1
|
Day KJ, Ballestro V, Mei L, Murgia C. Transcriptomic analysis of adipose tissue reveals adipogenesis is modulated by the degree of weight loss in patients with obesity. Nutr Metab Cardiovasc Dis 2025:104093. [PMID: 40345923 DOI: 10.1016/j.numecd.2025.104093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND AND AIMS Obesity is a complex condition with a diverse presentation and highly variable response to treatment. It is increasingly evident that obesity requires a plethora of interventions informed by biomarkers to optimise the chance of success. Adipose tissue is a metabolically active endocrine tissue and its metabolic response to intervention has the potential to provide key information to design targeted treatments to tackle obesity. To this aim, this study sought to identify, through transcriptomics analysis, common elements between adipose tissue of those undergoing bariatric surgery to those who were successful in losing weight through a lifestyle intervention. METHODS AND RESULTS Transcriptomic data from Gene Expression Omnibus were extracted from three bariatric surgery interventions and three lifestyle interventions. Paired linear mixed modelling using the limma package in R was used to determine differentially expressed genes before and after the interventions. Unpaired linear mixed modelling was used to determine differentially expressed genes between high and low responders to the intervention. Differentially modulated pathways were analysed with PathVisio and downloaded for graphic representation from the WikiPathways database. CONCLUSION We demonstrated that successful lifestyle interventions and bariatric surgery share the modulation of the Adipogenesis pathway (WP236). Leptin expression was positively correlated with weight loss, only up to a 10 % weight loss, suggesting a possible involvement of its dysregulation in explaining individual propensity to weight regain and potentially indicating who requires a targeted intervention. We also identify an interesting relationship between RBL2 expression and weight loss that requires further investigation.
Collapse
Affiliation(s)
- Kaitlin J Day
- School of Health and Biomedical Sciences, RMIT University, Australia.
| | - Vivian Ballestro
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Melbourne, Australia.
| | - Linghan Mei
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Melbourne, Australia.
| | - Chiara Murgia
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
2
|
van der Kolk BW, Pirinen E, Nicoll R, Pietiläinen KH, Heinonen S. Subcutaneous adipose tissue and skeletal muscle mitochondria following weight loss. Trends Endocrinol Metab 2025; 36:339-363. [PMID: 39289110 DOI: 10.1016/j.tem.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024]
Abstract
Obesity is a major global health issue with various metabolic complications. Both bariatric surgery and dieting achieve weight loss and improve whole-body metabolism, but vary in their ability to maintain these improvements over time. Adipose tissue and skeletal muscle metabolism are crucial in weight regulation, and obesity is linked to mitochondrial dysfunction in both tissues. The impact of bariatric surgery versus dieting on adipose tissue and skeletal muscle mitochondrial metabolism remains to be elucidated. Understanding the molecular pathways that modulate tissue metabolism following weight loss holds potential for identifying novel therapeutic targets in obesity management. This narrative review summarizes current knowledge on mitochondrial metabolism following bariatric surgery and diet-induced weight loss in adipose tissue and skeletal muscle, and sheds light on their respective effects.
Collapse
Affiliation(s)
- Birgitta W van der Kolk
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Eija Pirinen
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Finland; Faculty of Medicine, Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Rachel Nicoll
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; HealthyWeightHub, Endocrinology, Abdominal Center, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Internal Medicine, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
3
|
Bailin SS, Ma S, Perry AS, Terry JG, Carr JJ, Nair S, Silver HJ, Shi M, Mashayekhi M, Kropski JA, Ferguson JF, Wanjalla CN, Das SR, Shah R, Koethe JR, Gabriel CL. The Primacy of Adipose Tissue Gene Expression and Plasma Lipidome in Cardiometabolic Disease in Persons With HIV. J Infect Dis 2025; 231:e407-e418. [PMID: 39657693 PMCID: PMC11841643 DOI: 10.1093/infdis/jiae532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Persons with HIV (PWH) on contemporary antiretroviral therapy (ART) are at elevated risk for developing age-related cardiometabolic diseases. We hypothesized that integrative analysis of cross-tissue, multimodal data from PWH could provide insight into molecular programming that defines cardiometabolic phenotypes in this high-risk group. METHODS We enrolled 93 PWH without diabetes who were virologically suppressed on contemporary ART and obtained measures of insulin resistance, glucose intolerance, and adiposity. We performed circulating lipidomics, proteomics, and metabolomics, as well as subcutaneous adipose tissue (SAT) bulk transcriptomics, and used multiomics factor analysis (MOFA) to perform integrative analyses of these datasets. RESULTS The median age was 43 years, median body mass index 30.8 kg/m2, 81% were male, and 56% were self-identified non-Hispanic White. We identified a specific MOFA factor associated with visceral adipose tissue volume (ρ = -0.43), homeostasis model assessment 2 insulin resistance score (ρ = -0.52), liver density (ρ = 0.43), and other cardiometabolic risk factors, which explained more variance in the SAT transcriptome and circulating lipidome compared with the circulating proteome and metabolome. Gene set enrichment analysis of this factor showed extracellular matrix and inflammatory pathways that primarily mapped to SAT myeloid cells and adipose progenitor cells using single-cell deconvolution. Lipidomic analysis showed that this factor was significantly enriched for triacylglycerol and diacylglycerol species. CONCLUSIONS Our multiomic analysis demonstrated coordinated, multitissue molecular reprogramming in virologically suppressed PWH with elevated cardiometabolic disease risk. Longitudinal studies of PWH with assessments of adipose tissue and lipid handling are necessary to understand mechanisms of cardiometabolic disease in PWH. Clinical Trials Registration. NCT04451980.
Collapse
Affiliation(s)
- Samuel S Bailin
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Siyuan Ma
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Andrew S Perry
- Department of Medicine, Division of Cardiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James G Terry
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John Jeffrey Carr
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sangeeta Nair
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Heidi J Silver
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Health Administration, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Mingjian Shi
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mona Mashayekhi
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jonathan A Kropski
- Veterans Health Administration, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jane F Ferguson
- Department of Medicine, Division of Cardiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Celestine N Wanjalla
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Suman R Das
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ravi Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Department of Medicine, Division of Cardiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John R Koethe
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Health Administration, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Curtis L Gabriel
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Voros C, Mavrogianni D, Minaoglou A, Karakasis A, Papahliou AM, Topalis V, Varthaliti A, Mantzioros R, Kondili P, Darlas M, Sotiropoulou R, Athanasiou D, Loutradis D, Daskalakis G. Nitrate-Nitrite-Nitric Oxide Pathway, Oxidative Stress, and Fertility Outcomes in Morbidly Obese Women Following Bariatric Surgery: A Systematic Review. Biomedicines 2024; 13:64. [PMID: 39857648 PMCID: PMC11762565 DOI: 10.3390/biomedicines13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Obesity reduces nitric oxide (NO) production due to endothelial nitric oxide synthase (eNOS) dysfunction, resulting in oxidative stress, mitochondrial dysfunction, and chronic inflammation. These factors have a negative impact on reproductive health, including oocyte quality, endometrial receptivity, and embryo implantation. When oxidative stress affects eNOS function, the nitrate-nitrite-nitric oxide (NO3-NO2-NO) pathway provides an alternate route for NO production. Bariatric surgery has been found to restore NO production, reduce oxidative stress, and improve fertility in morbidly obese women. This review investigates the molecular mechanisms by which bariatric surgery affects eNOS activity, the NO3-NO2-NO pathway, and oxidative stress reduction, with an emphasis on intracellular activities including mitochondrial biogenesis and NO production. A systematic review employing PRISMA criteria included articles published between 2000 and 2024 from PubMed, Scopus, and Embase that investigated NO3-NO2 pathways, oxidative stress markers, hormonal alterations, and reproductive outcomes in morbidly obese women following bariatric surgery. After evaluating 1542 studies, 11 were selected for the final analysis. Results showed a 45% increase in NO3-NO2 levels (p < 0.001), a 35% reduction in oxidative stress indicators (p < 0.01), a 60% increase in pregnancy rates, and a 50% increase in spontaneous ovulation rates following surgery. These benefits were connected to improved mitochondrial function and endometrial receptivity as a result of reduced oxidative stress and inflammation. The NO3-NO2-NO route is critical in compensating for lower NO generation under oxidative stress and hypoxia, and bariatric surgery significantly improves this pathway to optimize blood flow, mitochondrial function, and reproductive results.
Collapse
Affiliation(s)
- Charalampos Voros
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Despoina Mavrogianni
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Aspasia Minaoglou
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Alexios Karakasis
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Anthi-Maria Papahliou
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Vasileios Topalis
- Department of Internal Medicine, Hospital of Thun, 3600 Thun, Switzerland;
| | - Antonia Varthaliti
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Raphail Mantzioros
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Panagiota Kondili
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Menelaos Darlas
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Regina Sotiropoulou
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | | | - Dimitrios Loutradis
- Fertility Institute-Assisted Reproduction Unit, Paster 15, 11528 Athens, Greece;
- Athens Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Georgios Daskalakis
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| |
Collapse
|
5
|
Bailin SS, Gabriel CL, Gangula RD, Hannah L, Nair S, Carr JJ, Terry JG, Silver HJ, Simmons JD, Mashayekhi M, Kalams SA, Mallal S, Kropski JA, Wanjalla CN, Koethe JR. Single-Cell Analysis of Subcutaneous Fat Reveals Profibrotic Cells That Correlate With Visceral Adiposity in HIV. J Clin Endocrinol Metab 2024; 110:238-253. [PMID: 38820087 PMCID: PMC11651702 DOI: 10.1210/clinem/dgae369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/26/2024] [Accepted: 05/30/2024] [Indexed: 06/02/2024]
Abstract
CONTEXT Cardiometabolic diseases are common in persons with HIV (PWH) on antiretroviral therapy (ART), which has been attributed to preferential lipid storage in visceral adipose tissue (VAT) compared with subcutaneous adipose tissue (SAT). However, the relationship of SAT-specific cellular and molecular programs with VAT volume is poorly understood in PWH. OBJECTIVE We characterized SAT cell-type specific composition and transcriptional programs that are associated with greater VAT volume in PWH on contemporary ART. METHODS We enrolled PWH on long-term ART with a spectrum of metabolic health. Ninety-two participants underwent SAT biopsy for bulk RNA sequencing and 43 had single-cell RNA sequencing. Computed tomography quantified VAT volume and insulin resistance was calculated using the Homeostasis Model Assessment 2 Insulin Resistance (HOMA2-IR). RESULTS VAT volume was associated with HOMA2-IR (P < .001). Higher proportions of SAT intermediate macrophages (IMs), myofibroblasts, and MYOC+ fibroblasts were associated with greater VAT volume using partial Spearman's correlation adjusting for age, sex, and body mass index (r = 0.34-0.49, P < .05 for all). Whole SAT transcriptomics showed PWH with greater VAT volume have increased expression of extracellular matrix (ECM)- and inflammation-associated genes, and reduced expression of lipolysis- and fatty acid metabolism-associated genes. CONCLUSION In PWH, greater VAT volume is associated with a higher proportion of SAT IMs and fibroblasts, and a SAT ECM and inflammatory transcriptome, which is similar to findings in HIV-negative persons with obesity. These data identify SAT cell-type specific changes associated with VAT volume in PWH that could underlie the high rates of cardiometabolic diseases in PWH, though additional longitudinal studies are needed to define directionality and mechanisms.
Collapse
Affiliation(s)
- Samuel S Bailin
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Curtis L Gabriel
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Nashville, Vanderbilt University Medical Center, TN 37232, USA
| | - Rama D Gangula
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - LaToya Hannah
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sangeeta Nair
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John Jeffrey Carr
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James G Terry
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Heidi J Silver
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Nashville, Vanderbilt University Medical Center, TN 37232, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| | - Joshua D Simmons
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mona Mashayekhi
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Spyros A Kalams
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Simon Mallal
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Insitute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
- Vanderbilt Technologies for Advanced Genomics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jonathan A Kropski
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
- Department of Medicine, Division of Allergy and Pulmonology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Celestine N Wanjalla
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John R Koethe
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Lluch A, Latorre J, Oliveras-Cañellas N, Fernández-Sánchez A, Moreno-Navarrete JM, Castells-Nobau A, Comas F, Buxò M, Rodríguez-Hermosa JI, Ballester M, Espadas I, Martín-Montalvo A, Zhang B, Zhou Y, Burkhardt R, Höring M, Liebisch G, Castellanos-Rubio A, Santin I, Kar A, Laakso M, Pajukanta P, Olkkonen VM, Fernández-Real JM, Ortega FJ. A novel long non-coding RNA connects obesity to impaired adipocyte function. Mol Metab 2024; 90:102040. [PMID: 39362599 PMCID: PMC11544081 DOI: 10.1016/j.molmet.2024.102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) can perform tasks of key relevance in fat cells, contributing, when defective, to the burden of obesity and its sequelae. Here, scrutiny of adipose tissue transcriptomes before and after bariatric surgery (GSE53378) granted identification of 496 lncRNAs linked to the obese phenotype. Only expression of linc-GALNTL6-4 displayed an average recovery over 2-fold and FDR-adjusted p-value <0.0001 after weight loss. The aim of the present study was to investigate the impact on adipocyte function and potential clinical value of impaired adipose linc-GALNTL6-4 in obese subjects. METHODS We employed transcriptomic analysis of public dataset GSE199063, and cross validations in two large transversal cohorts to report evidence of a previously unknown association of adipose linc-GALNTL6-4 with obesity. We then performed functional analyses in human adipocyte cultures, genome-wide transcriptomics, and untargeted lipidomics in cell models of loss and gain of function to explore the molecular implications of its associations with obesity and weight loss. RESULTS The expression of linc-GALNTL6-4 in human adipose tissue is adipocyte-specific and co-segregates with obesity, being normalized upon weight loss. This co-segregation is demonstrated in two longitudinal weight loss studies and two cross-sectional samples. While compromised expression of linc-GALNTL6-4 in obese subjects is primarily due to the inflammatory component in the context of obesity, adipogenesis requires the transcriptional upregulation of linc-GALNTL6-4, the expression of which reaches an apex in terminally differentiated adipocytes. Functionally, we demonstrated that the knockdown of linc-GALNTL6-4 impairs adipogenesis, induces alterations in the lipidome, and leads to the downregulation of genes related to cell cycle, while propelling in adipocytes inflammation, impaired fatty acid metabolism, and altered gene expression patterns, including that of apolipoprotein C1 (APOC1). Conversely, the genetic gain of linc-GALNTL6-4 ameliorated differentiation and adipocyte phenotype, putatively by constraining APOC1, also contributing to the metabolism of triglycerides in adipose. CONCLUSIONS Current data unveil the unforeseen connection of adipocyte-specific linc-GALNTL6-4 as a modulator of lipid homeostasis challenged by excessive body weight and meta-inflammation.
Collapse
Affiliation(s)
- Aina Lluch
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Jèssica Latorre
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain.
| | - Núria Oliveras-Cañellas
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | | | - José M Moreno-Navarrete
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Anna Castells-Nobau
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Ferran Comas
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain
| | - Maria Buxò
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain
| | - José I Rodríguez-Hermosa
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; School of Medicine, University of Girona (UdG), Girona, Spain
| | - María Ballester
- Animal Breeding and Genetics Programme, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | - Isabel Espadas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), University Pablo de Olavide, Seville, Spain
| | - Alejandro Martín-Montalvo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), University Pablo de Olavide, Seville, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Birong Zhang
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Ainara Castellanos-Rubio
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Izortze Santin
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bizkaia, Spain; Instituto de Investigación Sanitaria Biocruces Bizkaia, Bizkaia, Spain
| | - Asha Kar
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles (CA), USA; Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles (CA), USA
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Päivi Pajukanta
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles (CA), USA; Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles (CA), USA; Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles (CA), USA
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, University of Helsinki, Helsinki, Finland
| | - José M Fernández-Real
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain; School of Medicine, University of Girona (UdG), Girona, Spain.
| | - Francisco J Ortega
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain.
| |
Collapse
|
7
|
Konigorski S, Janke J, Patone G, Bergmann MM, Lippert C, Hübner N, Kaaks R, Boeing H, Pischon T. Identification of novel genes whose expression in adipose tissue affects body fat mass and distribution: an RNA-Seq and Mendelian Randomization study. Eur J Hum Genet 2024; 32:1127-1135. [PMID: 35953519 PMCID: PMC11369295 DOI: 10.1038/s41431-022-01161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/26/2022] [Accepted: 07/19/2022] [Indexed: 10/15/2022] Open
Abstract
Many studies have shown that abdominal adiposity is more strongly related to health risks than peripheral adiposity. However, the underlying pathways are still poorly understood. In this cross-sectional study using data from RNA-sequencing experiments and whole-body MRI scans of 200 participants in the EPIC-Potsdam cohort, our aim was to identify novel genes whose gene expression in subcutaneous adipose tissue has an effect on body fat mass (BFM) and body fat distribution (BFD). The analysis identified 625 genes associated with adiposity, of which 531 encode a known protein and 487 are novel candidate genes for obesity. Enrichment analyses indicated that BFM-associated genes were characterized by their higher than expected involvement in cellular, regulatory and immune system processes, and BFD-associated genes by their involvement in cellular, metabolic, and regulatory processes. Mendelian Randomization analyses suggested that the gene expression of 69 genes was causally related to BFM and BFD. Six genes were replicated in UK Biobank. In this study, we identified novel genes for BFM and BFD that are BFM- and BFD-specific, involved in different molecular processes, and whose up-/downregulated gene expression may causally contribute to obesity.
Collapse
Affiliation(s)
- Stefan Konigorski
- Digital Health & Machine Learning Research Group, Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany.
- Molecular Epidemiology Research Group, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jürgen Janke
- Molecular Epidemiology Research Group, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Giannino Patone
- Genetics and Genomics of Cardiovascular Diseases Research Group, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Manuela M Bergmann
- German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Christoph Lippert
- Digital Health & Machine Learning Research Group, Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Norbert Hübner
- Genetics and Genomics of Cardiovascular Diseases Research Group, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research) partner site Berlin, Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Rudolf Kaaks
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiner Boeing
- German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research) partner site Berlin, Berlin, Germany.
- Charité Universitätsmedizin Berlin, Berlin, Germany.
- MDC Biobank, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.
- BIH Biobank, Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
8
|
Mahjoubin-Tehran M, Atkin SL, Jamialahmadi T, Kroh M, Eid AH, Almahmeed W, Sahebkar A. The differential expression of adipose tissue genes in short, medium and long-term periods after bariatric surgery. Sci Rep 2024; 14:19991. [PMID: 39198660 PMCID: PMC11358539 DOI: 10.1038/s41598-024-70629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Bariatric surgery is an approved treatment for obesity that consistently improves metabolic syndrome, with well-documented beneficial effects on dyslipidemia, cardiovascular risk, nonalcoholic fatty liver disease and glucose homeostasis. In this study, we determined the differential expression genes in three periods after bariatric surgery: short-term (4-months), medium-term (1- and 2-years), and long-term (5-years) periods. Two microarray profiles were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified by comparing the expression of adipose tissue genes before surgery compared to short, medium and long-term periods following surgery. Shared DEGs for the medium-term were evaluated by comparing the DEGs for both 1 and 2 years. 165, 65, and 59 DEGs were identified in short-medium-long periods. The protein-protein interactions were analyzed by STRING. A co-expression network was constructed by mapping the DEGs onto the GeneMANIA plugin of Cytoscape. Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) and wikipathway analysis were done for each group of DEGs. Interleukin-8 receptor activity, complement receptor activity and opsonin receptor activity/N-formyl peptide receptor activity in GO Function enrichment and cellular response to interleukin-8, positive regulation of hippocampal neuron apoptotic process, and positive regulation of hippocampal neuron apoptotic process in GO Process showed the best scores in short-, medium-, and long-term periods, respectively. Eight genes, including CCL2 (Chemokine ligand 2), CXCR4 (CXC motif chemokine receptor 4), EGR2 (Early Growth Response 2), FPR1 (Formyl Peptide Receptor 1), IL6 (interleukin-6), RGS2 (regulator of gene protein signaling2), SELPLG (Selectin P Ligand), and THBS1 (Thrombospondin 1) were identified as shared DEGs in the three periods after surgery. Importantly, results of DAVID database analysis showed 7, 6, 4, and 4 of these genes have roles in immune/ cancer/cardiovascular diseases, type 2 diabetes, myocardial infarct, and atherosclerosis, respectively.
Collapse
Affiliation(s)
| | - Stephen L Atkin
- Royal College of Surgeons in Ireland, Bahrain, PO Box 15503, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matthew Kroh
- Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Müller L, Hoffmann A, Bernhart SH, Ghosh A, Zhong J, Hagemann T, Sun W, Dong H, Noé F, Wolfrum C, Dietrich A, Stumvoll M, Massier L, Blüher M, Kovacs P, Chakaroun R, Keller M. Blood methylation pattern reflects epigenetic remodelling in adipose tissue after bariatric surgery. EBioMedicine 2024; 106:105242. [PMID: 39002385 PMCID: PMC11284569 DOI: 10.1016/j.ebiom.2024.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND Studies on DNA methylation following bariatric surgery have primarily focused on blood cells, while it is unclear to which extend it may reflect DNA methylation profiles in specific metabolically relevant organs such as adipose tissue. Here, we investigated whether adipose tissue depots specific methylation changes after bariatric surgery are mirrored in blood. METHODS Using Illumina 850K EPIC technology, we analysed genome-wide DNA methylation in paired blood, subcutaneous and omental visceral AT (SAT/OVAT) samples from nine individuals (N = 6 female) with severe obesity pre- and post-surgery. FINDINGS The numbers and effect sizes of differentially methylated regions (DMRs) post-bariatric surgery were more pronounced in AT (SAT: 12,865 DMRs from -11.5 to 10.8%; OVAT: 14,632 DMRs from -13.7 to 12.8%) than in blood (9267 DMRs from -8.8 to 7.7%). Cross-tissue DMRs implicated immune-related genes. Among them, 49 regions could be validated with similar methylation changes in blood from independent individuals. Fourteen DMRs correlated with differentially expressed genes in AT post bariatric surgery, including downregulation of PIK3AP1 in both SAT and OVAT. DNA methylation age acceleration was significantly higher in AT compared to blood, but remained unaffected after surgery. INTERPRETATION Concurrent methylation pattern changes in blood and AT, particularly in immune-related genes, suggest blood DNA methylation mirrors AT's inflammatory state post-bariatric surgery. FUNDING The funding sources are listed in the Acknowledgments section.
Collapse
Affiliation(s)
- Luise Müller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany
| | - Stephan H Bernhart
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany; Bioinformatics Group, Department of Computer, University of Leipzig, 04107, Leipzig, Germany; Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, 04107, Leipzig, Germany
| | - Adhideb Ghosh
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Jiawei Zhong
- Department of Medicine Huddinge (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, 141 83, Huddinge, Sweden
| | - Tobias Hagemann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany
| | - Wenfei Sun
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Hua Dong
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Falko Noé
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Arne Dietrich
- Leipzig University Hospital, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Section of Bariatric Surgery, 04103, Leipzig, Germany
| | - Michael Stumvoll
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany; Deutsches Zentrum für Diabetesforschung e.V., 85764, Neuherberg, Germany
| | - Lucas Massier
- Department of Medicine Huddinge (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, 141 83, Huddinge, Sweden
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany; Deutsches Zentrum für Diabetesforschung e.V., 85764, Neuherberg, Germany
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; Deutsches Zentrum für Diabetesforschung e.V., 85764, Neuherberg, Germany
| | - Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Maria Keller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany.
| |
Collapse
|
10
|
Mashayekhi M, Sheng Q, Bailin SS, Massier L, Zhong J, Shi M, Wanjalla CN, Wang TJ, Ikizler TA, Niswender KD, Gabriel CL, Palacios J, Turgeon-Jones R, Reynolds CF, Luther JM, Brown NJ, Das S, Dahlman I, Mosley JD, Koethe JR, Rydén M, Bachmann KN, Shah RV. The subcutaneous adipose transcriptome identifies a molecular signature of insulin resistance shared with visceral adipose. Obesity (Silver Spring) 2024; 32:1526-1540. [PMID: 38967296 PMCID: PMC11269023 DOI: 10.1002/oby.24064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVE The objective of this study was to identify the transcriptional landscape of insulin resistance (IR) in subcutaneous adipose tissue (SAT) in humans across the spectrum of obesity. METHODS We used SAT RNA sequencing in 220 individuals with metabolic phenotyping. RESULTS We identified a 35-gene signature with high predictive accuracy for homeostatic model of IR that was expressed across a variety of non-immune cell populations. We observed primarily "protective" IR associations for adipocyte transcripts and "deleterious" associations for macrophage transcripts, as well as a high concordance between SAT and visceral adipose tissue (VAT). Multiple SAT genes exhibited dynamic expression 5 years after weight loss surgery and with insulin stimulation. Using available expression quantitative trait loci in SAT and/or VAT, we demonstrated similar genetic effect sizes of SAT and VAT on type 2 diabetes and BMI. CONCLUSIONS SAT is conventionally viewed as a metabolic buffer for lipid deposition during positive energy balance, whereas VAT is viewed as a dominant contributor to and prime mediator of IR and cardiometabolic disease risk. Our results implicate a dynamic transcriptional architecture of IR that resides in both immune and non-immune populations in SAT and is shared with VAT, nuancing the current VAT-centric concept of IR in humans.
Collapse
Affiliation(s)
- Mona Mashayekhi
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, Tennessee, USA
| | - Quanhu Sheng
- Vanderbilt University Medical Center, Department of Biostatistics, Nashville, Tennessee, USA
| | - Samuel S. Bailin
- Vanderbilt University Medical Center, Department of Medicine, Division of Infectious Disease, Nashville, Tennessee, USA
| | - Lucas Massier
- Karolinska Institutet, Department of Medicine, Huddinge (H7), Stockholm, Sweden
| | - Jiawei Zhong
- Karolinska Institutet, Department of Medicine, Huddinge (H7), Stockholm, Sweden
| | - Mingjian Shi
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Celestine N. Wanjalla
- Vanderbilt University Medical Center, Department of Medicine, Division of Infectious Disease, Nashville, Tennessee, USA
| | - Thomas J. Wang
- UT Southwestern Medical Center, Department of Internal Medicine, Dallas, Texas, USA
| | - T. Alp Ikizler
- Vanderbilt University Medical Center, Department of Medicine, Division of Nephrology and Hypertension, Nashville, Tennessee, USA
- Veterans Health Administration, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Kevin D. Niswender
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, Tennessee, USA
- Veterans Health Administration, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Curtis L. Gabriel
- Vanderbilt University Medical Center, Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Nashville, Tennessee, USA
| | - Julia Palacios
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, Tennessee, USA
| | - Rachel Turgeon-Jones
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, Tennessee, USA
| | - Cassandra F. Reynolds
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Department of Medicine, Cardiology Division, Nashville, Tennessee, USA
| | - James M. Luther
- Vanderbilt University Medical Center, Department of Medicine, Division of Nephrology and Hypertension, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Saumya Das
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Ingrid Dahlman
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan D. Mosley
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John R. Koethe
- Vanderbilt University Medical Center, Department of Medicine, Division of Infectious Disease, Nashville, Tennessee, USA
- Veterans Health Administration, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Mikael Rydén
- Karolinska Institutet, Department of Medicine, Huddinge (H7), Stockholm, Sweden
| | - Katherine N. Bachmann
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, Tennessee, USA
- Veterans Health Administration, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Ravi V. Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Department of Medicine, Cardiology Division, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Chaubal R, Gardi N, Joshi S, Pantvaidya G, Kadam R, Vanmali V, Hawaldar R, Talker E, Chitra J, Gera P, Bhatia D, Kalkar P, Gurav M, Shetty O, Desai S, Krishnan NM, Nair N, Parmar V, Dutt A, Panda B, Gupta S, Badwe R. Surgical Tumor Resection Deregulates Hallmarks of Cancer in Resected Tissue and the Surrounding Microenvironment. Mol Cancer Res 2024; 22:572-584. [PMID: 38394149 PMCID: PMC11148542 DOI: 10.1158/1541-7786.mcr-23-0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
UNLABELLED Surgery exposes tumor tissue to severe hypoxia and mechanical stress leading to rapid gene expression changes in the tumor and its microenvironment, which remain poorly characterized. We biopsied tumor and adjacent normal tissues from patients with breast (n = 81) and head/neck squamous cancers (HNSC; n = 10) at the beginning (A), during (B), and end of surgery (C). Tumor/normal RNA from 46/81 patients with breast cancer was subjected to mRNA-Seq using Illumina short-read technology, and from nine patients with HNSC to whole-transcriptome microarray with Illumina BeadArray. Pathways and genes involved in 7 of 10 known cancer hallmarks, namely, tumor-promoting inflammation (TNF-A, NFK-B, IL18 pathways), activation of invasion and migration (various extracellular matrix-related pathways, cell migration), sustained proliferative signaling (K-Ras Signaling), evasion of growth suppressors (P53 signaling, regulation of cell death), deregulating cellular energetics (response to lipid, secreted factors, and adipogenesis), inducing angiogenesis (hypoxia signaling, myogenesis), and avoiding immune destruction (CTLA4 and PDL1) were significantly deregulated during surgical resection (time points A vs. B vs. C). These findings were validated using NanoString assays in independent pre/intra/post-operative breast cancer samples from 48 patients. In a comparison of gene expression data from biopsy (analogous to time point A) with surgical resection samples (analogous to time point C) from The Cancer Genome Atlas study, the top deregulated genes were the same as identified in our analysis, in five of the seven studied cancer types. This study suggests that surgical extirpation deregulates the hallmarks of cancer in primary tumors and adjacent normal tissue across different cancers. IMPLICATIONS Surgery deregulates hallmarks of cancer in human tissue.
Collapse
Affiliation(s)
- Rohan Chaubal
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Nilesh Gardi
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Shalaka Joshi
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Gouri Pantvaidya
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Rasika Kadam
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Vaibhav Vanmali
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Clinical Research Secretariat, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Rohini Hawaldar
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Clinical Research Secretariat, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Elizabeth Talker
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Jaya Chitra
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Poonam Gera
- Biorepository, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Dimple Bhatia
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Prajakta Kalkar
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Mamta Gurav
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Omshree Shetty
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Sangeeta Desai
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | | | - Nita Nair
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Vani Parmar
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- 3D Printing Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Amit Dutt
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Binay Panda
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sudeep Gupta
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Rajendra Badwe
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| |
Collapse
|
12
|
Klingelhuber F, Frendo-Cumbo S, Omar-Hmeadi M, Massier L, Kakimoto P, Taylor AJ, Couchet M, Ribicic S, Wabitsch M, Messias AC, Iuso A, Müller TD, Rydén M, Mejhert N, Krahmer N. A spatiotemporal proteomic map of human adipogenesis. Nat Metab 2024; 6:861-879. [PMID: 38565923 PMCID: PMC11132986 DOI: 10.1038/s42255-024-01025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
White adipocytes function as major energy reservoirs in humans by storing substantial amounts of triglycerides, and their dysfunction is associated with metabolic disorders; however, the mechanisms underlying cellular specialization during adipogenesis remain unknown. Here, we generate a spatiotemporal proteomic atlas of human adipogenesis, which elucidates cellular remodelling as well as the spatial reorganization of metabolic pathways to optimize cells for lipid accumulation and highlights the coordinated regulation of protein localization and abundance during adipocyte formation. We identify compartment-specific regulation of protein levels and localization changes of metabolic enzymes to reprogramme branched-chain amino acids and one-carbon metabolism to provide building blocks and reduction equivalents. Additionally, we identify C19orf12 as a differentiation-induced adipocyte lipid droplet protein that interacts with the translocase of the outer membrane complex of lipid droplet-associated mitochondria and regulates adipocyte lipid storage by determining the capacity of mitochondria to metabolize fatty acids. Overall, our study provides a comprehensive resource for understanding human adipogenesis and for future discoveries in the field.
Collapse
Affiliation(s)
- Felix Klingelhuber
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Scott Frendo-Cumbo
- Department of Medicine (H7), Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Muhmmad Omar-Hmeadi
- Department of Medicine (H7), Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Lucas Massier
- Department of Medicine (H7), Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Pamela Kakimoto
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Austin J Taylor
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Morgane Couchet
- Department of Medicine (H7), Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Sara Ribicic
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Wabitsch
- Center for Rare Endocrine Diseases, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Centre, Ulm, Germany
| | - Ana C Messias
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
- Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Arcangela Iuso
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, Huddinge, Stockholm, Sweden
- Endocrinology unit, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Niklas Mejhert
- Department of Medicine (H7), Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
13
|
Kerr AG, Andersson DP, Rydén M, Arner P. Insulin resistance in adipocytes: Novel insights into the pathophysiology of metabolic syndrome. Clin Nutr 2024; 43:468-475. [PMID: 38181524 DOI: 10.1016/j.clnu.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Insulin resistance in all major target tissues is present in metabolic syndrome (MetS). The resistance in adipocytes is not well described and was presently examined. METHODS In this observational study on isolated abdominal white subcutaneous adipocytes from 419 adults, concentration-response effects of insulin on lipolysis inhibition (glycerol release) and lipogenesis stimulation (glucose conversion to total lipids) were determined. Insights into early and late insulin signaling events were obtained through the determination of insulin sensitivity (half maximum effective concentration) and responsiveness (maximum effect), respectively. In a subgroup of 132 subjects, we analyzed the subcutaneous adipose mRNA expression of genes in the canonical insulin signaling pathway using microarray. These results were validated using quantitative real-time polymerase chain reaction in 74 individuals. RESULTS While the insulin responsiveness was similar in subjects with or without Mets, the sensitivity to insulin-mediated inhibition of lipolysis and stimulation of lipogenesis was ∼tenfold lower in subjects with MetS (p < 0.0001). When age, sex, adipocyte volume, body mass index and body shape were considered, only the antilipolytic resistance was independently associated with MetS. The mRNA expression of several genes in the canonical insulin signaling pathway were altered in MetS (p < 0.0006 or better) where the mRNA levels of insulin receptor substrate 2 associated with the antilipolytic effect (Rho = 0.34; p = 0.0016). CONCLUSION The sensitivities of the antilipolytic and lipogenic effects of insulin are decreased in the MetS but only antilipolysis remains significant after multiple regression analysis. This resistance is localized at initial and receptor-near events in hormone signaling involving insulin receptor substrate 2.
Collapse
Affiliation(s)
- Alastair G Kerr
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Daniel P Andersson
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Yin M, Wang Y, Han M, Liang R, Li S, Wang G, Gang X. Mechanisms of bariatric surgery for weight loss and diabetes remission. J Diabetes 2023; 15:736-752. [PMID: 37442561 PMCID: PMC10509523 DOI: 10.1111/1753-0407.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Obesity and type 2 diabetes(T2D) lead to defects in intestinal hormones secretion, abnormalities in the composition of bile acids (BAs), increased systemic and adipose tissue inflammation, defects of branched-chain amino acids (BCAAs) catabolism, and dysbiosis of gut microbiota. Bariatric surgery (BS) has been shown to be highly effective in the treatment of obesity and T2D, which allows us to view BS not simply as weight-loss surgery but as a means of alleviating obesity and its comorbidities, especially T2D. In recent years, accumulating studies have focused on the mechanisms of BS to find out which metabolic parameters are affected by BS through which pathways, such as which hormones and inflammatory processes are altered. The literatures are saturated with the role of intestinal hormones and the gut-brain axis formed by their interaction with neural networks in the remission of obesity and T2D following BS. In addition, BAs, gut microbiota and other factors are also involved in these benefits after BS. The interaction of these factors makes the mechanisms of metabolic improvement induced by BS more complicated. To date, we do not fully understand the exact mechanisms of the metabolic alterations induced by BS and its impact on the disease process of T2D itself. This review summarizes the changes of intestinal hormones, BAs, BCAAs, gut microbiota, signaling proteins, growth differentiation factor 15, exosomes, adipose tissue, brain function, and food preferences after BS, so as to fully understand the actual working mechanisms of BS and provide nonsurgical therapeutic strategies for obesity and T2D.
Collapse
Affiliation(s)
- Mengsha Yin
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Yao Wang
- Department of OrthopedicsThe Second Hospital Jilin UniversityChangchunChina
| | - Mingyue Han
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Ruishuang Liang
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Shanshan Li
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Guixia Wang
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Xiaokun Gang
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
15
|
Lluch A, Latorre J, Serena-Maione A, Espadas I, Caballano-Infantes E, Moreno-Navarrete JM, Oliveras-Cañellas N, Ricart W, Malagón MM, Martin-Montalvo A, Birchmeier W, Szymanski W, Graumann J, Gómez-Serrano M, Sommariva E, Fernández-Real JM, Ortega FJ. Impaired Plakophilin-2 in obesity breaks cell cycle dynamics to breed adipocyte senescence. Nat Commun 2023; 14:5106. [PMID: 37607954 PMCID: PMC10444784 DOI: 10.1038/s41467-023-40596-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
Plakophilin-2 (PKP2) is a key component of desmosomes, which, when defective, is known to promote the fibro-fatty infiltration of heart muscle. Less attention has been given to its role in adipose tissue. We report here that levels of PKP2 steadily increase during fat cell differentiation, and are compromised if adipocytes are exposed to a pro-inflammatory milieu. Accordingly, expression of PKP2 in subcutaneous adipose tissue diminishes in patients with obesity, and normalizes upon mild-to-intense weight loss. We further show defective PKP2 in adipocytes to break cell cycle dynamics and yield premature senescence, a key rheostat for stress-induced adipose tissue dysfunction. Conversely, restoring PKP2 in inflamed adipocytes rewires E2F signaling towards the re-activation of cell cycle and decreased senescence. Our findings connect the expression of PKP2 in fat cells to the physiopathology of obesity, as well as uncover a previously unknown defect in cell cycle and adipocyte senescence due to impaired PKP2.
Collapse
Affiliation(s)
- Aina Lluch
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jessica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Angela Serena-Maione
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Isabel Espadas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), University Pablo de Olavide, Seville, Spain
| | - Estefanía Caballano-Infantes
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - José M Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Núria Oliveras-Cañellas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María M Malagón
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Cordoba (IMIBIC), University of Cordoba, Reina Sofia University Hospital, Cordoba, Spain
| | - Alejandro Martin-Montalvo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), University Pablo de Olavide, Seville, Spain
| | | | - Witold Szymanski
- Institute of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany
| | - Johannes Graumann
- Institute of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany
| | - María Gómez-Serrano
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - José M Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Francisco J Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain.
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
16
|
Stroud AM, Coleman MF. Bariatric surgery in the prevention of obesity-associated cancers: mechanistic implications. Surg Obes Relat Dis 2023; 19:772-780. [PMID: 37120355 DOI: 10.1016/j.soard.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 03/04/2023]
Abstract
Obesity is associated with an increased risk of at least 13 different cancers, as well as worse cancer outcomes and increased cancer mortality. As rates continue to rise both in the United States and worldwide, obesity is poised to become the leading lifestyle-related risk factor for cancer. Currently, the most effective treatment for patients with severe obesity is bariatric surgery. Multiple cohort studies have demonstrated a consistent >30% decreased risk of cancer incidence in women, but not men, following bariatric surgery. However, the physiologic mechanisms driving obesity-associated cancer and the cancer-protective effect of bariatric surgery are not clearly defined. In this review, we highlight emerging concepts in the mechanistic understanding of obesity-associated cancer. Evidence from both human studies and preclinical animal models suggest that obesity drives carcinogenesis through dysregulation of systemic metabolism, immune dysfunction, and an altered gut microbiome. Additionally, we present related findings to suggest that bariatric surgery may disrupt and even reverse many of these mechanisms. Finally, we discuss the use of preclinical bariatric surgery animal models in the study of cancer biology. The prevention of cancer is emerging as an important indication for bariatric surgery. Elucidating the mechanisms through which bariatric surgery limits carcinogenesis is critical to developing a variety of interventions that intercept obesity-driven cancer.
Collapse
Affiliation(s)
- Andrea M Stroud
- Division of Bariatric Surgery, Oregon Health & Science University, Portland, Oregon.
| | - Michael F Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
17
|
Amin A, Badenes M, Tüshaus J, de Carvalho É, Burbridge E, Faísca P, Trávníčková K, Barros A, Carobbio S, Domingos PM, Vidal-Puig A, Moita LF, Maguire S, Stříšovský K, Ortega FJ, Fernández-Real JM, Lichtenthaler SF, Adrain C. Semaphorin 4B is an ADAM17-cleaved adipokine that inhibits adipocyte differentiation and thermogenesis. Mol Metab 2023; 73:101731. [PMID: 37121509 PMCID: PMC10197113 DOI: 10.1016/j.molmet.2023.101731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023] Open
Abstract
OBJECTIVE The metalloprotease ADAM17 (also called TACE) plays fundamental roles in homeostasis by shedding key signaling molecules from the cell surface. Although its importance for the immune system and epithelial tissues is well-documented, little is known about the role of ADAM17 in metabolic homeostasis. The purpose of this study was to determine the impact of ADAM17 expression, specifically in adipose tissues, on metabolic homeostasis. METHODS We used histopathology, molecular, proteomic, transcriptomic, in vivo integrative physiological and ex vivo biochemical approaches to determine the impact of adipose tissue-specific deletion of ADAM17 upon adipocyte and whole organism metabolic physiology. RESULTS ADAM17adipoq-creΔ/Δ mice exhibited a hypermetabolic phenotype characterized by elevated energy consumption and increased levels of adipocyte thermogenic gene expression. On a high fat diet, these mice were more thermogenic, while exhibiting elevated expression levels of genes associated with lipid oxidation and lipolysis. This hypermetabolic phenotype protected mutant mice from obesogenic challenge, limiting weight gain, hepatosteatosis and insulin resistance. Activation of beta-adrenoceptors by the neurotransmitter norepinephrine, a key regulator of adipocyte physiology, triggered the shedding of ADAM17 substrates, and regulated ADAM17 expression at the mRNA and protein levels, hence identifying a functional connection between thermogenic licensing and the regulation of ADAM17. Proteomic studies identified Semaphorin 4B (SEMA4B), as a novel ADAM17-shed adipokine, whose expression is regulated by physiological thermogenic cues, that acts to inhibit adipocyte differentiation and dampen thermogenic responses in adipocytes. Transcriptomic data showed that cleaved SEMA4B acts in an autocrine manner in brown adipocytes to repress the expression of genes involved in adipogenesis, thermogenesis, and lipid uptake, storage and catabolism. CONCLUSIONS Our findings identify a novel ADAM17-dependent axis, regulated by beta-adrenoceptors and mediated by the ADAM17-cleaved form of SEMA4B, that modulates energy balance in adipocytes by inhibiting adipocyte differentiation, thermogenesis and lipid catabolism.
Collapse
Affiliation(s)
- Abdulbasit Amin
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Nigeria
| | - Marina Badenes
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Faculty of Veterinary Medicine, Lusofona University, Lisbon, Portugal; Faculty of Veterinary Nursing, Polytechnic Institute of Lusofonia, Lisbon, Portugal
| | - Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Érika de Carvalho
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Instituto de Tecnologia Química da Universidade Nova de Lisboa (ITQB-Nova), Oeiras, Portugal
| | - Emma Burbridge
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, N. Ireland
| | - Pedro Faísca
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Květa Trávníčková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - André Barros
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Stefania Carobbio
- Centro de Investigacíon Principe Felipe (CIPF), Valencia, Spain; Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, UK
| | - Pedro M Domingos
- Instituto de Tecnologia Química da Universidade Nova de Lisboa (ITQB-Nova), Oeiras, Portugal
| | - Antonio Vidal-Puig
- Centro de Investigacíon Principe Felipe (CIPF), Valencia, Spain; Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, UK
| | - Luís F Moita
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Sarah Maguire
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, N. Ireland
| | - Kvido Stříšovský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Francisco J Ortega
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain; Department of Medical Sciences, University of Girona, Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Institute of Salud Carlos III (ISCIII), Madrid, Spain
| | - José Manuel Fernández-Real
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain; Department of Medical Sciences, University of Girona, Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Institute of Salud Carlos III (ISCIII), Madrid, Spain
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Colin Adrain
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, N. Ireland.
| |
Collapse
|
18
|
Subramanian N, Hofwimmer K, Tavira B, Massier L, Andersson DP, Arner P, Laurencikiene J. Adipose tissue specific CCL18 associates with cardiometabolic diseases in non-obese individuals implicating CD4 + T cells. Cardiovasc Diabetol 2023; 22:84. [PMID: 37046242 PMCID: PMC10099890 DOI: 10.1186/s12933-023-01803-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
AIM Obesity is linked to cardiometabolic diseases, however non-obese individuals are also at risk for type 2 diabetes (T2D) and cardiovascular disease (CVD). White adipose tissue (WAT) is known to play a role in both T2D and CVD, but the contribution of WAT inflammatory status especially in non-obese patients with cardiometabolic diseases is less understood. Therefore, we aimed to find associations between WAT inflammatory status and cardiometabolic diseases in non-obese individuals. METHODS In a population-based cohort containing non-obese healthy (n = 17), T2D (n = 16), CVD (n = 18), T2D + CVD (n = 19) individuals, seventeen different cytokines were measured in WAT and in circulation. In addition, 13-color flow cytometry profiling was employed to phenotype the immune cells. Human T cell line (Jurkat T cells) was stimulated by rCCL18, and conditioned media (CM) was added to the in vitro cultures of human adipocytes. Lipolysis was measured by glycerol release. Blocking antibodies against IFN-γ and TGF-β were used in vitro to prove a role for these cytokines in CCL18-T-cell-adipocyte lipolysis regulation axis. RESULTS In CVD, T2D and CVD + T2D groups, CCL18 and CD4+ T cells were upregulated significantly compared to healthy controls. WAT CCL18 secretion correlated with the amounts of WAT CD4+ T cells, which also highly expressed CCL18 receptors suggesting that WAT CD4+ T cells are responders to this chemokine. While direct addition of rCCL18 to mature adipocytes did not alter the adipocyte lipolysis, CM from CCL18-treated T cells increased glycerol release in in vitro cultures of adipocytes. IFN-γ and TGF-β secretion was significantly induced in CM obtained from T cells treated with CCL18. Blocking these cytokines in CM, prevented CM-induced upregulation of adipocyte lipolysis. CONCLUSION We suggest that in T2D and CVD, increased production of CCL18 recruits and activates CD4+ T cells to secrete IFN-γ and TGF-β. This, in turn, promotes adipocyte lipolysis - a possible risk factor for cardiometabolic diseases.
Collapse
Affiliation(s)
- Narmadha Subramanian
- Lipid laboratory, Unit of Endocrinology, Dept. of Medicine Huddinge, Karolinska Institutet, Stockholm, 141 86, Sweden
| | - Kaisa Hofwimmer
- Lipid laboratory, Unit of Endocrinology, Dept. of Medicine Huddinge, Karolinska Institutet, Stockholm, 141 86, Sweden
| | - Beatriz Tavira
- Lipid laboratory, Unit of Endocrinology, Dept. of Medicine Huddinge, Karolinska Institutet, Stockholm, 141 86, Sweden
| | - Lucas Massier
- Lipid laboratory, Unit of Endocrinology, Dept. of Medicine Huddinge, Karolinska Institutet, Stockholm, 141 86, Sweden
| | - Daniel P Andersson
- Lipid laboratory, Unit of Endocrinology, Dept. of Medicine Huddinge, Karolinska Institutet, Stockholm, 141 86, Sweden
| | - Peter Arner
- Lipid laboratory, Unit of Endocrinology, Dept. of Medicine Huddinge, Karolinska Institutet, Stockholm, 141 86, Sweden
| | - Jurga Laurencikiene
- Lipid laboratory, Unit of Endocrinology, Dept. of Medicine Huddinge, Karolinska Institutet, Stockholm, 141 86, Sweden.
| |
Collapse
|
19
|
An integrated single cell and spatial transcriptomic map of human white adipose tissue. Nat Commun 2023; 14:1438. [PMID: 36922516 PMCID: PMC10017705 DOI: 10.1038/s41467-023-36983-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
To date, single-cell studies of human white adipose tissue (WAT) have been based on small cohort sizes and no cellular consensus nomenclature exists. Herein, we performed a comprehensive meta-analysis of publicly available and newly generated single-cell, single-nucleus, and spatial transcriptomic results from human subcutaneous, omental, and perivascular WAT. Our high-resolution map is built on data from ten studies and allowed us to robustly identify >60 subpopulations of adipocytes, fibroblast and adipogenic progenitors, vascular, and immune cells. Using these results, we deconvolved spatial and bulk transcriptomic data from nine additional cohorts to provide spatial and clinical dimensions to the map. This identified cell-cell interactions as well as relationships between specific cell subtypes and insulin resistance, dyslipidemia, adipocyte volume, and lipolysis upon long-term weight changes. Altogether, our meta-map provides a rich resource defining the cellular and microarchitectural landscape of human WAT and describes the associations between specific cell types and metabolic states.
Collapse
|
20
|
Andersson DP, Kerr AG, Dahlman I, Rydén M, Arner P. Relationship Between a Sedentary Lifestyle and Adipose Insulin Resistance. Diabetes 2023; 72:316-325. [PMID: 36445942 DOI: 10.2337/db22-0612] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022]
Abstract
Sedentary people have insulin resistance in their skeletal muscle, but whether this also occurs in fat cells was unknown. Insulin inhibition of hydrolysis of triglycerides (antilipolysis) and stimulation of triglyceride formation (lipogenesis) were investigated in subcutaneous fat cells from 204 sedentary and 336 physically active subjects. Insulin responsiveness (maximum hormone effect) and sensitivity (half-maximal effective concentration) were determined. In 69 women, hyperinsulinemia-induced circulating fatty acid levels were measured. In 128 women, adipose gene expression was analyzed. Responsiveness of insulin for antilipolysis (60% inhibition) and lipogenesis (twofold stimulation) were similar between sedentary and active subjects. Sensitivity for both measures decreased ˜10-fold in sedentary subjects (P < 0.01). However, upon multiple regression analysis, only the association between antilipolysis sensitivity and physical activity remained significant when adjusting for BMI, age, sex, waist-to-hip ratio, fat-cell size, and cardiometabolic disorders. Fatty acid levels decreased following hyperinsulinemia but remained higher in sedentary compared with active women (P = 0.01). mRNA expression of insulin receptor and its substrates 1 and 2 was decreased in sedentary subjects. In conclusion, while the maximum effect is preserved, sensitivity to insulin's antilipolytic effect in subcutaneous fat cells is selectively lower in sedentary subjects.
Collapse
Affiliation(s)
- Daniel P Andersson
- Department of Medicine, Karolinska Institutet at Karolinska Hospital-Huddinge, Stockholm, Sweden
| | - Alastair G Kerr
- Department of Medicine, Karolinska Institutet at Karolinska Hospital-Huddinge, Stockholm, Sweden
| | - Ingrid Dahlman
- Department of Clinical Science and Education, Karolinska Institutet Södersjukhuset, Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine, Karolinska Institutet at Karolinska Hospital-Huddinge, Stockholm, Sweden
| | - Peter Arner
- Department of Medicine, Karolinska Institutet at Karolinska Hospital-Huddinge, Stockholm, Sweden
| |
Collapse
|
21
|
Cruz-García EM, Frigolet ME, Canizales-Quinteros S, Gutiérrez-Aguilar R. Differential Gene Expression of Subcutaneous Adipose Tissue among Lean, Obese, and after RYGB (Different Timepoints): Systematic Review and Analysis. Nutrients 2022; 14:nu14224925. [PMID: 36432612 PMCID: PMC9693162 DOI: 10.3390/nu14224925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022] Open
Abstract
The main roles of adipose tissue include triglycerides storage and adipokine secretion, which regulate energy balance and inflammation status. In obesity, adipocyte dysfunction leads to proinflammatory cytokine production and insulin resistance. Bariatric surgery is the most effective treatment for obesity, the gold-standard technique being Roux-en-Y gastric bypass (RYGB). Since metabolic improvements after RYGB are clear, a better understanding of adipose tissue molecular modifications could be derived from this study. Thus, the aim of this systematic review was to find differentially expressed genes in subcutaneous adipose tissue of lean, obese and post-RYGB (distinct timepoints). To address this objective, publications from 2015-2022 reporting gene expression (candidate genes or transcriptomic approach) of subcutaneous adipose tissue from lean and obese individuals before and after RGYB were searched in PubMed, Elsevier, and Springer Link. Excluded publications were reviews, studies analyzing serum, other types of tissues, or bariatric procedures. A risk-of-bias summary was created for each paper using Robvis, to finally include 17 studies. Differentially expressed genes in post-RYGB vs. obese and lean vs. obese were obtained and the intersection among these groups was used for analysis and gene classification by metabolic pathway. Results showed that the lean state as well as the post-RYGB is similar in terms of increased expression of insulin-sensitizing molecules, inducing lipogenesis over lipolysis and downregulating leukocyte activation, cytokine production and other factors that promote inflammation. Thus, massive weight loss and metabolic improvements after RYGB are accompanied by gene expression modifications reverting the "adipocyte dysfunction" phenomenon observed in obesity conditions.
Collapse
Affiliation(s)
- Elena Marisol Cruz-García
- Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez”, Mexico City 06720, Mexico
| | - María E. Frigolet
- Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez”, Mexico City 06720, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genόmica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genόmica (INMEGEN), Mexico City 14610, Mexico
| | - Ruth Gutiérrez-Aguilar
- Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez”, Mexico City 06720, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
- Correspondence: ; Tel.: +52-5552289917 (ext. 4509)
| |
Collapse
|
22
|
Bouchard-Mercier A, de Toro-Martín J, Nadeau M, Lescelleur O, Lebel S, Richard D, Biertho L, Tchernof A, Vohl MC. Molecular remodeling of adipose tissue is associated with metabolic recovery after weight loss surgery. J Transl Med 2022; 20:283. [PMID: 35739539 PMCID: PMC9219157 DOI: 10.1186/s12967-022-03485-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/13/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Bariatric surgery is an effective therapy for individuals with severe obesity to achieve sustainable weight loss and to reduce comorbidities. Examining the molecular signature of subcutaneous adipose tissue (SAT) following different types of bariatric surgery may help in gaining further insight into their distinct metabolic impact. RESULTS Subjects undergoing biliopancreatic diversion with duodenal switch (BPD-DS) showed a significantly higher percentage of total weight loss than those undergoing gastric bypass or sleeve gastrectomy (RYGB + SG) (41.7 ± 4.6 vs 28.2 ± 6.8%; p = 0.00005). Individuals losing more weight were also significantly more prone to achieve both type 2 diabetes and dyslipidemia remission (OR = 0.75; 95%CI = 0.51-0.91; p = 0.03). Whole transcriptome and methylome profiling showed that bariatric surgery induced a profound molecular remodeling of SAT at 12 months postoperative, mainly through gene down-regulation and hypermethylation. The extent of changes observed was greater following BPD-DS, with 61.1% and 49.8% of up- and down-regulated genes, as well as 85.7% and 70.4% of hyper- and hypomethylated genes being exclusive to this procedure, and mostly associated with a marked decrease of immune and inflammatory responses. Weight loss was strongly associated with genes being simultaneously differentially expressed and methylated in BPD-DS, with the strongest association being observed for GPD1L (r2 = 0.83; p = 1.4 × 10-6). CONCLUSIONS Present findings point to the greater SAT molecular remodeling following BPD-DS as potentially linked with higher metabolic remission rates. These results will contribute to a better understanding of the metabolic pathways involved in the response to bariatric surgery and will eventually lead to the development of gene targets for the treatment of obesity. Trial registration ClinicalTrials.gov NCT02390973.
Collapse
Affiliation(s)
- Annie Bouchard-Mercier
- School of Nutrition and Centre Nutrition, Santé et Société (NUTRISS)-Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Pavillon des Services (suite 2729K), 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada
| | - Juan de Toro-Martín
- School of Nutrition and Centre Nutrition, Santé et Société (NUTRISS)-Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Pavillon des Services (suite 2729K), 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada
| | - Mélanie Nadeau
- Centre de recherche de l’institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), 2725 chemin Sainte-Foy, Quebec City, QC G1V 4G5 Canada
| | - Odette Lescelleur
- Centre de recherche de l’institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), 2725 chemin Sainte-Foy, Quebec City, QC G1V 4G5 Canada
| | - Stéfane Lebel
- Centre de recherche de l’institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), 2725 chemin Sainte-Foy, Quebec City, QC G1V 4G5 Canada
| | - Denis Richard
- Centre de recherche de l’institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), 2725 chemin Sainte-Foy, Quebec City, QC G1V 4G5 Canada
| | - Laurent Biertho
- Centre de recherche de l’institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), 2725 chemin Sainte-Foy, Quebec City, QC G1V 4G5 Canada
| | - André Tchernof
- Centre de recherche de l’institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), 2725 chemin Sainte-Foy, Quebec City, QC G1V 4G5 Canada
| | - Marie-Claude Vohl
- School of Nutrition and Centre Nutrition, Santé et Société (NUTRISS)-Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Pavillon des Services (suite 2729K), 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada
| |
Collapse
|
23
|
Kerr AG, Wang Z, Wang N, Kwok KHM, Jalkanen J, Ludzki A, Lecoutre S, Langin D, Bergo MO, Dahlman I, Mim C, Arner P, Gao H. The long noncoding RNA ADIPINT regulates human adipocyte metabolism via pyruvate carboxylase. Nat Commun 2022; 13:2958. [PMID: 35618718 PMCID: PMC9135762 DOI: 10.1038/s41467-022-30620-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/04/2022] [Indexed: 12/27/2022] Open
Abstract
The pleiotropic function of long noncoding RNAs is well recognized, but their direct role in governing metabolic homeostasis is less understood. Here, we describe a human adipocyte-specific lncRNA, ADIPINT, that regulates pyruvate carboxylase, a pivotal enzyme in energy metabolism. We developed an approach, Targeted RNA-protein identification using Orthogonal Organic Phase Separation, which identifies that ADIPINT binds to pyruvate carboxylase and validated the interaction with electron microscopy. ADIPINT knockdown alters the interactome and decreases the abundance and enzymatic activity of pyruvate carboxylase in the mitochondria. Reduced ADIPINT or pyruvate carboxylase expression lowers adipocyte lipid synthesis, breakdown, and lipid content. In human white adipose tissue, ADIPINT expression is increased in obesity and linked to fat cell size, adipose insulin resistance, and pyruvate carboxylase activity. Thus, we identify ADIPINT as a regulator of lipid metabolism in human white adipocytes, which at least in part is mediated through its interaction with pyruvate carboxylase. Adipocyte-expressed long non-coding RNAs (lncRNAs) have been shown to regulate the transcription of genes involved in lipid metabolism. Here the authors describe a human adipocyte-specific lncRNA, ADIPINT, which regulates lipid metabolism in white adipocytes in part through its interaction with the metabolic enzyme pyruvate carboxylase.
Collapse
Affiliation(s)
- Alastair G Kerr
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden
| | - Zuoneng Wang
- Department of Biomedical Engineering and Health Systems, Royal Technical Institute, Stockholm, Sweden
| | - Na Wang
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden
| | - Kelvin H M Kwok
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 141 83, Sweden
| | - Jutta Jalkanen
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden
| | - Alison Ludzki
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden
| | - Simon Lecoutre
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (Inserm), Université de Toulouse, UPS, UMR1297, Toulouse, France.,Department of Biochemistry, Toulouse University Hospitals, CHU Toulouse, Toulouse, France
| | - Martin O Bergo
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 141 83, Sweden
| | - Ingrid Dahlman
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden
| | - Carsten Mim
- Department of Biomedical Engineering and Health Systems, Royal Technical Institute, Stockholm, Sweden
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden.
| | - Hui Gao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 141 83, Sweden.
| |
Collapse
|
24
|
LONG-TERM IMPROVEMENT OF ADIPOCYTE INSULIN ACTION DURING BODY WEIGHT RELAPSE AFTER BARIATRIC SURGERY: A LONGITUDINAL COHORT STUDY. Surg Obes Relat Dis 2022; 18:683-692. [DOI: 10.1016/j.soard.2022.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/19/2022]
|
25
|
Lo T, Haridas RS, Rudge EJM, Chase RP, Heshmati K, Lucey EM, Weigl AM, Iyoha-Bello OJ, Ituah CO, Benjamin EJ, McNutt SW, Sathe L, Farnam L, Raby BA, Tavakkoli A, Croteau-Chonka DC, Sheu EG. Early Changes in Immune Cell Count, Metabolism, and Function Following Sleeve Gastrectomy: A Prospective Human Study. J Clin Endocrinol Metab 2022; 107:e619-e630. [PMID: 34514501 PMCID: PMC8764221 DOI: 10.1210/clinem/dgab673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To characterize longitudinal changes in blood biomarkers, leukocyte composition, and gene expression following laparoscopic sleeve gastrectomy (LSG). BACKGROUND LSG is an effective treatment for obesity, leading to sustainable weight loss and improvements in obesity-related comorbidities and inflammatory profiles. However, the effects of LSG on immune function and metabolism remain uncertain. METHODS Prospective data were collected from 23 enrolled human subjects from a single institution. Parameters of weight, comorbidities, and trends in blood biomarkers and leukocyte subsets were observed from preoperative baseline to 1 year postsurgery in 3-month follow-up intervals. RNA sequencing was performed on pairs of whole blood samples from the first 6 subjects of the study (baseline and 3 months postsurgery) to identify genome-wide gene expression changes associated with undergoing LSG. RESULTS LSG led to a significant decrease in mean total body weight loss (18.1%) at 3 months and among diabetic subjects a reduction in hemoglobin A1c. Improvements in clinical inflammatory and hormonal biomarkers were demonstrated as early as 3 months after LSG. A reduction in neutrophil-lymphocyte ratio was observed, driven by a reduction in absolute neutrophil counts. Gene set enrichment analyses of differential whole blood gene expression demonstrated that after 3 months LSG induced transcriptomic changes not only in inflammatory cytokine pathways but also in several key metabolic pathways related to energy metabolism. CONCLUSIONS LSG induces significant changes in the composition and metabolism of immune cells as early as 3 months postoperatively. Further evaluation is required of bariatric surgery's effects on immunometabolism and the consequences for host defense and metabolic disease.
Collapse
Affiliation(s)
- Tammy Lo
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Renuka S Haridas
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Eleanor J M Rudge
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert P Chase
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Keyvan Heshmati
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth M Lucey
- Center for Clinical Investigation, Brigham and Women’s Hospital, Boston, MA, USA
| | - Alison M Weigl
- Center for Clinical Investigation, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Chelsea O Ituah
- Center for Clinical Investigation, Brigham and Women’s Hospital, Boston, MA, USA
| | - Emily J Benjamin
- Center for Clinical Investigation, Brigham and Women’s Hospital, Boston, MA, USA
| | - Seth W McNutt
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Leena Sathe
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Leanna Farnam
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin A Raby
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Ali Tavakkoli
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Damien C Croteau-Chonka
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric G Sheu
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Hjortebjerg R, Bojsen-Møller KN, Søeby M, Oxvig C, Madsbad S, Frystyk J. Metabolic improvement after gastric bypass correlates with changes in IGF-regulatory proteins stanniocalcin-2 and IGFBP-4. Metabolism 2021; 124:154886. [PMID: 34506805 DOI: 10.1016/j.metabol.2021.154886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/13/2021] [Accepted: 09/01/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Pregnancy-associated plasma protein-A (PAPP-A) is an enzyme that increases IGF-activity through cleavage of IGF-binding proteins (IGFBPs), primarily IGFBP-4, whereby bound IGF-I becomes released as a free molecule. The enzymatic activity of PAPP-A is irreversibly suppressed by the glycoprotein stanniocalcin-2 (STC2). Pre-clinical and clinical studies suggest that the STC2 - PAPP-A - IGFBP-4 axis is important in controlling local IGF-action. STC2, PAPP-A and IGFBP-4 are expressed in adipose tissue, and as bariatric surgery markedly reduces the amount of fat, we found it relevant to study the impact of Roux-en-Y gastric bypass (RYGB) on circulating concentrations of this IGF-regulatory network. METHODS Analysis of fasting blood samples from 20 obese subjects, hereof 10 with preoperative type 2 diabetes, investigated before RYGB, and 1 week, 3 months and 12 months post-surgery. Members of the IGF-system were analyzed by immunoassays, bioactive IGF by cell-based IGF-I receptor activation assay. We compared changes in IGF-system components with changes in fasting plasma insulin and glucose, and HbA1c. RESULTS PAPP-A remained unchanged, but STC2 decreased following RYGB (p < 0.05). The PAPP-A substrate IGFBP-4 declined (p < 0.01), whereas levels of PAPP-A specific IGFBP-4 fragments increased (p < 0.05), indicating an increased PAPP-A enzymatic activity post-RYGB. Further, the reduction in intact IGFBP-4 correlated with increased levels of bioactive IGF (p < 0.05). In multivariable regression analyses, an improved glucose metabolism correlated with reductions in STC2 and IGFBP-4, and with increases in bioactive IGF and IGF-I (p < 0.05). CONCLUSION After 12 months, RYGB caused reduced serum concentrations of intact IGFBP-4 and STC2, whereas serum PAPP-A remained at pre-operative levels. However, concentrations of PAPP-A generated IGFBP-4 fragments increased, pointing to an overall increased PAPP-A enzymatic activity following RYGB. Notably, reductions in intact IGFBP-4 and STC2 associated with improvements in glucose metabolism. Therefore, we propose that STC2 and IGFBP-4 are involved in the metabolic improvement that follows RYGB.
Collapse
Affiliation(s)
- Rikke Hjortebjerg
- Endocrine Research Unit, Department of Endocrinology, Odense University Hospital & Department of Clinical Research, Faculty of Health, University of Southern Denmark, Odense, Denmark; Steno Diabetes Center Odense, Odense University Hospital & Department of Clinical Research, Faculty of Health, University of Southern Denmark, Denmark; Medical Research Laboratory, Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | | | - Mette Søeby
- Medical Research Laboratory, Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
| | - Jan Frystyk
- Endocrine Research Unit, Department of Endocrinology, Odense University Hospital & Department of Clinical Research, Faculty of Health, University of Southern Denmark, Odense, Denmark; Medical Research Laboratory, Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
27
|
van der Kolk BW, Muniandy M, Kaminska D, Alvarez M, Ko A, Miao Z, Valsesia A, Langin D, Vaittinen M, Pääkkönen M, Jokinen R, Kaye S, Heinonen S, Virtanen KA, Andersson DP, Männistö V, Saris WH, Astrup A, Rydén M, Blaak EE, Pajukanta P, Pihlajamäki J, Pietiläinen KH. Differential Mitochondrial Gene Expression in Adipose Tissue Following Weight Loss Induced by Diet or Bariatric Surgery. J Clin Endocrinol Metab 2021; 106:1312-1324. [PMID: 33560372 PMCID: PMC8063261 DOI: 10.1210/clinem/dgab072] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 12/13/2022]
Abstract
CONTEXT Mitochondria are essential for cellular energy homeostasis, yet their role in subcutaneous adipose tissue (SAT) during different types of weight-loss interventions remains unknown. OBJECTIVE To investigate how SAT mitochondria change following diet-induced and bariatric surgery-induced weight-loss interventions in 4 independent weight-loss studies. METHODS The DiOGenes study is a European multicenter dietary intervention with an 8-week low caloric diet (LCD; 800 kcal/d; n = 261) and 6-month weight-maintenance (n = 121) period. The Kuopio Obesity Surgery study (KOBS) is a Roux-en-Y gastric bypass (RYGB) surgery study (n = 172) with a 1-year follow-up. We associated weight-loss percentage with global and 2210 mitochondria-related RNA transcripts in linear regression analysis adjusted for age and sex. We repeated these analyses in 2 studies. The Finnish CRYO study has a 6-week LCD (800-1000 kcal/d; n = 19) and a 10.5-month follow-up. The Swedish DEOSH study is a RYGB surgery study with a 2-year (n = 49) and 5-year (n = 37) follow-up. RESULTS Diet-induced weight loss led to a significant transcriptional downregulation of oxidative phosphorylation (DiOGenes; ingenuity pathway analysis [IPA] z-scores: -8.7 following LCD, -4.4 following weight maintenance; CRYO: IPA z-score: -5.6, all P < 0.001), while upregulation followed surgery-induced weight loss (KOBS: IPA z-score: 1.8, P < 0.001; in DEOSH: IPA z-scores: 4.0 following 2 years, 0.0 following 5 years). We confirmed an upregulated oxidative phosphorylation at the proteomics level following surgery (IPA z-score: 3.2, P < 0.001). CONCLUSIONS Differentially regulated SAT mitochondria-related gene expressions suggest qualitative alterations between weight-loss interventions, providing insights into the potential molecular mechanistic targets for weight-loss success.
Collapse
Affiliation(s)
- Birgitta W van der Kolk
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Maheswary Muniandy
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Dorota Kaminska
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Marcus Alvarez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Arthur Ko
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Zong Miao
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA
| | - Armand Valsesia
- Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Dominique Langin
- Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- Department of Biochemistry, Toulouse University Hospitals, France
| | - Maija Vaittinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Mirva Pääkkönen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Finland
| | - Riikka Jokinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Sanna Kaye
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Kirsi A Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
- Turku PET Center, Turku University Hospital, Turku, Finland
| | - Daniel P Andersson
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Ville Männistö
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Wim H Saris
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, MD Maastricht, The Netherlands
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, MD Maastricht, The Netherlands
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA
- Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
- Obesity Center, Abdominal center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
Mejhert N, Rydén M. Novel aspects on the role of white adipose tissue in type 2 diabetes. Curr Opin Pharmacol 2020; 55:47-52. [PMID: 33120170 DOI: 10.1016/j.coph.2020.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 01/14/2023]
Abstract
White adipose tissue (WAT) is a highly dynamic organ that can vary considerably in mass depending on energy balance. Data from recent cross-sectional and prospective clinical studies have revealed a set of mechanisms that link WAT dysfunction to type 2 diabetes. This review focuses on three of the most important pathophysiological processes that distinguish WAT in the insulin resistant state: regional WAT distribution, adipocyte hypertrophy and lipid turnover. Together, these disturbances attenuate the lipid storage capacity of WAT leading to ectopic fat deposition in peripheral tissues such as skeletal muscle, liver and vessels ultimately leading to type 2 diabetes and cardiovascular complications. The possible approaches to therapeutically target dysfunctional WAT are also discussed.
Collapse
Affiliation(s)
- Niklas Mejhert
- Department of Medicine (H7), Karolinska Institutet, C2-94, Karolinska University Hospital, 141 86, Stockholm, Sweden.
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, C2-94, Karolinska University Hospital, 141 86, Stockholm, Sweden.
| |
Collapse
|
29
|
Lu Z, Li Y, Song J. Characterization and Treatment of Inflammation and Insulin Resistance in Obese Adipose Tissue. Diabetes Metab Syndr Obes 2020; 13:3449-3460. [PMID: 33061505 PMCID: PMC7535138 DOI: 10.2147/dmso.s271509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is the largest energy storage and protection organ. It is distributed subcutaneously and around the internal organs. It regulates metabolism by storing and releasing fatty acids and secreting adipokines. Excessive nutritional intake results in adipocyte hypertrophy and proliferation, leading to local hypoxia in adipose tissue and changes in the release of adipokines. These lead to recruit of more immune cells into adipose tissue and release of inflammatory signaling factors. Excess free fatty acids and inflammatory factors interfere with intracellular insulin signaling. In this review, we summarize the characteristics of obese adipose tissue and analyze how its inflammation causes insulin resistance. We further discuss the latest clinical research progress on the control of insulin resistance and inflammation resulting from obesity through anti-inflammatory therapy and bariatric surgery. Our review shows that targeted anti-inflammatory therapy is of great significance for obese patients with insulin resistance.
Collapse
Affiliation(s)
- Zhenhua Lu
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yao Li
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Jinghai Song
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Correspondence: Jinghai Song Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing100730, People’s Republic of ChinaTel +8619800315020 Email
| |
Collapse
|