1
|
Boschen SL, A Mukerjee A, H Faroqi A, E Rabichow B, Fryer J. Research models to study lewy body dementia. Mol Neurodegener 2025; 20:46. [PMID: 40269912 PMCID: PMC12020038 DOI: 10.1186/s13024-025-00837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
Lewy body dementia (LBD) encompasses neurodegenerative dementias characterized by cognitive fluctuations, visual hallucinations, and parkinsonism. Clinical differentiation of LBD from Alzheimer's disease (AD) remains complex due to symptom overlap, yet approximately 25% of dementia cases are diagnosed as LBD postmortem, primarily identified by the presence of α-synuclein aggregates, tau tangles, and amyloid plaques. These pathological features position LBD as a comorbid condition of both Parkinson's disease (PD) and AD, with over 50% of LBD cases exhibiting co-pathologies. LBD's mixed pathology complicates the development of comprehensive models that reflect the full spectrum of LBD's etiological, clinical, and pathological features. While existing animal and cellular models have facilitated significant discoveries in PD and AD research, they lack specificity in capturing LBD's unique pathogenic mechanisms, limiting the exploration of therapeutic avenues for LBD specifically. This review assesses widely used PD and AD models in terms of their relevance to LBD, particularly focusing on their ability to replicate human disease pathology and assess treatment efficacy. Furthermore, we discuss potential modifications to these models to advance the understanding of LBD mechanisms and propose innovative research directions aimed at developing models with enhanced etiological, face, predictive, and construct validity.
Collapse
Affiliation(s)
- Suelen Lucio Boschen
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.
- Department of Neurosurgery, Mayo Clinic Jacksonville, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.
| | - Aarushi A Mukerjee
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Ayman H Faroqi
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Ben E Rabichow
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - John Fryer
- Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ, 850054, USA
| |
Collapse
|
2
|
Raina A, Wang W, Gonzalez JC, Yan X, Overstreet-Wadiche L, Wadiche JI, Zhang CL, Chen SG. Distinct alpha-synuclein strains derived from Parkinson's disease patient tissues trigger differential inclusion pathology in a novel biosensor cell model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646513. [PMID: 40236210 PMCID: PMC11996501 DOI: 10.1101/2025.04.01.646513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Background α-Synuclein (αSyn) can misfold and aggregate to form fibrillar ß-sheet-rich aggregates ("strains") that are phosphorylated (p-αSyn) and deposited into intracellular inclusions in the brain, the pathological hallmark of synucleinopathies including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Previously, we reported that seed amplification assays such as real-time quaking-induced conversion (RT-QuIC) amplifies and detects αSyn strains from the patient skin. However, whether skin-derived αSyn strains induce disease-specific pathological features in a biological system is unknown. Methods We generated a U251 human glioblastoma cell line expressing fluorescently tagged αSyn carrying the PD-linked A53T mutation and Förster resonance energy transfer (FRET)-based U251 biosensor cells. Using fluorescence microscopy coupled with in situ detergent extraction, FRET-Flow cytometry and high-content confocal imaging, we examined the pathological burden and morphology of p-αSyn inclusions seeded by RT-QuIC-amplified patient skin and brain αSyn strains in αSyn-expressing U251 cells, FRET-based αSyn biosensor cells and αSyn biosensor cell-derived neurons. Results U251 cells allow robust and rapid in situ detection of detergent-insoluble intracellular αSyn inclusions triggered by exogenous αSyn seeds. In U251 FRET-based biosensor cells, PD skin-amplified strains induce a greater pathological burden and distinct p-αSyn inclusion morphology from PD brain-amplified and DLB skin-amplified strains. Inclusion morphology of DLB and MSA skin- and brain-amplified strains are comparable. Furthermore, skin-amplified αSyn strains induce neuronal inclusions and cause degeneration of induced neurons reprogrammed from the U251 biosensor cells. Finally, biosensor cell-propagated PD skin αSyn strains induce higher seeding activity measured by RT-QuIC than PD brain and DLB skin αSyn strains, linking intracellular pathological burden to in vitro seeding activity. Conclusions We report the detection of distinct PD strains derived from patient skin and brain tissues that trigger unique pathological phenotypes in U251 αSyn biosensor cells and cause degeneration of reprogrammed neurons from the same cell lineage. Moreover, DLB and MSA skin αSyn strains mimic pathological features of their brain αSyn strains in these biosensor cells. Therefore, the U251 αSyn biosensor cell model is a robust tool to potentially discriminate PD and DLB synucleinopathies and to study αSyn tissue- and strain-specific etiology and pathogenesis. Graphical abstract
Collapse
|
3
|
Nybo T, Gamon LF, Fuentes-Lemus E, Otzen DE, Davies MJ, Hägglund P. Dimethyl labeling of N-terminal amines allows unambiguous identification of protein crosslinks. Free Radic Biol Med 2025; 227:629-637. [PMID: 39643131 DOI: 10.1016/j.freeradbiomed.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Protein crosslinks induced through either deliberate enzymatic oxidation or reactive oxidants (oxidative eustress/distress), are associated with multiple human pathologies including atherosclerosis, Alzheimer's and Parkinson's diseases. In many cases, the nature of the crosslinks, their position(s) either within (intramolecular) or between (intermolecular) polypeptide chains, and concentrations are unclear. Although limited data are available from specific antibodies, detailed characterization of protein crosslinks is often performed by mass spectrometric analysis of peptides from proteolytic digestion. Such analyses are challenging due to the low concentration of these species, and the complexity of their fragment ion spectra when compared to non-crosslinked species. We hypothesized that highly efficient and specific chemical amine labeling of the two N-termini in crosslinked peptides (compared to the single N-terminus of linear peptides), using "light" and "heavy" isotope-labelled reagents would facilitate identification, validation and quantification of crosslinks. This method was compared to a previous enzyme-catalyzed 18O C-terminal carboxylate labeling approach. N-terminal amine dimethyl labeling is shown to have major advantages over the 18O-approach including high labeling yields (92-100 %) and well-defined mass spectrometric isotope distribution patterns. This approach has allowed identification of novel dityrosine crosslinks between pair of tyrosine (Tyr, Y) residues in photo-oxidized β-casein (Y195-Y195, Y195-Y208, Y208-Y208), and α-synuclein exposed to nitrosative stress (Y39-Y39, Y39-Y125, Y39-Y133, Y133-Y136). This approach is also applicable to disulfide bond mapping, with 15 of 17 disulfides in serum albumin readily detected. These data indicate that dimethyl labeling is a highly versatile and efficient approach for the site-specific identification of oxidation- and nitration-induced crosslinks in proteins.
Collapse
Affiliation(s)
- Tina Nybo
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Luke F Gamon
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark; Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000, Aarhus C, Denmark
| | - Michael J Davies
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Per Hägglund
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Alecu JE, Sigutova V, Brazdis RM, Lörentz S, Bogiongko ME, Nursaitova A, Regensburger M, Roybon L, Galler KM, Wrasidlo W, Winner B, Prots I. NPT100-18A rescues mitochondrial oxidative stress and neuronal degeneration in human iPSC-based Parkinson's model. BMC Neurosci 2025; 26:8. [PMID: 39875842 PMCID: PMC11773751 DOI: 10.1186/s12868-025-00926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder characterized by protein aggregates mostly consisting of misfolded alpha-synuclein (αSyn). Progressive degeneration of midbrain dopaminergic neurons (mDANs) and nigrostriatal projections results in severe motor symptoms. While the preferential loss of mDANs has not been fully understood yet, the cell type-specific vulnerability has been linked to a unique intracellular milieu, influenced by dopamine metabolism, high demand for mitochondrial activity, and increased level of oxidative stress (OS). These factors have been shown to adversely impact αSyn aggregation. Reciprocally, αSyn aggregates, in particular oligomers, can impair mitochondrial functions and exacerbate OS. Recent drug-discovery studies have identified a series of small molecules, including NPT100-18A, which reduce αSyn oligomerization by preventing misfolding and dimerization. NPT100-18A and structurally similar compounds (such as NPT200-11/UCB0599, currently being assessed in clinical studies) point towards a promising new approach for disease-modification. METHODS Induced pluripotent stem cell (iPSC)-derived mDANs from PD patients with a monoallelic SNCA locus duplication and unaffected controls were treated with NPT100-18A. αSyn aggregation was evaluated biochemically and reactive oxygen species (ROS) levels were assessed in living mDANs using fluorescent dyes. Adenosine triphosphate (ATP) levels were measured using a luminescence-based assay, and neuronal cell death was evaluated by immunocytochemistry. RESULTS Compared to controls, patient-derived mDANs exhibited higher cytoplasmic and mitochondrial ROS probe levels, reduced ATP-related signals, and increased activation of caspase-3, reflecting early neuronal cell death. NPT100-18A-treatment rescued cleaved caspase-3 levels to control levels and, importantly, attenuated mitochondrial oxidative stress probe levels in a compartment-specific manner and, at higher concentrations, increased ATP signals. CONCLUSIONS Our findings demonstrate that NPT100-18A limits neuronal degeneration in a human in vitro model of PD. In addition, we provide first mechanistic insights into how a compartment-specific antioxidant effect in mitochondria might contribute to the neuroprotective effects of NPT100-18A.
Collapse
Affiliation(s)
- Julian E Alecu
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Veronika Sigutova
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Department of Operative Dentistry and Periodontology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Razvan-Marius Brazdis
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sandra Lörentz
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Marios Evangelos Bogiongko
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anara Nursaitova
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen- Nürnberg, Erlangen, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Laurent Roybon
- Department of Neurodegenerative Science, the MiND program, Van Andel Institute, Grand Rapids, MI, USA
| | - Kerstin M Galler
- Department of Operative Dentistry and Periodontology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Wrasidlo
- Neuropore Therapies, Inc, San Diego, CA, USA
- Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Iryna Prots
- Department of Operative Dentistry and Periodontology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
5
|
Pozdyshev DV, Leisi EV, Muronetz VI, Golyshev SA, Kurochkina LP. Cytotoxicity of α-synuclein amyloid fibrils generated with phage chaperonin OBP. Biochem Biophys Res Commun 2025; 742:151127. [PMID: 39644608 DOI: 10.1016/j.bbrc.2024.151127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Chaperonins are known to be important players in the conversion of amyloidogenic proteins into amyloid precursors in a variety of neurodegenerative diseases. However, the mechanisms of their action is still poorly understood. In this work, we used a single-ring chaperonin of the bacteriophage OBP, which functions in an ATP-dependent manner but has a simpler structure than other chaperonins. The effect of the chaperonin OBP on the conversion of human α-synuclein mutant A53T into amyloid was studied and the cytotoxicity of the formed fibrils was investigated. The phage chaperonin OBP was expressed in HEK293T cells together with the human α-synuclein mutant A53T. Both proteins showed a diffuse distribution within the cell cytoplasm as determined by fluorescence microscopy using specific antibodies. Separate and co-expression of the two proteins did not result in the formation of distinguishable protein aggregates in the cells, nor did it have any effect on cell viability. However, the co-expression of chaperonin and α-synuclein did result in the appearance of some dimeric and oligomeric forms of α-synuclein in the insoluble fraction of the cell lysate. It can therefore be concluded that chaperonin OBP stimulates the amyloid transformation of α-synuclein A53T when both proteins are co-expressed in eukaryotic cells. A comparison of the cytotoxicity of mutant α-synuclein amyloid forms obtained in vitro, both during spontaneous fibrillation and with the participation of the chaperonin OBP, showed that the maximum effect on HEK293T and SH-SY5Y cells, resulting in the death of more than 50 % of the population, was exerted by α-synuclein fibrils formed under chaperonin action in the presence of ATP. In the context of recent data on the spread of amyloid α-synuclein from the gut to the brain, the role of phage chaperonins in the pathological aggregation of amyloidogenic proteins in the human body and the potential use of the OBP chaperonin in cellular models of synucleinopathies are discussed.
Collapse
Affiliation(s)
- Denis V Pozdyshev
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991, Moscow, Russia.
| | - Evgeniia V Leisi
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1, Bld 73, 119991, Moscow, Russia
| | - Vladimir I Muronetz
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1, Bld 73, 119991, Moscow, Russia
| | - Sergei A Golyshev
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991, Moscow, Russia
| | - Lidia P Kurochkina
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991, Moscow, Russia
| |
Collapse
|
6
|
Nardi FV, Maisumu G, Zhou Y, Liang B, Yakoub AM. Protocol for generation of PD modeling induced neurons and detection of α-synuclein forms. STAR Protoc 2024; 5:103447. [PMID: 39549235 PMCID: PMC11609654 DOI: 10.1016/j.xpro.2024.103447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/19/2024] [Accepted: 10/18/2024] [Indexed: 11/18/2024] Open
Abstract
Alpha-synuclein (α-Syn) is an important molecule in the pathogenesis of Parkinson's disease and Alzheimer's disease-related dementias such as Lewy body dementia, forming multiple pathological species. In vitro disease models, including human neurons and α-Syn-transfected cells, are instrumental to understand synucleinopathies or test new therapies. Here, we provide a detailed protocol to generate human neurons derived from induced pluripotent stem cells (iPSCs), and HEK cells, with α-Syn mutations. We also describe multiple assays to determine the various α-Syn forms.
Collapse
Affiliation(s)
- Francesco V Nardi
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA 02115, USA; Biomedical Engineering Program, College of Engineering and Mines, University of North Dakota, Grand Forks, ND 58202, USA
| | - Gulimiheranmu Maisumu
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA 02115, USA; Biomedical Engineering Program, College of Engineering and Mines, University of North Dakota, Grand Forks, ND 58202, USA
| | - You Zhou
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bo Liang
- Biomedical Engineering Program, College of Engineering and Mines, University of North Dakota, Grand Forks, ND 58202, USA
| | - Abraam M Yakoub
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Göksu AY. A review article on the development of dopaminergic neurons and establishment of dopaminergic neuron-based in vitro models by using immortal cell lines or stem cells to study and treat Parkinson's disease. Int J Dev Neurosci 2024; 84:817-842. [PMID: 39379284 DOI: 10.1002/jdn.10383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
The primary pathological hallmark of Parkinson's disease (PD) is the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta, a critical midbrain region. In vitro models based on DA neurons provide a powerful platform for investigating the cellular and molecular mechanisms of PD and testing novel therapeutic strategies. A deep understanding of DA neuron development, including the signalling pathways and transcription factors involved, is essential for advancing PD research. This article first explores the differentiation and maturation processes of DA neurons in the midbrain, detailing the relevant signalling pathways. It then compares various in vitro models, including primary cells, immortalized cell lines, and stem cell-based models, focusing on the advantages and limitations of each. Special attention is given to the role of immortalized and stem cell models in PD research. This review aims to guide researchers in selecting the most appropriate model for their specific research goals. Ethical considerations and clinical implications of using stem cells in PD research are also discussed.
Collapse
Affiliation(s)
- Azize Yasemin Göksu
- Department of Histology and Embryology, Department of Gene and Cell Therapy, Akdeniz University, School of Medicine, Antalya, Turkey
| |
Collapse
|
8
|
Vekrellis K, Emmanouilidou E, Xilouri M, Stefanis L. α-Synuclein in Parkinson's Disease: 12 Years Later. Cold Spring Harb Perspect Med 2024; 14:a041645. [PMID: 39349314 PMCID: PMC11529858 DOI: 10.1101/cshperspect.a041645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
α-Synuclein (AS) is a small presynaptic protein that is genetically, biochemically, and neuropathologically linked to Parkinson's disease (PD) and related synucleinopathies. We present here a review of the topic of this relationship, focusing on more recent knowledge. In particular, we review the genetic evidence linking AS to familial and sporadic PD, including a number of recently identified point mutations in the SNCA gene. We briefly go over the relevant neuropathological findings, stressing the evidence indicating a correlation between aberrant AS deposition and nervous system dysfunction. We analyze the structural characteristics of the protein, in relation to both its physiologic and pathological conformations, with particular emphasis on posttranslational modifications, aggregation properties, and secreted forms. We review the interrelationship of AS with various cellular compartments and functions, with particular focus on the synapse and protein degradation systems. We finally go over the recent exciting data indicating that AS can provide the basis for novel robust biomarkers in the field of synucleinopathies, while at the same time results from the first clinical trials specifically targeting AS are being reported.
Collapse
Affiliation(s)
- Kostas Vekrellis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Evangelia Emmanouilidou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Maria Xilouri
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Leonidas Stefanis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens 11528, Greece; and Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| |
Collapse
|
9
|
Tripodi F, Lambiase A, Moukham H, Spandri G, Brioschi M, Falletta E, D'Urzo A, Vai M, Abbiati F, Pagliari S, Salvo A, Spano M, Campone L, Labra M, Coccetti P. Targeting protein aggregation using a cocoa-bean shell extract to reduce α-synuclein toxicity in models of Parkinson's disease. Curr Res Food Sci 2024; 9:100888. [PMID: 39525389 PMCID: PMC11550773 DOI: 10.1016/j.crfs.2024.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Neurodegenerative diseases are among the major challenges in modern medicine, due to the progressive aging of the world population. Among these, Parkinson's disease (PD) affects 10 million people worldwide and is associated with the aggregation of the presynaptic protein α-synuclein (α-syn). Here we use two different PD models, yeast cells and neuroblastoma cells overexpressing α-syn, to investigate the protective effect of an extract from the cocoa shell, which is a by-product of the roasting process of cocoa beans. The LC-ESI-qTOF-MS and NMR analyses allow the identification of amino acids (including the essential ones), organic acids, lactate and glycerol, confirming also the presence of the two methylxanthines, namely caffeine and theobromine. The present study demonstrates that the supplementation with the cocoa bean shell extract (CBSE) strongly improves the longevity of yeast cells expressing α-syn, reducing the level of reactive oxygen species, activating autophagy and reducing the intracellular protein aggresomes. These anti-aggregation properties are confirmed also in neuroblastoma cells, where CBSE treatment leads to activation of AMPK kinase and to a significant reduction of toxic α-syn oligomers. Results obtained by surface plasmon resonance (SPR) assay highlights that CBSE binds α-syn protein in a concentration-dependent manner, supporting its inhibitory role on the amyloid aggregation of α-syn. These findings suggest that the supplementation with CBSE in the form of nutraceuticals may represent a promising way to prevent neurodegenerative diseases associated with α-syn aggregation.
Collapse
Affiliation(s)
- Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Alessia Lambiase
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Hind Moukham
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Giorgia Spandri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Maura Brioschi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | - Annalisa D'Urzo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Marina Vai
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Francesco Abbiati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Stefania Pagliari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Andrea Salvo
- Department of Chemistry and Drug Technology, University of Roma La Sapienza, Roma, Italy
| | - Mattia Spano
- Department of Chemistry and Drug Technology, University of Roma La Sapienza, Roma, Italy
| | - Luca Campone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
10
|
Cui X, Li X, Zheng H, Su Y, Zhang S, Li M, Hao X, Zhang S, Hu Z, Xia Z, Shi C, Xu Y, Mao C. Human midbrain organoids: a powerful tool for advanced Parkinson's disease modeling and therapy exploration. NPJ Parkinsons Dis 2024; 10:189. [PMID: 39428415 PMCID: PMC11491477 DOI: 10.1038/s41531-024-00799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder marked by the loss of dopaminergic neurons in the substantia nigra. Despite progress, the pathogenesis remains unclear. Human midbrain organoids (hMLOs) have emerged as a promising model for studying PD, drug screening, and potential treatments. This review discusses the development of hMLOs, their application in PD research, and current challenges in organoid construction, highlighting possible optimization strategies.
Collapse
Affiliation(s)
- Xin Cui
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xinwei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuyu Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Neuro-Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zongping Xia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Clinical Systems Biology Laboratories, Zhengzhou University, Zhengzhou, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
11
|
Gatzemeier LM, Meyer F, Outeiro TF. Synthesis and Semi-Synthesis of Alpha-Synuclein: Insight into the Chemical Complexity of Synucleinopathies. Chembiochem 2024; 25:e202400253. [PMID: 38965889 DOI: 10.1002/cbic.202400253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
The chemical rules governing protein folding have intrigued generations of researchers for decades. With the advent of artificial intelligence (AI), prediction of protein structure has improved tremendously. However, there is still a level of analysis that is only possible through wet laboratory experiments, especially in respect to the investigation of the pathological effect of mutations and posttranslational modifications (PTMs) on proteins of interest. This requires the availability of pure peptides and proteins in sufficient quantities for biophysical, biochemical, and functional studies. In this context, chemical protein synthesis and semi-synthesis are powerful tools in protein research, which help to enlighten the role of protein modification in the physiology and pathology of proteins. A protein of high interest in the field of biomedicine is alpha-synuclein (aSyn), a protein deeply associated with several devastating neurodegenerative disorders such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), or multiple systems atrophy (MSA). Here, we describe several methods and pathways to synthesize native or modified aSyn, and discuss how these approaches enable us to address pathological mechanisms that may open novel perspectives for therapeutic intervention.
Collapse
Affiliation(s)
- Luisa Maria Gatzemeier
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Straße 3, 37075, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, United Kingdom
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Von Siebold-Straße 3a, 37075, Göttingen, Germany
| |
Collapse
|
12
|
Bayati A, McPherson PS. Alpha-synuclein, autophagy-lysosomal pathway, and Lewy bodies: Mutations, propagation, aggregation, and the formation of inclusions. J Biol Chem 2024; 300:107742. [PMID: 39233232 PMCID: PMC11460475 DOI: 10.1016/j.jbc.2024.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
Research into the pathophysiology of Parkinson's disease (PD) is a fast-paced pursuit, with new findings about PD and other synucleinopathies being made each year. The involvement of various lysosomal proteins, such as TFEB, TMEM175, GBA, and LAMP1/2, marks the rising awareness about the importance of lysosomes in PD and other neurodegenerative disorders. This, along with recent developments regarding the involvement of microglia and the immune system in neurodegenerative diseases, has brought about a new era in neurodegeneration: the role of proinflammatory cytokines on the nervous system, and their downstream effects on mitochondria, lysosomal degradation, and autophagy. More effort is needed to understand the interplay between neuroimmunology and disease mechanisms, as many of the mechanisms remain enigmatic. α-synuclein, a key protein in PD and the main component of Lewy bodies, sits at the nexus between lysosomal degradation, autophagy, cellular stress, neuroimmunology, PD pathophysiology, and disease progression. This review revisits some fundamental knowledge about PD while capturing some of the latest trends in PD research, specifically as it relates to α-synuclein.
Collapse
Affiliation(s)
- Armin Bayati
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill, University, Montreal, Quebec, Canada.
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill, University, Montreal, Quebec, Canada.
| |
Collapse
|
13
|
Amaral L, Mendes F, Côrte-Real M, Rego A, Outeiro TF, Chaves SR. A versatile yeast model identifies the pesticides cymoxanil and metalaxyl as risk factors for synucleinopathies. CHEMOSPHERE 2024; 364:143039. [PMID: 39117080 DOI: 10.1016/j.chemosphere.2024.143039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons and the presence of Lewy bodies, which predominantly consist of aggregated forms of the protein alpha-synuclein (aSyn). While these aggregates are a pathological hallmark of PD, the etiology of most cases remains elusive. Although environmental risk factors have been identified, such as the pesticides dieldrin and MTPT, many others remain to be assessed and their molecular impacts are underexplored. This study aimed to identify pesticides that could enhance aSyn aggregation using a humanized yeast model expressing aSyn fused to GFP as a primary screening platform, which we validated using dieldrin. We found that the pesticides cymoxanil and metalaxyl induce aggregation of aSyn in yeast, which we confirmed also occurs in a model of aSyn inclusion formation using human H4 cells. In conclusion, our approach generated invaluable molecular data on the effect of pesticides, therefore providing insights into mechanisms associated with the onset and progression of PD and other synucleinopathies.
Collapse
Affiliation(s)
- Leslie Amaral
- CBMA - Centre of Molecular and Environmental Biology, ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal; University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Filipa Mendes
- CBMA - Centre of Molecular and Environmental Biology, ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
| | - Manuela Côrte-Real
- CBMA - Centre of Molecular and Environmental Biology, ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
| | - António Rego
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Tiago F Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK; Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany; Scientific Employee With an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.
| | - Susana R Chaves
- CBMA - Centre of Molecular and Environmental Biology, ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
14
|
Agarwal A, Chandran A, Raza F, Ungureanu IM, Hilcenko C, Stott K, Bright NA, Morone N, Warren AJ, Lautenschläger J. VAMP2 regulates phase separation of α-synuclein. Nat Cell Biol 2024; 26:1296-1308. [PMID: 38951707 PMCID: PMC11322000 DOI: 10.1038/s41556-024-01451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/30/2024] [Indexed: 07/03/2024]
Abstract
α-Synuclein (αSYN), a pivotal synaptic protein implicated in synucleinopathies such as Parkinson's disease and Lewy body dementia, undergoes protein phase separation. We reveal that vesicle-associated membrane protein 2 (VAMP2) orchestrates αSYN phase separation both in vitro and in cells. Electrostatic interactions, specifically mediated by VAMP2 via its juxtamembrane domain and the αSYN C-terminal region, drive phase separation. Condensate formation is specific for R-SNARE VAMP2 and dependent on αSYN lipid membrane binding. Our results delineate a regulatory mechanism for αSYN phase separation in cells. Furthermore, we show that αSYN condensates sequester vesicles and attract complexin-1 and -2, thus supporting a role in synaptic physiology and pathophysiology.
Collapse
Affiliation(s)
- Aishwarya Agarwal
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Aswathy Chandran
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Farheen Raza
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Protein and Cellular Sciences, GSK, Stevenage, UK
| | - Irina-Maria Ungureanu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Christine Hilcenko
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Nicholas A Bright
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Alan J Warren
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Janin Lautenschläger
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
15
|
Zhang X, Yuan L, Zhang W, Zhang Y, Wu Q, Li C, Wu M, Huang Y. Liquid-liquid phase separation in diseases. MedComm (Beijing) 2024; 5:e640. [PMID: 39006762 PMCID: PMC11245632 DOI: 10.1002/mco2.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA-RNA and RNA-protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein-RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders Health Sciences Institute China Medical University Shenyang China
| | - Wanlu Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yi Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Qun Wu
- Department of Pediatrics Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Chunting Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Min Wu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang China
- The Joint Research Center Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo China
| | - Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China
- Key Laboratory of Bioresource Research and Development of Liaoning Province College of Life and Health Sciences Northeastern University Shenyang China
| |
Collapse
|
16
|
Wang T, Liu W, Zhang Q, Jiao J, Wang Z, Gao G, Yang H. 4-Oxo-2-Nonenal- and Agitation-Induced Aggregates of α-Synuclein and Phosphorylated α-Synuclein with Distinct Biophysical Properties and Biomedical Applications. Cells 2024; 13:739. [PMID: 38727274 PMCID: PMC11082957 DOI: 10.3390/cells13090739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
α-Synuclein (α-syn) can form oligomers, protofibrils, and fibrils, which are associated with the pathogenesis of Parkinson's disease and other synucleinopathies. Both the lipid peroxidation product 4-oxo-2-nonenal (ONE) and agitation can induce aggregation of α-syn and phosphorylated α-syn. Thus, clarification of the characteristics of different α-syn species could help to select suitable aggregates for diagnosis and elucidate the pathogenesis of diseases. Here, we characterized ONE-induced wild-type (WT) α-syn aggregates (OW), ONE-induced phosphorylated α-syn (p-α-syn) aggregates (OP), agitation-induced α-syn preformed fibrils (PFF), and agitation-induced p-α-syn preformed fibrils (pPFF). Thioflavin T (ThT) dying demonstrated that OW and OP had fewer fibrils than the PFF and pPFF. Transmission electron microscopy revealed that the lengths of PFF and pPFF were similar, but the diameters differed. OW and OP had more compact structures than PFF and pPFF. Aggregation of p-α-syn was significantly faster than WT α-syn. Furthermore, OW and OP were more sodium dodecyl sulfate-stable and proteinase K-resistant, suggesting greater stability and compactness, while aggregates of PFF and pPFF were more sensitive to proteinase K treatment. Both ONE- and agitation-induced aggregates were cytotoxic when added exogenously to SH-SY5Y cells with increasing incubation times, but the agitation-induced aggregates caused cell toxicity in a shorter time and more p-α-syn inclusions. Similarly, p-proteins were more cytotoxic than non-p-proteins. Finally, all four aggregates were used as standard antigens to establish sandwich enzyme-linked immunosorbent assay (ELISA). The results showed that the recognition efficiency of OW and OP was more sensitive than that of PFF and pPFF. The OW- and OP-specific ELISA for detection of p-α-syn and α-syn in plasma samples of Thy1-α-syn transgenic mice showed that the content of aggregates could reflect the extent of disease. ONE and agitation induced the formation of α-syn aggregates with distinct biophysical properties and biomedical applications.
Collapse
Affiliation(s)
- Tie Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (T.W.); (W.L.); (Q.Z.); (J.J.); (Z.W.)
- Center of Parkinson’s Disease, Beijing Key Laboratory of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Beijing 100069, China
| | - Weijin Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (T.W.); (W.L.); (Q.Z.); (J.J.); (Z.W.)
- Center of Parkinson’s Disease, Beijing Key Laboratory of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Beijing 100069, China
| | - Qidi Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (T.W.); (W.L.); (Q.Z.); (J.J.); (Z.W.)
- Center of Parkinson’s Disease, Beijing Key Laboratory of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Beijing 100069, China
| | - Jie Jiao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (T.W.); (W.L.); (Q.Z.); (J.J.); (Z.W.)
- Center of Parkinson’s Disease, Beijing Key Laboratory of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Beijing 100069, China
| | - Zihao Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (T.W.); (W.L.); (Q.Z.); (J.J.); (Z.W.)
- Center of Parkinson’s Disease, Beijing Key Laboratory of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Beijing 100069, China
| | - Ge Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (T.W.); (W.L.); (Q.Z.); (J.J.); (Z.W.)
- Center of Parkinson’s Disease, Beijing Key Laboratory of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Beijing 100069, China
| | - Hui Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (T.W.); (W.L.); (Q.Z.); (J.J.); (Z.W.)
- Center of Parkinson’s Disease, Beijing Key Laboratory of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Beijing 100069, China
| |
Collapse
|
17
|
Al-Saad OM, Gabr M, Darwish SS, Rullo M, Pisani L, Miniero DV, Liuzzi GM, Kany AM, Hirsch AKH, Abadi AH, Engel M, Catto M, Abdel-Halim M. Novel 6-hydroxybenzothiazol-2-carboxamides as potent and selective monoamine oxidase B inhibitors endowed with neuroprotective activity. Eur J Med Chem 2024; 269:116266. [PMID: 38490063 DOI: 10.1016/j.ejmech.2024.116266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 03/17/2024]
Abstract
In neurodegenerative diseases, using a single molecule that can exert multiple effects to modify the disease may have superior activity over the classical "one molecule-one target" approach. Herein, we describe the discovery of 6-hydroxybenzothiazol-2-carboxamides as highly potent and selective MAO-B inhibitors. Variation of the amide substituent led to several potent compounds having diverse side chains with cyclohexylamide 40 displaying the highest potency towards MAO-B (IC50 = 11 nM). To discover new compounds with extended efficacy against neurotoxic mechanisms in neurodegenerative diseases, MAO-B inhibitors were screened against PHF6, R3 tau, cellular tau and α-synuclein (α-syn) aggregation. We identified the phenethylamide 30 as a multipotent inhibitor of MAO-B (IC50 = 41 nM) and α-syn and tau aggregation. It showed no cytotoxic effects on SH-SY5Y neuroblastoma cells, while also providing neuroprotection against toxicities induced by α-syn and tau. The evaluation of key physicochemical and in vitro-ADME properties revealed a great potential as drug-like small molecules with multitarget neuroprotective activity.
Collapse
Affiliation(s)
- Omar M Al-Saad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Moustafa Gabr
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sarah S Darwish
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt; School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, 11578, Cairo, Egypt
| | - Mariagrazia Rullo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Leonardo Pisani
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Andreas M Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarland University Campus E8.1, 66123, Saarbrücken, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarland University Campus E8.1, 66123, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy.
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| |
Collapse
|
18
|
Shen YX, Lee PS, Teng MC, Huang JH, Wang CC, Fan HF. Influence of Cigarette Aerosol in Alpha-Synuclein Oligomerization and Cell Viability in SH-SY5Y: Implications for Parkinson's Disease. ACS Chem Neurosci 2024; 15:1484-1500. [PMID: 38483468 PMCID: PMC10995954 DOI: 10.1021/acschemneuro.3c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Although cigarette aerosol exposure is associated with various adverse health issues, its impact on Parkinson's disease (PD) remains elusive. Here, we investigated the effect of cigarette aerosol extract (CAE) on SH-SY5Y cells for the first time, both with and without α-synuclein (α-Syn) overexpression. We found that α-Syn aggravates CAE-induced cell death, oxidative stress, and mitochondrial dysfunction. Fluorescence cross-correlation spectroscopy (FCCS) revealed a dual distribution of α-Syn within the cells, with homogeneous regions indicative of monomeric α-Syn and punctated regions, suggesting the formation of oligomers. Moreover, we observed colocalization of α-Syn oligomers with lysosomes along with a reduction in autophagy activity. These findings suggest that α-Syn overexpression exacerbates CAE-induced intracellular cytotoxicity, mitochondrial dysfunction, and autophagy dysregulation, leading to elevated cell mortality. Our findings provide new insights into the pathogenic mechanisms linking exposure to cigarette aerosols with neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu-Xin Shen
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Pe-Shuen Lee
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Ming-Chu Teng
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Jhih-Hong Huang
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Chia C. Wang
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Hsiu-Fang Fan
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| |
Collapse
|
19
|
Carreras Mascaro A, Grochowska MM, Boumeester V, Dits NFJ, Bilgiҫ EN, Breedveld GJ, Vergouw L, de Jong FJ, van Royen ME, Bonifati V, Mandemakers W. LRP10 and α-synuclein transmission in Lewy body diseases. Cell Mol Life Sci 2024; 81:75. [PMID: 38315424 PMCID: PMC10844361 DOI: 10.1007/s00018-024-05135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Autosomal dominant variants in LRP10 have been identified in patients with Lewy body diseases (LBDs), including Parkinson's disease (PD), Parkinson's disease-dementia (PDD), and dementia with Lewy bodies (DLB). Nevertheless, there is little mechanistic insight into the role of LRP10 in disease pathogenesis. In the brains of control individuals, LRP10 is typically expressed in non-neuronal cells like astrocytes and neurovasculature, but in idiopathic and genetic cases of PD, PDD, and DLB, it is also present in α-synuclein-positive neuronal Lewy bodies. These observations raise the questions of what leads to the accumulation of LRP10 in Lewy bodies and whether a possible interaction between LRP10 and α-synuclein plays a role in disease pathogenesis. Here, we demonstrate that wild-type LRP10 is secreted via extracellular vesicles (EVs) and can be internalised via clathrin-dependent endocytosis. Additionally, we show that LRP10 secretion is highly sensitive to autophagy inhibition, which induces the formation of atypical LRP10 vesicular structures in neurons in human-induced pluripotent stem cells (iPSC)-derived brain organoids. Furthermore, we show that LRP10 overexpression leads to a strong induction of monomeric α-synuclein secretion, together with time-dependent, stress-sensitive changes in intracellular α-synuclein levels. Interestingly, patient-derived astrocytes carrying the c.1424 + 5G > A LRP10 variant secrete aberrant high-molecular-weight species of LRP10 in EV-free media fractions. Finally, we show that this truncated patient-derived LRP10 protein species (LRP10splice) binds to wild-type LRP10, reduces LRP10 wild-type levels, and antagonises the effect of LRP10 on α-synuclein levels and distribution. Together, this work provides initial evidence for a possible functional role of LRP10 in LBDs by modulating intra- and extracellular α-synuclein levels, and pathogenic mechanisms linked to the disease-associated c.1424 + 5G > A LRP10 variant, pointing towards potentially important disease mechanisms in LBDs.
Collapse
Affiliation(s)
- Ana Carreras Mascaro
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martyna M Grochowska
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Valerie Boumeester
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Natasja F J Dits
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ece Naz Bilgiҫ
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Leonie Vergouw
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frank Jan de Jong
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wim Mandemakers
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
20
|
Rupert J, Monti M, Zacco E, Tartaglia G. RNA sequestration driven by amyloid formation: the alpha synuclein case. Nucleic Acids Res 2023; 51:11466-11478. [PMID: 37870427 PMCID: PMC10681735 DOI: 10.1093/nar/gkad857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/15/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023] Open
Abstract
Nucleic acids can act as potent modulators of protein aggregation, and RNA has the ability to either hinder or facilitate protein assembly, depending on the molecular context. In this study, we utilized a computational approach to characterize the physico-chemical properties of regions involved in amyloid aggregation. In various experimental datasets, we observed that while the core is hydrophobic and highly ordered, external regions, which are more disordered, display a distinct tendency to interact with nucleic acids. To validate our predictions, we performed aggregation assays with alpha-synuclein (aS140), a non-nucleic acid-binding amyloidogenic protein, and a mutant truncated at the acidic C-terminus (aS103), which is predicted to have a higher tendency to interact with RNA. For both aS140 and aS103, we observed an acceleration of aggregation upon RNA addition, with a significantly stronger effect for aS103. Due to favorable electrostatics, we noted an enhanced nucleic acid sequestration ability for the aggregated aS103, allowing it to entrap a larger amount of RNA compared to the aggregated wild-type counterpart. Overall, our research suggests that RNA sequestration might be a common phenomenon linked to protein aggregation, constituting a gain-of-function mechanism that warrants further investigation.
Collapse
Affiliation(s)
- Jakob Rupert
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152, Genova, Italy
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Michele Monti
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152, Genova, Italy
| | - Elsa Zacco
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152, Genova, Italy
| | - Gian Gaetano Tartaglia
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152, Genova, Italy
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
- Catalan Institution for Research and Advanced Studies, ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
21
|
Battis K, Xiang W, Winkler J. The Bidirectional Interplay of α-Synuclein with Lipids in the Central Nervous System and Its Implications for the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2023; 24:13270. [PMID: 37686080 PMCID: PMC10487772 DOI: 10.3390/ijms241713270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The alteration and aggregation of alpha-synuclein (α-syn) play a crucial role in neurodegenerative diseases collectively termed as synucleinopathies, including Parkinson's disease (PD). The bidirectional interaction of α-syn with lipids and biomembranes impacts not only α-syn aggregation but also lipid homeostasis. Indeed, lipid composition and metabolism are severely perturbed in PD. One explanation for lipid-associated alterations may involve structural changes in α-syn, caused, for example, by missense mutations in the lipid-binding region of α-syn as well as post-translational modifications such as phosphorylation, acetylation, nitration, ubiquitination, truncation, glycosylation, and glycation. Notably, different strategies targeting the α-syn-lipid interaction have been identified and are able to reduce α-syn pathology. These approaches include the modulation of post-translational modifications aiming to reduce the aggregation of α-syn and modify its binding properties to lipid membranes. Furthermore, targeting enzymes involved in various steps of lipid metabolism and exploring the neuroprotective potential of lipids themselves have emerged as novel therapeutic approaches. Taken together, this review focuses on the bidirectional crosstalk of α-syn and lipids and how alterations of this interaction affect PD and thereby open a window for therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.B.); (W.X.)
| |
Collapse
|
22
|
Fagen SJ, Burgess JD, Lim MJ, Amerna D, Kaya ZB, Faroqi AH, Perisetla P, DeMeo NN, Stojkovska I, Quiriconi DJ, Mazzulli JR, Delenclos M, Boschen SL, McLean PJ. Honokiol decreases alpha-synuclein mRNA levels and reveals novel targets for modulating alpha-synuclein expression. Front Aging Neurosci 2023; 15:1179086. [PMID: 37637959 PMCID: PMC10449643 DOI: 10.3389/fnagi.2023.1179086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Background Intracytoplasmic inclusions comprised of aggregated alpha-synuclein (αsyn) represent a key histopathological feature of neurological disorders collectively termed "synucleinopathies," which includes Parkinson's disease (PD). Mutations and multiplications in the SNCA gene encoding αsyn cause familial forms of PD and a large body of evidence indicate a correlation between αsyn accumulation and disease. Decreasing αsyn expression is recognized as a valid target for PD therapeutics, with down-regulation of SNCA expression potentially attenuating downstream cascades of pathologic events. Here, we evaluated if Honokiol (HKL), a polyphenolic compound derived from magnolia tree bark with demonstrated neuroprotective properties, can modulate αsyn levels in multiple experimental models. Methods Human neuroglioma cells stably overexpressing αsyn, mouse primary neurons, and human iPSC-derived neurons were exposed to HKL and αsyn protein and SNCA messenger RNA levels were assessed. The effect of HKL on rotenone-induced overexpression of αsyn levels was further assessed and transcriptional profiling of mouse cortical neurons treated with HKL was performed to identify potential targets of HKL. Results We demonstrate that HKL can successfully reduce αsyn protein levels and SNCA expression in multiple in vitro models of PD with our data supporting a mechanism whereby HKL acts by post-transcriptional modulation of SNCA rather than modulating αsyn protein degradation. Transcriptional profiling of mouse cortical neurons treated with HKL identifies several differentially expressed genes (DEG) as potential targets to modulate SNCA expression. Conclusion This study supports a HKL-mediated downregulation of SNCA as a viable strategy to modify disease progression in PD and other synucleinopathies. HKL has potential as a powerful tool for investigating SNCA gene modulation and its downstream effects.
Collapse
Affiliation(s)
- Sara J. Fagen
- Department of Neuroscience, Mayo Clinic, Jackson ville, FL, United States
| | - Jeremy D. Burgess
- Department of Neuroscience, Mayo Clinic, Jackson ville, FL, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Melina J. Lim
- Department of Neuroscience, Mayo Clinic, Jackson ville, FL, United States
| | - Danilyn Amerna
- Department of Neuroscience, Mayo Clinic, Jackson ville, FL, United States
| | - Zeynep B. Kaya
- Department of Neuroscience, Mayo Clinic, Jackson ville, FL, United States
| | - Ayman H. Faroqi
- Department of Neuroscience, Mayo Clinic, Jackson ville, FL, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Priyanka Perisetla
- Department of Neuroscience, Mayo Clinic, Jackson ville, FL, United States
| | - Natasha N. DeMeo
- Department of Neuroscience, Mayo Clinic, Jackson ville, FL, United States
| | - Iva Stojkovska
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Drew J. Quiriconi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Joseph R. Mazzulli
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Marion Delenclos
- Department of Neuroscience, Mayo Clinic, Jackson ville, FL, United States
| | - Suelen L. Boschen
- Department of Neuroscience, Mayo Clinic, Jackson ville, FL, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Rochester, MN, United States
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States
| | - Pamela J. McLean
- Department of Neuroscience, Mayo Clinic, Jackson ville, FL, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Rochester, MN, United States
| |
Collapse
|
23
|
Kim MS, Ra EA, Kweon SH, Seo BA, Ko HS, Oh Y, Lee G. Advanced human iPSC-based preclinical model for Parkinson's disease with optogenetic alpha-synuclein aggregation. Cell Stem Cell 2023; 30:973-986.e11. [PMID: 37339636 PMCID: PMC10829432 DOI: 10.1016/j.stem.2023.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/02/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) offer advantages for disease modeling and drug discovery. However, recreating innate cellular pathologies, particularly in late-onset neurodegenerative diseases with accumulated protein aggregates including Parkinson's disease (PD), has been challenging. To overcome this barrier, we developed an optogenetics-assisted α-synuclein (α-syn) aggregation induction system (OASIS) that rapidly induces α-syn aggregates and toxicity in PD hiPSC-midbrain dopaminergic neurons and midbrain organoids. Our OASIS-based primary compound screening with SH-SY5Y cells identified 5 candidates that were secondarily validated with OASIS PD hiPSC-midbrain dopaminergic neurons and midbrain organoids, leading us to finally select BAG956. Furthermore, BAG956 significantly reverses characteristic PD phenotypes in α-syn preformed fibril models in vitro and in vivo by promoting autophagic clearance of pathological α-syn aggregates. Following the FDA Modernization Act 2.0's emphasis on alternative non-animal testing methods, our OASIS can serve as an animal-free preclinical test model (newly termed "nonclinical test") for the synucleinopathy drug development.
Collapse
Affiliation(s)
- Min Seong Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eun A Ra
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sin Ho Kweon
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bo Am Seo
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, Korea; Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, Korea; Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, Korea
| | - Han Seok Ko
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Yohan Oh
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea.
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
24
|
Yap KH, Azmin S, Makpol S, Damanhuri HA, Mustapha M, Hamzah JC, Ibrahim NM. Profiling neuroprotective potential of trehalose in animal models of neurodegenerative diseases: a systematic review. Neural Regen Res 2023; 18:1179-1185. [PMID: 36453391 PMCID: PMC9838167 DOI: 10.4103/1673-5374.360164] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/24/2022] [Accepted: 10/13/2022] [Indexed: 11/27/2022] Open
Abstract
Trehalose, a unique nonreducing crystalline disaccharide, is a potential disease-modifying treatment for neurodegenerative diseases associated with protein misfolding and aggregation due to aging, intrinsic mutations, or autophagy dysregulation. This systematic review summarizes the effects of trehalose on its underlying mechanisms in animal models of selected neurodegenerative disorders (tau pathology, synucleinopathy, polyglutamine tract, and motor neuron diseases). All animal studies on neurodegenerative diseases treated with trehalose published in Medline (accessed via EBSCOhost) and Scopus were considered. Of the 2259 studies screened, 29 met the eligibility criteria. According to the SYstematic Review Center for Laboratory Animal Experiment (SYRCLE) risk of bias tool, we reported 22 out of 29 studies with a high risk of bias. The present findings support the purported role of trehalose in autophagic flux and protein refolding. This review identified several other lesser-known pathways, including modifying amyloid precursor protein processing, inhibition of reactive gliosis, the integrity of the blood-brain barrier, activation of growth factors, upregulation of the downstream antioxidant signaling pathway, and protection against mitochondrial defects. The absence of adverse events and improvements in the outcome parameters were observed in some studies, which supports the transition to human clinical trials. It is possible to conclude that trehalose exerts its neuroprotective effects through both direct and indirect pathways. However, heterogeneous methodologies and outcome measures across the studies rendered it impossible to derive a definitive conclusion. Translational studies on trehalose would need to clarify three important questions: 1) bioavailability with oral administration, 2) optimal time window to confer neuroprotective benefits, and 3) optimal dosage to confer neuroprotection.
Collapse
Affiliation(s)
- Kah Hui Yap
- Department of Medicine, UKM Medical Centre, Kuala Lumpur, Malaysia
| | - Shahrul Azmin
- Department of Medicine, UKM Medical Centre, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, UKM Medical Centre, Kuala Lumpur, Malaysia
| | | | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | | |
Collapse
|
25
|
Ferrari E, Salvadè M, Zianni E, Brumana M, DiLuca M, Gardoni F. Detrimental effects of soluble α-synuclein oligomers at excitatory glutamatergic synapses. Front Aging Neurosci 2023; 15:1152065. [PMID: 37009450 PMCID: PMC10060538 DOI: 10.3389/fnagi.2023.1152065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction Oligomeric and fibrillar species of the synaptic protein α-synuclein are established key players in the pathophysiology of Parkinson's disease and other synucleinopathies. Increasing evidence in the literature points to prefibrillar oligomers as the main cytotoxic species driving dysfunction in diverse neurotransmitter systems even at early disease stages. Of note, soluble oligomers have recently been shown to alter synaptic plasticity mechanisms at the glutamatergic cortico-striatal synapse. However, the molecular and morphological detrimental events triggered by soluble α-synuclein aggregates that ultimately lead to excitatory synaptic failure remain mostly elusive. Methods In the present study, we aimed to clarify the effects of soluble α-synuclein oligomers (sOligo) in the pathophysiology of synucleinopathies at cortico-striatal and hippocampal excitatory synapses. To investigate early defects of the striatal synapse in vivo, sOligo were inoculated in the dorsolateral striatum of 2-month-old wild-type C57BL/6J mice, and molecular and morphological analyses were conducted 42 and 84 days post-injection. In parallel, primary cultures of rat hippocampal neurons were exposed to sOligo, and molecular and morphological analyses were performed after 7 days of treatment. Results In vivo sOligo injection impaired the post-synaptic retention of striatal ionotropic glutamate receptors and decreased the levels of phosphorylated ERK at 84 days post-injection. These events were not correlated with morphological alterations at dendritic spines. Conversely, chronic in vitro administration of sOligo caused a significant decrease in ERK phosphorylation but did not significantly alter post-synaptic levels of ionotropic glutamate receptors or spine density in primary hippocampal neurons. Conclusion Overall, our data indicate that sOligo are involved in pathogenic molecular changes at the striatal glutamatergic synapse, confirming the detrimental effect of these species in an in vivo synucleinopathy model. Moreover, sOligo affects the ERK signaling pathway similarly in hippocampal and striatal neurons, possibly representing an early mechanism that anticipates synaptic loss.
Collapse
Affiliation(s)
| | | | | | | | | | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB) “Rodolfo Paoletti”, University of Milan, Milan, Italy
| |
Collapse
|
26
|
Shahpasand-Kroner H, Siddique I, Malik R, Linares GR, Ivanova MI, Ichida J, Weil T, Münch J, Sanchez-Garcia E, Klärner FG, Schrader T, Bitan G. Molecular Tweezers: Supramolecular Hosts with Broad-Spectrum Biological Applications. Pharmacol Rev 2023; 75:263-308. [PMID: 36549866 PMCID: PMC9976797 DOI: 10.1124/pharmrev.122.000654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
Abstract
Lysine-selective molecular tweezers (MTs) are supramolecular host molecules displaying a remarkably broad spectrum of biologic activities. MTs act as inhibitors of the self-assembly and toxicity of amyloidogenic proteins using a unique mechanism. They destroy viral membranes and inhibit infection by enveloped viruses, such as HIV-1 and SARS-CoV-2, by mechanisms unrelated to their action on protein self-assembly. They also disrupt biofilm of Gram-positive bacteria. The efficacy and safety of MTs have been demonstrated in vitro, in cell culture, and in vivo, suggesting that these versatile compounds are attractive therapeutic candidates for various diseases, infections, and injuries. A lead compound called CLR01 has been shown to inhibit the aggregation of various amyloidogenic proteins, facilitate their clearance in vivo, prevent infection by multiple viruses, display potent anti-biofilm activity, and have a high safety margin in animal models. The inhibitory effect of CLR01 against amyloidogenic proteins is highly specific to abnormal self-assembly of amyloidogenic proteins with no disruption of normal mammalian biologic processes at the doses needed for inhibition. Therapeutic effects of CLR01 have been demonstrated in animal models of proteinopathies, lysosomal-storage diseases, and spinal-cord injury. Here we review the activity and mechanisms of action of these intriguing compounds and discuss future research directions. SIGNIFICANCE STATEMENT: Molecular tweezers are supramolecular host molecules with broad biological applications, including inhibition of abnormal protein aggregation, facilitation of lysosomal clearance of toxic aggregates, disruption of viral membranes, and interference of biofilm formation by Gram-positive bacteria. This review discusses the molecular and cellular mechanisms of action of the molecular tweezers, including the discovery of distinct mechanisms acting in vitro and in vivo, and the application of these compounds in multiple preclinical disease models.
Collapse
Affiliation(s)
- Hedieh Shahpasand-Kroner
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Ibrar Siddique
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Ravinder Malik
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Gabriel R Linares
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Magdalena I Ivanova
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Justin Ichida
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Tatjana Weil
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Jan Münch
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Elsa Sanchez-Garcia
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Frank-Gerrit Klärner
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Thomas Schrader
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
27
|
Protective mechanisms by glial cell line-derived neurotrophic factor and cerebral dopamine neurotrophic factor against the α-synuclein accumulation in Parkinson's disease. Biochem Soc Trans 2023; 51:245-257. [PMID: 36794783 DOI: 10.1042/bst20220770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/17/2023]
Abstract
Synucleinopathies constitute a disease family named after alpha-synuclein protein, which is a significant component of the intracellular inclusions called Lewy bodies. Accompanying the progressive neurodegeneration, Lewy bodies and neurites are the main histopathologies of synucleinopathies. The complicated role of alpha-synuclein in the disease pathology makes it an attractive therapeutic target for disease-modifying treatments. GDNF is one of the most potent neurotrophic factors for dopamine neurons, whereas CDNF is protective and neurorestorative with entirely different mechanisms of action. Both have been in the clinical trials for the most common synucleinopathy, Parkinson's disease. With the AAV-GDNF clinical trials ongoing and the CDNF trial being finalized, their effects on abnormal alpha-synuclein accumulation are of great interest. Previous animal studies with an alpha-synuclein overexpression model have shown that GDNF was ineffective against alpha-synuclein accumulation. However, a recent study with cell culture and animal models of alpha-synuclein fibril inoculation has demonstrated the opposite by revealing that the GDNF/RET signaling cascade is required for the protective effect of GDNF on alpha-synuclein aggregation. CDNF, an ER resident protein, was shown to bind alpha-synuclein directly. CDNF reduced the uptake of alpha-synuclein fibrils by the neurons and alleviated the behavioral deficits induced by fibrils injected into the mouse brain. Thus, GDNF and CDNF can modulate different symptoms and pathologies of Parkinson's disease, and perhaps, similarly for other synucleinopathies. Their unique mechanisms for preventing alpha-synuclein-related pathology should be studied more carefully to develop disease-modifying therapies.
Collapse
|
28
|
Gelain DP, Bittencourt RR, Bastos Mendes LF, Moreira JCF, Outeiro TF. RAGE Against the Glycation Machine in Synucleinopathies: Time to Explore New Questions. JOURNAL OF PARKINSON'S DISEASE 2023; 13:717-728. [PMID: 37270812 PMCID: PMC10473104 DOI: 10.3233/jpd-230070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Oligomerization and aggregation of misfolded forms of α-synuclein are believed to be key molecular mechanisms in Parkinson's disease (PD) and other synucleinopathies, so extensive research has attempted to understand these processes. Among diverse post-translational modifications that impact α-synuclein aggregation, glycation may take place at several lysine sites and modify α-synuclein oligomerization, toxicity, and clearance. The receptor for advanced glycation end products (RAGE) is considered a key regulator of chronic neuroinflammation through microglial activation in response to advanced glycation end products, such as carboxy-ethyl-lysine, or carboxy-methyl-lysine. The presence of RAGE in the midbrain of PD patients has been reported in the last decades and this receptor was proposed to have a role in sustaining PD neuroinflammation. However, different PD animal models demonstrated that RAGE is preferentially expressed in neurons and astrocytes, while recent evidence demonstrated that fibrillar, non-glycated α-synuclein binds to RAGE. Here, we summarize the available data on α-synuclein glycation and RAGE in the context of PD, and discuss about the questions yet to be answered that may increase our understanding of the molecular bases of PD and synucleinopathies.
Collapse
Affiliation(s)
- Daniel Pens Gelain
- Center for Oxidative Stress Studies, Department of Biochemistry, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Reykla Ramon Bittencourt
- Center for Oxidative Stress Studies, Department of Biochemistry, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiz Filipe Bastos Mendes
- Center for Oxidative Stress Studies, Department of Biochemistry, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - José Claudio Fonseca Moreira
- Center for Oxidative Stress Studies, Department of Biochemistry, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Natural Sciences, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| |
Collapse
|
29
|
Choi J, Kii H, Nelson J, Yamazaki Y, Yanagawa F, Kitajima A, Uozumi T, Kiyota Y, Doshi D, Rhodes K, Scannevin R, Sadlish H, Chung CY. Automated algorithm development to assess survival of human neurons using longitudinal single-cell tracking: Application to synucleinopathy. SLAS Technol 2022; 28:63-69. [PMID: 36455858 DOI: 10.1016/j.slast.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/22/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
The development of phenotypic assays with appropriate analyses is an important step in the drug discovery process. Assays using induced pluripotent stem cell (iPSC)-derived human neurons are emerging as powerful tools for drug discovery in neurological disease. We have previously shown that longitudinal single cell tracking enabled the quantification of survival and death of neurons after overexpression of α-synuclein with a familial Parkinson's disease mutation (A53T). The reliance of this method on manual counting, however, rendered the process labor intensive, time consuming and error prone. To overcome these hurdles, we have developed automated detection algorithms for neurons using the BioStation CT live imaging system and CL-Quant software. In the current study, we use these algorithms to successfully measure the risk of neuronal death caused by overexpression of α-synuclein (A53T) with similar accuracy and improved consistency as compared to manual counting. This novel method also provides additional key readouts of neuronal fitness including total neurite length and the number of neurite nodes projecting from the cell body. Finally, the algorithm reveals the neuroprotective effects of brain-derived neurotrophic factor (BDNF) treatment in neurons overexpressing α-synuclein (A53T). These data show that an automated algorithm improves the consistency and considerably shortens the analysis time of assessing neuronal health, making this method advantageous for small molecule screening for inhibitors of synucleinopathy and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jeonghoon Choi
- Yumanity Therapeutics, 40 Guest St, Boston, MA, 02135, United States of America
| | | | - Justin Nelson
- Yumanity Therapeutics, 40 Guest St, Boston, MA, 02135, United States of America
| | | | | | | | | | | | - Dimple Doshi
- Yumanity Therapeutics, 40 Guest St, Boston, MA, 02135, United States of America
| | - Kenneth Rhodes
- Yumanity Therapeutics, 40 Guest St, Boston, MA, 02135, United States of America
| | - Robert Scannevin
- Yumanity Therapeutics, 40 Guest St, Boston, MA, 02135, United States of America
| | - Heather Sadlish
- Yumanity Therapeutics, 40 Guest St, Boston, MA, 02135, United States of America
| | - Chee Yeun Chung
- Yumanity Therapeutics, 40 Guest St, Boston, MA, 02135, United States of America
| |
Collapse
|
30
|
Ivanov MN, Stoyanov DS, Pavlov SP, Tonchev AB. Distribution, Function, and Expression of the Apelinergic System in the Healthy and Diseased Mammalian Brain. Genes (Basel) 2022; 13:2172. [PMID: 36421846 PMCID: PMC9690544 DOI: 10.3390/genes13112172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 07/27/2023] Open
Abstract
Apelin, a peptide initially isolated from bovine stomach extract, is an endogenous ligand for the Apelin Receptor (APLNR). Subsequently, a second peptide, ELABELA, that can bind to the receptor has been identified. The Apelin receptor and its endogenous ligands are widely distributed in mammalian organs. A growing body of evidence suggests that this system participates in various signaling cascades that can regulate cell proliferation, blood pressure, fluid homeostasis, feeding behavior, and pituitary hormone release. Additional research has been done to elucidate the system's potential role in neurogenesis, the pathophysiology of Glioblastoma multiforme, and the protective effects of apelin peptides on some neurological and psychiatric disorders-ischemic stroke, epilepsy, Parkinson's, and Alzheimer's disease. This review discusses the current knowledge on the apelinergic system's involvement in brain physiology in health and disease.
Collapse
Affiliation(s)
- Martin N. Ivanov
- Department of Anatomy and Cell Biology, Medical University-Varna, 9000 Varna, Bulgaria
- Department of Stem Cell Biology, Research Institute, Medical University-Varna, 9000 Varna, Bulgaria
| | - Dimo S. Stoyanov
- Department of Anatomy and Cell Biology, Medical University-Varna, 9000 Varna, Bulgaria
| | - Stoyan P. Pavlov
- Department of Anatomy and Cell Biology, Medical University-Varna, 9000 Varna, Bulgaria
| | - Anton. B. Tonchev
- Department of Anatomy and Cell Biology, Medical University-Varna, 9000 Varna, Bulgaria
- Department of Stem Cell Biology, Research Institute, Medical University-Varna, 9000 Varna, Bulgaria
| |
Collapse
|
31
|
Waury K, Willemse EAJ, Vanmechelen E, Zetterberg H, Teunissen CE, Abeln S. Bioinformatics tools and data resources for assay development of fluid protein biomarkers. Biomark Res 2022; 10:83. [DOI: 10.1186/s40364-022-00425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractFluid protein biomarkers are important tools in clinical research and health care to support diagnosis and to monitor patients. Especially within the field of dementia, novel biomarkers could address the current challenges of providing an early diagnosis and of selecting trial participants. While the great potential of fluid biomarkers is recognized, their implementation in routine clinical use has been slow. One major obstacle is the often unsuccessful translation of biomarker candidates from explorative high-throughput techniques to sensitive antibody-based immunoassays. In this review, we propose the incorporation of bioinformatics into the workflow of novel immunoassay development to overcome this bottleneck and thus facilitate the development of novel biomarkers towards clinical laboratory practice. Due to the rapid progress within the field of bioinformatics many freely available and easy-to-use tools and data resources exist which can aid the researcher at various stages. Current prediction methods and databases can support the selection of suitable biomarker candidates, as well as the choice of appropriate commercial affinity reagents. Additionally, we examine methods that can determine or predict the epitope - an antibody’s binding region on its antigen - and can help to make an informed choice on the immunogenic peptide used for novel antibody production. Selected use cases for biomarker candidates help illustrate the application and interpretation of the introduced tools.
Collapse
|
32
|
Ubbiali D, Fratini M, Piersimoni L, Ihling CH, Kipping M, Heilmann I, Iacobucci C, Sinz A. Direct Observation of "Elongated" Conformational States in α-Synuclein upon Liquid-Liquid Phase Separation. Angew Chem Int Ed Engl 2022; 61:e202205726. [PMID: 36115020 PMCID: PMC9828221 DOI: 10.1002/anie.202205726] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 01/12/2023]
Abstract
α-Synuclein (α-syn) is an intrinsically disordered protein (IDP) that undergoes liquid-liquid phase separation (LLPS), fibrillation, and forms insoluble intracellular Lewy bodies in neurons, which are the hallmark of Parkinson's Disease (PD). Neurotoxicity precedes the formation of aggregates and might be related to α-syn LLPS. The molecular mechanisms underlying the early stages of LLPS are still elusive. To obtain structural insights into α-syn upon LLPS, we take advantage of cross-linking/mass spectrometry (XL-MS) and introduce an innovative approach, termed COMPASS (COMPetitive PAiring StatisticS). In this work, we show that the conformational ensemble of α-syn shifts from a "hairpin-like" structure towards more "elongated" conformational states upon LLPS. We obtain insights into the critical initial stages of LLPS and establish a novel mass spectrometry-based approach that will aid to solve open questions in LLPS structural biology.
Collapse
Affiliation(s)
- Daniele Ubbiali
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of PharmacyMartin Luther University Halle-WittenbergKurt-Mothes-Str. 306120Halle/SaaleGermany,Center for Structural Mass SpectrometryMartin Luther University Halle-WittenbergKurt-Mothes-Str. 306120Halle/SaaleGermany
| | - Marta Fratini
- Department of Plant BiochemistryCharles Tanford Protein CenterInstitute for Biochemistry and BiotechnologyMartin-Luther University Halle-WittenbergKurt-Mothes-Str. 306120Halle/SaaleGermany
| | - Lolita Piersimoni
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of PharmacyMartin Luther University Halle-WittenbergKurt-Mothes-Str. 306120Halle/SaaleGermany,Center for Structural Mass SpectrometryMartin Luther University Halle-WittenbergKurt-Mothes-Str. 306120Halle/SaaleGermany
| | - Christian H. Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of PharmacyMartin Luther University Halle-WittenbergKurt-Mothes-Str. 306120Halle/SaaleGermany,Center for Structural Mass SpectrometryMartin Luther University Halle-WittenbergKurt-Mothes-Str. 306120Halle/SaaleGermany
| | - Marc Kipping
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of PharmacyMartin Luther University Halle-WittenbergKurt-Mothes-Str. 306120Halle/SaaleGermany,Center for Structural Mass SpectrometryMartin Luther University Halle-WittenbergKurt-Mothes-Str. 306120Halle/SaaleGermany
| | - Ingo Heilmann
- Department of Plant BiochemistryCharles Tanford Protein CenterInstitute for Biochemistry and BiotechnologyMartin-Luther University Halle-WittenbergKurt-Mothes-Str. 306120Halle/SaaleGermany
| | - Claudio Iacobucci
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of PharmacyMartin Luther University Halle-WittenbergKurt-Mothes-Str. 306120Halle/SaaleGermany,Center for Structural Mass SpectrometryMartin Luther University Halle-WittenbergKurt-Mothes-Str. 306120Halle/SaaleGermany,Department of Physical and Chemical SciencesUniversity of L'AquilaVia Vetoio, Coppito67100L'AquilaItaly
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of PharmacyMartin Luther University Halle-WittenbergKurt-Mothes-Str. 306120Halle/SaaleGermany,Center for Structural Mass SpectrometryMartin Luther University Halle-WittenbergKurt-Mothes-Str. 306120Halle/SaaleGermany
| |
Collapse
|
33
|
Ulamec SM, Maya-Martinez R, Byrd EJ, Dewison KM, Xu Y, Willis LF, Sobott F, Heath GR, van Oosten Hawle P, Buchman VL, Radford SE, Brockwell DJ. Single residue modulators of amyloid formation in the N-terminal P1-region of α-synuclein. Nat Commun 2022; 13:4986. [PMID: 36008493 PMCID: PMC9411612 DOI: 10.1038/s41467-022-32687-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 08/10/2022] [Indexed: 11/09/2022] Open
Abstract
Alpha-synuclein (αSyn) is a protein involved in neurodegenerative disorders including Parkinson's disease. Amyloid formation of αSyn can be modulated by the 'P1 region' (residues 36-42). Here, mutational studies of P1 reveal that Y39A and S42A extend the lag-phase of αSyn amyloid formation in vitro and rescue amyloid-associated cytotoxicity in C. elegans. Additionally, L38I αSyn forms amyloid fibrils more rapidly than WT, L38A has no effect, but L38M does not form amyloid fibrils in vitro and protects from proteotoxicity. Swapping the sequence of the two residues that differ in the P1 region of the paralogue γSyn to those of αSyn did not enhance fibril formation for γSyn. Peptide binding experiments using NMR showed that P1 synergises with residues in the NAC and C-terminal regions to initiate aggregation. The remarkable specificity of the interactions that control αSyn amyloid formation, identifies this region as a potential target for therapeutics, despite their weak and transient nature.
Collapse
Affiliation(s)
- Sabine M Ulamec
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Roberto Maya-Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Emily J Byrd
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Katherine M Dewison
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Leon F Willis
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - George R Heath
- Astbury Centre for Structural Molecular Biology, School of Physics & Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Patricija van Oosten Hawle
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Vladimir L Buchman
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
- Belgorod State National Research University, 85 Pobedy Street, Belgorod, 308015, Belgorod Region, Russian Federation
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
34
|
Gracia P, Polanco D, Tarancón-Díez J, Serra I, Bracci M, Oroz J, Laurents DV, García I, Cremades N. Molecular mechanism for the synchronized electrostatic coacervation and co-aggregation of alpha-synuclein and tau. Nat Commun 2022; 13:4586. [PMID: 35933508 PMCID: PMC9357037 DOI: 10.1038/s41467-022-32350-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/26/2022] [Indexed: 01/05/2023] Open
Abstract
Amyloid aggregation of α-synuclein (αS) is the hallmark of Parkinson's disease and other synucleinopathies. Recently, Tau protein, generally associated with Alzheimer's disease, has been linked to αS pathology and observed to co-localize in αS-rich disease inclusions, although the molecular mechanisms for the co-aggregation of both proteins remain elusive. We report here that αS phase-separates into liquid condensates by electrostatic complex coacervation with positively charged polypeptides such as Tau. Condensates undergo either fast gelation or coalescence followed by slow amyloid aggregation depending on the affinity of αS for the poly-cation and the rate of valence exhaustion of the condensate network. By combining a set of advanced biophysical techniques, we have been able to characterize αS/Tau liquid-liquid phase separation and identified key factors that lead to the formation of hetero-aggregates containing both proteins in the interior of the liquid protein condensates.
Collapse
Affiliation(s)
- Pablo Gracia
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50009, Zaragoza, Spain
| | - David Polanco
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50009, Zaragoza, Spain
| | - Jorge Tarancón-Díez
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50009, Zaragoza, Spain
| | - Ilenia Serra
- Department of Condensed Matter Physics, Faculty of Sciences, University of Zaragoza, 50009, Zaragoza, Spain
| | - Maruan Bracci
- Department of Condensed Matter Physics, Faculty of Sciences, University of Zaragoza, 50009, Zaragoza, Spain
| | - Javier Oroz
- "Rocasolano" Institute for Physical Chemistry, CSIC, Serrano 119, Madrid, E-28006, Spain
| | - Douglas V Laurents
- "Rocasolano" Institute for Physical Chemistry, CSIC, Serrano 119, Madrid, E-28006, Spain
| | - Inés García
- Department of Condensed Matter Physics, Faculty of Sciences, University of Zaragoza, 50009, Zaragoza, Spain
- Centro Universitario de la Defensa, Academia General Militar, Ctra. de Huesca s/n, 50090, Zaragoza, Spain
| | - Nunilo Cremades
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018, Zaragoza, Spain.
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50009, Zaragoza, Spain.
| |
Collapse
|
35
|
Kisspeptin-10 Rescues Cholinergic Differentiated SHSY-5Y Cells from α-Synuclein-Induced Toxicity In Vitro. Int J Mol Sci 2022; 23:ijms23095193. [PMID: 35563582 PMCID: PMC9105316 DOI: 10.3390/ijms23095193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 12/25/2022] Open
Abstract
The neuropathological substrate of dementia with Lewy bodies (DLB) is defined by the inextricable cross-seeding accretion of amyloid-β (Aβ) and α-synuclein (α-syn)-laden deposits in cholinergic neurons. The recent revelation that neuropeptide kisspeptin-10 (KP-10) is able to mitigate Aβ toxicity via an extracellular binding mechanism may provide a new horizon for innovative drug design endeavors. Considering the sequence similarities between α-syn’s non-amyloid-β component (NAC) and Aβ’s C-terminus, we hypothesized that KP-10 would enhance cholinergic neuronal resistance against α-syn’s deleterious consequences through preferential binding. Here, human cholinergic SH-SY5Y cells were transiently transformed to upsurge the mRNA expression of α-syn while α-syn-mediated cholinergic toxicity was quantified utilizing a standardized viability-based assay. Remarkably, the E46K mutant α-syn displayed elevated α-syn mRNA levels, which subsequently induced more cellular toxicity compared with the wild-type α-syn in choline acetyltransferase (ChAT)-positive cholinergic neurons. Treatment with a high concentration of KP-10 (10 µM) further decreased cholinergic cell viability, while low concentrations of KP-10 (0.01–1 µM) substantially suppressed wild-type and E46K mutant α-syn-mediated toxicity. Correlating with the in vitro observations are approximations from in silico algorithms, which inferred that KP-10 binds favorably to the C-terminal residues of wild-type and E46K mutant α-syn with CDOCKER energy scores of −118.049 kcal/mol and −114.869 kcal/mol, respectively. Over the course of 50 ns simulation time, explicit-solvent molecular dynamics conjointly revealed that the docked complexes were relatively stable despite small-scale fluctuations upon assembly. Taken together, our findings insinuate that KP-10 may serve as a novel therapeutic scaffold with far-reaching implications for the conceptualization of α-syn-based treatments.
Collapse
|
36
|
Cell models for Alzheimer’s and Parkinson’s disease: At the interface of biology and drug discovery. Biomed Pharmacother 2022; 149:112924. [PMID: 36068783 DOI: 10.1016/j.biopha.2022.112924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
|
37
|
Tello JA, Williams HE, Eppler RM, Steinhilb ML, Khanna M. Animal Models of Neurodegenerative Disease: Recent Advances in Fly Highlight Innovative Approaches to Drug Discovery. Front Mol Neurosci 2022; 15:883358. [PMID: 35514431 PMCID: PMC9063566 DOI: 10.3389/fnmol.2022.883358] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases represent a formidable challenge to global health. As advances in other areas of medicine grant healthy living into later decades of life, aging diseases such as Alzheimer's disease (AD) and other neurodegenerative disorders can diminish the quality of these additional years, owed largely to the lack of efficacious treatments and the absence of durable cures. Alzheimer's disease prevalence is predicted to more than double in the next 30 years, affecting nearly 15 million Americans, with AD-associated costs exceeding $1 billion by 2050. Delaying onset of AD and other neurodegenerative diseases is critical to improving the quality of life for patients and reducing the burden of disease on caregivers and healthcare systems. Significant progress has been made to model disease pathogenesis and identify points of therapeutic intervention. While some researchers have contributed to our understanding of the proteins and pathways that drive biological dysfunction in disease using in vitro and in vivo models, others have provided mathematical, biophysical, and computational technologies to identify potential therapeutic compounds using in silico modeling. The most exciting phase of the drug discovery process is now: by applying a target-directed approach that leverages the strengths of multiple techniques and validates lead hits using Drosophila as an animal model of disease, we are on the fast-track to identifying novel therapeutics to restore health to those impacted by neurodegenerative disease.
Collapse
Affiliation(s)
- Judith A. Tello
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Center of Innovation in Brain Science, Tucson, AZ, United States
| | - Haley E. Williams
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Center of Innovation in Brain Science, Tucson, AZ, United States
| | - Robert M. Eppler
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Michelle L. Steinhilb
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Center of Innovation in Brain Science, Tucson, AZ, United States
- Department of Molecular Pathobiology, New York University, New York, NY, United States
| |
Collapse
|
38
|
Triple gene expressions in yeast, Escherichia coli, and mammalian cells by transferring DNA fragments amplified from a mother yeast expression plasmid. J Biosci Bioeng 2022; 133:587-595. [DOI: 10.1016/j.jbiosc.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 11/22/2022]
|
39
|
Extracellular alpha-synuclein: Sensors, receptors, and responses. Neurobiol Dis 2022; 168:105696. [DOI: 10.1016/j.nbd.2022.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 11/19/2022] Open
|
40
|
Cai W, Srivastava P, Feng D, Lin Y, Vanderburg CR, Xu Y, Mclean P, Frosch MP, Fisher DE, Schwarzschild MA, Chen X. Melanocortin 1 receptor activation protects against alpha-synuclein pathologies in models of Parkinson's disease. Mol Neurodegener 2022; 17:16. [PMID: 35197079 PMCID: PMC8867846 DOI: 10.1186/s13024-022-00520-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/11/2022] [Indexed: 12/02/2022] Open
Abstract
Background Epidemiological studies suggest a link between the melanoma-related pigmentation gene melanocortin 1 receptor (MC1R) and risk of Parkinson’s disease (PD). We previously showed that MC1R signaling can facilitate nigrostriatal dopaminergic neuron survival. The present study investigates the neuroprotective potential of MC1R against neurotoxicity induced by alpha-synuclein (αSyn), a key player in PD genetics and pathogenesis. Methods Nigral dopaminergic neuron toxicity induced by local overexpression of aSyn was assessed in mice that have an inactivating mutation of MC1R, overexpress its wild-type transgene, or were treated with MC1R agonists. The role of nuclear factor erythroid 2-related factor 2 (Nrf2) in MC1R-mediated protection against αSyn was characterized in vitro. Furthermore, MC1R expression was determined in human postmortem midbrain from patients with PD and unaffected subjects. Results Targeted expression of αSyn in the nigrostriatal pathway induced exacerbated synuclein pathologies in MC1R mutant mice, which were accompanied by neuroinflammation and altered Nrf2 responses, and reversed by the human MC1R transgene. Two MC1R agonists were neuroprotective against αSyn-induced dopaminergic neurotoxicity. In vitro experiments showed that Nrf2 was a necessary mediator of MC1R effects. Lastly, MC1R was present in dopaminergic neurons in the human substantia nigra and appeared to be reduced at the tissue level in PD patients. Conclusion Our study supports an interaction between MC1R and αSyn that can be mediated by neuronal MC1R possibly through Nrf2. It provides evidence for MC1R as a therapeutic target and a rationale for development of MC1R-activating strategies for PD. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-022-00520-4.
Collapse
Affiliation(s)
- Waijiao Cai
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Department of Integrative Medicine, HuaShan Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Pranay Srivastava
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Towson, MD, USA
| | - Danielle Feng
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Yue Lin
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Charles R Vanderburg
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Harvard NeuroDiscovery Advanced Tissue Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Yuehang Xu
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | | | - Matthew P Frosch
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Harvard NeuroDiscovery Advanced Tissue Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Neuropathology Service, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Michael A Schwarzschild
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Towson, MD, USA
| | - Xiqun Chen
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA. .,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Towson, MD, USA.
| |
Collapse
|
41
|
Lin CY, Huang CY, Chen CM, Liu HL. Focused Ultrasound-Induced Blood–Brain Barrier Opening Enhanced α-Synuclein Expression in Mice for Modeling Parkinson’s Disease. Pharmaceutics 2022; 14:pharmaceutics14020444. [PMID: 35214176 PMCID: PMC8876143 DOI: 10.3390/pharmaceutics14020444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by α-synuclein (αSNCA) aggregation in dopaminergic neurons. Gradual accumulation of αSNCA aggregates in substantia nigra (SN) diminishes the normal functioning of soluble αSNCA, leading to a loss of dopamine (DA) neurons. In this study, we developed focused ultrasound-targeted microbubble destruction (UTMD)-mediated PD model that could generate the disease phenotype via αSNCA CNS gene delivery. The formation of neuronal aggregates was analyzed with immunostaining. To evaluate the DA cell loss, we used tyrosine hydroxylase immunostaining and HPLC analysis on DA and its two metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). This loss of DA was associated with a dose-dependent impairment in motor function, as assessed by the rotarod motor assessment. We demonstrate that UTMD-induced SNCA expression initiates αSNCA aggregation and results in a 50% loss of DA in SN. UTMD-related dose-dependent neuronal loss was identified, and it correlates with the degree of impairment of motor function. In comparison to chemical neurotoxin 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated and conventional intracerebral (IC)-injected animal models of PD, the UTMD-mediated αSNCA-based mouse model offers the advantage of mimicking the rapid development of the PD phenotype. The PD models that we created using UTMD also prove valuable in assessing specific aspects of PD pathogenesis and can serve as a useful PD model for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Chung-Yin Lin
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.L.); (C.-Y.H.)
- Department of Nephrology and Clinical Position Center, Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Ching-Yun Huang
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.L.); (C.-Y.H.)
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (C.-M.C.); (H.-L.L.); Tel.: +886-3-3281200 (ext. 8729) (C.-M.C.); +886-2-33665416 (H.-L.L.)
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: (C.-M.C.); (H.-L.L.); Tel.: +886-3-3281200 (ext. 8729) (C.-M.C.); +886-2-33665416 (H.-L.L.)
| |
Collapse
|
42
|
Sharma A, Moon E, Kim G, Kang SU. Perspectives of Circadian-Based Music Therapy for the Pathogenesis and Symptomatic Treatment of Neurodegenerative Disorders. Front Integr Neurosci 2022; 15:769142. [PMID: 35153687 PMCID: PMC8825343 DOI: 10.3389/fnint.2021.769142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Music therapy (MT) and other rhythmic-based interventions for the treatment of neurodegeneration (ND) have been successful in improving the quality of life of affected individuals. Music therapy and rhythm-based stimuli affect patients with Alzheimer’s disease (AD) and Parkinson’s disease (PD) respectively not only through cognitive channels and subjective qualifications but also through altered brain structures and neural systems. Often implicated in the pathogenesis and resulting symptoms of these diseases is the role of aberrant circadian rhythmicity (CR), namely disrupted sleep. Recent literature suggests that proper maintenance of this timekeeping framework may be beneficial for patients with neurodegenerative disorders and serve a neuroprotective role. While music therapy can improve the quality of life for neurodegenerative patients, longitudinal studies analyzing sleep patterns of affected individuals and possible mechanisms of intervention remain sparse. Furthermore, the role of music therapy in the context of circadian rhythmicity has not been adequately explored. By analyzing the links between circadian rhythmicity, neurodegeneration, and music therapy, a more comprehensive picture emerges, suggesting that possible uses of non-pharmacological circadian-based music therapy to target mechanisms involved in the pathogenesis of Alzheimer’s disease and Parkinson’s disease may enhance clinical treatment and potentially indicate neuroprotection as a preventative measure.
Collapse
Affiliation(s)
- Arastu Sharma
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Peabody Institute Baltimore, Johns Hopkins University, Baltimore, MD, United States
| | - Eric Moon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Geunhoo Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Sung-Ung Kang
| |
Collapse
|
43
|
Immunisation with UB-312 in the Thy1SNCA mouse prevents motor performance deficits and oligomeric α-synuclein accumulation in the brain and gut. Acta Neuropathol 2022; 143:55-73. [PMID: 34741635 PMCID: PMC8732825 DOI: 10.1007/s00401-021-02381-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 01/13/2023]
Abstract
Alpha synuclein has a key role in the pathogenesis of Parkinson's disease (PD), Dementia with Lewy Bodies (LBD) and Multiple System Atrophy (MSA). Immunotherapies aiming at neutralising toxic αSyn species are being investigated in the clinic as potential disease modifying therapies for PD and other synucleinopathies. In this study, the effects of active immunisation against αSyn with the UB-312 vaccine were investigated in the Thy1SNCA/15 mouse model of PD. Young transgenic and wild-type mice received an immunisation regimen over a period of 6 weeks, then observed for an additional 9 weeks. Behavioural assessment was conducted before immunisation and at 15 weeks after the first dose. UB-312 immunisation prevented the development of motor impairment in the wire test and challenging beam test, which was associated with reduced levels of αSyn oligomers in the cerebral cortex, hippocampus and striatum of Thy1SNCA/15 mice. UB-312 immunotherapy resulted in a significant reduction of theαSyn load in the colon, accompanied by a reduction in enteric glial cell reactivity in the colonic ganglia. Our results demonstrate that immunisation with UB-312 prevents functional deficits and both central and peripheral pathology in Thy1SNCA/15 mice.
Collapse
|
44
|
Hatstat AK, Pupi MD, Reinhart MC, McCafferty DG. Small Molecule Improvement of Trafficking Defects in Models of Neurodegeneration. ACS Chem Neurosci 2021; 12:3972-3984. [PMID: 34652126 DOI: 10.1021/acschemneuro.1c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Disrupted cellular trafficking and transport processes are hallmarks of many neurodegenerative disorders (NDs). Recently, efforts have been made toward developing and implementing experimental platforms to identify small molecules that may help restore normative trafficking functions. There have been a number of successes in targeting endomembrane trafficking with the identification of compounds that restore cell viability through rescue of protein transport and trafficking. Here, we describe some of the experimental platforms implemented for small molecule screening efforts for rescue of trafficking defects in neurodegeneration. A survey of phenotypically active small molecules identified to date is provided, including a summary of medicinal chemistry efforts and insights into putative targets and mechanisms of action. In particular, emphasis is put on ligands that demonstrate activity in more than one model of neurodegeneration as retention of phenotypic activity across ND models suggests conservation of biological targets across NDs.
Collapse
Affiliation(s)
- A. Katherine Hatstat
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael D. Pupi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michaela C. Reinhart
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Dewey G. McCafferty
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
45
|
Malfertheiner K, Stefanova N, Heras-Garvin A. The Concept of α-Synuclein Strains and How Different Conformations May Explain Distinct Neurodegenerative Disorders. Front Neurol 2021; 12:737195. [PMID: 34675870 PMCID: PMC8523670 DOI: 10.3389/fneur.2021.737195] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
In the past few years, an increasing amount of studies primarily based on experimental models have investigated the existence of distinct α-synuclein strains and their different pathological effects. This novel concept could shed light on the heterogeneous nature of α-synucleinopathies, a group of disorders that includes Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, which share as their key-molecular hallmark the abnormal aggregation of α-synuclein, a process that seems pivotal in disease pathogenesis according to experimental observations. However, the etiology of α-synucleinopathies and the initial events leading to the formation of α-synuclein aggregates remains elusive. Hence, the hypothesis that structurally distinct fibrillary assemblies of α-synuclein could have a causative role in the different disease phenotypes and explain, at least to some extent, their specific neurodegenerative, disease progression, and clinical presentation patterns is very appealing. Moreover, the presence of different α-synuclein strains might represent a potential biomarker for the diagnosis of these neurodegenerative disorders. In this regard, the recent use of super resolution techniques and protein aggregation assays has offered the possibility, on the one hand, to elucidate the conformation of α-synuclein pathogenic strains and, on the other hand, to cyclically amplify to detectable levels low amounts of α-synuclein strains in blood, cerebrospinal fluid and peripheral tissue from patients. Thus, the inclusion of these techniques could facilitate the differentiation between α-synucleinopathies, even at early stages, which is crucial for successful therapeutic intervention. This mini-review summarizes the current knowledge on α-synuclein strains and discusses its possible applications and potential benefits.
Collapse
Affiliation(s)
- Katja Malfertheiner
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Antonio Heras-Garvin
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
46
|
A novel multi-target strategy to attenuate the progression of Parkinson's disease by diamine hybrid AGE/ALE inhibitor. Future Med Chem 2021; 13:2185-2200. [PMID: 34634921 DOI: 10.4155/fmc-2021-0217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Instead of a conventional 'one-drug-one-target approach', this article presents a novel multi-target approach with a concept of trapping simultaneously as many detrimental factors as possible involved in the progression of Parkinson's disease. These factors include reactive carbonyl species, reactive oxygen species, Fe3+/Cu2+ and ortho-quinones (o-quinone), in particular. Different from the known multi-target strategies for Parkinson's disease, it is a sort of 'vacuum cleaning' strategy. The new agent consists of reactive carbonyl species scavenging moiety and reactive oxygen species scavenging and metal chelating moiety linked by a spacer. Provided that the capacity of scavenging o-quinones is demonstrated, this type of agent can further broaden its potential therapeutic profile. In order to support this new hypothetical approach, a number of simple in vitro experiments are proposed.
Collapse
|
47
|
Mohamed NV, Sirois J, Ramamurthy J, Mathur M, Lépine P, Deneault E, Maussion G, Nicouleau M, Chen CXQ, Abdian N, Soubannier V, Cai E, Nami H, Thomas RA, Wen D, Tabatabaei M, Beitel LK, Singh Dolt K, Karamchandani J, Stratton JA, Kunath T, Fon EA, Durcan TM. Midbrain organoids with an SNCA gene triplication model key features of synucleinopathy. Brain Commun 2021; 3:fcab223. [PMID: 34632384 PMCID: PMC8495137 DOI: 10.1093/braincomms/fcab223] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023] Open
Abstract
SNCA, the first gene associated with Parkinson's disease, encodes the α-synuclein protein, the predominant component within pathological inclusions termed Lewy bodies. The presence of Lewy bodies is one of the classical hallmarks found in the brain of patients with Parkinson's disease, and Lewy bodies have also been observed in patients with other synucleinopathies. However, the study of α-synuclein pathology in cells has relied largely on two-dimensional culture models, which typically lack the cellular diversity and complex spatial environment found in the brain. Here, to address this gap, we use three-dimensional midbrain organoids, differentiated from human-induced pluripotent stem cells derived from patients carrying a triplication of the SNCA gene and from CRISPR/Cas9 corrected isogenic control iPSCs. These human midbrain organoids recapitulate key features of α-synuclein pathology observed in the brains of patients with synucleinopathies. In particular, we find that SNCA triplication human midbrain organoids express elevated levels of α-synuclein and exhibit an age-dependent increase in α-synuclein aggregation, manifested by the presence of both oligomeric and phosphorylated forms of α-synuclein. These phosphorylated α-synuclein aggregates were found in both neurons and glial cells and their time-dependent accumulation correlated with a selective reduction in dopaminergic neuron numbers. Thus, human midbrain organoids from patients carrying SNCA gene multiplication can reliably model key pathological features of Parkinson's disease and provide a powerful system to study the pathogenesis of synucleinopathies.
Collapse
Affiliation(s)
- Nguyen-Vi Mohamed
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Julien Sirois
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Janani Ramamurthy
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Meghna Mathur
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Paula Lépine
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Eric Deneault
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Gilles Maussion
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Michael Nicouleau
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Carol X-Q Chen
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Narges Abdian
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Vincent Soubannier
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Eddie Cai
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Harris Nami
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Rhalena A Thomas
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Dingke Wen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610063, China
| | - Mahdieh Tabatabaei
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada.,C-BIG Biorepository (C-BIG), Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Lenore K Beitel
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Karamjit Singh Dolt
- Centre for Regenerative Medicine, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jason Karamchandani
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada.,C-BIG Biorepository (C-BIG), Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jo Anne Stratton
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Tilo Kunath
- Centre for Regenerative Medicine, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Edward A Fon
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
48
|
Bindas AJ, Kulkarni S, Koppes RA, Koppes AN. Parkinson's disease and the gut: Models of an emerging relationship. Acta Biomater 2021; 132:325-344. [PMID: 33857691 DOI: 10.1016/j.actbio.2021.03.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by a progressive loss of fine motor function that impacts 1-2 out of 1,000 people. PD occurs predominately late in life and lacks a definitive biomarker for early detection. Recent cross-disciplinary progress has implicated the gut as a potential origin of PD pathogenesis. The gut-origin hypothesis has motivated research on gut PD pathology and transmission to the brain, especially during the prodromal stage (10-20 years before motor symptom onset). Early findings have revealed several possible triggers for Lewy pathology - the pathological hallmark of PD - in the gut, suggesting that microbiome and epithelial interactions may play a greater than appreciated role. But the mechanisms driving Lewy pathology and gut-brain transmission in PD remain unknown. Development of artificial α-Synuclein aggregates (α-Syn preformed fibrils) and animal disease models have recapitulated features of PD progression, enabling for the first time, controlled investigation of the gut-origin hypothesis. However, the role of specific cells in PD transmission, such as neurons, remains limited and requires in vitro models for controlled evaluation and perturbation. Human cell populations, three-dimensional organoids, and microfluidics as discovery platforms inch us closer to improving existing treatment for patients by providing platforms for discovery and screening. This review includes a discussion of PD pathology, conventional treatments, in vivo and in vitro models, and future directions. STATEMENT OF SIGNIFICANCE: Parkinson's Disease remains a common neurodegenerative disease with palliative versus causal treatments. Recently, the gut-origin hypothesis, where Parkinson's disease is thought to originate and spread from the gut to the brain, has gained traction as a field of investigation. However, despite the wealth of studies and innovative approaches to accelerate the field, there remains a need for in vitro tools to enable fundamental biological understanding of disease progression, and compound screening and efficacy. In this review, we present a historical perspective of Parkinson's Disease pathogenesis, detection, and conventional therapy, animal and human models investigating the gut-origin hypothesis, in vitro models to enable controlled discovery, and future outlooks for this blossoming field.
Collapse
Affiliation(s)
- Adam J Bindas
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115, USA.
| | - Subhash Kulkarni
- Division of Gastroenterology and Hepatology, Johns Hopkins University, 720 Rutland Avenue., Baltimore, MD 21205, USA.
| | - Ryan A Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115, USA.
| | - Abigail N Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115, USA; Department of Biology, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Gkekas I, Gioran A, Boziki MK, Grigoriadis N, Chondrogianni N, Petrakis S. Oxidative Stress and Neurodegeneration: Interconnected Processes in PolyQ Diseases. Antioxidants (Basel) 2021; 10:antiox10091450. [PMID: 34573082 PMCID: PMC8471619 DOI: 10.3390/antiox10091450] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative polyglutamine (polyQ) disorders are caused by trinucleotide repeat expansions within the coding region of disease-causing genes. PolyQ-expanded proteins undergo conformational changes leading to the formation of protein inclusions which are associated with selective neuronal degeneration. Several lines of evidence indicate that these mutant proteins are associated with oxidative stress, proteasome impairment and microglia activation. These events may correlate with the induction of inflammation in the nervous system and disease progression. Here, we review the effect of polyQ-induced oxidative stress in cellular and animal models of polyQ diseases. Furthermore, we discuss the interplay between oxidative stress, neurodegeneration and neuroinflammation using as an example the well-known neuroinflammatory disease, Multiple Sclerosis. Finally, we review some of the pharmaceutical interventions which may delay the onset and progression of polyQ disorders by targeting disease-associated mechanisms.
Collapse
Affiliation(s)
- Ioannis Gkekas
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece;
| | - Anna Gioran
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (A.G.); (N.C.)
| | - Marina Kleopatra Boziki
- 2nd Neurological Department, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (M.K.B.); (N.G.)
| | - Nikolaos Grigoriadis
- 2nd Neurological Department, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (M.K.B.); (N.G.)
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (A.G.); (N.C.)
| | - Spyros Petrakis
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece;
- Correspondence: ; Tel.: +30-2311257525
| |
Collapse
|
50
|
Oliveira LMA, Gasser T, Edwards R, Zweckstetter M, Melki R, Stefanis L, Lashuel HA, Sulzer D, Vekrellis K, Halliday GM, Tomlinson JJ, Schlossmacher M, Jensen PH, Schulze-Hentrich J, Riess O, Hirst WD, El-Agnaf O, Mollenhauer B, Lansbury P, Outeiro TF. Alpha-synuclein research: defining strategic moves in the battle against Parkinson's disease. NPJ Parkinsons Dis 2021; 7:65. [PMID: 34312398 PMCID: PMC8313662 DOI: 10.1038/s41531-021-00203-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
With the advent of the genetic era in Parkinson's disease (PD) research in 1997, α-synuclein was identified as an important player in a complex neurodegenerative disease that affects >10 million people worldwide. PD has been estimated to have an economic impact of $51.9 billion in the US alone. Since the initial association with PD, hundreds of researchers have contributed to elucidating the functions of α-synuclein in normal and pathological states, and these remain critical areas for continued research. With this position paper the authors strive to achieve two goals: first, to succinctly summarize the critical features that define α-synuclein's varied roles, as they are known today; and second, to identify the most pressing knowledge gaps and delineate a multipronged strategy for future research with the goal of enabling therapies to stop or slow disease progression in PD.
Collapse
Affiliation(s)
- Luis M A Oliveira
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA.
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Robert Edwards
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, CA, USA
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ronald Melki
- Institut François Jacob, MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Leonidas Stefanis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- First Department of Neurology, Medical School of the National and Kapodistrian University of Athens, Athens, Greece
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Faculty of Life Sciences, EPFL, Lausanne, Switzerland
| | - David Sulzer
- Department of Psychiatry, Neurology, Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Kostas Vekrellis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Glenda M Halliday
- University of Sydney, Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, Sydney, NSW, Australia
| | - Julianna J Tomlinson
- Neuroscience Program, The Ottawa Hospital, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Michael Schlossmacher
- Neuroscience Program, The Ottawa Hospital, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Division of Neurology, The Ottawa Hospital, Ottawa, ON, Canada
| | - Poul Henning Jensen
- Aarhus University, Department of Biomedicine & DANDRITE, Danish Research Institute of Translational Neuroscience, Aarhus, Denmark
| | - Julia Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, Cambridge, MA, USA
| | - Omar El-Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | | | - Tiago F Outeiro
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.
- Max Planck Institute for Experimental Medicine, Göttingen, Germany.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
| |
Collapse
|