1
|
Gómez-de-Mariscal E, Del Rosario M, Pylvänäinen JW, Jacquemet G, Henriques R. Harnessing artificial intelligence to reduce phototoxicity in live imaging. J Cell Sci 2024; 137:jcs261545. [PMID: 38324353 PMCID: PMC10912813 DOI: 10.1242/jcs.261545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
Fluorescence microscopy is essential for studying living cells, tissues and organisms. However, the fluorescent light that switches on fluorescent molecules also harms the samples, jeopardizing the validity of results - particularly in techniques such as super-resolution microscopy, which demands extended illumination. Artificial intelligence (AI)-enabled software capable of denoising, image restoration, temporal interpolation or cross-modal style transfer has great potential to rescue live imaging data and limit photodamage. Yet we believe the focus should be on maintaining light-induced damage at levels that preserve natural cell behaviour. In this Opinion piece, we argue that a shift in role for AIs is needed - AI should be used to extract rich insights from gentle imaging rather than recover compromised data from harsh illumination. Although AI can enhance imaging, our ultimate goal should be to uncover biological truths, not just retrieve data. It is essential to prioritize minimizing photodamage over merely pushing technical limits. Our approach is aimed towards gentle acquisition and observation of undisturbed living systems, aligning with the essence of live-cell fluorescence microscopy.
Collapse
Affiliation(s)
| | | | - Joanna W. Pylvänäinen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku 20500, Finland
| | - Guillaume Jacquemet
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku 20500, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Turku Bioimaging, University of Turku and Åbo Akademi University, Turku 20520, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku 20100, Finland
| | - Ricardo Henriques
- Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
2
|
Wu H, Yang L, Xu P, Gong J, Guo X, Wang P, Tong L. Photonic Nanolaser with Extreme Optical Field Confinement. PHYSICAL REVIEW LETTERS 2022; 129:013902. [PMID: 35841559 DOI: 10.1103/physrevlett.129.013902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
We proposed a photonic approach to a lasing mode supported by low-loss oscillation of polarized bound electrons in an active nano-slit-waveguide cavity, which circumvents the confinement-loss trade-off of nanoplasmonics, and offers an optical confinement down to sub-1-nm level with a peak-to-background ratio of ∼30 dB. Experimentally, the extremely confined lasing field is realized as the dominant peak of a TE_{0}-like lasing mode around 720-nm wavelength, in 1-nm-level width slit-waveguide cavities in coupled CdSe nanowire pairs. The measured lasing characteristics agree well with the theoretical calculations. Our results may pave a way towards new regions for nanolasers and light-matter interaction.
Collapse
Affiliation(s)
- Hao Wu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liu Yang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Peizhen Xu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jue Gong
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xin Guo
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Jiaxing Key Laboratory of Photonic Sensing and Intelligent Imaging, Jiaxing 314000, China
- Intelligent Optics and Photonics Research Center, Jiaxing Institute of Zhejiang University, Jiaxing 314000, China
| | - Pan Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Jiaxing Key Laboratory of Photonic Sensing and Intelligent Imaging, Jiaxing 314000, China
- Intelligent Optics and Photonics Research Center, Jiaxing Institute of Zhejiang University, Jiaxing 314000, China
| | - Limin Tong
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
3
|
Maceda A, Terrazas T. Fluorescence Microscopy Methods for the Analysis and Characterization of Lignin. Polymers (Basel) 2022; 14:961. [PMID: 35267784 PMCID: PMC8912355 DOI: 10.3390/polym14050961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
Lignin is one of the most studied and analyzed materials due to its importance in cell structure and in lignocellulosic biomass. Because lignin exhibits autofluorescence, methods have been developed that allow it to be analyzed and characterized directly in plant tissue and in samples of lignocellulose fibers. Compared to destructive and costly analytical techniques, fluorescence microscopy presents suitable alternatives for the analysis of lignin autofluorescence. Therefore, this review article analyzes the different methods that exist and that have focused specifically on the study of lignin because with the revised methods, lignin is characterized efficiently and in a short time. The existing qualitative methods are Epifluorescence and Confocal Laser Scanning Microscopy; however, other semi-qualitative methods have been developed that allow fluorescence measurements and to quantify the differences in the structural composition of lignin. The methods are fluorescence lifetime spectroscopy, two-photon microscopy, Föster resonance energy transfer, fluorescence recovery after photobleaching, total internal reflection fluorescence, and stimulated emission depletion. With these methods, it is possible to analyze the transport and polymerization of lignin monomers, distribution of lignin of the syringyl or guaiacyl type in the tissues of various plant species, and changes in the degradation of wood by pulping and biopulping treatments as well as identify the purity of cellulose nanofibers though lignocellulosic biomass.
Collapse
Affiliation(s)
- Agustín Maceda
- Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma Chapingo, Texcoco 56230, Mexico;
| | - Teresa Terrazas
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico
| |
Collapse
|
4
|
Stiekema M, Ramaekers FCS, Kapsokalyvas D, van Zandvoort MAMJ, Veltrop RJA, Broers JLV. Super-Resolution Imaging of the A- and B-Type Lamin Networks: A Comparative Study of Different Fluorescence Labeling Procedures. Int J Mol Sci 2021; 22:ijms221910194. [PMID: 34638534 PMCID: PMC8508656 DOI: 10.3390/ijms221910194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/31/2022] Open
Abstract
A- and B-type lamins are type V intermediate filament proteins. Mutations in the genes encoding these lamins cause rare diseases, collectively called laminopathies. A fraction of the cells obtained from laminopathy patients show aberrations in the localization of each lamin subtype, which may represent only the minority of the lamina disorganization. To get a better insight into more delicate and more abundant lamina abnormalities, the lamin network can be studied using super-resolution microscopy. We compared confocal scanning laser microscopy and stimulated emission depletion (STED) microscopy in combination with different fluorescence labeling approaches for the study of the lamin network. We demonstrate the suitability of an immunofluorescence staining approach when using STED microscopy, by determining the lamin layer thickness and the degree of lamin A and B1 colocalization as detected in fixed fibroblasts (co-)stained with lamin antibodies or (co-)transfected with EGFP/YFP lamin constructs. This revealed that immunofluorescence staining of cells does not lead to consequent changes in the detected lamin layer thickness, nor does it influence the degree of colocalization of lamin A and B1, when compared to the transfection approach. Studying laminopathy patient dermal fibroblasts (LMNA c.1130G>T (p.(Arg377Leu)) variant) confirmed the suitability of immunofluorescence protocols in STED microscopy, which circumvents the need for less convenient transfection steps. Furthermore, we found a significant decrease in lamin A/C and B1 colocalization in these patient fibroblasts, compared to normal human dermal fibroblasts. We conclude that super-resolution light microscopy combined with immunofluorescence protocols provides a potential tool to detect structural lamina differences between normal and laminopathy patient fibroblasts.
Collapse
Affiliation(s)
- Merel Stiekema
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Frans C. S. Ramaekers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Dimitrios Kapsokalyvas
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- Interdisciplinary Center for Clinical Research, IZKF, RWTH Aachen University, 52074 Aachen, Germany
| | - Marc A. M. J. van Zandvoort
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, 52074 Aachen, Germany
| | - Rogier J. A. Veltrop
- Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, 52074 Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Jos L. V. Broers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-433881366
| |
Collapse
|
5
|
Lee M, Kannan S, Muniraj G, Rosa V, Lu WF, Fuh JYH, Sriram G, Cao T. Two-Photon Fluorescence Microscopy and Applications in Angiogenesis and Related Molecular Events. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:926-937. [PMID: 34541887 DOI: 10.1089/ten.teb.2021.0140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The role of angiogenesis in health and disease have gained considerable momentum in recent years. Visualizing angiogenic patterns and associated events of surrounding vascular beds in response to therapeutic and laboratory-grade biomolecules have become a commonplace in regenerative medicine and the biosciences. To aid imaging investigations in angiogenesis, the two-photon excitation fluorescence microscopy (2PEF), or multiphoton fluorescence microscopy is increasingly utilized in scientific investigations. The 2PEF microscope confers several distinct imaging advantages over other fluorescence excitation microscopy techniques - for the observation of in-depth, three-dimensional vascularity in a variety of tissue formats, including fixed tissue specimens and in vivo vasculature in live specimens. Understanding morphological and subcellular changes that occur in cells and tissues during angiogenesis will provide insights to behavioral responses in diseased states, advance the engineering of physiologically-relevant tissue models and provide biochemical clues for the design of therapeutic strategies. We review the applicability and limitations of the 2PEF microscope on the biophysical and molecular-level signatures of angiogenesis in various tissue models. Imaging techniques and strategies for best practices in 2PEF microscopy will be reviewed.
Collapse
Affiliation(s)
- Marcus Lee
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Sathya Kannan
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Giridharan Muniraj
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Wen Feng Lu
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Jerry Y H Fuh
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Tong Cao
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Cuveillier C, Saoudi Y, Arnal I, Delphin C. Imaging Microtubules in vitro at High Resolution while Preserving their Structure. Bio Protoc 2021; 11:e3968. [PMID: 33889662 DOI: 10.21769/bioprotoc.3968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/02/2022] Open
Abstract
Microtubules (MT) are the most rigid component of the cytoskeleton. Nevertheless, they often appear highly curved in the cellular context and the mechanisms governing their overall shape are poorly understood. Currently, in vitro microtubule analysis relies primarily on electron microscopy for its high resolution and Total Internal Reflection Fluorescence (TIRF) microscopy for its ability to image live fluorescently-labelled microtubules and associated proteins. For three-dimensional analyses of microtubules with micrometer curvatures, we have developed an assay in which MTs are polymerized in vitro from MT seeds adhered to a glass slide in a manner similar to conventional TIRF microscopy protocols. Free fluorescent molecules are removed and the MTs are fixed by perfusion. The MTs can then be observed using a confocal microscope with an Airyscan module for higher resolution. This protocol allows the imaging of microtubules that have retained their original three-dimensional shape and is compatible with high-resolution immunofluorescence detection.
Collapse
Affiliation(s)
- Camille Cuveillier
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, GIN, France
| | - Yasmina Saoudi
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, GIN, France
| | - Isabelle Arnal
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, GIN, France
| | - Christian Delphin
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, GIN, France
| |
Collapse
|
7
|
Deshpande D, Grieshober M, Wondany F, Gerbl F, Noschka R, Michaelis J, Stenger S. Super-Resolution Microscopy Reveals a Direct Interaction of Intracellular Mycobacterium tuberculosis with the Antimicrobial Peptide LL-37. Int J Mol Sci 2020; 21:ijms21186741. [PMID: 32937921 PMCID: PMC7555347 DOI: 10.3390/ijms21186741] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022] Open
Abstract
The antimicrobial peptide LL-37 inhibits the growth of the major human pathogen Mycobacterium tuberculosis (Mtb), but the mechanism of the peptide–pathogen interaction inside human macrophages remains unclear. Super-resolution imaging techniques provide a novel opportunity to visualize these interactions on a molecular level. Here, we adapt the super-resolution technique of stimulated emission depletion (STED) microscopy to study the uptake, intracellular localization and interaction of LL-37 with macrophages and virulent Mtb. We demonstrate that LL-37 is internalized by both uninfected and Mtb infected primary human macrophages. The peptide localizes in the membrane of early endosomes and lysosomes, the compartment in which mycobacteria reside. Functionally, LL-37 disrupts the cell wall of intra- and extracellular Mtb, resulting in the killing of the pathogen. In conclusion, we introduce STED microscopy as an innovative and informative tool for studying host–pathogen–peptide interactions, clearly extending the possibilities of conventional confocal microscopy.
Collapse
Affiliation(s)
- Dhruva Deshpande
- Institute of Biophysics, Ulm University, 89081 Ulm, Germany; (D.D.); (F.W.)
| | - Mark Grieshober
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany; (M.G.); (F.G.); (R.N.)
| | - Fanny Wondany
- Institute of Biophysics, Ulm University, 89081 Ulm, Germany; (D.D.); (F.W.)
| | - Fabian Gerbl
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany; (M.G.); (F.G.); (R.N.)
| | - Reiner Noschka
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany; (M.G.); (F.G.); (R.N.)
| | - Jens Michaelis
- Institute of Biophysics, Ulm University, 89081 Ulm, Germany; (D.D.); (F.W.)
- Correspondence: (J.M.); (S.S.)
| | - Steffen Stenger
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany; (M.G.); (F.G.); (R.N.)
- Correspondence: (J.M.); (S.S.)
| |
Collapse
|
8
|
Klouda T, Condon D, Hao Y, Tian W, Lvova M, Chakraborty A, Nicolls MR, Zhou X, Raby BA, Yuan K. From 2D to 3D: Promising Advances in Imaging Lung Structure. Front Med (Lausanne) 2020; 7:343. [PMID: 32766264 PMCID: PMC7381109 DOI: 10.3389/fmed.2020.00343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/09/2020] [Indexed: 11/13/2022] Open
Abstract
The delicate structure of murine lungs poses many challenges for acquiring high-quality images that truly represent the living lung. Here, we describe several optimized procedures for obtaining and imaging murine lung tissue. Compared to traditional paraffin cross-section and optimal cutting temperature (OCT), agarose-inflated vibratome sections (aka precision-cut lung slices), combines comparable structural preservation with experimental flexibility. In particular, we discuss an optimized procedure to precision-cut lung slices that can be used to visualize three-dimensional cell-cell interactions beyond the limitations of two-dimensional imaging. Super-resolution microscopy can then be used to reveal the fine structure of lung tissue's cellular bodies and processes that regular confocal cannot. Lastly, we evaluate the entire lung vasculature with clearing technology that allows imaging of the entire volume of the lung without sectioning. In this manuscript, we combine the above procedures to create a novel and evolutionary method to study cell behavior ex vivo, trace and reconstruct pulmonary vasculature, address fundamental questions relevant to a wide variety of vascular disorders, and perceive implications to better imaging clinical tissue.
Collapse
Affiliation(s)
- Timothy Klouda
- Divisions of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, United States
| | - David Condon
- Division of Pulmonary, Allery and Critical Care Medicine, Stanford University, Stanford, CA, United States
| | - Yuan Hao
- Divisions of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Wen Tian
- Division of Pulmonary, Allery and Critical Care Medicine, Stanford University, Stanford, CA, United States
- VA Palo Alto Health Care System, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Maria Lvova
- Divisions of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Ananya Chakraborty
- Division of Pulmonary, Allery and Critical Care Medicine, Stanford University, Stanford, CA, United States
| | - Mark R. Nicolls
- Division of Pulmonary, Allery and Critical Care Medicine, Stanford University, Stanford, CA, United States
- VA Palo Alto Health Care System, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Xiaobo Zhou
- Division of Pulmonary and Critical Care Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Benjamin A. Raby
- Divisions of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, United States
- Division of Pulmonary and Critical Care Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ke Yuan
- Divisions of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
9
|
Gast M, Wondany F, Raabe B, Michaelis J, Sobek H, Mizaikoff B. Use of Super-Resolution Optical Microscopy To Reveal Direct Virus Binding at Hybrid Core–Shell Matrixes. Anal Chem 2020; 92:3050-3057. [DOI: 10.1021/acs.analchem.9b04328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Bastian Raabe
- Labor Dr. Merk & Kollegen GmbH, Beim Braunland 1, 88416 Ochsenhausen, Germany
| | | | - Harald Sobek
- Labor Dr. Merk & Kollegen GmbH, Beim Braunland 1, 88416 Ochsenhausen, Germany
| | | |
Collapse
|
10
|
Paës G, Habrant A, Terryn C. Fluorescent Nano-Probes to Image Plant Cell Walls by Super-Resolution STED Microscopy. PLANTS 2018; 7:plants7010011. [PMID: 29415498 PMCID: PMC5874600 DOI: 10.3390/plants7010011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/28/2018] [Accepted: 02/02/2018] [Indexed: 11/21/2022]
Abstract
Lignocellulosic biomass is a complex network of polymers making up the cell walls of plants. It represents a feedstock of sustainable resources to be converted into fuels, chemicals, and materials. Because of its complex architecture, lignocellulose is a recalcitrant material that requires some pretreatments and several types of catalysts to be transformed efficiently. Gaining more knowledge in the architecture of plant cell walls is therefore important to understand and optimize transformation processes. For the first time, super-resolution imaging of poplar wood samples has been performed using the Stimulated Emission Depletion (STED) technique. In comparison to standard confocal images, STED reveals new details in cell wall structure, allowing the identification of secondary walls and middle lamella with fine details, while keeping open the possibility to perform topochemistry by the use of relevant fluorescent nano-probes. In particular, the deconvolution of STED images increases the signal-to-noise ratio so that images become very well defined. The obtained results show that the STED super-resolution technique can be easily implemented by using cheap commercial fluorescent rhodamine-PEG nano-probes which outline the architecture of plant cell walls due to their interaction with lignin. Moreover, the sample preparation only requires easily-prepared plant sections of a few tens of micrometers, in addition to an easily-implemented post-treatment of images. Overall, the STED super-resolution technique in combination with a variety of nano-probes can provide a new vision of plant cell wall imaging by filling in the gap between classical photon microscopy and electron microscopy.
Collapse
Affiliation(s)
- Gabriel Paës
- FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 2 Esplanade Roland Garros, 51100 Reims, France.
| | - Anouck Habrant
- FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 2 Esplanade Roland Garros, 51100 Reims, France.
| | - Christine Terryn
- Plateforme d'Imagerie Cellulaire et Tissulaire (PICT), Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51100 Reims, France.
| |
Collapse
|
11
|
Everett J, Gabrilska R, Rumbaugh KP, Vikström E. Assessing Pseudomonas aeruginosa Autoinducer Effects on Mammalian Epithelial Cells. Methods Mol Biol 2018; 1673:213-225. [PMID: 29130176 DOI: 10.1007/978-1-4939-7309-5_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The human mucosal environment in the gut is rich with interactions between microbiota and mammalian epithelia. Microbes such as the Gram-negative bacterium Pseudomonas aeruginosa may use quorum sensing to communicate with other microorganisms and mammalian cells to alter gene expression. Here, we present methodologies to evaluate the effects of P. aeruginosa N-(3-oxo-dodecanoyl)-L-homoserine lactone (3O-C12-HSL) on Caco-2 cell monolayers. First, we describe a method for assessing barrier function and permeability of epithelial cells when exposed to 3O-C12-HSL by measuring transepithelial electrical resistance (TER) and paracellular flow using fluorescently labeled dextran. Secondly, we detail methods to investigate the effect of 3O-C12-HSL on protein-protein interactions of epithelial junction proteins. Lastly, we will detail imaging techniques to visualize Caco-2 barrier disruption following exposure to 3O-C12-HSL through the use of confocal laser scanning microscopy (CLSM) and a super resolution technique, stimulated emission depletion (STED) microscopy, to achieve nanoscale visualization of Caco-2 monolayers.
Collapse
Affiliation(s)
- Jake Everett
- Department of Surgery, Texas Tech University Health Sciences Center, MS8312, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Rebecca Gabrilska
- Department of Surgery, Texas Tech University Health Sciences Center, MS8312, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, MS8312, 3601 4th Street, Lubbock, TX, 79430, USA.
| | - Elena Vikström
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 , Linköping, Sweden
| |
Collapse
|
12
|
Baharom F, Thomas OS, Lepzien R, Mellman I, Chalouni C, Smed-Sörensen A. Visualization of early influenza A virus trafficking in human dendritic cells using STED microscopy. PLoS One 2017; 12:e0177920. [PMID: 28591131 PMCID: PMC5462357 DOI: 10.1371/journal.pone.0177920] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/05/2017] [Indexed: 12/01/2022] Open
Abstract
Influenza A viruses (IAV) primarily target respiratory epithelial cells, but can also replicate in immune cells, including human dendritic cells (DCs). Super-resolution microscopy provides a novel method of visualizing viral trafficking by overcoming the resolution limit imposed by conventional light microscopy, without the laborious sample preparation of electron microscopy. Using three-color Stimulated Emission Depletion (STED) microscopy, we visualized input IAV nucleoprotein (NP), early and late endosomal compartments (EEA1 and LAMP1 respectively), and HLA-DR (DC membrane/cytosol) by immunofluorescence in human DCs. Surface bound IAV were internalized within 5 min of infection. The association of virus particles with early endosomes peaked at 5 min when 50% of NP+ signals were also EEA1+. Peak association with late endosomes occurred at 15 min when 60% of NP+ signals were LAMP1+. At 30 min of infection, the majority of NP signals were in the nucleus. Our findings illustrate that early IAV trafficking in human DCs proceeds via the classical endocytic pathway.
Collapse
Affiliation(s)
- Faezzah Baharom
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Oliver S. Thomas
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Rico Lepzien
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ira Mellman
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, United States of America
| | - Cécile Chalouni
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, United States of America
| | - Anna Smed-Sörensen
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Affiliation(s)
- Hans Blom
- Royal Institute of Technology (KTH), Dept Applied Physics, SciLifeLab, 17165 Solna, Sweden
| | - Jerker Widengren
- Royal Institute of Technology (KTH), Dept Applied Physics, Albanova Univ Center, 10691 Stockholm, Sweden
| |
Collapse
|
14
|
Wang L, Ta H, Ullal C, Wang F, Wang C, Dong G. Aptamer functionalized silver clusters for STED microscopy. RSC Adv 2017. [DOI: 10.1039/c6ra26991e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel STED probe was prepared through aptamer functionalized silver clusters, which preserve specific affinity with smaller size and more photostability.
Collapse
Affiliation(s)
- Lan Wang
- Laboratory of Environmental Sciences and Technology
- Key Laboratory of Functional Materials and Devices for Special Environments
- Xinjiang Technical Institute of Physics & Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
| | - Haisen Ta
- Department of NanoBiophotonics
- Max Planck Institute for Biophysical Chemistry
- Göttingen 37077
- Germany
| | - Chaitanya Ullal
- Department of Materials Science and Engineering
- Rensselaer Polytechnic Institute
- Troy
- USA
| | - Fu Wang
- Laboratory of Environmental Sciences and Technology
- Key Laboratory of Functional Materials and Devices for Special Environments
- Xinjiang Technical Institute of Physics & Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
| | - Chuanyi Wang
- Laboratory of Environmental Sciences and Technology
- Key Laboratory of Functional Materials and Devices for Special Environments
- Xinjiang Technical Institute of Physics & Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
| | - Guohui Dong
- Laboratory of Environmental Sciences and Technology
- Key Laboratory of Functional Materials and Devices for Special Environments
- Xinjiang Technical Institute of Physics & Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
| |
Collapse
|
15
|
Sergé A. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy. Front Cell Dev Biol 2016; 4:36. [PMID: 27200348 PMCID: PMC4854873 DOI: 10.3389/fcell.2016.00036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022] Open
Abstract
The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis.
Collapse
Affiliation(s)
- Arnauld Sergé
- Centre de Cancérologie de Marseille, Équipe "Interactions Leuco/Stromales", Institut Paoli-Calmettes, Institut National de la Santé et de la Recherche Médicale U1068, Centre National de la Recherche Scientifique UMR7258, Aix-Marseille Université UM105 Marseille, France
| |
Collapse
|
16
|
Holm A, Magnusson KE, Vikström E. Pseudomonas aeruginosa N-3-oxo-dodecanoyl-homoserine Lactone Elicits Changes in Cell Volume, Morphology, and AQP9 Characteristics in Macrophages. Front Cell Infect Microbiol 2016; 6:32. [PMID: 27047801 PMCID: PMC4805602 DOI: 10.3389/fcimb.2016.00032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/07/2016] [Indexed: 12/21/2022] Open
Abstract
Quorum sensing (QS) communication allows Pseudomonas aeruginosa to collectively control its population density and the production of biofilms and virulence factors. QS signal molecules, like N-3-oxo-dodecanoyl-L-homoserine lactone (3O-C12-HSL), can also affect the behavior of host cells, e.g., by modulating the chemotaxis, migration, and phagocytosis of human leukocytes. Moreover, host water homeostasis and water channels aquaporins (AQP) are critical for cell morphology and functions as AQP interact indirectly with the cell cytoskeleton and signaling cascades. Here, we investigated how P. aeruginosa 3O-C12-HSL affects cell morphology, area, volume and AQP9 expression and distribution in human primary macrophages, using quantitative PCR, immunoblotting, two- and three-dimensional live imaging, confocal and nanoscale imaging. Thus, 3O-C12-HSL enhanced cell volume and area and induced cell shape and protrusion fluctuations in macrophages, processes tentatively driven by fluxes of water across cell membrane through AQP9, the predominant AQP in macrophages. Moreover, 3O-C12-HSL upregulated the expression of AQP9 at both the protein and mRNA levels. This was accompanied with enhanced whole cell AQP9 fluorescent intensity and redistribution of AQP9 to the leading and trailing regions, in parallel with increased cell area in the macrophages. Finally, nanoscopy imaging provided details on AQP9 dynamics and architecture within the lamellipodial area of 3O-C12-HSL-stimulated cells. We suggest that these novel events in the interaction between P. aeruginosa and macrophage may have an impact on the effectiveness of innate immune cells to fight bacteria, and thereby resolve the early stages of infections and inflammations.
Collapse
Affiliation(s)
- Angelika Holm
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University Linköping, Sweden
| | - Karl-Eric Magnusson
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University Linköping, Sweden
| | - Elena Vikström
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University Linköping, Sweden
| |
Collapse
|
17
|
Sydor AM, Czymmek KJ, Puchner EM, Mennella V. Super-Resolution Microscopy: From Single Molecules to Supramolecular Assemblies. Trends Cell Biol 2015; 25:730-748. [DOI: 10.1016/j.tcb.2015.10.004] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 11/25/2022]
|
18
|
Balagopalan L, Kortum RL, Coussens NP, Barr VA, Samelson LE. The linker for activation of T cells (LAT) signaling hub: from signaling complexes to microclusters. J Biol Chem 2015; 290:26422-9. [PMID: 26354432 DOI: 10.1074/jbc.r115.665869] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since the cloning of the critical adapter, LAT (linker for activation of T cells), more than 15 years ago, a combination of multiple scientific approaches and techniques continues to provide valuable insights into the formation, composition, regulation, dynamics, and function of LAT-based signaling complexes. In this review, we will summarize current views on the assembly of signaling complexes nucleated by LAT. LAT forms numerous interactions with other signaling molecules, leading to cooperativity in the system. Furthermore, oligomerization of LAT by adapter complexes enhances intracellular signaling and is physiologically relevant. These results will be related to data from super-resolution microscopy studies that have revealed the smallest LAT-based signaling units and nanostructure.
Collapse
Affiliation(s)
- Lakshmi Balagopalan
- From the Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256
| | - Robert L Kortum
- the Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, and
| | - Nathan P Coussens
- the Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Valarie A Barr
- From the Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256
| | - Lawrence E Samelson
- From the Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256,
| |
Collapse
|
19
|
Holm A, Karlsson T, Vikström E. Pseudomonas aeruginosa lasI/rhlI quorum sensing genes promote phagocytosis and aquaporin 9 redistribution to the leading and trailing regions in macrophages. Front Microbiol 2015; 6:915. [PMID: 26388857 PMCID: PMC4558532 DOI: 10.3389/fmicb.2015.00915] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/21/2015] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa controls production of its multiple virulence factors and biofilm development via the quorum sensing (QS) system. QS signals also interact with and affect the behavior of eukaryotic cells. Host water homeostasis and aquaporins (AQP) are essential during pathological conditions since they interfere with the cell cytoskeleton and signaling, and hereby affect cell morphology and functions. We investigated the contribution of P. aeruginosa QS genes lasI/rhlI to phagocytosis, cell morphology, AQP9 expression, and distribution in human macrophages, using immunoblotting, confocal, and nanoscale imaging. Wild type P. aeruginosa with a functional QS system was a more attractive prey for macrophages than the lasI/rhlI mutant lacking the production of QS molecules, 3O-C12-HSL, and C4-HSL, and associated virulence factors. The P. aeruginosa infections resulted in elevated AQP9 expression and relocalization to the leading and trailing regions in macrophages, increased cell area and length; bacteria with a functional QS system lasI/rhlI achieved stronger responses. We present evidence for a new role of water fluxes via AQP9 during bacteria–macrophage interaction and for the QS system as an important stimulus in this process. These novel events in the interplay between P. aeruginosa and macrophages may influence on the outcome of infection, inflammation, and development of disease.
Collapse
Affiliation(s)
- Angelika Holm
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University Linköping, Sweden
| | - Thommie Karlsson
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University Linköping, Sweden
| | - Elena Vikström
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University Linköping, Sweden
| |
Collapse
|