfusion: From Pathophysiology to Therapeutic Potential. Curr Neuropharmacol 2024; 22:1672-1696. [PMID: 38362904 PMCID: PMC11284719 DOI: 10.2174/1570159x22666240131121032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 02/17/2024] Open
Abstract
Ischemic stroke is a leading cause of disability and death worldwide. However, the clinical efficacy of recanalization therapy as a preferred option is significantly hindered by reperfusion injury. The transformation between different phenotypes of gliocytes is closely associated with cerebral ischemia/ reperfusion injury (CI/RI). Moreover, gliocyte polarization induces metabolic reprogramming, which refers to the shift in gliocyte phenotype and the overall transformation of the metabolic network to compensate for energy demand and building block requirements during CI/RI caused by hypoxia, energy deficiency, and oxidative stress. Within microglia, the pro-inflammatory phenotype exhibits upregulated glycolysis, pentose phosphate pathway, fatty acid synthesis, and glutamine synthesis, whereas the anti-inflammatory phenotype demonstrates enhanced mitochondrial oxidative phosphorylation and fatty acid oxidation. Reactive astrocytes display increased glycolysis but impaired glycogenolysis and reduced glutamate uptake after CI/RI. There is mounting evidence suggesting that manipulation of energy metabolism homeostasis can induce microglial cells and astrocytes to switch from neurotoxic to neuroprotective phenotypes. A comprehensive understanding of underlying mechanisms and manipulation strategies targeting metabolic pathways could potentially enable gliocytes to be reprogrammed toward beneficial functions while opening new therapeutic avenues for CI/RI treatment. This review provides an overview of current insights into metabolic reprogramming mechanisms in microglia and astrocytes within the pathophysiological context of CI/RI, along with potential pharmacological targets. Herein, we emphasize the potential of metabolic reprogramming of gliocytes as a therapeutic target for CI/RI and aim to offer a novel perspective in the treatment of CI/RI.
Collapse
Affiliation(s)
- Lipeng Gong
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Junjie Liang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Letian Xie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhanwei Zhang
- Department of Neurosurgery, First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410007, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
36
|
Sun XR, Yao ZM, Chen L, Huang J, Dong SY. Metabolic reprogramming regulates microglial polarization and its role in cerebral ischemia reperfusion. Fundam Clin Pharmacol 2023; 37:1065-1078. [PMID: 37339781 DOI: 10.1111/fcp.12928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/12/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
The brain is quite sensitive to changes in energy supply because of its high energetic demand. Even small changes in energy metabolism may be the basis of impaired brain function, leading to the occurrence and development of cerebral ischemia/reperfusion (I/R) injury. Abundant evidence supports that metabolic defects of brain energy during the post-reperfusion period, especially low glucose oxidative metabolism and elevated glycolysis levels, which play a crucial role in cerebral I/R pathophysiology. Whereas research on brain energy metabolism dysfunction under the background of cerebral I/R mainly focuses on neurons, the research on the complexity of microglia energy metabolism in cerebral I/R is just emerging. As resident immune cells of the central nervous system, microglia activate rapidly and then transform into an M1 or M2 phenotype to correspond to changes in brain homeostasis during cerebral I/R injury. M1 microglia release proinflammatory factors to promote neuroinflammation, while M2 microglia play a neuroprotective role by secreting anti-inflammatory factors. The abnormal brain microenvironment promotes the metabolic reprogramming of microglia, which further affects the polarization state of microglia and disrupts the dynamic equilibrium of M1/M2, resulting in the aggravation of cerebral I/R injury. Increasing evidence suggests that metabolic reprogramming is a key driver of microglial inflammation. For example, M1 microglia preferentially produce energy through glycolysis, while M2 microglia provide energy primarily through oxidative phosphorylation. In this review, we highlight the emerging significance of regulating microglial energy metabolism in cerebral I/R injury.
Collapse
Affiliation(s)
- Xiao-Rong Sun
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Zi-Meng Yao
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Lei Chen
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Shu-Ying Dong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| |
Collapse
|
37
|
Rombaut A, Brautaset R, Williams PA, Tribble JR. Glial metabolic alterations during glaucoma pathogenesis. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1290465. [PMID: 38983068 PMCID: PMC11182098 DOI: 10.3389/fopht.2023.1290465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/10/2023] [Indexed: 07/11/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness. Current treatment options are limited and often only slow disease progression. Metabolic dysfunction has recently been recognized as a key early and persistent mechanism in glaucoma pathophysiology. Several intrinsic metabolic dysfunctions have been identified and treated in retinal ganglion cells to provide neuroprotection. Growing pre-clinical and clinical evidence has confirmed that metabolic alterations in glaucoma are widespread, occurring across visual system tissues, in ocular fluids, in blood/serum, and at the level of genomic and mitochondrial DNA. This suggests that metabolic dysfunction is not constrained to retinal ganglion cells and that metabolic alterations extrinsic to retinal ganglion cells may contribute to their metabolic compromise. Retinal ganglion cells are reliant on glial metabolic support under normal physiological conditions, but the implications of metabolic dysfunction in glia are underexplored. We highlight emerging evidence that has demonstrated metabolic alterations occurring within glia in glaucoma, and how this may affect neuro-glial metabolic coupling and the metabolic vulnerability of retinal ganglion cells. In other neurodegenerative diseases which share features with glaucoma, several other glial metabolic alterations have been identified, suggesting that similar mechanisms and therapeutic targets may exist in glaucoma.
Collapse
Affiliation(s)
| | | | - Pete A. Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - James R. Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Yu H, Chang Q, Sun T, He X, Wen L, An J, Feng J, Zhao Y. Metabolic reprogramming and polarization of microglia in Parkinson's disease: Role of inflammasome and iron. Ageing Res Rev 2023; 90:102032. [PMID: 37572760 DOI: 10.1016/j.arr.2023.102032] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Parkinson's disease (PD) is a slowly progressive neurodegenerative disease characterized by α-synuclein aggregation and dopaminergic neuronal death. Recent evidence suggests that neuroinflammation is an early event in the pathogenesis of PD. Microglia are resident immune cells in the central nervous system that can be activated into either pro-inflammatory M1 or anti-inflammatory M2 phenotypes as found in peripheral macrophages. To exert their immune functions, microglia respond to various stimuli, resulting in the flexible regulation of their metabolic pathways. Inflammasomes activation in microglia induces metabolic shift from oxidative phosphorylation to glycolysis, and leads to the polarization of microglia to pro-inflammatory M1 phenotype, finally causing neuroinflammation and neurodegeneration. In addition, iron accumulation induces microglia take an inflammatory and glycolytic phenotype. M2 phenotype microglia is more sensitive to ferroptosis, inhibition of which can attenuate neuroinflammation. Therefore, this review highlights the interplay between microglial polarization and metabolic reprogramming of microglia. Moreover, it will interpret how inflammasomes and iron regulate microglial metabolism and phenotypic shifts, which provides a promising therapeutic target to modulate neuroinflammation and neurodegeneration in PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Qing Chang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Tong Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xin He
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Lulu Wen
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jing An
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Yuhong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
39
|
Li L, Cheng SQ, Sun YQ, Yu JB, Huang XX, Dong YF, Ji J, Zhang XY, Hu G, Sun XL. Resolvin D1 reprograms energy metabolism to promote microglia to phagocytize neutrophils after ischemic stroke. Cell Rep 2023; 42:112617. [PMID: 37285269 DOI: 10.1016/j.celrep.2023.112617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/27/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Neutrophil aggregation and clearance are important factors affecting neuroinflammatory injury during acute ischemic stroke. Emerging evidence suggests that energy metabolism is essential for microglial functions, especially microglial phagocytosis, which determines the degree of brain injury. Here, we demonstrate that Resolvin D1 (RvD1), a lipid mediator derived from docosahexaenic acid (DHA), promotes the phagocytosis of neutrophils by microglia, thereby reducing neutrophil accumulation in the brain and alleviating neuroinflammation in the ischemic brain. Further studies reveal that RvD1 reprograms energy metabolism from glycolysis to oxidative phosphorylation (OXPHOS), providing sufficient energy for microglial phagocytosis. Moreover, RvD1 enhances microglial glutamine uptake and stimulates glutaminolysis to support OXPHOS to boost ATP production depending on adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) activation. Overall, our results reveal that RvD1 reprograms energy metabolism to promote the microglial phagocytosis of neutrophils after ischemic stroke. These findings may guide perspectives for stroke therapy from modulating microglial immunometabolism.
Collapse
Affiliation(s)
- Lei Li
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Shu-Qi Cheng
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yu-Qin Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Jian-Bing Yu
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Xin-Xin Huang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yin-Feng Dong
- Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Juan Ji
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Xi-Yue Zhang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Gang Hu
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Xiu-Lan Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China; Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
40
|
Qu H, Jin X, Cheng W, Wu D, Ma B, Lou C, Zheng J, Jing L, Xue X, Wang Y. Uncovering the Fate and Risks of Intravenously Injected Prussian Blue Nanoparticles in mice by an Integrated Methodology of Toxicology, Pharmacokinetics, Proteomics, and Metabolomics. Part Fibre Toxicol 2023; 20:18. [PMID: 37147710 PMCID: PMC10161560 DOI: 10.1186/s12989-023-00529-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/18/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Prussian blue (PB) nanoparticles (NPs) have been intensively investigated for medical applications, but an in-depth toxicological investigation of PB NPs has not been implemented. In the present study, a comprehensive investigation of the fate and risks of PB NPs after intravenous administration was carried out by using a mouse model and an integrated methodology of pharmacokinetics, toxicology, proteomics, and metabolomics. RESULTS General toxicological studies demonstrated that intravenous administration of PB NPs at 5 or 10 mg/kg could not induce obvious toxicity in mice, while mice treated with a relatively high dose of PB NPs at 20 mg/kg exhibited loss of appetite and weight decrease in the first two days postinjection. Pharmacokinetic studies revealed that intravenously administered PB NPs (20 mg/kg) underwent fast clearance from blood, highly accumulated in the liver and lungs of mice, and finally cleared from tissues. By further integrated proteomics and metabolomics analysis, we found that protein expression and metabolite levels changed significantly in the liver and lungs of mice due to the high accumulation of PB NPs, leading to slight inflammatory responses and intracellular oxidative stress. CONCLUSIONS Collectively, our integrated experimental data imply that the high accumulation of PB NPs may cause potential risks to the liver and lungs of mice, which will provide detailed references and guidance for further clinical application of PB NPs in the future.
Collapse
Affiliation(s)
- Haijing Qu
- School of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xing Jin
- School of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Wei Cheng
- School of Pharmacy, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongqi Wu
- School of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Boyu Ma
- School of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Chenmei Lou
- School of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jian Zheng
- School of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Lijia Jing
- School of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Xiangdong Xue
- School of Pharmacy, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yang Wang
- School of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
41
|
Wu Y, Xu D, He Y, Yan Z, Liu R, Liu Z, He C, Liu X, Yu Y, Yang X, Pan W. Dimethyl itaconate ameliorates the deficits of goal-directed behavior in Toxoplasma gondii infected mice. PLoS Negl Trop Dis 2023; 17:e0011350. [PMID: 37256871 DOI: 10.1371/journal.pntd.0011350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND The neurotrophic parasite Toxoplasma gondii (T. gondii) has been implicated as a risk factor for neurodegenerative diseases. However, there is only limited information concerning its underlying mechanism and therapeutic strategy. Here, we investigated the effects of T. gondii chronic infection on the goal-directed cognitive behavior in mice. Moreover, we evaluated the preventive and therapeutic effect of dimethyl itaconate on the behavior deficits induced by the parasite. METHODS The infection model was established by orally infecting the cysts of T. gondii. Dimethyl itaconate was intraperitoneally administered before or after the infection. Y-maze and temporal order memory (TOM) tests were used to evaluate the prefrontal cortex-dependent behavior performance. Golgi staining, transmission electron microscopy, indirect immunofluorescence, western blot, and RNA sequencing were utilized to determine the pathological changes in the prefrontal cortex of mice. RESULTS We showed that T. gondii infection impaired the prefrontal cortex-dependent goal-directed behavior. The infection significantly downregulated the expression of the genes associated with synaptic transmission, plasticity, and cognitive behavior in the prefrontal cortex of mice. On the contrary, the infection robustly upregulated the expression of activation makers of microglia and astrocytes. In addition, the metabolic phenotype of the prefrontal cortex post infection was characterized by the enhancement of glycolysis and fatty acid oxidation, the blockage of the Krebs cycle, and the disorder of aconitate decarboxylase 1 (ACOD1)-itaconate axis. Notably, the administration of dimethyl itaconate significantly prevented and treated the cognitive impairment induced by T. gondii, which was evidenced by the improvement of behavioral deficits, synaptic ultrastructure lesion and neuroinflammation. CONCLUSION The present study demonstrates that T. gondii infection induces the deficits of the goal-directed behavior, which is associated with neuroinflammation, the impairment of synaptic ultrastructure, and the metabolic shifts in the prefrontal cortex of mice. Moreover, we report that dimethyl itaconate has the potential to prevent and treat the behavior deficits.
Collapse
Affiliation(s)
- Yongshuai Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Daxiang Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yan He
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Ziyi Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Rundong Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Zhuanzhuan Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Cheng He
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Xiaomei Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| |
Collapse
|
42
|
Guo S, Wehbe A, Syed S, Wills M, Guan L, Lv S, Li F, Geng X, Ding Y. Cerebral Glucose Metabolism and Potential Effects on Endoplasmic Reticulum Stress in Stroke. Aging Dis 2023; 14:450-467. [PMID: 37008060 PMCID: PMC10017147 DOI: 10.14336/ad.2022.0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Ischemic stroke is an extremely common pathology with strikingly high morbidity and mortality rates. The endoplasmic reticulum (ER) is the primary organelle responsible for conducting protein synthesis and trafficking as well as preserving intracellular Ca2+ homeostasis. Mounting evidence shows that ER stress contributes to stroke pathophysiology. Moreover, insufficient circulation to the brain after stroke causes suppression of ATP production. Glucose metabolism disorder is an important pathological process after stroke. Here, we discuss the relationship between ER stress and stroke and treatment and intervention of ER stress after stroke. We also discuss the role of glucose metabolism, particularly glycolysis and gluconeogenesis, post-stroke. Based on recent studies, we speculate about the potential relationship and crosstalk between glucose metabolism and ER stress. In conclusion, we describe ER stress, glycolysis, and gluconeogenesis in the context of stroke and explore how the interplay between ER stress and glucose metabolism contributes to the pathophysiology of stroke.
Collapse
Affiliation(s)
- Sichao Guo
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Alexandra Wehbe
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Harvard T.H. Chan School of Public Health, USA
| | - Shabber Syed
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Shuyu Lv
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| |
Collapse
|
43
|
Hasel P, Aisenberg WH, Bennett FC, Liddelow SA. Molecular and metabolic heterogeneity of astrocytes and microglia. Cell Metab 2023; 35:555-570. [PMID: 36958329 DOI: 10.1016/j.cmet.2023.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/26/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Astrocytes and microglia are central players in a myriad of processes in the healthy and diseased brain, ranging from metabolism to immunity. The crosstalk between these two cell types contributes to pathology in many if not all neuroinflammatory and neurodegenerative diseases. Recent advancements in integrative multimodal sequencing techniques have begun to highlight how heterogeneous both cell types are and the importance of metabolism to their regulation. We discuss here the transcriptomic, metabolic, and functional heterogeneity of astrocytes and microglia and highlight their interaction in health and disease.
Collapse
Affiliation(s)
- Philip Hasel
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA.
| | - William H Aisenberg
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - F Chris Bennett
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
44
|
Chen Q, Zhou T, Yuan JJ, Xiong XY, Liu XH, Qiu ZM, Hu LL, Lu H, He Q, Liu C, Yang QW. Metabolomics profiling to characterize cerebral ischemia-reperfusion injury in mice. Front Pharmacol 2023; 14:1091616. [PMID: 36814490 PMCID: PMC9939521 DOI: 10.3389/fphar.2023.1091616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
Cerebral ischemia, resulting from compromised blood flow, is one of the leading causes of death worldwide with limited therapeutic options. Potential deleterious injuries resulting from reperfusion therapies remain a clinical challenge for physicians. This study aimed to explore the metabolomic alterations during ischemia-reperfusion injury by employing metabolomic analysis coupled with gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) and ultraperformance liquid chromatography quadrupole (UPLC/Q)-TOF-MS. Metabolomic data from mice subjected to middle cerebral artery occlusion (MCAO) followed by reperfusion (MCAO/R) were compared to those of the sham and MCAO groups. A total of 82 simultaneously differentially expressed metabolites were identified among each group. The top three major classifications of these differentially expressed metabolites were organic acids, lipids, and organooxygen compounds. Metabolomics pathway analysis was conducted to identify the underlying pathways implicated in MCAO/R. Based on impactor scores, the most significant pathways involved in the response to the reperfusion after cerebral ischemia were glycerophospholipid metabolism, linoleic acid metabolism, pyrimidine metabolism, and galactose metabolism. 17 of those 82 metabolites were greatly elevated in the MCAO/Reperfusion group, when compared to those in the sham and MCAO groups. Among those metabolites, glucose-6-phosphate 1, fructose-6-phosphate, cellobiose 2, o-phosphonothreonine 1, and salicin were the top five elevated metabolites in MCAO/R group, compared with the MCAO group. Glycolysis, the pentose phosphate pathway, starch and sucrose metabolism, and fructose and mannose degradation were the top four ranked pathways according to metabolite set enrichment analysis (MSEA). The present study not only advances our understanding of metabolomic changes among animals in the sham and cerebral ischemia groups with or without reperfusion via metabolomic profiling, but also paves the way to explore potential molecular mechanisms underlying metabolic alteration induced by cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Qiong Chen
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Ting Zhou
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Jun-jie Yuan
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao-yi Xiong
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China,Sichuan Provincial Key Laboratory for Acupuncture & Chronobiology, Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China,School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xue-hui Liu
- Department of Medicinal Chemistry, College of Pharmacy, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Zong-ming Qiu
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin-lin Hu
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Hui Lu
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Qian He
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Chang Liu
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China,*Correspondence: Chang Liu, ; Qing-wu Yang,
| | - Qing-wu Yang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China,*Correspondence: Chang Liu, ; Qing-wu Yang,
| |
Collapse
|
45
|
Lee J, Shin JA, Lee EM, Nam M, Park EM. Noggin-mediated effects on metabolite profiles of microglia and oligodendrocytes after ischemic insult. J Pharm Biomed Anal 2023; 224:115196. [PMID: 36529041 DOI: 10.1016/j.jpba.2022.115196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Recent studies show that shifts in energy metabolism in activated microglia are linked to their functions and immune responses in the ischemic brain. We previously reported that an antagonist of the bone morphogenetic protein, noggin, enhanced myelination in the ischemic brain during the chronic phase, and conditioned media (CM) from activated BV2 microglia treated with noggin after ischemia/reperfusion (I/R) increased the expression of myelin basic protein (MBP) in oligodendrocytes (MO3.13). To determine whether noggin induced changes in cell metabolism, metabolite profiles in BV2 and MO3.13 cells were analyzed by untargeted metabolomics using 1H nuclear magnetic resonance spectroscopy. Compared to vehicle-treated BV2 cells, noggin treatment (100 ng/mL for 3 h after I/R) suppressed the I/R-induced increase in intracellular glucose and lactate levels but increased extracellular levels of glucose and several amino acids. When MO3.13 cells were exposed to noggin CM from BV2 cells, most of the vehicle CM-induced changes in the levels of metabolites such as choline, formate, and intermediates of oxidative phosphorylation were reversed, while the glycerol level was markedly increased. An increase in glycerol level was also observed in the noggin-treated ischemic brain and was further supported by the expression of glycerol-3-phosphate dehydrogenase 1 (required for glycerol synthesis) in the cytoplasm of MBP-positive oligodendrocytes in the ischemic brains treated with noggin. These results suggest that noggin-induced changes in the metabolism of microglia provide a favorable environment for myelin synthesis in oligodendrocytes during the recovery phase after ischemic stroke.
Collapse
Affiliation(s)
- Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea.
| | - Jin A Shin
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul 07084, Republic of Korea
| | - Eun-Mi Lee
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul 07084, Republic of Korea
| | - Miso Nam
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea; Food Analysis Research Center, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul 07084, Republic of Korea.
| |
Collapse
|
46
|
Wang Y, Han S, Chen J, Sun J, Sun X. PFKFB3 knockdown attenuates Amyloid β-Induced microglial activation and retinal pigment epithelium disorders in mice. Int Immunopharmacol 2023; 115:109691. [PMID: 36638665 DOI: 10.1016/j.intimp.2023.109691] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023]
Abstract
Age-related macular degeneration (AMD) is characterized by progressive accumulation of drusen deposits and retinal pigment epithelium (RPE) disorders. As the main component of drusen, amyloid β (Aβ) plays a critical role in activating microglia and causing neuroinflammation in AMD pathogenesis. However, the role of activated microglia-mediated neuroinflammation in RPE senescence remains unclear. Recent evidence indicates that inflammatory microglia are glycolytic and driven by an increase in 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), an enzyme described as the master regulator of glycolysis. In this study, we mimicked the retinal inflammatory microenvironment of AMD by intravitreal injection of oligomeric Aβ1-40 in mice, which resulted in activation of microglia and upregulation of PFKFB3. RNA sequencing was performed to evaluate PFKFB3-mediated microglial activation. The effect of microglial activation on RPE disorders was assessed using gene knockout experiments, immunofluorescence, CCK-8 assay, and β-galactosidase staining. Intravitreal Aβ1-40 injection induced proinflammatory activation of microglia by upregulating PFKFB3 and resulted in RPE disorders, which was verified in heterozygous Pfkfb3-deficient mice (Pfkfb3+/-) mice, Aβ1-40-activated microglial cell line BV2, and co-culture of RPE cell line ARPE19. RNA sequencing revealed that PFKFB3 mainly affected innate immune processes during Aβ1-40-induced retinal inflammation. PFKFB3 knockdown inhibited RPE disorders and rescued the retinal structure and function. Overall, the modulation of PFKFB3-mediated microglial glycolysis and activation is a promising strategy for AMD treatment.
Collapse
Affiliation(s)
- Yusong Wang
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China; Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyang Han
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China; Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieqiong Chen
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China; Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Junran Sun
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China; Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.
| | - Xiaodong Sun
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China; Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
47
|
He DL, Fan YG, Wang ZY. Energy Crisis Links to Autophagy and Ferroptosis in Alzheimer's Disease: Current Evidence and Future Avenues. Curr Neuropharmacol 2023; 21:67-86. [PMID: 35980072 PMCID: PMC10193753 DOI: 10.2174/1570159x20666220817140737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/14/2022] [Accepted: 08/11/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases worldwide. The occult nature of the onset and the uncertainty of the etiology largely impede the development of therapeutic strategies for AD. Previous studies revealed that the disorder of energy metabolism in the brains of AD patients appears far earlier than the typical pathological features of AD, suggesting a tight association between energy crisis and the onset of AD. Energy crisis in the brain is known to be induced by the reductions in glucose uptake and utilization, which may be ascribed to the diminished expressions of cerebral glucose transporters (GLUTs), insulin resistance, mitochondrial dysfunctions, and lactate dysmetabolism. Notably, the energy sensors such as peroxisome proliferators-activated receptor (PPAR), transcription factor EB (TFEB), and AMP-activated protein kinase (AMPK) were shown to be the critical regulators of autophagy, which play important roles in regulating beta-amyloid (Aβ) metabolism, tau phosphorylation, neuroinflammation, iron dynamics, as well as ferroptosis. In this study, we summarized the current knowledge on the molecular mechanisms involved in the energy dysmetabolism of AD and discussed the interplays existing between energy crisis, autophagy, and ferroptosis. In addition, we highlighted the potential network in which autophagy may serve as a bridge between energy crisis and ferroptosis in the progression of AD. A deeper understanding of the relationship between energy dysmetabolism and AD may provide new insight into developing strategies for treating AD; meanwhile, the energy crisis in the progression of AD should gain more attention.
Collapse
Affiliation(s)
- Da-Long He
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
- Key Laboratory of Medical Cell Biology of Ministry of Education, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| | - Yong-Gang Fan
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
- Key Laboratory of Medical Cell Biology of Ministry of Education, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| | - Zhan-You Wang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
- Key Laboratory of Medical Cell Biology of Ministry of Education, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| |
Collapse
|
48
|
Bogie JF, Guns J, Vanherle S. Lipid metabolism in neurodegenerative diseases. CELLULAR LIPID IN HEALTH AND DISEASE 2023:389-419. [DOI: 10.1016/b978-0-323-95582-9.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
49
|
Chen C, Zhou Y, Ning X, Li S, Xue D, Wei C, Zhu Z, Sheng L, Lu B, Li Y, Ye X, Fu Y, Bai C, Cai W, Ding Y, Lin S, Yan G, Huang Y, Yin W. Directly targeting ASC by lonidamine alleviates inflammasome-driven diseases. J Neuroinflammation 2022; 19:315. [PMID: 36577999 PMCID: PMC9798610 DOI: 10.1186/s12974-022-02682-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Dysregulated activation of the inflammasome is involved in various human diseases including acute cerebral ischemia, multiple sclerosis and sepsis. Though many inflammasome inhibitors targeting NOD-like receptor protein 3 (NLRP3) have been designed and developed, none of the inhibitors are clinically available. Growing evidence suggests that targeting apoptosis-associated speck-like protein containing a CARD (ASC), the oligomerization of which is the key event for the assembly of inflammasome, may be another promising therapeutic strategy. Lonidamine (LND), a small-molecule inhibitor of glycolysis used as an antineoplastic drug, has been evidenced to have anti-inflammation effects. However, its anti-inflammatory mechanism is still largely unknown. METHODS Middle cerebral artery occlusion (MCAO), experimental autoimmune encephalomyelitis (EAE) and LPS-induced sepsis mice models were constructed to investigate the therapeutic and anti-inflammasome effects of LND. The inhibition of inflammasome activation and ASC oligomerization by LND was evaluated using western blot (WB), immunofluorescence (IF), quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA) in murine bone marrow-derived macrophages (BMDMs). Direct binding of LND with ASC was assessed using molecular mock docking, surface plasmon resonance (SPR), and drug affinity responsive target stability (DARTS). RESULTS Here, we find that LND strongly attenuates the inflammatory injury in experimental models of inflammasome-associated diseases including autoimmune disease-multiple sclerosis (MS), ischemic stroke and sepsis. Moreover, LND blocks diverse types of inflammasome activation independent of its known targets including hexokinase 2 (HK2). We further reveal that LND directly binds to the inflammasome ligand ASC and inhibits its oligomerization. CONCLUSIONS Taken together, our results identify LND as a broad-spectrum inflammasome inhibitor by directly targeting ASC, providing a novel candidate drug for the treatment of inflammasome-driven diseases in clinic.
Collapse
Affiliation(s)
- Chen Chen
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - YuWei Zhou
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - XinPeng Ning
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - ShengLong Li
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - DongDong Xue
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - CaiLv Wei
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Zhu Zhu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - LongXiang Sheng
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - BingZheng Lu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yuan Li
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - XiaoYuan Ye
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - YunZhao Fu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - Chuan Bai
- grid.12981.330000 0001 2360 039XInstitute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Wei Cai
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - YuXuan Ding
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - SuiZhen Lin
- Guangzhou Cellprotek Pharmaceutical Co., Ltd., Guangzhou, 510663 China
| | - GuangMei Yan
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - YiJun Huang
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Wei Yin
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| |
Collapse
|
50
|
Hu Y, Cao K, Wang F, Wu W, Mai W, Qiu L, Luo Y, Ge WP, Sun B, Shi L, Zhu J, Zhang J, Wu Z, Xie Y, Duan S, Gao Z. Dual roles of hexokinase 2 in shaping microglial function by gating glycolytic flux and mitochondrial activity. Nat Metab 2022; 4:1756-1774. [PMID: 36536134 DOI: 10.1038/s42255-022-00707-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/04/2022] [Indexed: 12/24/2022]
Abstract
Microglia continuously survey the brain parenchyma and actively shift status following stimulation. These processes demand a unique bioenergetic programme; however, little is known about the metabolic determinants in microglia. By mining large datasets and generating transgenic tools, here we show that hexokinase 2 (HK2), the most active isozyme associated with mitochondrial membrane, is selectively expressed in microglia in the brain. Genetic ablation of HK2 reduced microglial glycolytic flux and energy production, suppressed microglial repopulation, and attenuated microglial surveillance and damage-triggered migration in male mice. HK2 elevation is prominent in immune-challenged or disease-associated microglia. In ischaemic stroke models, however, HK2 deletion promoted neuroinflammation and potentiated cerebral damages. The enhanced inflammatory responses after HK2 ablation in microglia are associated with aberrant mitochondrial function and reactive oxygen species accumulation. Our study demonstrates that HK2 gates both glycolytic flux and mitochondrial activity to shape microglial functions, changes of which contribute to metabolic abnormalities and maladaptive inflammation in brain diseases.
Collapse
Affiliation(s)
- Yaling Hu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Kelei Cao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Fang Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Weiying Wu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Weihao Mai
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Liyao Qiu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Yuxiang Luo
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing, Beijing, China
| | - Binggui Sun
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Department of Neurobiology and Department of Anesthesiology, the Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Ligen Shi
- Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junming Zhu
- Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiying Wu
- Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yicheng Xie
- The Children's Hospital, Zhejiang, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Shumin Duan
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China.
| | - Zhihua Gao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China.
| |
Collapse
|