1
|
Rostoker G, Rouanet S, Merzoug M, Chakaroun H, Griuncelli M, Loridon C, Boulahia G, Gagnon L. Serological Correlate of Protection Established by Neutralizing Antibodies Differs Among Dialysis Patients with SARS-CoV-2 Variants of Concern. Vaccines (Basel) 2025; 13:518. [PMID: 40432127 PMCID: PMC12115770 DOI: 10.3390/vaccines13050518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/07/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Background: The 2019 coronavirus disease (COVID-19) pandemic had a severe impact on frail, end-stage kidney disease (ESKD) patients, either on dialysis or transplanted, with a high mortality rate in the early waves. Vaccination against SARS-CoV-2 with mRNA vaccines has led to reduced hospitalization and mortality rates in the general population and ESKD patients. Neutralizing antibodies (NAbs) are a valuable correlate of protection after vaccination, and IgG anti-spike antibodies are considered a surrogate marker of protection. Methods: This study investigated the correlates of protection brought by NAb and anti-spike IgG antibodies against SARS-CoV-2 wild-type Wuhan strain and variants of concern in a cohort of 128 French patients on dialysis after vaccination with the BNT162b2 mRNA vaccine. The correlate was assessed using Receiver Operating Characteristic curves. Results: The level of protection for IgG anti-spike antibodies was set at 917 BAU/mL for the original Wuhan strain and 980 BAU/mL and 1450 BAU/mL, respectively, for the Delta and Omicron BA.1 variants. Conclusions: The level of protection can be regularly monitored by measuring IgG anti-spike antibody concentrations to allow tailored boosters of SARS-CoV-2 vaccination in this frail and immunocompromised ESKD population.
Collapse
Affiliation(s)
- Guy Rostoker
- Department of Nephrology and Dialysis, Hôpital Privé Claude Galien-Ramsay Santé, 91480 Quincy-sous-Sénart, France (M.G.)
- Collège de Médecine des Hôpitaux de Paris, 75610 Paris, France
| | | | - Myriam Merzoug
- Department of Nephrology and Dialysis, Hôpital Privé Claude Galien-Ramsay Santé, 91480 Quincy-sous-Sénart, France (M.G.)
| | - Hiba Chakaroun
- Infection Prevention and Control Registered Nurse, Hôpital Privé Claude Galien-Ramsay Santé, 91480 Quincy-sous-Sénart, France;
| | - Mireille Griuncelli
- Department of Nephrology and Dialysis, Hôpital Privé Claude Galien-Ramsay Santé, 91480 Quincy-sous-Sénart, France (M.G.)
| | - Christelle Loridon
- Department of Nephrology and Dialysis, Hôpital Privé Claude Galien-Ramsay Santé, 91480 Quincy-sous-Sénart, France (M.G.)
| | - Ghada Boulahia
- Department of Nephrology and Dialysis, Hôpital Privé Claude Galien-Ramsay Santé, 91480 Quincy-sous-Sénart, France (M.G.)
| | - Luc Gagnon
- IQVIA Laboratories Vaccines, Laval, QC H7V 3S8, Canada;
| |
Collapse
|
2
|
Mink S, Wilhelm F, Cadamuro J, Reimann P, Fraunberger P. Anti-SARS-CoV-2 Antibodies in Long-COVID-Markers of Protection or Elevated Risk? A Systematic Review. Rev Med Virol 2025; 35:e70027. [PMID: 39993991 DOI: 10.1002/rmv.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
Long-COVID affects a significant number of COVID-19 survivors, profoundly impacting daily life and work. Although research suggests a potential link between antibody levels and long-COVID risk, findings remain inconclusive. Understanding antibody dynamics could support the identification of patients at risk, improve long-COVID diagnosis, and guide protective strategies such as vaccination. Despite growing evidence, no systematic review has yet evaluated the current literature on this topic. We therefore aimed to synthesise and evaluate existing evidence on the association between anti-SARS-CoV-2 antibody titres and long-COVID, with the goal of clarifying their potential role in predicting long-COVID risk, guiding patient management, and informing future research directions. Studies published in PubMed/Medline databases between January 2020 and October 2024 were included without language restrictions. Studies on body fluids other than serum/blood were excluded. Study selection and quality assessment was conducted independently by two researchers. After screening 949 studies, 58 studies encompassing 53,739 individuals, and 7812 long-COVID patients, were included. Evidence was highly heterogenous but most studies reported an association between anti-SARS-CoV-2-spike antibodies and long-COVID, although the nature of the association appeared to be dependent on time from acute infection. Low anti-SARS-CoV-2-spike antibodies during acute COVID-19 were associated with increased risk of long-COVID. The association between low anti-SARS-CoV-2-spike antibodies during acute COVID-19 and long-COVID suggests that maintaining sufficiently high antibody levels may be protective. However, the current evidence level is low and further studies with sufficient power are required to confirm this association and to potentially determine protective cutoffs.
Collapse
Affiliation(s)
- Sylvia Mink
- Central Medical Laboratories, Feldkirch, Austria
- Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | | | - Janne Cadamuro
- Department of Laboratory Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Patrick Reimann
- Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
- Department of Internal Medicine, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Peter Fraunberger
- Central Medical Laboratories, Feldkirch, Austria
- Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| |
Collapse
|
3
|
Jin Y, Yang F, Rank CM, Letovsky S, Ramge P, Jochum S. SARS-CoV-2 SPIKE Antibody Levels can Indicate Immuno-Resilience to Re-infection: a Real-World Study. Infect Dis Ther 2025; 14:229-243. [PMID: 39724513 PMCID: PMC11782789 DOI: 10.1007/s40121-024-01090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
INTRODUCTION The use of antibody titers against SARS-CoV-2, as a method of estimating subsequent infection following infection or vaccination, is unclear. Here, we investigate whether specific levels of antibodies, as markers of adaptive immunity, can serve to estimate the risk of symptomatic SARS-CoV-2 (re-) infection. METHODS In this real-world study, laboratory data from individuals tested for SARS-CoV-2 antibodies under routine clinical conditions were linked through tokenization to a United States medical insurance claims database to determine the risk of symptomatic/severe SARS-CoV-2 infection outcomes. Antibody titer levels were determined using the Elecsys® Anti-SARS-CoV-2 S assay. Study outcomes included the first symptomatic SARS-CoV-2 infection (per ICD-10 diagnostic codes, occurring ≥ 7 days post-antibody titer test), and severe SARS-CoV-2 infection, characterized by adverse outcomes including hospitalization, intensive care unit admission, intubation, mechanical ventilation, or death within 30 days of infection. All outcomes were assessed for 12 months following antibody measurement. Hazard ratios of subsequent symptomatic and severe infections were estimated using Cox regression with inverse probability weighting. RESULTS Of 268,844 individuals with antibody data (April 2021-June 2022), those with levels ≥ 0.8 to < 1,000 U/mL had a 42% reduced risk of symptomatic infection within 12 months, compared with < 0.8 U/mL (HR = 0.58, 95% CI [0.55, 0.61]). The risk decreased by 53% (HR = 0.47, 95% CI [0.45, 0.49]) with ≥ 1000 to < 2500 U/mL and by 62% (HR = 0.38 [0.36, 0.39]) for ≥ 2500 U/mL. Risk of severe SARS-CoV-2 outcomes was also reduced. Subgroup analyses showed a consistent association between antibody levels and infection risk, by immune status and age. Clinically meaningful thresholds of antibody titers varied between Delta and Omicron infections. CONCLUSION Higher antibody titer levels indicated reduced risk of developing symptomatic or severe COVID-19. Titers of ≥ 2500 U/mL indicated a 62-87% reduced infection risk. The quantitative determination of antibody titers allowed scaling of the correlate of risk to new variants.
Collapse
Affiliation(s)
- Yue Jin
- Roche Information Solutions, Roche Molecular Systems Inc, 2881 Scott Blvd, Santa Clara, CA, 95050, USA.
| | - Fei Yang
- Roche Information Solutions, F. Hoffman-La Roche Ltd, Basel, Switzerland
| | | | | | - Peter Ramge
- Roche Diagnostics Solutions, Roche Diagnostics International Ltd, Rotkreuz, Switzerland
| | - Simon Jochum
- Roche Diagnostics GmbH, Nonnenwald 2, 81377, Penzberg, Germany.
| |
Collapse
|
4
|
Mink S, Saely CH, Leiherer A, Reimann P, Frick M, Cadamuro J, Hitzl W, Drexel H, Fraunberger P. Antibody levels versus vaccination status in the outcome of older adults with COVID-19. JCI Insight 2024; 9:e183913. [PMID: 39435658 PMCID: PMC11529978 DOI: 10.1172/jci.insight.183913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/23/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUNDDespite the currently prevailing, milder Omicron variant of COVID-19, older adults remain at elevated risk of hospital admission, critical illness, and death. Loss of efficacy of the immune system, including reduced strength, quality, and durability of antibody responses, may render generalized recommendations on booster vaccinations inadequate. There is a lack of data on the efficacy of antibody levels in older adults and on the utility of vaccination status versus antibody levels as a correlate of protection. It is further unclear whether antibody levels may be used to guide the timing of booster vaccinations in older adults.METHODSWe conducted a prospective multicenter cohort study comprising hospitalized patients with COVID-19. Anti-SARS-CoV-2 spike antibodies were measured on hospital admission. The primary endpoint was in-hospital mortality. Patients were stratified by age, antibody levels, and vaccination status. Multiple logistic regression and Cox regression analyses were conducted.RESULTSIn total, 785 older patients (≥60 years of age [a]) and 367 controls (<60a) were included. After adjusting for confounders, risk of mortality, ICU admission, endotracheal intubation, and oxygen administration was 4.9, 2.6, 6.5, and 2.3 times higher, respectively, if antibody levels were < 1,200 BAU/mL (aOR, 4.92 [95%CI, 2.59-9.34], P < 0.0001; aOR, 2.64 [95%CI, 1.52-4.62], P = 0.0006; aOR, 6.50 [95%CI, 1.48-28.47], P = 0.013; aOR, 2.34 [95%CI, 1.60-3.343], P < 0.0001). Older adults infected with the Omicron variant were approximately 6 times more likely to die if antibody levels were < 1,200 BAU/mL (aOR, 6.3 [95% CI, 2.43-16.40], P = 0.0002).CONCLUSIONAntibody levels were a stronger predictor of in-hospital mortality than vaccination status. Monitoring antibody levels may constitute a better and more direct approach for safeguarding older adults from adverse COVID-19 outcomes.
Collapse
Affiliation(s)
- Sylvia Mink
- Central Medical Laboratories, Feldkirch, Austria
- Private University in the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
| | - Christoph H. Saely
- Private University in the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
- VIVIT Institute and
| | - Andreas Leiherer
- Central Medical Laboratories, Feldkirch, Austria
- VIVIT Institute and
| | - Patrick Reimann
- Private University in the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
- Department of Internal Medicine, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Matthias Frick
- Department of Internal Medicine, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Janne Cadamuro
- Department of Laboratory Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Wolfgang Hitzl
- Department of Research and Innovation, Team Biostatistics and Publication of Clinical Trials, Paracelsus, Medical University, Salzburg, Austria
| | - Heinz Drexel
- Private University in the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
- VIVIT Institute and
- Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Peter Fraunberger
- Central Medical Laboratories, Feldkirch, Austria
- Private University in the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
| |
Collapse
|
5
|
Mink S, Drexel H, Leiherer A, Cadamuro J, Hitzl W, Frick M, Reimann P, Saely CH, Fraunberger P. Anti-SARS-CoV-2 Antibodies versus Vaccination Status in CAD Patients with COVID-19: A Prospective, Propensity Score-Matched Cohort Study. Vaccines (Basel) 2024; 12:855. [PMID: 39203980 PMCID: PMC11359237 DOI: 10.3390/vaccines12080855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
OBJECTIVES Despite the currently prevailing, milder Omicron variant, coronary artery disease (CAD) patients constitute a major risk group in COVID-19, exhibiting 2.6 times the mortality risk of non-CAD patients and representing over 22% of non-survivors. No data are currently available on the efficacy of antibody levels in CAD patients, nor on the relevance of vaccination status versus antibody levels for predicting severe courses and COVID-19 mortality. Nor are there definitive indicators to assess if individual CAD patients are sufficiently protected from adverse outcomes or to determine the necessity of booster vaccinations. METHODS A prospective, propensity-score-matched, multicenter cohort study comprising 249 CAD patients and 903 controls was conducted. Anti-SARS-CoV-2-spike antibodies were measured on hospital admission. Prespecified endpoints were in-hospital mortality, intensive care, and oxygen administration. RESULTS After adjustment for potential confounders, CAD patients exhibited 4.6 and 6.1-times higher mortality risks if antibody levels were <1200 BAU/mL and <182 BAU/mL, respectively, compared to CAD patients above these thresholds (aOR 4.598, 95%CI 2.426-8.714, p < 0.001; 6.147, 95%CI 2.529-14.941, p < 0.001). Risk of intensive care was 3.7 and 4.0 (p = 0.003; p < 0.001), and risk of oxygen administration 2.6 and 2.4 times higher below these thresholds (p = 0.004; p = 0.010). Vaccination status was a weaker predictor of all three outcomes than both antibody thresholds. CONCLUSION Antibody levels are a stronger predictor of outcome in CAD patients with COVID-19 than vaccination status, with 1200 BAU/mL being the more conservative threshold. Measuring anti-SARS-CoV-2 antibodies in CAD patients may ensure enhanced protection by providing timely booster vaccinations and identifying high-risk CAD patients at hospital admission.
Collapse
Affiliation(s)
- Sylvia Mink
- Central Medical Laboratories, 6800 Feldkirch, Austria
- Private University in the Principality of Liechtenstein, 9495 Triesen, Liechtenstein
| | - Heinz Drexel
- Private University in the Principality of Liechtenstein, 9495 Triesen, Liechtenstein
- VIVIT Institute, Academic Teaching Hospital Feldkirch, 6800 Feldkirch, Austria
- Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Andreas Leiherer
- Central Medical Laboratories, 6800 Feldkirch, Austria
- VIVIT Institute, Academic Teaching Hospital Feldkirch, 6800 Feldkirch, Austria
| | - Janne Cadamuro
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Wolfgang Hitzl
- Department of Research and Innovation, Team Biostatistics and Publication of Clinical Trials, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Matthias Frick
- Department of Internal Medicine, Academic Teaching Hospital Feldkirch, 6800 Feldkirch, Austria
| | - Patrick Reimann
- Private University in the Principality of Liechtenstein, 9495 Triesen, Liechtenstein
- Department of Internal Medicine, Academic Teaching Hospital Feldkirch, 6800 Feldkirch, Austria
| | - Christoph H. Saely
- Private University in the Principality of Liechtenstein, 9495 Triesen, Liechtenstein
- VIVIT Institute, Academic Teaching Hospital Feldkirch, 6800 Feldkirch, Austria
| | - Peter Fraunberger
- Central Medical Laboratories, 6800 Feldkirch, Austria
- Private University in the Principality of Liechtenstein, 9495 Triesen, Liechtenstein
| |
Collapse
|
6
|
Ross KA, Kelly S, Phadke KS, Peroutka-Bigus N, Fasina O, Siddoway A, Mallapragada SK, Wannemuehler MJ, Bellaire BH, Narasimhan B. Next-generation nanovaccine induces durable immunity and protects against SARS-CoV-2. Acta Biomater 2024; 183:318-329. [PMID: 38844193 DOI: 10.1016/j.actbio.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
While first generation SARS-CoV-2 vaccines were effective in slowing the spread and severity of disease during the COVID-19 pandemic, there is a need for vaccines capable of inducing durable and broad immunity against emerging variants of concern. Nanoparticle-based vaccines (i.e., "nanovaccines") composed of polyanhydride nanoparticles and pentablock copolymer micelles have previously been shown to protect against respiratory pathogens, including influenza A virus, respiratory syncytial virus, and Yersinia pestis. In this work, a nanovaccine containing SARS-CoV-2 spike and nucleocapsid antigens was designed and optimized. The optimized nanovaccine induced long-lived systemic IgG antibody responses against wild-type SARS-CoV-2 virus. In addition, the nanovaccine induced antibody responses capable of neutralization and cross-reactivity to multiple SARS-CoV-2 variants (including B.1.1.529) and antigen-specific CD4+ and CD8+ T cell responses. Finally, the nanovaccine protected mice against a lethal SARS-CoV-2 challenge, setting the stage for advancing particle-based SARS-CoV-2 nanovaccines. STATEMENT OF SIGNIFICANCE: First-generation SARS-CoV-2 vaccines were effective in slowing the spread and limiting the severity of COVID-19. However, current vaccines target only one antigen of the virus (i.e., spike protein) and focus on the generation of neutralizing antibodies, which may be less effective against new, circulating strains. In this work, we demonstrated the ability of a novel nanovaccine platform, based on polyanhydride nanoparticles and pentablock copolymer micelles, to generate durable and broad immunity against SARS-CoV-2. These nanovaccines induced long-lasting (> 62 weeks) serum antibody responses which neutralized binding to ACE2 receptors and were cross-reactive to multiple SARS-CoV-2 variants. Additionally, mice immunized with the SARS-CoV-2 nanovaccine showed a significant increase of antigen-specific T cell responses in the draining lymph nodes and spleens. Together, these nanovaccine-induced immune responses contributed to the protection of mice against a lethal challenge of live SARS-CoV-2 virus, indicating that this nanovaccine platform is a promising next-generation SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Kathleen A Ross
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA
| | - Sean Kelly
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Kruttika S Phadke
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Nathan Peroutka-Bigus
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Olufemi Fasina
- Veterinary Pathology, Iowa State University, Ames, IA 50011, USA
| | - Alaric Siddoway
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Surya K Mallapragada
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Michael J Wannemuehler
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Bryan H Bellaire
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Balaji Narasimhan
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
7
|
Reimann P, Petzer V, Mündlein A, Hartmann B, Severgnini L, Winkler A, Lang T, Huynh M, Gasser K, Rüger J, Atzl M, Mink S, Fraunberger P, Schmidt S, Steiner N, Griesmacher A, Gunsilius E, Nachbaur D, Willenbacher W, Wolf D, Winder T, Benda MA. Efficacy and safety of tixagevimab/cilgavimab as passive immunisation against COVID-19 infections in patients with hematological malignancies. Ann Hematol 2024; 103:2123-2131. [PMID: 38436671 DOI: 10.1007/s00277-024-05671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
Monoclonal antibodies, as tixagevimab/cilgavimab, have been introduced as prophylaxis against COVID-19 infections in high-risk populations. However, data on efficacy are limited. This study investigates efficacy and tolerability of tixagevimab/cilgavimab in hematological patients under real-life conditions. Tixagevimab/cilgavimab was administered to 155 hematological patients (March-August 2022) at two Austrian centres. S/RBD-antibody assessments were performed before (T0), four weeks (T1), and six months (T2) after application. Side effects, the occurrence of COVID-19 infections, and the course of S/RBD-antibody titres were analysed retrospectively in relation to clinical variables. 155 hematological patients, who refused tixagevimab/cilgavimab, were included as a control group to compare the frequency of COVID-19 infections. Of all immunised patients (52.3% males; 91% triple vaccinated), 25.8% had a COVID-19 breakthrough infection (76% mild) compared to 43.9% in the control group. Patients with chronic lymphocytic leukaemia (CLL)/lymphoma were at highest risk of a COVID-19 infection (OR = 2.21; 95% CI 1.05-4.65; p = 0.037). After immunisation, a steep increase in median antibody levels (1193.4BAU/ml, IQR 0-2318.94) was observed in 67.8%, followed by a rapid decrease between T1 and T2 (465.95BAU/ml, IQR 0-1900.65.3) with the greatest declines in CLL/lymphoma (848.7BAU/ml, IQR 0-1949.6, p = 0.026). Side-effects occurred in 21.2% (CTCAE I/II). These real-world data indicate that S/RBD antibodies respond rapidly after passive immunisation in all hematological patients without safety concerns. Given the rapid decline in S/RBD antibodies, early booster immunisations should be considered for future scenarios in this vulnerable group.
Collapse
Affiliation(s)
- Patrick Reimann
- Department of Internal Medicine II, Academic Teaching Hospital Feldkirch, Carinagasse 47, 6800, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
| | - Verena Petzer
- Innsbruck University Hospital, Internal Medicine V: Haematology & Oncology, Innsbruck, Austria
| | - Axel Mündlein
- Molecular Biology Laboratory, Vorarlberg Institute for Vascular Investigation and Treatment, Dornbirn, Austria
| | - Bernd Hartmann
- Department of Internal Medicine II, Academic Teaching Hospital Feldkirch, Carinagasse 47, 6800, Feldkirch, Austria
| | - Luciano Severgnini
- Department of Internal Medicine II, Academic Teaching Hospital Feldkirch, Carinagasse 47, 6800, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
| | - Alex Winkler
- Department of Internal Medicine II, Academic Teaching Hospital Feldkirch, Carinagasse 47, 6800, Feldkirch, Austria
| | - Theresia Lang
- Department of Internal Medicine II, Academic Teaching Hospital Feldkirch, Carinagasse 47, 6800, Feldkirch, Austria
| | - Minh Huynh
- Department of Internal Medicine II, Academic Teaching Hospital Feldkirch, Carinagasse 47, 6800, Feldkirch, Austria
| | - Klaus Gasser
- Department of Internal Medicine II, Academic Teaching Hospital Feldkirch, Carinagasse 47, 6800, Feldkirch, Austria
| | - Julia Rüger
- Department of Internal Medicine II, Academic Teaching Hospital Feldkirch, Carinagasse 47, 6800, Feldkirch, Austria
| | - Michele Atzl
- Department of Internal Medicine II, Academic Teaching Hospital Feldkirch, Carinagasse 47, 6800, Feldkirch, Austria
| | - Sylvia Mink
- Private University of the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
- Medical Central Laboratories, Feldkirch, Austria
| | | | - Stefan Schmidt
- Innsbruck University Hospital, Internal Medicine V: Haematology & Oncology, Innsbruck, Austria
| | - Normann Steiner
- Innsbruck University Hospital, Internal Medicine V: Haematology & Oncology, Innsbruck, Austria
| | - Andrea Griesmacher
- Central Institute for Med. and Chem. Laboratory Diagnostics (ZIMCL) With Interdisciplinary Hematological Competence Centre (IHK), Medical University Innsbruck, Innsbruck, Austria
| | - Eberhard Gunsilius
- Innsbruck University Hospital, Internal Medicine V: Haematology & Oncology, Innsbruck, Austria
| | - David Nachbaur
- Innsbruck University Hospital, Internal Medicine V: Haematology & Oncology, Innsbruck, Austria
| | - Wolfgang Willenbacher
- Innsbruck University Hospital, Internal Medicine V: Haematology & Oncology, Innsbruck, Austria
- Syndena,GmbH Connect to Cure, Innsbruck, Austria
| | - Dominik Wolf
- Innsbruck University Hospital, Internal Medicine V: Haematology & Oncology, Innsbruck, Austria
| | - Thomas Winder
- Department of Internal Medicine II, Academic Teaching Hospital Feldkirch, Carinagasse 47, 6800, Feldkirch, Austria
- University of Zurich, Zurich, Switzerland
| | - Magdalena Anna Benda
- Department of Internal Medicine II, Academic Teaching Hospital Feldkirch, Carinagasse 47, 6800, Feldkirch, Austria.
- Private University of the Principality of Liechtenstein, Triesen, Principality of Liechtenstein.
| |
Collapse
|
8
|
Mink S, Reimann P, Fraunberger P. Prognostic value of anti-SARS-CoV-2 antibodies: a systematic review. Clin Chem Lab Med 2024; 62:1029-1043. [PMID: 38349073 DOI: 10.1515/cclm-2023-1487] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/02/2024] [Indexed: 04/30/2024]
Abstract
OBJECTIVES Globally, over 772 million cases of COVID-19 have been reported. New variants of interest with corresponding spikes in case numbers continue to be identified. Vulnerable patients, including older adults or patients with severe comorbidities, continue to be at risk. A large body of evidence has been accumulated regarding anti-SARS-CoV-2-antibodies and COVID-19 but the usefulness of antibody measurements remains unclear. This systematic review aims to assess the prognostic value of anti-SARS-CoV-2-antibodies and their usefulness for guiding booster vaccinations. METHODS Studies in English and published between January 2020 and October 2023 were included. Studies that relied on multiparameter-models or comprised fewer than 100 participants were excluded. PubMed and via the WHO COVID-19 research database, Embase and Medline databases were searched. Study selection and quality assessment was conducted independently by two researchers. RESULTS After screening 1,160 studies, 33 studies comprising >30 million individuals were included. Anti-SARS-CoV-2-antibodies were strongly associated with reduced risk of SARS-CoV-2-infection and better outcomes, including mortality. Risk of infection and COVID-19 severity decreased with increasing antibody levels. CONCLUSIONS Anti-SARS-CoV-2-antibodies are useful for early identification of high-risk patients and timely adjustment of therapy. Protective thresholds may be applied to advise booster vaccinations but verification in separate cohorts is required.
Collapse
Affiliation(s)
- Sylvia Mink
- Central Medical Laboratories, Feldkirch, Austria
- Private University in the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
| | - Patrick Reimann
- Private University in the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
- Department of Internal Medicine, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Peter Fraunberger
- Central Medical Laboratories, Feldkirch, Austria
- Private University in the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
| |
Collapse
|
9
|
Goguet E, Olsen CH, Meyer WA, Ansari S, Powers JH, Conner TL, Coggins SA, Wang W, Wang R, Illinik L, Sanchez Edwards M, Jackson-Thompson BM, Hollis-Perry M, Wang G, Alcorta Y, Wong MA, Saunders D, Mohammed R, Balogun B, Kobi P, Kosh L, Bishop-Lilly K, Cer RZ, Arnold CE, Voegtly LJ, Fitzpatrick M, Luquette AE, Malagon F, Ortega O, Parmelee E, Davies J, Lindrose AR, Haines-Hull H, Moser MS, Samuels EC, Rekedal MS, Graydon EK, Malloy AMW, Tribble D, Burgess TH, Campbell W, Robinson S, Broder CC, O’Connell RJ, Weiss CD, Pollett S, Laing E, Mitre E. Immune and behavioral correlates of protection against symptomatic post-vaccination SARS-CoV-2 infection. Front Immunol 2024; 15:1287504. [PMID: 38566991 PMCID: PMC10985347 DOI: 10.3389/fimmu.2024.1287504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction We sought to determine pre-infection correlates of protection against SARS-CoV-2 post-vaccine inzfections (PVI) acquired during the first Omicron wave in the United States. Methods Serum and saliva samples from 176 vaccinated adults were collected from October to December of 2021, immediately before the Omicron wave, and assessed for SARS-CoV-2 Spike-specific IgG and IgA binding antibodies (bAb). Sera were also assessed for bAb using commercial assays, and for neutralization activity against several SARS-CoV-2 variants. PVI duration and severity, as well as risk and precautionary behaviors, were assessed by questionnaires. Results Serum anti-Spike IgG levels assessed by research assay, neutralization titers against Omicron subvariants, and low home risk scores correlated with protection against PVIs after multivariable regression analysis. Commercial assays did not perform as well as research assay, likely due to their lower dynamic range. Discussion In the 32 participants that developed PVI, anti-Spike IgG bAbs correlated with lower disease severity and shorter duration of illness.
Collapse
Affiliation(s)
- Emilie Goguet
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Cara H. Olsen
- Department of Preventive Medicine & Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | | - Sara Ansari
- Quest Diagnostics, Secaucus, NJ, United States
| | - John H. Powers
- Clinical Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Tonia L. Conner
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Si’Ana A. Coggins
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Wei Wang
- Division of Viral Products, Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Richard Wang
- Division of Viral Products, Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Luca Illinik
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Margaret Sanchez Edwards
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Belinda M. Jackson-Thompson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Monique Hollis-Perry
- Clinical Trials Center, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States
| | - Gregory Wang
- Clinical Trials Center, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States
- General Dynamics Information Technology, Falls Church, VA, United States
| | - Yolanda Alcorta
- Clinical Trials Center, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States
- General Dynamics Information Technology, Falls Church, VA, United States
| | - Mimi A. Wong
- Clinical Trials Center, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States
- General Dynamics Information Technology, Falls Church, VA, United States
| | - David Saunders
- Translational Medicine Unit, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Roshila Mohammed
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Bolatito Balogun
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Priscilla Kobi
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Lakeesha Kosh
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kimberly Bishop-Lilly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
| | - Regina Z. Cer
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
| | - Catherine E. Arnold
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
- Defense Threat Reduction Agency, Fort Belvoir, VA, United States
| | - Logan J. Voegtly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Maren Fitzpatrick
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Andrea E. Luquette
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Francisco Malagon
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Orlando Ortega
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Edward Parmelee
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Julian Davies
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Alyssa R. Lindrose
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Hannah Haines-Hull
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Matthew S. Moser
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Emily C. Samuels
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Marana S. Rekedal
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Elizabeth K. Graydon
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Allison M. W. Malloy
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - David R. Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Timothy H. Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Wesley Campbell
- Division of Infectious Diseases, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Sara Robinson
- Division of Infectious Diseases, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Robert J. O’Connell
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Carol D. Weiss
- Division of Viral Products, Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Simon Pollett
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Eric D. Laing
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
10
|
Park HS, Yin A, Barranta C, Lee JS, Caputo CA, Sachithanandham J, Li M, Yoon S, Sitaras I, Jedlicka A, Eby Y, Ram M, Fernandez RE, Baker OR, Shenoy AG, Mosnaim GS, Fukuta Y, Patel B, Heath SL, Levine AC, Meisenberg BR, Spivak ES, Anjan S, Huaman MA, Blair JE, Currier JS, Paxton JH, Gerber JM, Petrini JR, Broderick PB, Rausch W, Cordisco ME, Hammel J, Greenblatt B, Cluzet VC, Cruser D, Oei K, Abinante M, Hammitt LL, Sutcliffe CG, Forthal DN, Zand MS, Cachay ER, Raval JS, Kassaye SG, Marshall CE, Yarava A, Lane K, McBee NA, Gawad AL, Karlen N, Singh A, Ford DE, Jabs DA, Appel LJ, Shade DM, Lau B, Ehrhardt S, Baksh SN, Shapiro JR, Ou J, Na YB, Knoll MD, Ornelas-Gatdula E, Arroyo-Curras N, Gniadek TJ, Caturegli P, Wu J, Ndahiro N, Betenbaugh MJ, Ziman A, Hanley DF, Casadevall A, Shoham S, Bloch EM, Gebo KA, Tobian AAR, Laeyendecker O, Pekosz A, Klein SL, Sullivan DJ. Outpatient COVID-19 convalescent plasma recipient antibody thresholds correlated to reduced hospitalizations within a randomized trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.13.23288353. [PMID: 37131659 PMCID: PMC10153328 DOI: 10.1101/2023.04.13.23288353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND The COVID-19 convalescent plasma (CCP) viral specific antibody levels that translate into recipient post-transfusion antibody levels sufficient to prevent disease progression is not defined. METHODS This secondary analysis correlated donor and recipient antibody levels to hospitalization risk among unvaccinated, seronegative CCP recipients within the outpatient, double blind, randomized clinical trial that compared CCP to control plasma. The majority of COVID-19 CCP arm hospitalizations (15/17, 88%) occurred in this unvaccinated, seronegative subgroup. A functional cutoff to delineate recipient high versus low post-transfusion antibody levels was established by two methods: 1) analyzing virus neutralization-equivalent anti-S-RBD IgG responses in donors or 2) receiver operating characteristic (ROC) analysis. RESULTS SARS-CoV-2 anti-S-RBD IgG antibody was diluted by a factor of 21.3 into post-transfusion seronegative recipients from matched donor units. Viral specific antibody delivered approximated 1.2 mg. The high antibody recipients transfused early (symptom onset within 5 days) had no hospitalizations. A CCP recipient analysis for antibody thresholds correlated to reduced hospitalizations found a significant association with Fisher's exact test between early and high antibodies versus all other CCP recipients (or control plasma) with antibody cutoffs established by both methods-donor virus neutralization-based cutoff: (0/85; 0% versus 15/276; 5.6%) p=0.03 or ROC based cutoff: (0/94; 0% versus 15/267; 5.4%) p=0.01. CONCLUSION In unvaccinated, seronegative CCP recipients, early transfusion of plasma units corresponding to the upper 30% of all study donors reduced outpatient hospitalizations. These high antibody level plasma units, given early, should be reserved for therapeutic use.Trial registration: NCT04373460. FUNDING Defense Health Agency and others.
Collapse
Affiliation(s)
- Han-Sol Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Anna Yin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Caelan Barranta
- W. Harry Feinstone Department of Molecular Microbiology and Immunology; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John S Lee
- W. Harry Feinstone Department of Molecular Microbiology and Immunology; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christopher A Caputo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jaiprasath Sachithanandham
- W. Harry Feinstone Department of Molecular Microbiology and Immunology; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Maggie Li
- W. Harry Feinstone Department of Molecular Microbiology and Immunology; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Steve Yoon
- W. Harry Feinstone Department of Molecular Microbiology and Immunology; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ioannis Sitaras
- W. Harry Feinstone Department of Molecular Microbiology and Immunology; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Anne Jedlicka
- W. Harry Feinstone Department of Molecular Microbiology and Immunology; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yolanda Eby
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Malathi Ram
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Reinaldo E Fernandez
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Owen R Baker
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aarthi G Shenoy
- Department of Medicine, Division of Hematology and Oncology, MedStar Washington Hospital Center, Washington DC, USA
| | - Giselle S Mosnaim
- Division of Allergy and Immunology, Department of Medicine, NorthShore University Health System, Evanston, IL, USA
| | - Yuriko Fukuta
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Bela Patel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Sonya L Heath
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adam C Levine
- Department of Emergency Medicine, Rhode Island Hospital, Brown University, Providence, RI, USA
| | | | - Emily S Spivak
- Department of Medicine, Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Shweta Anjan
- Department of Medicine, Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Moises A Huaman
- Department of Medicine, Division of Infectious Diseases, University of Cincinnati, Cincinnati, OH, USA
| | - Janis E Blair
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, AZ, USA
| | - Judith S Currier
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, CA, USA
| | - James H Paxton
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jonathan M Gerber
- Department of Medicine, Division of Hematology and Oncology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | | | | | - Jean Hammel
- Nuvance Health Norwalk Hospital, Norwalk, CT, USA
| | | | - Valerie C Cluzet
- Nuvance Health Vassar Brothers Medical Center, Poughkeepsie, NY, USA
| | - Daniel Cruser
- Nuvance Health Vassar Brothers Medical Center, Poughkeepsie, NY, USA
| | | | | | - Laura L Hammitt
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Catherine G Sutcliffe
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Donald N Forthal
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine, CA, USA
| | - Martin S Zand
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward R Cachay
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego, CA, USA
| | - Jay S Raval
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Seble G Kassaye
- Department of Medicine, Division of Infectious Diseases, Georgetown University Medical Center Washington DC, USA
| | - Christi E Marshall
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anusha Yarava
- Department of Neurology, Brain Injury Outcomes, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen Lane
- Department of Neurology, Brain Injury Outcomes, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nichol A McBee
- Department of Neurology, Brain Injury Outcomes, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy L Gawad
- Department of Neurology, Brain Injury Outcomes, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicky Karlen
- Department of Neurology, Brain Injury Outcomes, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atika Singh
- Department of Neurology, Brain Injury Outcomes, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel E Ford
- Institute for Clinical and Translational Research Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Douglas A Jabs
- Department of Ophthalmology Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lawrence J Appel
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David M Shade
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bryan Lau
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Stephan Ehrhardt
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sheriza N Baksh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Janna R Shapiro
- W. Harry Feinstone Department of Molecular Microbiology and Immunology; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jiangda Ou
- Department of Neurology, Brain Injury Outcomes, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yu Bin Na
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Maria D Knoll
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elysse Ornelas-Gatdula
- Chemistry-Biology Interface Program, Zanvyl Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore MD, USA
| | - Netzahualcoyotl Arroyo-Curras
- Chemistry-Biology Interface Program, Zanvyl Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas J Gniadek
- Department of Pathology and Laboratory Medicine, Northshore University Health System, Evanston, IL
| | - Patrizio Caturegli
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jinke Wu
- Advanced Mammalian Biomanufacturing Innovation Center, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Nelson Ndahiro
- Advanced Mammalian Biomanufacturing Innovation Center, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michael J Betenbaugh
- Advanced Mammalian Biomanufacturing Innovation Center, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alyssa Ziman
- Department of Pathology and Laboratory Medicine, Wing-Kwai and Alice Lee-Tsing Chung Transfusion Service, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Daniel F Hanley
- Department of Neurology, Brain Injury Outcomes, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kelly A Gebo
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Oliver Laeyendecker
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Baltimore, MD, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David J Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
11
|
Mink S, Fraunberger P. Anti-SARS-CoV-2 Antibody Testing: Role and Indications. J Clin Med 2023; 12:7575. [PMID: 38137643 PMCID: PMC10744049 DOI: 10.3390/jcm12247575] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Since the onset of the COVID-19 pandemic in March 2020, over 769 million confirmed COVID-19 cases, including close to 7 million COVID-19-related deaths, have been reported. Although mortality rates have dropped notably compared to the first months of the pandemic, spikes in reported cases and mortality rates continue to be registered. Both recent spikes in case numbers and the continued emergence of new variants suggest that vulnerable patient groups, including older adults, immunocompromised patients, and patients with severe comorbidities, are going to continue to be affected by COVID-19. In order to curb the pandemic, relieve the pressure on primary care facilities, and reduce mortality rates, global vaccination programs have been established by the WHO, with over 13.5 billion vaccine doses having been administered globally. In most immunocompetent individuals, vaccination against COVID-19 results in the production of anti-SARS-CoV-2 spike antibodies. However, certain patient subsets have inadequate or reduced immune responses, and immune responses are known to decrease with age. General recommendations on the timing of booster vaccinations may therefore be insufficient to protect vulnerable patients. This review aims to evaluate the clinical role of anti-SARS-CoV-2 antibodies, focusing on measurement indications, prognostic value, and potential as a correlate of protection to guide future booster vaccination strategies.
Collapse
Affiliation(s)
- Sylvia Mink
- Central Medical Laboratories, 6800 Feldkirch, Austria
- Private University in the Principality of Liechtenstein, 9495 Triesen, Liechtenstein
| | - Peter Fraunberger
- Central Medical Laboratories, 6800 Feldkirch, Austria
- Private University in the Principality of Liechtenstein, 9495 Triesen, Liechtenstein
| |
Collapse
|
12
|
Oyebanji OA, Abul Y, Wilson BM, Bosch J, Didion EM, Paxitzis AN, Sundheimer N, Ragavapuram V, Wilk D, Keresztesy D, Aung H, Cao Y, King CL, Balazs AB, White EM, Gravenstein S, Canaday DH. Neutralization and binding antibody response to second bivalent COVID-19 vaccination in nursing home residents. J Am Geriatr Soc 2023; 71:3947-3950. [PMID: 37589423 PMCID: PMC10840677 DOI: 10.1111/jgs.18557] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Affiliation(s)
| | - Yasin Abul
- Center of Innovation in Long-Term Services and Supports, Veterans Administration Medical Center, Providence, RI
- Division of Geriatrics and Palliative Medicine, Alpert Medical School of Brown University, Providence, RI
| | - Brigid M. Wilson
- Geriatric Research Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH
| | | | | | | | | | | | | | | | | | | | | | | | | | - Stefan Gravenstein
- Center of Innovation in Long-Term Services and Supports, Veterans Administration Medical Center, Providence, RI
- Division of Geriatrics and Palliative Medicine, Alpert Medical School of Brown University, Providence, RI
- Brown University School of Public Health Center for Gerontology and Healthcare Research, Providence, RI
| | - David H. Canaday
- Geriatric Research Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH
| |
Collapse
|
13
|
Mink S, Saely CH, Leiherer A, Frick M, Plattner T, Drexel H, Fraunberger P. Anti-SARS-CoV-2 antibody levels predict outcome in COVID-19 patients with type 2 diabetes: a prospective cohort study. Sci Rep 2023; 13:18326. [PMID: 37884649 PMCID: PMC10603091 DOI: 10.1038/s41598-023-45700-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023] Open
Abstract
Patients with type 2 diabetes (T2D) constitute one of the most vulnerable subgroups in COVID-19. Despite high vaccination rates, a correlate of protection to advise vaccination strategies for novel SARS-CoV-2 variants of concern and lower mortality in this high-risk group is still missing. It is further unclear what antibody levels provide protection and whether pre-existing organ damage affects this threshold. To address these gaps, we conducted a prospective multicenter cohort study on 1152 patients with COVID-19 from five hospitals. Patients were classified by diabetes and vaccination status. Anti-SARS-CoV-2-spike-antibodies, creatinine and NTproBNP were measured on hospital admission. Pre-specified endpoints were all-cause in-hospital-mortality, ICU admission, endotracheal intubation, and oxygen administration. Propensity score matching was applied to increase comparability. We observed significantly lower anti-SARS-CoV-2-spike-antibodies in diabetic non-survivors compared to survivors (mean, 95% CI 351BAU/ml, 106-595 vs. 1123, 968-1279, p < 0.001). Mortality risk increased two-fold with each standard deviation-decrease of antibody levels (aHR 1.988, 95% CI 1.229-3.215, p = 0.005). T2D patients requiring oxygen administration, endotracheal intubation and ICU admission had significantly lower antibody levels than those who did not (p < 0.001, p = 0.046, p = 0.011). While T2D patients had significantly worse outcomes than non-diabetic patients, the differences were less pronounced compared to propensity-score-matched non-diabetic patients. Anti-SARS-CoV-2 spike antibodies on hospital admission are inversely associated with oxygen administration, endotracheal intubation, intensive care and in-hospital mortality in diabetic COVID-19 patients. Pre-existing comorbidities may have a greater impact on outcome than diabetes status alone.
Collapse
Affiliation(s)
- Sylvia Mink
- Central Medical Laboratories, Carinagasse 41, 6800, Feldkirch, Vorarlberg, Austria.
- Private University in the Principality of Liechtenstein, Triesen, Principality of Liechtenstein.
| | - Christoph H Saely
- Private University in the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
- VIVIT Institute, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Andreas Leiherer
- Central Medical Laboratories, Carinagasse 41, 6800, Feldkirch, Vorarlberg, Austria
- VIVIT Institute, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Matthias Frick
- Department of Internal Medicine, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Thomas Plattner
- Department of Internal Medicine, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Heinz Drexel
- Private University in the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
- VIVIT Institute, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Peter Fraunberger
- Central Medical Laboratories, Carinagasse 41, 6800, Feldkirch, Vorarlberg, Austria
- Private University in the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
| |
Collapse
|
14
|
Mink S, Saely CH, Frick M, Leiherer A, Drexel H, Fraunberger P. Association between Lipid Levels, Anti-SARS-CoV-2 Spike Antibodies and COVID-19 Mortality: A Prospective Cohort Study. J Clin Med 2023; 12:5068. [PMID: 37568470 PMCID: PMC10420155 DOI: 10.3390/jcm12155068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/21/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Recent studies suggest that both lipid levels and anti-severe-acute-respiratory-syndrome-coronavirus-2 (SARS-CoV-2) antibody levels are associated with outcome in coronavirus disease 2019 (COVID-19). While both parameters have separately been implicated in the neutralization and clearance of pathogens during severe infections, it is currently unclear whether the interplay of these parameters affects outcome in COVID-19. We therefore aimed to determine whether there was a relationship between lipoproteins, anti-SARS-CoV-2 antibodies, and COVID-19 mortality. METHODS In this prospective, multicenter cohort study, we recruited 1152 hospitalized patients with COVID-19 from five hospitals. Total cholesterol (TC), LDL-C, HDL-C, triglycerides, and anti-SARS-CoV-2 spike antibodies were measured on hospital admission. The investigated endpoint was in-hospital mortality. RESULTS LDL-C, HDL-C, and TC were significantly lower in non-survivors than in survivors (mg/dL, 95%CI; 56.1, 50.4-61.8 vs. 72.6, 70.2-75.0, p < 0.001; 34.2, 31.7-36.8 vs. 38.1, 37.2-39.1, p = 0.025; 139.3, 130.9-147.7 vs. 157.4, 54.1-160.6, p = 0.002). Mortality risk increased progressively with lower levels of LDL-C, HDL-C, and TC (aOR 1.73, 1.30-2.31, p < 0.001; 1.44, 1.10-1.88, p = 0.008; 1.49, 1.14-1.94, p < 0.001). Mortality rates varied between 2.1% for high levels of both LDL-C and anti-SARS-CoV-2 antibodies and 16.3% for low levels of LDL-C and anti-SARS-CoV-2 antibodies (aOR 9.14, 95%CI 3.17-26.34, p < 0.001). Accordingly, for total cholesterol and anti-SARS-CoV-2 antibodies, mortality rates varied between 2.1% and 15.0% (aOR 8.01, 95%CI 2.77-23.18, p < 0.001). CONCLUSION The combination of serum lipid levels and anti-SARS-CoV-2 antibodies is strongly associated with in-hospital mortality of patients with COVID-19. Patients with low levels of LDL-C and total cholesterol combined with low levels of anti-SARS-CoV-2 antibodies exhibited the highest mortality rates.
Collapse
Affiliation(s)
- Sylvia Mink
- Central Medical Laboratories, 6800 Feldkirch, Austria
- Medical-Scientific Faculty, Private University of the Principality of Liechtenstein, 9495 Triesen, Liechtenstein
| | - Christoph H. Saely
- Medical-Scientific Faculty, Private University of the Principality of Liechtenstein, 9495 Triesen, Liechtenstein
- VIVIT Institute, Academic Teaching Hospital Feldkirch, 6800 Feldkirch, Austria
| | - Matthias Frick
- Department of Internal Medicine, Academic Teaching Hospital Feldkirch, 6800 Feldkirch, Austria
| | - Andreas Leiherer
- Central Medical Laboratories, 6800 Feldkirch, Austria
- Medical-Scientific Faculty, Private University of the Principality of Liechtenstein, 9495 Triesen, Liechtenstein
- VIVIT Institute, Academic Teaching Hospital Feldkirch, 6800 Feldkirch, Austria
| | - Heinz Drexel
- Medical-Scientific Faculty, Private University of the Principality of Liechtenstein, 9495 Triesen, Liechtenstein
- VIVIT Institute, Academic Teaching Hospital Feldkirch, 6800 Feldkirch, Austria
- Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Peter Fraunberger
- Central Medical Laboratories, 6800 Feldkirch, Austria
- Medical-Scientific Faculty, Private University of the Principality of Liechtenstein, 9495 Triesen, Liechtenstein
| |
Collapse
|
15
|
Casadevall A, Joyner MJ, Pirofski LA, Senefeld JW, Shoham S, Sullivan D, Paneth N, Focosi D. Convalescent plasma therapy in COVID-19: Unravelling the data using the principles of antibody therapy. Expert Rev Respir Med 2023:1-15. [PMID: 37129285 DOI: 10.1080/17476348.2023.2208349] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
INTRODUCTION When the COVID-19 pandemic struck no specific therapies were available and many turned to COVID-19 convalescent plasma (CCP), a form of antibody therapy. The literature provides mixed evidence for CCP efficacy. AREAS COVERED PubMed was searched using the words COVID-19 and convalescent plasma and individual study designs were evaluated for adherence to the three principles of antibody therapy, i.e. that plasma 1) contain specific antibody; 2) have enough specific antibody to mediate a biological effect; and 3) be administered early in the course of disease. Using this approach, a diverse and seemingly contradictory collection of clinical findings was distilled into a consistent picture whereby CCP was effective when used according to the above principles of antibody therapy. In addition, CCP therapy in immunocompromised patients is useful at any time in the course of disease. EXPERT OPINION CCP is safe and effective when used appropriately. Today, most of humanity has some immunity to SARS-CoV-2 from vaccines and infection, which has lessened the need for CCP in the general population. However, COVID-19 in immunocompromised patients is a major therapeutic challenge, and with the deauthorization of all SARS-CoV-2-spike protein-directed monoclonal antibodies, CCP is the only antibody therapy available for this population.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Jonathon W Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nigel Paneth
- Departments of Epidemiology & Biostatistics and Pediatrics & Human Development, Michigan State University, East Lansing, MI, USA
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
16
|
Santoro A, Capri A, Petrone D, Colavita F, Meschi S, Matusali G, Mizzoni K, Notari S, Agrati C, Goletti D, Pezzotti P, Puro V. SARS-CoV-2 Breakthrough Infections According to the Immune Response Elicited after mRNA Third Dose Vaccination in COVID-19-Naïve Hospital Personnel. Biomedicines 2023; 11:1247. [PMID: 37238918 PMCID: PMC10215853 DOI: 10.3390/biomedicines11051247] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Vaccine-induced SARS-CoV-2-anti-spike antibody (anti-S/RBD) titers are often used as a marker of immune protection and to anticipate the risk of breakthrough infections, although no clear cut-off is available. We describe the incidence of SARS-CoV-2 vaccine breakthrough infections in COVID-19-free personnel of our hospital, according to B- and T-cell immune response elicited one month after mRNA third dose vaccination. METHODS The study included 487 individuals for whom data on anti-S/RBD were available. Neutralizing antibody titers (nAbsT) against the ancestral Whuan SARS-CoV-2, and the BA.1 Omicron variant, and SARS-CoV-2 T-cell specific response were measured in subsets of 197 (40.5%), 159 (32.6%), and 127 (26.1%) individuals, respectively. RESULTS On a total of 92,063 days of observation, 204 participants (42%) had SARS-CoV-2 infection. No significant differences in the probability of SARS-CoV-2 infection for different levels of anti-S/RBD, nAbsT, Omicron nAbsT, or SARS-CoV-2 T cell specific response, and no protective thresholds for infection were found. CONCLUSIONS Routine testing for vaccine-induced humoral immune response to SARS-CoV-2 is not recommended if measured as parameters of 'protective immunity' from SARS-CoV-2 after vaccination. Whether these findings apply to new Omicron-specific bivalent vaccines is going to be evaluated.
Collapse
Affiliation(s)
- Annapaola Santoro
- National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Andrea Capri
- National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy
| | - Daniele Petrone
- Department of Infectious Diseases, National Institute of Health (ISS), 00161 Rome, Italy
| | - Francesca Colavita
- National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy
| | - Silvia Meschi
- National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy
| | - Giulia Matusali
- National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy
| | - Klizia Mizzoni
- National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy
| | - Stefania Notari
- National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy
| | - Chiara Agrati
- National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Delia Goletti
- National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy
| | - Patrizio Pezzotti
- Department of Infectious Diseases, National Institute of Health (ISS), 00161 Rome, Italy
| | - Vincenzo Puro
- National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy
| |
Collapse
|
17
|
Ljunggren HG. SARS-CoV-2 antibody titers at the time of hospital admission and risk for mortality. J Intern Med 2023; 293:664-665. [PMID: 36739587 DOI: 10.1111/joim.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|