1
|
Garcia-Coste JJ, Villafaña-Rauda S, Aguayo-Cerón KA, Vargas-De-León C, Romero-Nava R. KLF14 and SREBF-1 Binding Site Associations with Orphan Receptor Promoters in Metabolic Syndrome. Int J Mol Sci 2025; 26:2849. [PMID: 40243421 PMCID: PMC11988724 DOI: 10.3390/ijms26072849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
This study investigated the relationship between the transcription factors (TFs) KLF14 and SREBF-1 and orphan receptors (ORs) in the context of metabolic syndrome (MetS). A detailed bioinformatics analysis identified a significant association between the presence of binding sites (BS) for these TFs in the promoters of ORs genes and the total number of BS in the distal region. The results suggest that KLF14 and SREBF-1 can regulate the expression of some of these genes and, in turn, can modulate the development of MetS. Although a stronger association was observed with KLF14, both factors showed a significant contribution. Additionally, the sequence similarity of KLF14 also contributed to the quantity of BS in the gene's distal region (DR). The statistical models used, such as Poisson and negative binomial regression, confirmed these associations and allowed for the appropriate adjustment of overdispersion present in the data. However, no significant differences in receptor groups (orphan G Protein-Coupled Rereptors (oGPCRs) and G Protein-Coupled Receptors associated with MetS (GPCRs-MetS)) regarding their relationship with TFs were found. In conclusion, this study provides strong evidence of the importance of KLF14 and SREBF-1 in regulating orphan receptors genes and their participation in the development of metabolic syndrome.
Collapse
Affiliation(s)
- Julio Jesús Garcia-Coste
- Laboratorio de Investigación en Genética de Enfermedades Metabólicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (J.J.G.-C.); (K.A.A.-C.)
- Laboratorio de Modelación Bioestadística para la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Santiago Villafaña-Rauda
- Laboratorio de Terapia Génica Experimental, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico;
| | - Karla Aidee Aguayo-Cerón
- Laboratorio de Investigación en Genética de Enfermedades Metabólicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (J.J.G.-C.); (K.A.A.-C.)
| | - Cruz Vargas-De-León
- Laboratorio de Modelación Bioestadística para la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico
| | - Rodrigo Romero-Nava
- Laboratorio de Investigación en Genética de Enfermedades Metabólicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (J.J.G.-C.); (K.A.A.-C.)
| |
Collapse
|
2
|
Wu Z, Li L, Xu T, Hu Y, Peng X, Zhang Z, Yao X, Peng Q. Elucidating the multifaceted roles of GPR146 in non-specific orbital inflammation: a concerted analytical approach through the prisms of bioinformatics and machine learning. Front Med (Lausanne) 2024; 11:1309510. [PMID: 38903815 PMCID: PMC11188444 DOI: 10.3389/fmed.2024.1309510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Background Non-specific Orbital Inflammation (NSOI) is a chronic idiopathic condition marked by extensive polymorphic lymphoid infiltration in the orbital area. The integration of metabolic and immune pathways suggests potential therapeutic roles for C-peptide and G protein-coupled receptor 146 (GPR146) in diabetes and its sequelae. However, the specific mechanisms through which GPR146 modulates immune responses remain poorly understood. Furthermore, the utility of GPR146 as a diagnostic or prognostic marker for NSOI has not been conclusively demonstrated. Methods We adopted a comprehensive analytical strategy, merging differentially expressed genes (DEGs) from the Gene Expression Omnibus (GEO) datasets GSE58331 and GSE105149 with immune-related genes from the ImmPort database. Our methodology combined LASSO regression and support vector machine-recursive feature elimination (SVM-RFE) for feature selection, followed by Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) to explore gene sets co-expressed with GPR146, identifying a significant enrichment in immune-related pathways. The tumor microenvironment's immune composition was quantified using the CIBERSORT algorithm and the ESTIMATE method, which confirmed a positive correlation between GPR146 expression and immune cell infiltration. Validation of GPR146 expression was performed using the GSE58331 dataset. Results Analysis identified 113 DEGs associated with GPR146, with a significant subset showing distinct expression patterns. Using LASSO and SVM-RFE, we pinpointed 15 key hub genes. Functionally, these genes and GPR146 were predominantly linked to receptor ligand activity, immune receptor activity, and cytokine-mediated signaling. Specific immune cells, such as memory B cells, M2 macrophages, resting mast cells, monocytes, activated NK cells, plasma cells, and CD8+ T cells, were positively associated with GPR146 expression. In contrast, M0 macrophages, naive B cells, M1 macrophages, activated mast cells, activated memory CD4+ T cells, naive CD4+ T cells, and gamma delta T cells showed inverse correlations. Notably, our findings underscore the potential diagnostic relevance of GPR146 in distinguishing NSOI. Conclusion Our study elucidates the immunological signatures associated with GPR146 in the context of NSOI, highlighting its prognostic and diagnostic potential. These insights pave the way for GPR146 to be a novel biomarker for monitoring the progression of NSOI, providing a foundation for future therapeutic strategies targeting immune-metabolic pathways.
Collapse
Affiliation(s)
- Zixuan Wu
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Ling Li
- Dongying People’s Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, China
| | - Tingting Xu
- Dongying People’s Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, China
| | - Yi Hu
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Xin Peng
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Zheyuan Zhang
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Xiaolei Yao
- Department of Ophthalmology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Qinghua Peng
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
- Department of Ophthalmology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
3
|
Huang J, Xie Y, Chen B, Xia Y, Jiang Y, Sun Z, Liu Y. GPR146 regulates pulmonary vascular remodeling by promoting pulmonary artery smooth muscle cell proliferation through 5-lipoxygenase. Eur J Pharmacol 2023; 961:176123. [PMID: 37926274 DOI: 10.1016/j.ejphar.2023.176123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023]
Abstract
The pathological feature of hypoxic pulmonary hypertension (PH) is pulmonary vascular remodeling (PVR), primarily attributed to the hyperproliferation and apoptosis resistance of pulmonary artery smooth muscle cells (PASMCs). Existing PH-targeted drugs have difficulties in reversing PVR. Therefore, it is vital to discover a new regulatory mechanism for PVR and develop new targeted drugs. G protein-coupled receptor 146 (GPR146) is believed to participate in this process. This study aimed to investigate the role of GPR146 in PASMCs during PH. We investigated the role of GPR146 in PVR and its underlying mechanism using hypoxic PASMCs and mouse model (Sugen 5416 (20 mg/kg)/hypoxia). In our recent study, we have observed a significant increase in the expression of GPR146 protein in animal models of PH as well as in patients diagnosed with pulmonary arterial hypertension (PAH). Through immunohistochemistry, we found that GPR146 was mainly localized in the smooth muscle and endothelial layers of the pulmonary vasculature. GPR146 deficiency induction exhibited protective effects against hypoxia-induced elevation of right ventricular systolic blood pressure (RVSP), right ventricular hypertrophy, and pulmonary vascular remodeling in mice. In particular, the deletion of GPR146 attenuated the hypoxia-triggered proliferation of PASMCs. Furthermore, 5-lipoxygenase (5-LO) was related to PH development. Hypoxia and overexpression of GPR146 increased 5-LO expression, which was reversed through GPR146 knockdown or siRNA intervention. Our study discovered that GPR146 exhibited high expression in the pulmonary vessels of pulmonary hypertension. Subsequent research revealed that GPR146 played a crucial role in the development of hypoxic PH by promoting lipid peroxidation and 5-LO expression. In conclusion, GPR146 may regulate pulmonary vascular remodeling by promoting PASMCs proliferation through 5-LO, which presents a feasible target for PH prevention and treatment.
Collapse
Affiliation(s)
- Jie Huang
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, 222061, China
| | - Yongpeng Xie
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, 222061, China
| | - Bing Chen
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, 222061, China
| | - Yu Xia
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, 222061, China
| | - Yanjiao Jiang
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, 222061, China
| | - Zengxian Sun
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, 222061, China; Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, 222061, China
| | - Yun Liu
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, 222061, China; Department of Pharmacy, Lianyungang Clinical College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, 222061, China.
| |
Collapse
|
4
|
Monsen VT, Attramadal H. Structural insights into regulation of CCN protein activities and functions. J Cell Commun Signal 2023:10.1007/s12079-023-00768-5. [PMID: 37245184 DOI: 10.1007/s12079-023-00768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/07/2023] [Indexed: 05/29/2023] Open
Abstract
CCN proteins play important functions during development, in repair mechanisms following tissue injury, as well as in pathophysiologic mechanisms of metastasis of cancer. CCNs are secreted proteins that have a multimodular structure and are categorized as matricellular proteins. Although the prevailing view is that CCN proteins regulate biologic processes by interacting with a wide array of other proteins in the microenvironment of the extracellular matrix, the molecular mechanisms of action of CCN proteins are still poorly understood. Not dissuading the current view, however, the recent appreciation that these proteins are signaling proteins in their own right and may even be considered preproproteins controlled by endopeptidases to release a C-terminal bioactive peptide has opened new avenues of research. Also, the recent resolution of the crystal structure of two of the domains of CCN3 have provided new knowledge with implications for the entire CCN family. These resolved structures in combination with structural predictions based upon the AlphaFold artificial intelligence tool provide means to shed new light on CCN functions in context of the notable literature in the field. CCN proteins have emerged as important therapeutic targets in several disease conditions, and clinical trials are currently ongoing. Thus, a review that critically discusses structure - function relationship of CCN proteins, in particular as it relates to interactions with other proteins in the extracellular milieu and on the cell surface, as well as to cell signaling activities of these proteins, is very timely. Suggested mechanism for activation and inhibition of signaling by the CCN protein family (graphics generated with BioRender.com ).
Collapse
Affiliation(s)
- Vivi Talstad Monsen
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Håvard Attramadal
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
5
|
Shpakov AO, Zorina II, Derkach KV. Hot Spots for the Use of Intranasal Insulin: Cerebral Ischemia, Brain Injury, Diabetes Mellitus, Endocrine Disorders and Postoperative Delirium. Int J Mol Sci 2023; 24:3278. [PMID: 36834685 PMCID: PMC9962062 DOI: 10.3390/ijms24043278] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
A decrease in the activity of the insulin signaling system of the brain, due to both central insulin resistance and insulin deficiency, leads to neurodegeneration and impaired regulation of appetite, metabolism, endocrine functions. This is due to the neuroprotective properties of brain insulin and its leading role in maintaining glucose homeostasis in the brain, as well as in the regulation of the brain signaling network responsible for the functioning of the nervous, endocrine, and other systems. One of the approaches to restore the activity of the insulin system of the brain is the use of intranasally administered insulin (INI). Currently, INI is being considered as a promising drug to treat Alzheimer's disease and mild cognitive impairment. The clinical application of INI is being developed for the treatment of other neurodegenerative diseases and improve cognitive abilities in stress, overwork, and depression. At the same time, much attention has recently been paid to the prospects of using INI for the treatment of cerebral ischemia, traumatic brain injuries, and postoperative delirium (after anesthesia), as well as diabetes mellitus and its complications, including dysfunctions in the gonadal and thyroid axes. This review is devoted to the prospects and current trends in the use of INI for the treatment of these diseases, which, although differing in etiology and pathogenesis, are characterized by impaired insulin signaling in the brain.
Collapse
Affiliation(s)
- Alexander O. Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | | | | |
Collapse
|
6
|
Orphan GPR26 Counteracts Early Phases of Hyperglycemia-Mediated Monocyte Activation and Is Suppressed in Diabetic Patients. Biomedicines 2022; 10:biomedicines10071736. [PMID: 35885041 PMCID: PMC9312814 DOI: 10.3390/biomedicines10071736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetes is the ninth leading cause of death, with an estimated 1.5 million deaths worldwide. Type 2 diabetes (T2D) results from the body’s ineffective use of insulin and is largely the result of excess body weight and physical inactivity. T2D increases the risk of cardiovascular diseases, retinopathy, and kidney failure by two-to three-fold. Hyperglycemia, as a hallmark of diabetes, acts as a potent stimulator of inflammatory condition by activating endothelial cells and by dysregulating monocyte activation. G-protein couple receptors (GPCRs) can both exacerbate and promote inflammatory resolution. Genome-wide association studies (GWAS) indicate that GPCRs are differentially regulated in inflammatory and vessel cells from diabetic patients. However, most of these GPCRs are orphan receptors, for which the mechanism of action in diabetes is unknown. Our data indicated that orphan GPCR26 is downregulated in the PBMC isolated from T2D patients. In contrast, GPR26 was initially upregulated in human monocytes and PBMC treated with high glucose (HG) levels and then decreased upon chronic and prolonged HG exposure. GPR26 levels were decreased in T2D patients treated with insulin compared to non-insulin treated patients. Moreover, GPR26 inversely correlated with the BMI and the HbA1c of diabetic compared to non-diabetic patients. Knockdown of GPR26 enhanced monocyte ROS production, MAPK signaling, pro-inflammatory activation, monocyte adhesion to ECs, and enhanced the activity of Caspase 3, a pro-apoptotic molecule. The same mechanisms were activated by HG and exacerbated when GPR26 was knocked down. Hence, our data indicated that GPR26 is initially activated to protect monocytes from HG and is inhibited under chronic hyperglycemic conditions.
Collapse
|
7
|
Bohley M, Dillinger AE, Tamm ER, Goepferich A. Targeted drug delivery to the retinal pigment epithelium: Untapped therapeutic potential for retinal diseases. Drug Discov Today 2022; 27:2497-2509. [PMID: 35654389 DOI: 10.1016/j.drudis.2022.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 11/19/2022]
Abstract
The retinal pigment epithelium (RPE) plays a crucial part in sight-threatening diseases. In this review, we shed light on the pivotal implication of the RPE in age-related macular degeneration, diabetic retinopathy and retinopathy of prematurity; and explain why a paradigm shift toward targeted RPE therapy is needed to efficiently fight these retinal diseases. We provide guidance for the development of RPE-specific nanotherapeutics by giving a comprehensive overview of the possibilities and challenges of drug delivery to the RPE and highlight successful nanotherapeutic approaches targeting the RPE.
Collapse
Affiliation(s)
- Marilena Bohley
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany.
| | - Andrea E Dillinger
- Department of Human Anatomy and Embryology, University of Regensburg, 93053 Regensburg, Germany
| | - Ernst R Tamm
- Department of Human Anatomy and Embryology, University of Regensburg, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
8
|
Rossiter JL, Redlinger LJ, Kolar GR, Samson WK, Yosten GLC. The actions of C-peptide in HEK293 cells are dependent upon insulin and extracellular glucose concentrations. Peptides 2022; 150:170718. [PMID: 34954230 DOI: 10.1016/j.peptides.2021.170718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
Connecting peptide, or C-peptide, is a part of the insulin prohormone and is essential for the proper folding and processing of the mature insulin peptide. C-peptide is released from the same beta cell secretory granules as insulin in equimolar amounts. However, due to their relative stabilities in plasma, the two peptides are detected in the circulation at ratios of approximately 4:1 to 6:1 (C-peptide to insulin), depending on metabolic state. C-peptide binds specifically to human cell membranes and induces intracellular signaling cascades, likely through an interaction with the G protein coupled receptor, GPR146. C-peptide has been shown to exert protective effects against the vascular, renal, and ocular complications of diabetes. The effects of C-peptide appear to be dependent upon the presence of insulin and the absolute, extracellular concentration of glucose. In this study, we employed HEK293 cells to further examine the interactive effects of C-peptide, insulin, and glucose on cell signaling. We observed that C-peptide's cellular effects are dampened significantly when cells are exposed to physiologically relevant concentrations of both insulin and C-peptide. Likewise, the actions of C-peptide on cFos and GPR146 mRNA expressions were affected by changes in extracellular glucose concentration. In particular, C-peptide induced significant elevations in cFos expression in the setting of high (25 mmol) extracellular glucose concentration. These data indicate that future experimentation on the actions of C-peptide should control for the presence or absence of insulin and the concentration of glucose. Furthermore, these findings should be considered prior to the development of C-peptide-based therapeutics for the treatment of diabetes-associated complications.
Collapse
Affiliation(s)
- Jacqueline L Rossiter
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - Lauren J Redlinger
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - Grant R Kolar
- Department of Pathology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - Willis K Samson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - Gina L C Yosten
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States.
| |
Collapse
|
9
|
Liu QR, Zhu M, Zhang P, Mazucanti CH, Huang NS, Lang DL, Chen Q, Auluck P, Marenco S, O'Connell JF, Ferrucci L, Chia CW, Egan JM. Novel Human Insulin Isoforms and Cα-Peptide Product in Islets of Langerhans and Choroid Plexus. Diabetes 2021; 70:2947-2956. [PMID: 34649926 PMCID: PMC8660980 DOI: 10.2337/db21-0198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/07/2021] [Indexed: 11/26/2022]
Abstract
Human insulin (INS) gene diverged from the ancestral genes of invertebrate and mammalian species millions of years ago. We previously found that mouse insulin gene (Ins2) isoforms are expressed in brain choroid plexus (ChP) epithelium cells, where insulin secretion is regulated by serotonin and not by glucose. We further compared human INS isoform expression in postmortem ChP and islets of Langerhans. We uncovered novel INS upstream open reading frame isoforms and their protein products. In addition, we found a novel alternatively spliced isoform that translates to a 74-amino acid (AA) proinsulin containing a shorter 19-AA C-peptide sequence, herein designated Cα-peptide. The middle portion of the conventional C-peptide contains β-sheet (GQVEL) and hairpin (GGGPG) motifs that are not present in Cα-peptide. Islet amyloid polypeptide (IAPP) is not expressed in ChP, and its amyloid formation was inhibited in vitro more efficiently by Cα-peptide than by C-peptide. Of clinical relevance, the ratio of the 74-AA proinsulin to proconvertase-processed Cα-peptide was significantly increased in islets from type 2 diabetes mellitus autopsy donors. Intriguingly, 100 years after the discovery of insulin, we found that INS isoforms are present in ChP from insulin-deficient autopsy donors.
Collapse
Affiliation(s)
- Qing-Rong Liu
- Diabetes Section, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Min Zhu
- Longitudinal Study Section, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Pingbo Zhang
- Longitudinal Study Section, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Caio H Mazucanti
- Diabetes Section, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Nicholas S Huang
- Diabetes Section, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Doyle L Lang
- Diabetes Section, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Qinghua Chen
- Diabetes Section, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Pavan Auluck
- Human Brain Collection Core, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Stefano Marenco
- Human Brain Collection Core, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Jennifer F O'Connell
- Diabetes Section, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Luigi Ferrucci
- Longitudinal Study Section, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Chee W Chia
- Diabetes Section, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Josephine M Egan
- Diabetes Section, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD
| |
Collapse
|
10
|
Obesity-induced changes in human islet G protein-coupled receptor expression: Implications for metabolic regulation. Pharmacol Ther 2021; 228:107928. [PMID: 34174278 DOI: 10.1016/j.pharmthera.2021.107928] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that are the targets for many different classes of pharmacotherapy. The islets of Langerhans are central to appropriate glucose homeostasis through their secretion of insulin, and islet function can be modified by ligands acting at the large number of GPCRs that islets express. The human islet GPCRome is not a static entity, but one that is altered under pathophysiological conditions and, in this review, we have compared expression of GPCR mRNAs in human islets obtained from normal weight range donors, and those with a weight range classified as obese. We have also considered the likely outcomes on islet function that the altered GPCR expression status confers and the possible impact that adipokines, secreted from expanded fat depots, could have at those GPCRs showing altered expression in obesity.
Collapse
|
11
|
Sabiha B, Bhatti A, Roomi S, John P, Ali J. In silico analysis of non-synonymous missense SNPs (nsSNPs) in CPE, GNAS genes and experimental validation in type II diabetes mellitus through Next Generation Sequencing. Genomics 2021; 113:2426-2440. [PMID: 34029697 DOI: 10.1016/j.ygeno.2021.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/11/2020] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Non-synonymous missense SNPs (nsSNPs) in CPE and GNAS genes were investigated computationally. In silico identified nsSNPs were experimentally validated in type II diabetes mellitus (T2DM) in Pakistani Pathan population using next generation sequencing (NGS). Sixty two high-risk nsSNPs in CPE and 44 in GNAS were identified. Only 12 in GNAS were clinically significant. Thirty six high-risk nsSNPs in CPE and 08 clinically significant nsSNPs in GNAS lies in the most conserved regions. I-mutant predicted that nsSNPs decrease the proteins stability and ModPred predicted 20 and 12 post-translational modification sites in CPE and GNAS proteins respectively. Ramachandran plot showed 88.7% residues are in the most favored region of protein models. By experimentation, none of the nsSNPs were found to be associated with T2DM. In conclusion, this study differentiates the deleterious nsSNPs from the neutral ones. Although nsSNPs are not associated with T2DM, they can be targeted in other CPE and GNAS genes related disorders.
Collapse
Affiliation(s)
- Bibi Sabiha
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan
| | - Attya Bhatti
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan.
| | - Sohaib Roomi
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Peter John
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan
| | - Johar Ali
- Center for Genome Sciences, Rehman Medical College, Phase-V, Hayatabad, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
12
|
C-Peptide as a Therapy for Type 1 Diabetes Mellitus. Biomedicines 2021; 9:biomedicines9030270. [PMID: 33800470 PMCID: PMC8000702 DOI: 10.3390/biomedicines9030270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disease affecting one-third of the United States population. It is characterized by hyperglycemia, where the hormone insulin is either not produced sufficiently or where there is a resistance to insulin. Patients with Type 1 DM (T1DM), in which the insulin-producing beta cells are destroyed by autoimmune mechanisms, have a significantly increased risk of developing life-threatening cardiovascular complications, even when exogenous insulin is administered. In fact, due to various factors such as limited blood glucose measurements and timing of insulin administration, only 37% of T1DM adults achieve normoglycemia. Furthermore, T1DM patients do not produce C-peptide, a cleavage product from insulin processing. C-peptide has potential therapeutic effects in vitro and in vivo on many complications of T1DM, such as peripheral neuropathy, atherosclerosis, and inflammation. Thus, delivery of C-peptide in conjunction with insulin through a pump, pancreatic islet transplantation, or genetically engineered Sertoli cells (an immune privileged cell type) may ameliorate many of the cardiovascular and vascular complications afflicting T1DM patients.
Collapse
|
13
|
Joshi H, Vastrad B, Joshi N, Vastrad C, Tengli A, Kotturshetti I. Identification of Key Pathways and Genes in Obesity Using Bioinformatics Analysis and Molecular Docking Studies. Front Endocrinol (Lausanne) 2021; 12:628907. [PMID: 34248836 PMCID: PMC8264660 DOI: 10.3389/fendo.2021.628907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
Obesity is an excess accumulation of body fat. Its progression rate has remained high in recent years. Therefore, the aim of this study was to diagnose important differentially expressed genes (DEGs) associated in its development, which may be used as novel biomarkers or potential therapeutic targets for obesity. The gene expression profile of E-MTAB-6728 was downloaded from the database. After screening DEGs in each ArrayExpress dataset, we further used the robust rank aggregation method to diagnose 876 significant DEGs including 438 up regulated and 438 down regulated genes. Functional enrichment analysis was performed. These DEGs were shown to be significantly enriched in different obesity related pathways and GO functions. Then protein-protein interaction network, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. The module analysis was performed based on the whole PPI network. We finally filtered out STAT3, CORO1C, SERPINH1, MVP, ITGB5, PCM1, SIRT1, EEF1G, PTEN and RPS2 hub genes. Hub genes were validated by ICH analysis, receiver operating curve (ROC) analysis and RT-PCR. Finally a molecular docking study was performed to find small drug molecules. The robust DEGs linked with the development of obesity were screened through the expression profile, and integrated bioinformatics analysis was conducted. Our study provides reliable molecular biomarkers for screening and diagnosis, prognosis as well as novel therapeutic targets for obesity.
Collapse
Affiliation(s)
- Harish Joshi
- Department of Endocrinology, Endocrine and Diabetes Care Center, Hubbali, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, India
| | - Nidhi Joshi
- Department of Medicine, Dr. D. Y. Patil Medical College, Kolhapur, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, India
- *Correspondence: Chanabasayya Vastrad,
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, India
| | - Iranna Kotturshetti
- Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, India
| |
Collapse
|
14
|
A C-peptide complex with albumin and Zn 2+ increases measurable GLUT1 levels in membranes of human red blood cells. Sci Rep 2020; 10:17493. [PMID: 33060722 PMCID: PMC7566639 DOI: 10.1038/s41598-020-74527-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
People with type 1 diabetes (T1D) require exogenous administration of insulin, which stimulates the translocation of the GLUT4 glucose transporter to cell membranes. However, most bloodstream cells contain GLUT1 and are not directly affected by insulin. Here, we report that C-peptide, the 31-amino acid peptide secreted in equal amounts with insulin in vivo, is part of a 3-component complex that affects red blood cell (RBC) membranes. Multiple techniques were used to demonstrate saturable and specific C-peptide binding to RBCs when delivered as part of a complex with albumin. Importantly, when the complex also included Zn2+, a significant increase in cell membrane GLUT1 was measured, thus providing a cellular effect similar to insulin, but on a transporter on which insulin has no effect.
Collapse
|
15
|
Melick CH, Jewell JL. Regulation of mTORC1 by Upstream Stimuli. Genes (Basel) 2020; 11:genes11090989. [PMID: 32854217 PMCID: PMC7565831 DOI: 10.3390/genes11090989] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 01/08/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is an evolutionary conserved Ser/Thr protein kinase that senses multiple upstream stimuli to control cell growth, metabolism, and autophagy. mTOR is the catalytic subunit of mTOR complex 1 (mTORC1). A significant amount of research has uncovered the signaling pathways regulated by mTORC1, and the involvement of these signaling cascades in human diseases like cancer, diabetes, and ageing. Here, we review advances in mTORC1 regulation by upstream stimuli. We specifically focus on how growth factors, amino acids, G-protein coupled receptors (GPCRs), phosphorylation, and small GTPases regulate mTORC1 activity and signaling.
Collapse
Affiliation(s)
- Chase H. Melick
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenna L. Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
16
|
Intranasal Administration of Proinsulin C-Peptide Enhances the Stimulating Effect of Insulin on Insulin System Activity in the Hypothalamus of Diabetic Rats. Bull Exp Biol Med 2019; 167:351-355. [PMID: 31346872 DOI: 10.1007/s10517-019-04525-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 10/26/2022]
Abstract
In type 1 diabetes mellitus, the levels of insulin and C-peptide decrease at the periphery and in CNS. C-peptide potentiates the regulatory effects of insulin. We studied the effects of single and repeated (over 7 days) individual and combined nasal administration of C-peptide (10 μg/day) and insulin (20 μg/day) on activity of Akt kinase and kinase-3β-glycogen synthase (GSK3β), the components of 3-phosphoinositide pathway, in the hypothalamus of intact rats and rats with mild streptozotocin-induced type 1 diabetes mellitus. Phosphorylation of Akt kinase at Thr308 and Ser473 (stimulation) and GSK3β at Ser9 (inhibition) was evaluated. In diabetes, phosphorylation of Akt kinase and, to a lesser extent, GSK3β, is reduced. A single injection of insulin or C-peptide and insulin increased this process. Long-term combined treatment with C-peptide and insulin normalized activity of Akt kinase and GSK3β in diabetic rats, treatment with insulin alone produced less pronounced effect; monotherapy with C-peptide was ineffective. Intranasal co-administration of C-peptide and insulin effectively stimulates the insulin system in the hypothalamus that is weakened at diabetes mellitus type 1, which can be used in the treatment of this disease.
Collapse
|
17
|
Alavi SE, Cabot PJ, Moyle PM. Glucagon-Like Peptide-1 Receptor Agonists and Strategies To Improve Their Efficiency. Mol Pharm 2019; 16:2278-2295. [PMID: 31050435 DOI: 10.1021/acs.molpharmaceut.9b00308] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is increasing in global prevalence and is associated with serious health problems (e.g., cardiovascular disease). Various treatment options are available for T2DM, including the incretin hormone glucagon-like peptide-1 (GLP-1). GLP-1 is a therapeutic peptide secreted from the intestines following food intake, which stimulates the secretion of insulin from the pancreas. The native GLP-1 has a very short plasma half-life, owning to renal clearance and degradation by the enzyme dipeptidyl peptidase-4. To overcome this issue, various GLP-1 agonists with increased resistance to proteolytic degradation and reduced renal clearance have been developed, with several currently marketed. Strategies, such as controlled release delivery systems, methods to reduce renal clearance (e.g., PEGylation and conjugation to antibodies), and methods to improve proteolytic stability (e.g., stapling, cyclization, and glycosylation) provide means to further improve the ability of GLP-1 analogs. These will be discussed in this literature review.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Pharmacy , The University of Queensland , Woolloongabba , 4102 , Australia
| | - Peter J Cabot
- School of Pharmacy , The University of Queensland , Woolloongabba , 4102 , Australia
| | - Peter M Moyle
- School of Pharmacy , The University of Queensland , Woolloongabba , 4102 , Australia
| |
Collapse
|
18
|
Martin JH, Aitken RJ, Bromfield EG, Cafe SL, Sutherland JM, Frost ER, Nixon B, Lord T. Investigation into the presence and functional significance of proinsulin C-peptide in the female germline†. Biol Reprod 2019; 100:1275-1289. [PMID: 30715203 DOI: 10.1093/biolre/ioz008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/10/2018] [Accepted: 01/28/2019] [Indexed: 08/02/2024] Open
Abstract
Diabetes is associated with poor oocyte quality and the dysregulation of ovarian function and is thus a leading contributor to the increasing prevalence of female reproductive pathologies. Accordingly, it is well-established that insulin fulfills a key role in the regulation of several facets of female reproduction. What remains less certain is whether proinsulin C-peptide, which has recently been implicated in cellular signaling cascades, holds a functional role in the female germline. In the present study, we examined the expression of insulin, C-peptide, and its purported receptor; GPR146, within the mouse ovary and oocyte. Our data establish the presence of abundant C-peptide within follicular fluid and raise the prospect that this bioactive peptide is internalized by oocytes in a G-protein coupled receptor-dependent manner. Further, our data reveal that internalized C-peptide undergoes pronounced subcellular relocalization from the ooplasm to the pronuclei postfertilization. The application of immunoprecipitation analysis and mass spectrometry identified breast cancer type 2 susceptibility protein (BRCA2), the meiotic resumption/DNA repair protein, as a primary binding partner for C-peptide within the oocyte. Collectively, these findings establish a novel accumulation profile for C-peptide in the female germline and provide the first evidence for an interaction between C-peptide and BRCA2. This interaction is particularly intriguing when considering the propensity for oocytes from diabetic women to experience aberrant meiotic resumption and perturbation of traditional DNA repair processes. This therefore provides a clear imperative for further investigation of the implications of dysregulated C-peptide production in these individuals.
Collapse
Affiliation(s)
- Jacinta H Martin
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The Hunter Medical Research Institute, New Lambton Heights and the University of Newcastle, Callaghan, Newcastle, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The Hunter Medical Research Institute, New Lambton Heights and the University of Newcastle, Callaghan, Newcastle, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The Hunter Medical Research Institute, New Lambton Heights and the University of Newcastle, Callaghan, Newcastle, Australia
| | - Shenae L Cafe
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The Hunter Medical Research Institute, New Lambton Heights and the University of Newcastle, Callaghan, Newcastle, Australia
| | - Jessie M Sutherland
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The Hunter Medical Research Institute, New Lambton Heights and the University of Newcastle, Callaghan, Newcastle, Australia
| | - Emily R Frost
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The Hunter Medical Research Institute, New Lambton Heights and the University of Newcastle, Callaghan, Newcastle, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The Hunter Medical Research Institute, New Lambton Heights and the University of Newcastle, Callaghan, Newcastle, Australia
| | - Tessa Lord
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The Hunter Medical Research Institute, New Lambton Heights and the University of Newcastle, Callaghan, Newcastle, Australia
- School of Molecular Biosciences, Centre for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
19
|
Li Y, Zhong Y, Gong W, Gao X, Qi H, Liu K, Qi J. C-peptide prevents SMAD3 binding to alpha promoters to inhibit collagen type IV synthesis. J Mol Endocrinol 2018; 61:47-56. [PMID: 29844093 DOI: 10.1530/jme-18-0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022]
Abstract
Activation of transforming growth factor β1 (TGFB1)/SMAD3 signaling may lead to additional synthesis of collagen type IV (COL4), which is a major contributor to extracellular matrix (ECM) accumulation in diabetic nephropathy (DN). C-peptide can attenuate fibrosis to have unique beneficial effects in DN. However, whether and how C-peptide affects TGFB1/SMAD3-activated COL4 synthesis is unclear. In this study, pathological changes, expression of COL4 a1-a5 chains (Col4a1-a5), COL4 distribution and protein and TGFB1 and SMAD3 protein were first assessed in a rat model of diabetes. Then, rat mesangial cells were treated with high glucose (HG) and/or C-peptide to investigate the underlying mechanism. Col4a1-a5 expression, COL4 protein and secretion, TGFB1 protein, SMAD3 nuclear translocation and binding of SMAD3 to its cognate sites in the promoters of Col4a1a2, Col4a3a4 and Col4a5 were measured. It was found that C-peptide attenuated glomerular pathological changes and suppressed renal Col4a1-a5 mRNA expression, COL4 protein content and TGFB1 protein content. C-peptide had a dose-dependent effect to inhibit Col4a1-a5 mRNA expression, COL4 protein content and secretion, in HG-stimulated mesangial cells. In addition, the HG-induced increase in TGFB1 protein content was significantly reduced by C-peptide. Although not apparently affecting SMAD3 nuclear translocation, C-peptide prevented SMAD3 from binding to its sites in the Col4a1a2, Col4a3a4 and Col4a5 promoters in HG-stimulated mesangial cells. In conclusion, C-peptide could prevent SMAD3 from binding to its sites in the Col4a1a2, Col4a3a4 and Col4a5 promoters, to inhibit COL4 generation. These results may provide a mechanism for the alleviation of fibrosis in DN by C-peptide.
Collapse
Affiliation(s)
- Yanning Li
- Department of Molecular BiologyHebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, China
| | - Yan Zhong
- Department of BiochemistryHebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| | - Wenjian Gong
- Department of Molecular BiologyHebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, China
| | - Xuehan Gao
- Department of Molecular BiologyHebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, China
| | - Huanli Qi
- Department of BiochemistryHebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| | - Kun Liu
- Department of BiochemistryHebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| | - Jinsheng Qi
- Department of BiochemistryHebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
20
|
Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 2017; 16:829-842. [PMID: 29075003 PMCID: PMC6882681 DOI: 10.1038/nrd.2017.178] [Citation(s) in RCA: 1826] [Impact Index Per Article: 228.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) are the most intensively studied drug targets, mostly due to their substantial involvement in human pathophysiology and their pharmacological tractability. Here, we report an up-to-date analysis of all GPCR drugs and agents in clinical trials, which reveals current trends across molecule types, drug targets and therapeutic indications, including showing that 475 drugs (~34% of all drugs approved by the US Food and Drug Administration (FDA)) act at 108 unique GPCRs. Approximately 321 agents are currently in clinical trials, of which ~20% target 66 potentially novel GPCR targets without an approved drug, and the number of biological drugs, allosteric modulators and biased agonists has increased. The major disease indications for GPCR modulators show a shift towards diabetes, obesity and Alzheimer disease, although several central nervous system disorders are also highly represented. The 224 (56%) non-olfactory GPCRs that have not yet been explored in clinical trials have broad untapped therapeutic potential, particularly in genetic and immune system disorders. Finally, we provide an interactive online resource to analyse and infer trends in GPCR drug discovery.
Collapse
Affiliation(s)
- Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Misty M Attwood
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, 751 05 Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, University of Uppsala, 751 05 Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, 751 05 Uppsala, Sweden
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
21
|
Huang H, Zhang N, Xiong Q, Chen R, Zhang C, Wang N, Wang L, Ren H, Liu M, Qian M, Du B. Elimination of GPR146-mediated antiviral function through IRF3/HES1-signalling pathway. Immunology 2017; 152:102-114. [PMID: 28464285 PMCID: PMC5543731 DOI: 10.1111/imm.12752] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 03/23/2017] [Accepted: 04/24/2017] [Indexed: 12/18/2022] Open
Abstract
As the most important host defence against viral infection, interferon (IFN) stimulates hundreds of antiviral genes (ISGs) that together establish an 'antiviral state'. However, the antiviral function of most ISGs in viral infection still need further exploration. Here, we demonstrated that the expression of G-protein-coupled receptor 146 (GPR146) is highly increased by both IFN-β and IFN-γ in a signal transducer and activator of transcription 1-dependent signalling pathway. Most importantly, overexpression of GPR146 protects the host cells from vesicular stomatitis virus and Newcastle disease virus infection but not from infection by herpes simplex virus. In contrast, the virus-induced IFN-β production changed little in Gpr146-knockout cells. Furthermore, the Gpr146-deficient mice showed similar susceptibility to wild-type mice with vesicular stomatitis virus infection. Interestingly, the expression of GPR146 in virus-infected cells was strikingly reduced and can partially explain why the viral infection was little influenced in Gpr146-knockout mice. Surprisingly, virus-activated IFN regulatory factor 3 (IRF3) signalling not only induces the expression of IFN but also represses GPR146 expression through HES1 (hairy and enhancer of split-1)-mediated transcriptional activity to establish a dynamic equilibrium between pro-viral and antiviral stages in host cells. Taken together, these data reveal the antiviral role of GPR146 in fighting viral infection although the GPR146-mediated protection is eliminated by IRF3/HES1-signalling, which suggests a potential therapeutic significance of both GPR146 and HES1 signalling in viral infection.
Collapse
MESH Headings
- Animals
- Chlorocebus aethiops
- Genotype
- HEK293 Cells
- Herpes Simplex/immunology
- Herpes Simplex/metabolism
- Herpes Simplex/prevention & control
- Herpes Simplex/virology
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/metabolism
- Host-Pathogen Interactions
- Humans
- Interferon Regulatory Factor-3/immunology
- Interferon Regulatory Factor-3/metabolism
- Interferon-beta/pharmacology
- Interferon-gamma/pharmacology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/virology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Newcastle Disease/immunology
- Newcastle Disease/metabolism
- Newcastle Disease/prevention & control
- Newcastle Disease/virology
- Newcastle disease virus/immunology
- Newcastle disease virus/metabolism
- Phenotype
- RAW 264.7 Cells
- RNA Interference
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/immunology
- Signal Transduction
- Transcription Factor HES-1/immunology
- Transcription Factor HES-1/metabolism
- Transfection
- Vero Cells
- Vesicular Stomatitis/immunology
- Vesicular Stomatitis/metabolism
- Vesicular Stomatitis/prevention & control
- Vesicular Stomatitis/virology
- Vesicular stomatitis Indiana virus/immunology
- Vesicular stomatitis Indiana virus/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Hongjun Huang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Na Zhang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Qingqing Xiong
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Ruoyu Chen
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Chengfei Zhang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Ning Wang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Li Wang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Hua Ren
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Min Qian
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Bing Du
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| |
Collapse
|
22
|
Lee S, Chung YH, Lee C. US28, a Virally-Encoded GPCR as an Antiviral Target for Human Cytomegalovirus Infection. Biomol Ther (Seoul) 2017; 25:69-79. [PMID: 28035083 PMCID: PMC5207464 DOI: 10.4062/biomolther.2016.208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/19/2016] [Accepted: 11/22/2016] [Indexed: 11/05/2022] Open
Abstract
Viruses continue to evolve a new strategy to take advantage of every aspect of host cells in order to maximize their survival. Due to their central roles in transducing a variety of transmembrane signals, GPCRs seem to be a prime target for viruses to pirate for their own use. Incorporation of GPCR functionality into the genome of herpesviruses has been demonstrated to be essential for pathogenesis of many herpesviruses-induced diseases. Here, we introduce US28 of human cytomegalovirus (HCMV) as the best-studied example of virally-encoded GPCRs to manipulate host GPCR signaling. In this review, we wish to summarize a number of US28-related topics including its regulation of host signaling pathways, its constitutive internalization, its structural and functional analysis, its roles in HCMV biology and pathogenesis, its proliferative activities and role in oncogenesis, and pharmacological modulation of its biological activities. This review will aid in our understanding of how pathogenic viruses usurp the host GPCR signaling for successful viral infection. This kind of knowledge will enable us to build a better strategy to control viral infection by normalizing the virally-dysregulated host GPCR signaling.
Collapse
Affiliation(s)
- Sungjin Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Choongho Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| |
Collapse
|
23
|
Affiliation(s)
- J Wahren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|