1
|
Abarca-Rivas C, Martín-García A, Riu-Aumatell M, López-Tamames E. Indole Content Profiling During Biological Ageing of Cava Sparkling Wine. Foods 2025; 14:722. [PMID: 40077425 PMCID: PMC11899149 DOI: 10.3390/foods14050722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Indoles are bioactive components found in wine products and are associated with yeast activity. Cava, a Spanish sparkling wine, is characterized by aging in contact with lees, making it a potential matrix for indoles. Therefore, the aim of this study was to determine the indole content in Cava produced at an industrial scale. Nine indoles were analysed by Ultra High-Performance Liquid Chromatography-Tandem Mass Spectrometry in Cava samples with different ageing times (n = 74). Significant amounts of tryptophan (2.3-1680.4 μg/L), tryptophan ethyl ester (0.1-5.2 μg/L), 5-methoxytryptophol (0.3-29.2 µg/L) and n-acetyl serotonin (0.3-2.3 μg/L) were determined. Tryptophan and tryptophan ethyl ester were positively correlated and decreased with ageing time. In fact, a concentration of less than 0.56 μg of the latter indole can become a marker of the most aged Cavas. The ageing time in contact with lees seems to play a key role affecting the indole content, since base wines show high amount of tryptophan and tryptophan ethyl ester while aged sparkling wines have values around the lower 95% confidence limit. Notably, the identification of tryptophan ethyl ester as a potential marker for aging in Cava suggests a new avenue for further research and quality assessment in its production.
Collapse
Affiliation(s)
- Clara Abarca-Rivas
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), CCNIEC Research Group “Antioxidants Naturals: Polifenols”, University of Barcelona, 08028 Barcelona, Spain;
| | - Alba Martín-García
- Aroma, and Food Quality Factors Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), CCNIEC Research Group “Aroma and Food Quality Factors Group”, University of Barcelona, 08028 Barcelona, Spain; (A.M.-G.); (E.L.-T.)
| | - Montserrat Riu-Aumatell
- Aroma, and Food Quality Factors Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), CCNIEC Research Group “Aroma and Food Quality Factors Group”, University of Barcelona, 08028 Barcelona, Spain; (A.M.-G.); (E.L.-T.)
| | - Elvira López-Tamames
- Aroma, and Food Quality Factors Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), CCNIEC Research Group “Aroma and Food Quality Factors Group”, University of Barcelona, 08028 Barcelona, Spain; (A.M.-G.); (E.L.-T.)
| |
Collapse
|
2
|
Murch SJ, Erland LAE. A Systematic Review of Melatonin in Plants: An Example of Evolution of Literature. FRONTIERS IN PLANT SCIENCE 2021; 12:683047. [PMID: 34249052 PMCID: PMC8270005 DOI: 10.3389/fpls.2021.683047] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 05/06/2023]
Abstract
Melatonin (N-acetyl-5-methoxy-tryptamine) is a mammalian neurohormone, antioxidant and signaling molecule that was first discovered in plants in 1995. The first studies investigated plant melatonin from a human perspective quantifying melatonin in foods and medicinal plants and questioning whether its presence could explain the activity of some plants as medicines. Starting with these first handful of studies in the late 1990s, plant melatonin research has blossomed into a vibrant and active area of investigation and melatonin has been found to play critical roles in mediating plant responses and development at every stage of the plant life cycle from pollen and embryo development through seed germination, vegetative growth and stress response. Here we have utilized a systematic approach in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) protocols to reduce bias in our assessment of the literature and provide an overview of the current state of melatonin research in plants, covering 1995-2021. This review provides an overview of the biosynthesis and metabolism of melatonin as well as identifying key themes including: abiotic stress responses, root development, light responses, interkingdom communication, phytohormone and plant signaling. Additionally, potential biases in the literature are investigated and a birefringence in the literature between researchers from plant and medical based which has helped to shape the current state of melatonin research. Several exciting new opportunities for future areas of melatonin research are also identified including investigation of non-crop and non-medicinal species as well as characterization of melatonin signaling networks in plants.
Collapse
|
3
|
Zheng S, Zhu Y, Liu C, Zhang S, Yu M, Xiang Z, Fan W, Wang S, Zhao A. Molecular Mechanisms Underlying the Biosynthesis of Melatonin and Its Isomer in Mulberry. FRONTIERS IN PLANT SCIENCE 2021; 12:708752. [PMID: 34691094 PMCID: PMC8526549 DOI: 10.3389/fpls.2021.708752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/10/2021] [Indexed: 05/19/2023]
Abstract
Mulberry (Morus alba L.) leaves and fruit are traditional Chinese medicinal materials with anti-inflammatory, immune regulatory, antiviral and anti-diabetic properties. Melatonin performs important roles in the regulation of circadian rhythms and immune activities. We detected, identified and quantitatively analyzed the melatonin contents in leaves and mature fruit from different mulberry varieties. Melatonin and three novel isoforms were found in the Morus plants. Therefore, we conducted an expression analysis of melatonin and its isomer biosynthetic genes and in vitro enzymatic synthesis of melatonin and its isomer to clarify their biosynthetic pathway in mulberry leaves. MaASMT4 and MaASMT20, belonging to class II of the ASMT gene family, were expressed selectively in mulberry leaves, and two recombinant proteins that they expressed catalyzed the conversion of N-acetylserotonin to melatonin and one of three isomers in vitro. Unlike the ASMTs of Arabidopsis and rice, members of the three ASMT gene families in mulberry can catalyze the conversion of N-acetylserotonin to melatonin. This study provides new insights into the molecular mechanisms underlying melatonin and its isomers biosynthesis and expands our knowledge of melatonin isomer biosynthesis.
Collapse
Affiliation(s)
- Sha Zheng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, China
| | - Yingxue Zhu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Shuai Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Maode Yu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Wei Fan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Shuchang Wang
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
- *Correspondence: Aichun Zhao, ;
| |
Collapse
|
4
|
Albu C, Radu LE, Radu GL. Assessment of Melatonin and Its Precursors Content by a HPLC-MS/MS Method from Different Romanian Wines. ACS OMEGA 2020; 5:27254-27260. [PMID: 33134687 PMCID: PMC7594137 DOI: 10.1021/acsomega.0c03463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/02/2020] [Indexed: 05/04/2023]
Abstract
Because melatonin has strong antioxidant activity and wine is an alcoholic beverage of economic relevance, in the present work, the impact of some variable parameters that may occur in the winemaking process on the concentrations of melatonin and its precursors in Romanian wines was studied. Therefore, a sensitive and selective high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the simultaneous analysis of melatonin, serotonin, and l-tryptophan, and some method performance parameters including selectivity, detection limit, precision (by comparing with an alternative HPLC-FL method), accuracy, and robustness were validated. These determinations are significant and the final amounts of analytes are dependent on the microorganisms involved in the winemaking process, the grape variety, geographic regions of vineyards, and aging of wines. In the future, the method may be useful to increase the melatonin content and the antioxidant activity in wines by improved steps in the winemaking process, especially based on application of selected yeasts and improved fermentation conditions.
Collapse
Affiliation(s)
- Camelia Albu
- Centre of Bioanalysis,
National Institute of Research and Development for Biological Sciences—Bucharest, 296 Splaiul Independentei, 060031 Bucharest, Romania
- . Phone/Fax: +(40)212.200.900
| | - Letitia Elena Radu
- Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Bulevard, 050474 Bucharest, Romania
| | - Gabriel-Lucian Radu
- Centre of Bioanalysis,
National Institute of Research and Development for Biological Sciences—Bucharest, 296 Splaiul Independentei, 060031 Bucharest, Romania
| |
Collapse
|
5
|
Que Z, Ma T, Shang Y, Ge Q, Zhang Q, Xu P, Zhang J, Francoise U, Liu X, Sun X. Microorganisms: Producers of Melatonin in Fermented Foods and Beverages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4799-4811. [PMID: 32248679 DOI: 10.1021/acs.jafc.0c01082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Melatonin has recently been detected in fermented beverages and foods, in which microorganism metabolism is highly important. The existing literature knowledge discusses the direction for future studies in this review. Evidence shows that many species of microorganisms could synthesize melatonin. However, the actual concentrations of melatonin in fermented foods and beverages range from picograms per milliliter to nanograms per milliliter. Different types of microorganisms, different raw materials, different culture environments, the presence or absence of precursors, high or low alcohol content, and different detection methods are all possible reasons for the huge difference of melatonin levels. Thus far, there have been relatively few studies on the melatonin synthesis pathway microorganisms. Thus, referring to the synthetic pathway of plants and animals, the putative melatonin biosynthesis pathway of microorganisms is presented. It will be significant to discuss whether all species of microorganisms have the capacity to synthesize melatonin and what the biological functions of melatonin are in microorganisms. Melatonin plays a lot of important roles in microorganisms, particularly in enhancing the tolerance of environment stress. Also, the loss of melatonin concentration in commercially available fermented foods and beverages is a ubiquitous trend, and how to solve this problem is a new field to be further explored.
Collapse
Affiliation(s)
- Zhiluo Que
- College of Enology, College of Food Science and Engineering, Heyang Viti-viniculture Station, Northwest A&F University, Yangling District, Xianyang, Shaanxi 712100, People's Republic of China
| | - Tingting Ma
- College of Enology, College of Food Science and Engineering, Heyang Viti-viniculture Station, Northwest A&F University, Yangling District, Xianyang, Shaanxi 712100, People's Republic of China
| | - Yi Shang
- College of Enology, College of Food Science and Engineering, Heyang Viti-viniculture Station, Northwest A&F University, Yangling District, Xianyang, Shaanxi 712100, People's Republic of China
| | - Qian Ge
- College of Enology, College of Food Science and Engineering, Heyang Viti-viniculture Station, Northwest A&F University, Yangling District, Xianyang, Shaanxi 712100, People's Republic of China
- Quality Standards and Testing Institute of Agricultural Technology, Yinchuan, Ningxia 750002, People's Republic of China
| | - Qianwen Zhang
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Pingkang Xu
- College of Science, Department of Chemistry, Food Science and Technology Programme, National University of Singapore, Singapore 119077, Singapore
| | - Junxiang Zhang
- School of Wine, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Uwamahoro Francoise
- College of Enology, College of Food Science and Engineering, Heyang Viti-viniculture Station, Northwest A&F University, Yangling District, Xianyang, Shaanxi 712100, People's Republic of China
| | - Xu Liu
- College of Enology, College of Food Science and Engineering, Heyang Viti-viniculture Station, Northwest A&F University, Yangling District, Xianyang, Shaanxi 712100, People's Republic of China
| | - Xiangyu Sun
- College of Enology, College of Food Science and Engineering, Heyang Viti-viniculture Station, Northwest A&F University, Yangling District, Xianyang, Shaanxi 712100, People's Republic of China
| |
Collapse
|
6
|
Production of melatonin and other tryptophan derivatives by Oenococcus oeni under winery and laboratory scale. Food Microbiol 2020; 86:103265. [DOI: 10.1016/j.fm.2019.103265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/30/2022]
|
7
|
Vitalini S, Dei Cas M, Rubino FM, Vigentini I, Foschino R, Iriti M, Paroni R. LC-MS/MS-Based Profiling of Tryptophan-Related Metabolites in Healthy Plant Foods. Molecules 2020; 25:E311. [PMID: 31940983 PMCID: PMC7024187 DOI: 10.3390/molecules25020311] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Food plants contain hundreds of bioactive phytochemicals arising from different secondary metabolic pathways. Among these, the metabolic route of the amino acid Tryptophan yields a large number of plant natural products with chemically and pharmacologically diverse properties. We propose the identifier "indolome" to collect all metabolites in the Tryptophan pathway. In addition, Tryptophan-rich plant sources can be used as substrates for the fermentation by yeast strains to produce pharmacologically active metabolites, such as Melatonin. To pursue this technological development, we have developed a UHPLC-MS/MS method to monitor 14 Tryptophan, Tryptamine, amino-benzoic, and pyridine metabolites. In addition, different extraction procedures to improve the recovery of Tryptophan and its derivatives from the vegetal matrix were tested. We investigated soybeans, pumpkin seeds, sesame seeds, and spirulina because of their botanical diversity and documented healthy effects. Four different extractions with different solvents and temperatures were tested, and water extraction at room temperature was chosen as the most suitable procedure to extract the whole Tryptophan metabolites pattern (called by us "indolome") in terms of ease, high efficiency, short time, low cost, and sustainability. In all plant matrices, Tryptophan was the most abundant indole compound, while the pattern of its metabolites was different in the diverse plants extracts. Overall, 5-OH Tryptamine and Kynurenine were the most abundant compounds, despite being 100-1000-fold lower than Tryptophan. Melatonin was undetected in all extracts, but sesame showed the presence of a Melatonin isomer. The results of this study highlight the variability in the occurrence of indole compounds among diverse food plants. The knowledge of Tryptophan metabolism in plants represents a relevant issue for human health and nutrition.
Collapse
Affiliation(s)
- Sara Vitalini
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (M.D.C.); (F.M.R.); (R.P.)
| | - Federico Maria Rubino
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (M.D.C.); (F.M.R.); (R.P.)
| | - Ileana Vigentini
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (I.V.); (R.F.)
| | - Roberto Foschino
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (I.V.); (R.F.)
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Rita Paroni
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (M.D.C.); (F.M.R.); (R.P.)
| |
Collapse
|
8
|
Paroni R, Dei Cas M, Rizzo J, Ghidoni R, Montagna MT, Rubino FM, Iriti M. Bioactive phytochemicals of tree nuts. Determination of the melatonin and sphingolipid content in almonds and pistachios. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Assessment of Tryptophan, Tryptophan Ethylester, and Melatonin Derivatives in Red Wine by SPE-HPLC-FL and SPE-HPLC-MS Methods. Foods 2019; 8:foods8030099. [PMID: 30875821 PMCID: PMC6463071 DOI: 10.3390/foods8030099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 11/17/2022] Open
Abstract
Melatonin (MEL) is an indoleamine produced mainly by the pineal gland in vertebrates. It plays a significant role in the regulation of circadian rhythms, mitigation of sleeping disorders, and jet lag. This compound is synthetized from tryptophan (TRP) and it has been found in seeds, fruits, and fermented beverages, including wine. Wine is also a source of other tryptophan derivatives, the tryptophan ethylester (TEE) and MEL isomers (MISs), for which the biological properties need to be elucidated. An analytical method for the simultaneous quantification of TRP, TEE, and MEL was developed by a Solid Phase Extraction (SPE) of a preconcentration of wine followed by high performance liquid chromatography (HPLC) analysis either with fluorescence or mass spectrometer detectors. The analytical method showed a relative standard deviation (RSD) lower than 8%, except for TRP (RSD 10.5% in wine). The recovery was higher than 76%. The versatility of SPE preconcentrations allowed for the adequate preconcentration of wine sample as well as detection of low concentrations, an important aspect especially for MEL (detection limit 0.0023 µg/L). The proposed method proved to be suitable for assessing the investigated compounds in some red wine samples, where 74.4⁻256.2 µg/L and 0.038⁻0.063 µg/L of TEE and MEL were detected, respectively. Five MISs were also found in wine samples in concentrations up to 1.97 µg/L.
Collapse
|
10
|
Fernandez-Cruz E, González B, Muñiz-Calvo S, Morcillo-Parra MÁ, Bisquert R, Troncoso AM, Garcia-Parrilla MC, Torija MJ, Guillamón JM. Intracellular biosynthesis of melatonin and other indolic compounds in Saccharomyces and non-Saccharomyces wine yeasts. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03257-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Fracassetti D, Vigentini I, Faro A, Foschino R, Tirelli A, Orioli M, Iriti M. Il contributo dei batteri lattici per la presenza di melatonina nel vino rosso. BIO WEB OF CONFERENCES 2019. [DOI: 10.1051/bioconf/20191204006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
La melatonina (MEL) è un'indolammina implicata nella regolazione dei cicli circadiani e che possiede attività antiossidante. La presenza di MEL è stata dimostrata nelle piante e negli alimenti con particolare attenzione agli alimenti e bevande fermentati, tra cui il vino. L'uva è una fonte di MEL e nel vino l'attività metabolica del lievito svolge un ruolo cruciale per la produzione di MEL. È stato recentemente suggerito che anche i batteri lattici (LAB) posseggano tale abilità. In questo studio è stata indagata la sintesi di MEL da parte dei LAB in condizioni enologiche e di laboratorio. Sono stati analizzati 8 vini rossi prodotti su scala industriale in 4 cantine. Inoltre, 11 ceppi di LAB sono stati inoculati in terreno sintetico simil-vino. Dai risultati ottenuti è emerso che nei vini prodotti in due delle quattro cantine è stato osservato un aumento di MEL al termine della fermentazione malolattica. Tutti i ceppi oggetto dello studio hanno prodotto MEL in condizioni di laboratorio in quantità variabile a seconda del ceppo. I risultati mettono in evidenza per la prima volta che i LAB sono capaci di rilasciare MEL sia in condizioni di laboratorio che nel vino prodotto industrialmente. The contribution of lactic bacteria on melatonin in red wine
Collapse
|
12
|
Song M, Park WS, Yoo J, Ham JS. The Potential of Melatonin for the Application in Dairy Products. ACTA ACUST UNITED AC 2018. [DOI: 10.22424/jmsb.2018.36.1.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Meng JF, Shi TC, Song S, Zhang ZW, Fang YL. Melatonin in grapes and grape-related foodstuffs: A review. Food Chem 2017; 231:185-191. [PMID: 28449995 DOI: 10.1016/j.foodchem.2017.03.137] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/03/2017] [Accepted: 03/23/2017] [Indexed: 11/24/2022]
Abstract
A decade has passed since melatonin was first reported in grapes in 2006. During this time, melatonin has not only been found in the berries of most wine grape (Vitis vinifera L.) cultivars, but also in most grape-related foodstuffs, e.g. wine, grape juice and grape vinegar. In this review, we discuss the melatonin content in grapes and grape-related foodstuffs (especially wine) from previous studies, the physiological function of melatonin in grapes, and the factors contributing to the production of melatonin in grapes and wines. In addition, we identify future research needed to clarify the mechanisms of grape melatonin biosynthesis and regulation, and establish more accurate analysis methods for melatonin in grapes and wines.
Collapse
Affiliation(s)
- Jiang-Fei Meng
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi 712100, China
| | - Tian-Ci Shi
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuo Song
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518005, China
| | - Zhen-Wen Zhang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi 712100, China.
| | - Yu-Lin Fang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Erland LAE, Chattopadhyay A, Jones AMP, Saxena PK. Melatonin in Plants and Plant Culture Systems: Variability, Stability and Efficient Quantification. FRONTIERS IN PLANT SCIENCE 2016; 7:1721. [PMID: 27899931 PMCID: PMC5110574 DOI: 10.3389/fpls.2016.01721] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/02/2016] [Indexed: 05/04/2023]
Abstract
Despite growing evidence of the importance of melatonin and serotonin in the plant life, there is still much debate over the stability of melatonin, with extraction and analysis methods varying greatly from lab to lab with respect to time, temperature, light levels, extraction solvents, and mechanical disruption. The variability in methodology has created conflicting results that confound the comparison of studies to determine the role of melatonin in plant physiology. We here describe a fully validated method for the quantification of melatonin, serotonin and their biosynthetic precursors: tryptophan, tryptamine and N-acetylserotonin by liquid chromatography single quadrupole mass spectrometry (LC-MS) in diverse plant species and tissues. This method can be performed on a simple and inexpensive platform, and is both rapid and simple to implement. The method has excellent reproducibility and acceptable sensitivity with percent relative standard deviation (%RSD) in all matrices between 1 and 10% and recovery values of 82-113% for all analytes. Instrument detection limits were 24.4 ng/mL, 6.10 ng/mL, 1.52 ng/mL, 6.10 ng/mL, and 95.3 pg/mL, for serotonin, tryptophan, tryptamine, N-acetylserotonin and melatonin respectively. Method detection limits were 1.62 μg/g, 0.407 μg/g, 0.101 μg/g, 0.407 μg/g, and 6.17 ng/g respectively. The optimized method was then utilized to examine the issue of variable stability of melatonin in plant tissue culture systems. Media composition (Murashige and Skoog, Driver and Kuniyuki walnut or Lloyd and McCown's woody plant medium) and light (16 h photoperiod or dark) were found to have no effect on melatonin or serotonin content. A Youden trial suggested temperature as a major factor leading to degradation of melatonin. Both melatonin and serotonin appeared to be stable across the first 10 days in media, melatonin losses reached a mean minimum degradation at 28 days of approximately 90%; serotonin reached a mean minimum value of approximately 60% at 28 days. These results suggest that melatonin and serotonin show considerable stability in plant systems and these indoleamines and related compounds can be used for investigations that span over 3 weeks.
Collapse
Affiliation(s)
| | | | | | - Praveen K. Saxena
- Department of Plant Agriculture, Gosling Institute for Plant Preservation, University of GuelphGuelph, ON, Canada
| |
Collapse
|
15
|
Back K, Tan DX, Reiter RJ. Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J Pineal Res 2016; 61:426-437. [PMID: 27600803 DOI: 10.1111/jpi.12364] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/02/2016] [Indexed: 02/06/2023]
Abstract
Melatonin is an animal hormone as well as a signaling molecule in plants. It was first identified in plants in 1995, and almost all enzymes responsible for melatonin biosynthesis had already been characterized in these species. Melatonin biosynthesis from tryptophan requires four-step reactions. However, six genes, that is, TDC, TPH, T5H, SNAT, ASMT, and COMT, have been implicated in the synthesis of melatonin in plants, suggesting the presence of multiple pathways. Two major pathways have been proposed based on the enzyme kinetics: One is the tryptophan/tryptamine/serotonin/N-acetylserotonin/melatonin pathway, which may occur under normal growth conditions; the other is the tryptophan/tryptamine/serotonin/5-methoxytryptamine/melatonin pathway, which may occur when plants produce large amounts of serotonin, for example, upon senescence. The melatonin biosynthetic capacity associated with conversion of tryptophan to serotonin is much higher than that associated with conversion of serotonin to melatonin, which yields a low level of melatonin synthesis in plants. Many melatonin intermediates are produced in various subcellular compartments, such as the cytoplasm, endoplasmic reticulum, and chloroplasts, which either facilitates or impedes the subsequent enzymatic steps. Depending on the pathways, the final subcellular sites of melatonin synthesis vary at either the cytoplasm or chloroplasts, which may differentially affect the mode of action of melatonin in plants.
Collapse
Affiliation(s)
- Kyoungwhan Back
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, Korea.
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
16
|
Lee K, Zawadzka A, Czarnocki Z, Reiter RJ, Back K. Molecular cloning of melatonin 3-hydroxylase and its production of cyclic 3-hydroxymelatonin in rice (Oryza sativa). J Pineal Res 2016; 61:470-478. [PMID: 27500558 DOI: 10.1111/jpi.12361] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022]
Abstract
Melatonin is metabolized in animals to cyclic 3-hydroxymelatonin (3-OHM) not by an enzymatic pathway, but by interaction with hydroxyl radicals. The production of 3-OHM in animals suggests the possible presence of 3-OHM in plants. Prior to the identification of 3-OHM in plants, we directly cloned the corresponding gene(s) responsible for 3-OHM synthesis using Escherichia coli library strains expressing genes belonging to the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily from rice. Three of 35 E. coli library strains supplemented with 1 mmol/L melatonin were found to produce 3-OHM in their extracellular medium, suggestive of three 2-ODD genes involved in 3-OHM production. The purified recombinant 2-ODD 11, 2-ODD 26, and 2-ODD 33 proteins were shown to catalyze the metabolism of melatonin to 3-OHM, with 2-ODD 11 showing the highest melatonin 3-hydroxylase (M3H) catalytic activity. Consistent with the presence of M3H genes, rice leaves supplemented with 5 mmol/L melatonin produced 3-OHM [233 μg/g fresh weight (FW)], 2-hydroxymelatonin (21 μg/g FW), and N1 -acetyl-N2 -formyl-5-methoxykynuramine (5 μg/g FW). Three M3H transcripts were induced upon the treatment of rice leaves with cadmium followed by an increase in M3H enzyme activity. Cloning of M3H genes in plants has paved the way for the studies of melatonin in plants in terms of its multiple physiological roles.
Collapse
Affiliation(s)
- Kyungjin Lee
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, South Korea
| | - Anna Zawadzka
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | | | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kyoungwhan Back
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, South Korea.
| |
Collapse
|
17
|
Tudela R, Ribas-Agustí A, Buxaderas S, Riu-Aumatell M, Castellari M, López-Tamames E. Ultrahigh-Performance Liquid Chromatography (UHPLC)-Tandem Mass Spectrometry (MS/MS) Quantification of Nine Target Indoles in Sparkling Wines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4772-6. [PMID: 27148823 DOI: 10.1021/acs.jafc.6b01254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An ultrahigh-performance liquid chromatography (UHPLC)-tandem mass spectrometry (MS/MS) method was developed for the simultaneous determination of nine target indoles in sparkling wines. The proposed method requires minimal sample pretreatment, and its performance parameters (accuracy, repeatability, LOD, and matrix effect) indicate that it is suitable for routine analysis. Four indoles were found at detectable levels in commercial Cava samples: 5-methoxytryptophol (5MTL), tryptophan (TRP), tryptophan ethyl ester (TEE), and N-acetylserotonin (NSER). Two of them, NSER and 5MTL, are reported here for the first time in sparkling wines, with values of 0.3-2 and 0.29-29.2 μg/L, respectively. In the same samples, the contents of melatonin (MEL), serotonin (SER), 5-hydroxytryptophan (5-OHTRP), 5-hydroxyindole-3-acetic acid (5OHIA), and 5-methoxy-3-indoleacetic acid (5MIA) were all below the corresponding limits of detection.
Collapse
Affiliation(s)
- Rebeca Tudela
- Departament de Nutrició i Bromatologia, Xarxa de Referència en Tecnologia dels Aliments (XaRTA), Institut de recerca en Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona , Campus de l'Alimentació de Torribera, Avinguda Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| | | | - Susana Buxaderas
- Departament de Nutrició i Bromatologia, Xarxa de Referència en Tecnologia dels Aliments (XaRTA), Institut de recerca en Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona , Campus de l'Alimentació de Torribera, Avinguda Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| | - Montserrat Riu-Aumatell
- Departament de Nutrició i Bromatologia, Xarxa de Referència en Tecnologia dels Aliments (XaRTA), Institut de recerca en Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona , Campus de l'Alimentació de Torribera, Avinguda Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| | | | - Elvira López-Tamames
- Departament de Nutrició i Bromatologia, Xarxa de Referència en Tecnologia dels Aliments (XaRTA), Institut de recerca en Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona , Campus de l'Alimentació de Torribera, Avinguda Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
18
|
Validation of an Analytical Method to Determine Melatonin and Compounds Related to l-Tryptophan Metabolism Using UHPLC/HRMS. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0529-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Reinholds I, Pugajeva I, Radenkovs V, Rjabova J, Bartkevics V. Development and Validation of New Ultra-High-Performance Liquid Chromatography-Hybrid Quadrupole-Orbitrap Mass Spectrometry Method for Determination of Melatonin in Fruits. J Chromatogr Sci 2016; 54:977-84. [PMID: 26966272 DOI: 10.1093/chromsci/bmw030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Indexed: 11/12/2022]
Abstract
A new reliable analytical method based on ultra-high-performance liquid chromatography coupled with hybrid quadrupole-Orbitrap mass spectrometry was developed for the analysis of melatonin (MEL) in food products. In-house validation was performed using deuterated melatonin (MEL-d4) as an internal standard to ensure method selectivity and accuracy and to evaluate the efficiency of a robust ethyl acetate extraction technique used for sample preparation. The analysis of 18 tart cherry varieties and 28 tomato varieties was performed at optimized conditions. The method was linear (R(2)> 0.99) over the concentration range of 5-200 pg/g. A very low limit of quantification (10 pg/g) was provided for both analyzed matrices. The determined average recoveries (102 and 110%) and the values of intraday repeatability (6.30 and 10.9%) for cherry and tomato matrices, respectively, indicated a good accuracy and precision. The elaborated procedure proved the absence of MEL in any of tart cherries (<10 pg/g), whereas the concentration levels in tomatoes were found to be in the range of <10-149 pg/g, where the highest concentrations were determined in "Cherry," "Cherry Red" and "Rome" tomatoes grown in the Netherlands.
Collapse
Affiliation(s)
- Ingars Reinholds
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, Riga LV-1076, Latvia
| | - Iveta Pugajeva
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, Riga LV-1076, Latvia
| | - Vitalijs Radenkovs
- Latvia State Institute of Fruit-Growing, Graudu iela 1, Dobele LV-3701, Latvia
| | - Jekaterina Rjabova
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, Riga LV-1076, Latvia
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, Riga LV-1076, Latvia
| |
Collapse
|
20
|
Iriti M, Varoni EM. Commentary: Are the proposed benefits of melatonin-rich foods too hard to swallow? Front Nutr 2016; 3:2. [PMID: 26835454 PMCID: PMC4724995 DOI: 10.3389/fnut.2016.00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/11/2016] [Indexed: 11/24/2022] Open
Affiliation(s)
- Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University , Milan , Italy
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University , Milan , Italy
| |
Collapse
|
21
|
Tan DX, Manchester LC, Esteban-Zubero E, Zhou Z, Reiter RJ. Melatonin as a Potent and Inducible Endogenous Antioxidant: Synthesis and Metabolism. Molecules 2015; 20:18886-18906. [PMID: 26501252 PMCID: PMC6332205 DOI: 10.3390/molecules201018886] [Citation(s) in RCA: 419] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 11/17/2022] Open
Abstract
Melatonin is a tryptophan-derived molecule with pleiotropic activities. It is present in almost all or all organisms. Its synthetic pathway depends on the species in which it is measured. For example, the tryptophan to melatonin pathway differs in plants and animals. It is speculated that the melatonin synthetic machinery in eukaryotes was inherited from bacteria as a result of endosymbiosis. However, melatonin's synthetic mechanisms in microorganisms are currently unknown. Melatonin metabolism is highly complex with these enzymatic processes having evolved from cytochrome C. In addition to its enzymatic degradation, melatonin is metabolized via pseudoenzymatic and free radical interactive processes. The metabolic products of these processes overlap and it is often difficult to determine which process is dominant. However, under oxidative stress, the free radical interactive pathway may be featured over the others. Because of the complexity of the melatonin degradative processes, it is expected that additional novel melatonin metabolites will be identified in future investigations. The original and primary function of melatonin in early life forms such as in unicellular organisms was as a free radical scavenger and antioxidant. During evolution, melatonin was selected as a signaling molecule to transduce the environmental photoperiodic information into an endocrine message in multicellular organisms and for other purposes as well. As an antioxidant, melatonin exhibits several unique features which differ from the classic antioxidants. These include its cascade reaction with free radicals and its capacity to be induced under moderate oxidative stress. These features make melatonin a potent endogenously-occurring antioxidant that protects organisms from catastrophic oxidative stress.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cellular and Structural Biology, Health Science Center, University of Texas, San Antonio, TX 78229, USA.
| | - Lucien C Manchester
- Department of Cellular and Structural Biology, Health Science Center, University of Texas, San Antonio, TX 78229, USA.
| | - Eduardo Esteban-Zubero
- Department of Cellular and Structural Biology, Health Science Center, University of Texas, San Antonio, TX 78229, USA.
| | - Zhou Zhou
- Department of Cellular and Structural Biology, Health Science Center, University of Texas, San Antonio, TX 78229, USA.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, Health Science Center, University of Texas, San Antonio, TX 78229, USA.
| |
Collapse
|
22
|
Iriti M, Varoni EM. Melatonin in Mediterranean diet, a new perspective. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:2355-9. [PMID: 25501293 DOI: 10.1002/jsfa.7051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 05/21/2023]
Abstract
The health-promoting properties of the Mediterranean diet have been attributed, at least in part, to the chemical diversity of plant foods. Among phytochemicals, polyphenols represent the paradigm of the relationship between healthy foods and reduced risk of chronic-degenerative diseases, although, in the past few years, a new element has enriched this scenario. Melatonin, and possibly other indoleamines recently discovered in some relevant Mediterranean foods, may represent a new factor contributing to the elucidation of the protective effects of diets rich in plant products. Therefore, in synergy with polyphenols and other bioactive phytochemicals (e.g. carotenoids and glucosinolates), melatonin may contribute to maximizing the benefits of healthy dietary styles. This brief survey deals with the occurrence of melatonin in the Mediterranean diet, with an emphasis on grape products, and focuses on the biological significance of dietary melatonin, an emerging and exciting topic in the field of nutritional sciences.
Collapse
Affiliation(s)
- Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| |
Collapse
|
23
|
Arnao MB, Hernández-Ruiz J. Functions of melatonin in plants: a review. J Pineal Res 2015; 59:133-50. [PMID: 26094813 DOI: 10.1111/jpi.12253] [Citation(s) in RCA: 449] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/05/2015] [Indexed: 02/06/2023]
Abstract
The number of studies on melatonin in plants has increased significantly in recent years. This molecule, with a large set of functions in animals, has also shown great potential in plant physiology. This review outlines the main functions of melatonin in the physiology of higher plants. Its role as antistress agent against abiotic stressors, such as drought, salinity, low and high ambient temperatures, UV radiation and toxic chemicals, is analyzed. The latest data on their role in plant-pathogen interactions are also discussed. Both abiotic and biotic stresses produce a significant increase in endogenous melatonin levels, indicating its possible role as effector in these situations. The existence of endogenous circadian rhythms in melatonin levels has been demonstrated in some species, and the data, although limited, suggest a central role of this molecule in the day/night cycles in plants. Finally, another aspect that has led to a large volume of research is the involvement of melatonin in aspects of plant development regulation. Although its role as a plant hormone is still far of from being fully established, its involvement in processes such as growth, rhizogenesis, and photosynthesis seems evident. The multiple changes in gene expression caused by melatonin point to its role as a multiregulatory molecule capable of coordinating many aspects of plant development. This last aspect, together with its role as an alleviating-stressor agent, suggests that melatonin is an excellent prospect for crop improvement.
Collapse
Affiliation(s)
- Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| | - Josefa Hernández-Ruiz
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
24
|
Vigentini I, Gardana C, Fracassetti D, Gabrielli M, Foschino R, Simonetti P, Tirelli A, Iriti M. Yeast contribution to melatonin, melatonin isomers and tryptophan ethyl ester during alcoholic fermentation of grape musts. J Pineal Res 2015; 58:388-96. [PMID: 25726850 DOI: 10.1111/jpi.12223] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 02/26/2015] [Indexed: 11/28/2022]
Abstract
Melatonin (MEL) has been found in some medicinal and food plants, including grapevine, a commodity of particular interest for the production of wine, a beverage of economic relevance. It has also been suggested that MEL in wine may, at least in part, contribute to the health-promoting properties attributed to this beverage and, possibly, to other traditional Mediterranean foodstuffs. After a preliminary screening of 9 yeast strains in laboratory medium, three selected strains (Saccharomyces cerevisiae EC1118, Torulaspora delbrueckii CBS1146(T) and Zygosaccharomyces bailii ATCC36947(T) ) were inoculated in experimental musts obtained from 2 white (Moscato and Chardonnay) and 2 red (Croatina and Merlot) grape varieties. The production of MEL, melatonin isomers (MIs) and tryptophan ethyl ester (TEE) was monitored during the alcoholic fermentation. The screening showed that the three investigated strains produced the highest concentrations of MEL and two MIs in optimal growth conditions. However, MEL and MIs were not produced in oenological conditions, but the three strains synthesized high concentrations of a new MI and TEE in musts.
Collapse
Affiliation(s)
- Ileana Vigentini
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Iriti M, Vigentini I. Tryptophan-ethylester, the false (unveiled) melatonin isomer in red wine. Int J Tryptophan Res 2015; 8:27-9. [PMID: 25922582 PMCID: PMC4381840 DOI: 10.4137/ijtr.s22450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/15/2015] [Accepted: 02/28/2015] [Indexed: 11/05/2022] Open
Abstract
Among the food plants, the presence of melatonin in grapes (Vitis vinifera L.) deserves particular attention because of the production of wine, an alcoholic beverage of economic relevance and with putative healthy effects. Furthermore, melatonin isomers have been detected in wine too. Recently, one of these isomers has been identified as tryptophan-ethylester, a compound with the same molecular weight of melatonin. In this Commentary, we briefly comment the source(s) of tryptophan-ethylester in wine and the putative nutritional role(s).
Collapse
Affiliation(s)
- Marcello Iriti
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Ileana Vigentini
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|