1
|
Evangelidis P, Tragiannidis K, Gavriilaki E, Tragiannidis A. Impact of Thrombopoietin Receptor Agonists on Pathophysiology of Pediatric Immune Thrombocytopenia. Curr Issues Mol Biol 2025; 47:65. [PMID: 39852180 PMCID: PMC11763769 DOI: 10.3390/cimb47010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Immune thrombocytopenia (ITP) in pediatric patients is a common cause of isolated thrombocytopenia. Various pathophysiological mechanisms are implicated in ITP pathogenesis, including the production of autoantibodies against components of platelets (PLTs) by B-cells, the activation of the complement system, phagocytosis by macrophages mediated by Fcγ receptors, the dysregulation of T cells, and reduced bone marrow megakaryopoiesis. ITP is commonly manifested with skin and mucosal bleeding, and it is a diagnosis of exclusion. In some ITP cases, the disease is self-limiting, and treatment is not required, but chronic-persistent disease can also be developed. In these cases, anti-CD20 monoclonal antibodies, such as rituximab and thrombopoietin (TPO) receptor agonists, can be used. TPO agonists have become standard of care today. It has been reported in the published literature that the efficacy of TPO-RAs can be up to 80% in the achievement of several end goals, such as PLT counts. In the current literature review, the data regarding the impact of TPO agonists in the pathogenesis of ITP and treatment outcomes of the patients are examined. In the era of precision medicine, targeted and individualized therapies are crucial to achieving better outcomes for pediatric patients with ITP, especially when chronic refractory disease is developed.
Collapse
Affiliation(s)
- Paschalis Evangelidis
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (E.G.)
| | - Konstantinos Tragiannidis
- Children & Adolescent Hematology-Oncology Unit, Second Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleni Gavriilaki
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (E.G.)
| | - Athanasios Tragiannidis
- Children & Adolescent Hematology-Oncology Unit, Second Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
2
|
Durand P, Pottier V, Debordeaux F, Mesguich C, Duffau P, Lazaro E, Viallard J, Rivière E. Course of immune thrombocytopenia according to the site of platelet destruction identified by indium-111 platelet scintigraphy. Br J Haematol 2025; 206:279-289. [PMID: 39407432 PMCID: PMC11739762 DOI: 10.1111/bjh.19833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/03/2024] [Indexed: 01/19/2025]
Abstract
In primary immune thrombocytopenia (ITP), predictors of disease evolution and treatment response are needed. Data based on the site of platelet destruction are scarce. We performed a retrospective single-centre study of adult patients with primary ITP undergoing at least one Indium-111 platelet scintigraphy (IPS) between 2009 and 2018. Thirty-three patients had isolated hepatic platelet destruction (H-group), and 97 isolated splenic destruction (S-group). Median age at diagnosis (p < 0.001), proportion of associated cardiovascular (p < 0.001), organ-specific autoimmune diseases (p = 0.02), dependence on steroids (p = 0.003) and failure to rituximab (p = 0.01) were higher and relapse more frequent (p = 0.03) in H-group compared to non-splenectomized patients in S-group. Splenectomy was only performed in patients from S-group (as patients with hepatic sequestration are not splenectomized in our centre): 79% were in relapse-free remission at the end of a median 3.4-year post-IPS follow-up, 16% relapsed. In multivariate analyses, only a history of organ-specific autoimmune or inflammatory disease was significantly associated with hepatic sequestration (OR = 4.3, 95% CI = 1.2-15, p = 0.02). Patients with isolated hepatic sequestration were older, had more cardiovascular events and organ-specific autoimmune diseases, greater dependence on steroids, more relapses and a decreased response rate to rituximab suggesting an increased refractoriness to immunomodulatory therapies. Patients with isolated splenic sequestration responded well to splenectomy.
Collapse
Affiliation(s)
- Pauline Durand
- Department of Internal Medicine and Infectious DiseasesUniversity Hospital Centre of BordeauxPessacFrance
| | - Valérie Pottier
- Department of RadiopharmacyUniversity Hospital Centre of BordeauxPessacFrance
| | - Frédéric Debordeaux
- Department of RadiopharmacyUniversity Hospital Centre of BordeauxPessacFrance
| | - Charles Mesguich
- Department of Nuclear MedicineUniversity Hospital Centre of BordeauxPessacFrance
| | - Pierre Duffau
- Department of Internal MedicineUniversity Hospital Centre of BordeauxBordeauxFrance
- UMR CNRS 5164, ImmunoconcEpT & FHU ACRONIMBordeaux UniversityBordeauxFrance
- Faculty of MedicineBordeaux UniversityBordeauxFrance
| | - Estibaliz Lazaro
- Department of Internal Medicine and Infectious DiseasesUniversity Hospital Centre of BordeauxPessacFrance
- UMR CNRS 5164, ImmunoconcEpT & FHU ACRONIMBordeaux UniversityBordeauxFrance
- Faculty of MedicineBordeaux UniversityBordeauxFrance
| | - Jean‐François Viallard
- Department of Internal Medicine and Infectious DiseasesUniversity Hospital Centre of BordeauxPessacFrance
- Faculty of MedicineBordeaux UniversityBordeauxFrance
- INSERM U1034Bordeaux UniversityPessac CedexFrance
| | - Etienne Rivière
- Department of Internal Medicine and Infectious DiseasesUniversity Hospital Centre of BordeauxPessacFrance
- Faculty of MedicineBordeaux UniversityBordeauxFrance
- INSERM U1034Bordeaux UniversityPessac CedexFrance
| |
Collapse
|
3
|
Zhang S, Sun C, Huang Q, Du J, Xia Y, Zhou K, Yang B, Dai K, Yan R. The role of protein kinase C and the glycoprotein Ibα cytoplasmic tail in anti-glycoprotein Ibα antibody-induced platelet apoptosis and thrombocytopenia. Thromb Res 2024; 244:109210. [PMID: 39541612 DOI: 10.1016/j.thromres.2024.109210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/08/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Immune thrombocytopenia (ITP) is an autoimmune disease characterized by low platelet counts. ITP patients with anti-platelet glycoprotein (GP) Ibα (a subunit of GPIb-IX-V complex) autoantibodies, which induce Fc-independent signaling and platelet clearance, are refractory to conventional treatment. Protein kinase C (PKC) is activated by the binding of the ligand von Willebrand factor (VWF) to GPIbα and regulates VWF-GPIbα-induced platelet activation. However, the role of PKC in anti-GPIbα antibody-induced thrombocytopenia remains unknown. MATERIALS AND METHODS The anti-GPIbα antibody-induced PKC activation and its underlying mechanisms were first detected by Western blot, and then the effects of PKC inhibitors, PKC knockout, or GPIbα C-terminal removal on anti-GPIbα antibody-induced platelet apoptosis, activation, aggregation, and clearance were investigated by flow cytometry, platelet aggregometry, and platelet posttransfusion, respectively. Meanwhile, platelet retention and co-localization with macrophages in the liver were detected by spinning disc intravital confocal microscopy. RESULTS Anti-GPIbα antibody-induced PKC activation depends on GPIbα clustering and phosphoinositide 3-kinase (PI3K) activation and results in Akt phosphorylation. Pharmacologic inhibition or genetic ablation of PKC suppresses anti-GPIbα antibody-induced platelet apoptosis and activation. Moreover, the GPIbα cytoplasmic tail is required for antibody-induced PKC activation, platelet apoptosis, and activation. Inhibition or ablation of PKC and deletion of the GPIbα cytoplasmic tail protect platelets from clearance in vivo. CONCLUSIONS Our study indicates the important role of PKC and the GPIbα cytoplasmic tail in anti-GPIbα antibody-mediated platelet signaling and clearance and suggests a novel therapeutic target for ITP and other thrombocytopenic diseases.
Collapse
Affiliation(s)
- Sai Zhang
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Chenglin Sun
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Qiuxia Huang
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Jiahao Du
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Yue Xia
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Kangxi Zhou
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Biao Yang
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Kesheng Dai
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China.
| | - Rong Yan
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China.
| |
Collapse
|
4
|
Žibřidová K, Souček O, Krčmová LK, Jankovičová K, Gančarčíková M, Pejková MA, Drugda J, Nováková D, Košťál M. Lymphocyte subpopulations: a potential predictor of a response in patients with immune thrombocytopenia. Hematology 2024; 29:2304486. [PMID: 38251842 DOI: 10.1080/16078454.2024.2304486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
OBJECTIVES Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder caused by increased platelet destruction and altered production. Despite the well-described pathophysiological background of immune dysregulation, current treatment guidelines consist of monotherapy with different drugs, with no tool to predict which patient is more suitable for each therapeutic modality. METHODS In our study, we attempted to determine differences in the immune setting, comparing the patients' responses to administered therapy. During 12-month follow-up, we assessed blood count, antiplatelet autoantibodies, and T lymphocyte subsets in peripheral blood in 35 patients with ITP (newly diagnosed or relapsed disease). RESULTS Our data show that the value of antiplatelet autoantibodies, the percentage of cytotoxic T lymphocytes, and the immunoregulatory index (IRI, CD4+ / CD8+ T cell ratio) differ significantly by treatment response. Responders have a higher IRI (median 2.1 vs. 1.5 in non-responders, P = 0.04), higher antiplatelet autoantibodies (median 58 vs. 20% in non-responders, P = 0.01) and lower relative CD8+ T cells count (P = 0.02) before treatment. DISCUSSION The results suggest that immunological parameters (antiplatelet autoantibodies, relative CD8+ T cell count and IRI) could be used as prognostic tools for a worse clinical outcome in patients with ITP. CONCLUSION These biomarkers could be utilized for stratification and eventually selection of treatment preferring combination therapy.
Collapse
Affiliation(s)
- Kateřina Žibřidová
- 4th Department of Internal Medicine - Hematology, University Hospital Hradec Králové, Hradec Králové, Czech Republic
- Academic Department of Internal Medicine, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Ondřej Souček
- Department of Clinical Immunology and Allergology, University Hospital Hradec Králové, Hradec Králové, Czech Republic
- Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Karolína Jankovičová
- Department of Clinical Immunology and Allergology, University Hospital Hradec Králové, Hradec Králové, Czech Republic
- Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Markéta Gančarčíková
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Mária Anna Pejková
- 4th Department of Internal Medicine - Hematology, University Hospital Hradec Králové, Hradec Králové, Czech Republic
- Academic Department of Internal Medicine, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Jan Drugda
- 4th Department of Internal Medicine - Hematology, University Hospital Hradec Králové, Hradec Králové, Czech Republic
- Academic Department of Internal Medicine, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Denisa Nováková
- 4th Department of Internal Medicine - Hematology, University Hospital Hradec Králové, Hradec Králové, Czech Republic
- Academic Department of Internal Medicine, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Milan Košťál
- 4th Department of Internal Medicine - Hematology, University Hospital Hradec Králové, Hradec Králové, Czech Republic
- Academic Department of Internal Medicine, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
5
|
Kos M, Tomaka P, Mertowska P, Mertowski S, Wojnicka J, Błażewicz A, Grywalska E, Bojarski K. The Many Faces of Immune Thrombocytopenia: Mechanisms, Therapies, and Clinical Challenges in Oncological Patients. J Clin Med 2024; 13:6738. [PMID: 39597882 PMCID: PMC11594473 DOI: 10.3390/jcm13226738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
The pathogenesis of immune thrombocytopenia (ITP) is complex and involves the dysregulation of immune cells, such as T and B lymphocytes, and several cytokines that promote the production of autoantibodies. In the context of cancer patients, ITP can occur in both primary and secondary forms related to anticancer therapies or the disease itself. OBJECTIVE In light of these data, we decided to prepare a literature review that will explain the classification and immunological determinants of the pathogenesis of ITP and present the clinical implications of this condition, especially in patients with cancer. MATERIALS AND METHODS We reviewed the literature on immunological mechanisms, therapies, and challenges in treating ITP, particularly on cancer patients. RESULTS The results of the literature review show that ITP in cancer patients can be both primary and secondary, with secondary ITP being more often associated with anticancer therapies such as chemotherapy and immunotherapy. Innovative therapies such as TPO-RA, rituximab, Bruton's kinase inhibitors, and FcRn receptor inhibitors have shown promising results in treating refractory ITP, especially in patients with chronic disease. CONCLUSIONS ITP is a significant clinical challenge, especially in the context of oncology patients, where both the disease and treatment can worsen thrombocytopenia and increase the risk of bleeding complications. Treatment of oncology patients with ITP requires an individualized approach, and new therapies offer effective tools for managing this condition. Future research into immunological mechanisms may bring further advances in treating ITP and improve outcomes in cancer patients.
Collapse
Affiliation(s)
- Marek Kos
- Department of Public Health, Medical University of Lublin, 20-400 Lublin, Poland
| | - Piotr Tomaka
- Department of Anesthesiology and Intensive Care, SP ZOZ in Łęczna, 21-010 Łęczna, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Julia Wojnicka
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 20-093 Lublin, Poland
| | - Anna Błażewicz
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | | |
Collapse
|
6
|
Sun L, Zhang Y, Chen P, Jiang N, Feng Q, Xu S, Peng J, Sheng Z. The effects of complement-independent, autoantibody-induced apoptosis of platelets in immune thrombocytopenia (ITP). Ann Hematol 2024:10.1007/s00277-024-05999-z. [PMID: 39271523 DOI: 10.1007/s00277-024-05999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Autoantibodies that cause platelet apoptosis may play a role in the development of immune thrombocytopenia (ITP), specifically antibodies that target GPIIbIIIa and GPIbα. Our research aims to compare the impact of the antigen specificity of antiplatelet antibodies on normal platelets under conditions that do not rely on complement. Using a modified monoclonal antibody-specific immobilization of platelet antigen (MAIPA) assay, we detected the levels of autoantibodies against specific platelet membrane glycoproteins (GPIIb/IIIa, GPIb/IX) in the plasma of 36 patients diagnosed with chronic ITP. IgG was isolated and purified using a protein A agarose affinity chromatography column, and their concentrations were measured using spectrophotometry. We obtained normal platelets and treated them with the purified IgG anti-GPIIb/IIIa and/or anti-GPIb/IX antibodies, as well as an IgG-free buffer and healthy control IgG. Flow cytometry was used to analyze markers of apoptosis, including phosphatidylserine (PS) exposure, mitochondrial inner membrane potential (ΔΨm), and platelet particle formation. Our results indicate that ITP patients with GPIb/IX-specific autoantibodies can induce platelet apoptosis and platelet particle formation through complement-independent pathways, which are not associated with platelet activation, while GPIIb/IIIa-specific autoantibodies did not have this effect. This suggests that specific autoantibodies may serve as a valuable predictive tool to identify patients who could potentially benefit from complement-inhibiting therapy in the future.
Collapse
Affiliation(s)
- Lin Sun
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Rd, Jinan, 250012, China
- Central Hospital Affiliated to Shandong Fist Medical University, Shandong, China
| | - Yichen Zhang
- Central Hospital Affiliated to Shandong Fist Medical University, Shandong, China
| | - Ping Chen
- Central Hospital Affiliated to Shandong Fist Medical University, Shandong, China
| | - Nan Jiang
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Rd, Jinan, 250012, China
| | - Qi Feng
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Rd, Jinan, 250012, China
| | - Shuqian Xu
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Rd, Jinan, 250012, China
| | - Jun Peng
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Rd, Jinan, 250012, China.
| | - Zi Sheng
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Rd, Jinan, 250012, China.
| |
Collapse
|
7
|
Giagounidis A. [Pathophysiology and Diagnostics of Immune Thrombocytopenia]. Dtsch Med Wochenschr 2024; 149:832-838. [PMID: 38950548 DOI: 10.1055/a-2317-3073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Immune thrombocytopenia (ITP) is due to autoantibodies against platelet surface antigens. ITP is considered as either primary, with no clear etiology, or as secondary ITP (drug-induced; underlying diseases). Autoantibodies lead both to loss of platelets in the spleen and/or liver but simultaneously reduce their production. Contrary to other disorders with thrombocytopenia, ITP has reduced levels of thrombopoetin. ITP remains a diagnosis of exclusion. A single defining laboratory test does not exist. Glycoprotein-specific antibodies can be detected in only about 50% of cases. Ruling out EDTA-induced pseudo thrombocytopenia is of particular relevance. Secondary causes of thrombocytopenia should be excluded through medical history (especially medication history), physical examination and possibly bone-marrow puncture.
Collapse
Affiliation(s)
- Aristoteles Giagounidis
- Klinik für Onkologie, Hämatologie und Palliativmedizin, Marien Hospital Düsseldorf, Düsseldorf, GERMANY
| |
Collapse
|
8
|
Martínez-Carballeira D, Bernardo Á, Caro A, Soto I, Gutiérrez L. Treatment of Immune Thrombocytopenia: Contextualization from a Historical Perspective. Hematol Rep 2024; 16:390-412. [PMID: 39051412 PMCID: PMC11270329 DOI: 10.3390/hematolrep16030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by an isolated decrease in platelet count and an increased risk of bleeding. The pathogenesis is complex, affecting multiple components of the immune system and causing both peripheral destruction of platelets and inadequate production in the bone marrow. In this article, we review the treatment of ITP from a historical perspective, discussing first line and second line treatments, and management of refractory disease.
Collapse
Affiliation(s)
- Daniel Martínez-Carballeira
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (Á.B.); (A.C.); (I.S.)
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Ángel Bernardo
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (Á.B.); (A.C.); (I.S.)
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Alberto Caro
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (Á.B.); (A.C.); (I.S.)
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Inmaculada Soto
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (Á.B.); (A.C.); (I.S.)
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Department of Medicine, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
9
|
Chen Y, Xu Y, Li H, Sun T, Cao X, Wang Y, Xue F, Liu W, Liu X, Dong H, Fu R, Dai X, Wang W, Ma Y, Song Z, Chi Y, Ju M, Gu W, Pei X, Yang R, Zhang L. A Novel Anti-CD38 Monoclonal Antibody for Treating Immune Thrombocytopenia. N Engl J Med 2024; 390:2178-2190. [PMID: 38899695 DOI: 10.1056/nejmoa2400409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
BACKGROUND Immune thrombocytopenia (ITP) is an autoimmune disease characterized by autoantibody-mediated platelet destruction. Treatment with CM313, a novel anti-CD38 monoclonal antibody, can result in targeted clearance of CD38-positive cells, including plasma cells. METHODS We conducted a phase 1-2, open-label study to evaluate the safety and efficacy of CM313 in adult patients with ITP. CM313 was administered intravenously at a dose of 16 mg per kilogram of body weight every week for 8 weeks, followed by a 16-week follow-up period. The primary outcomes were adverse events and documentation of two or more consecutive platelet counts of at least 50×109 per liter within 8 weeks after the first dose of CM313. The status of peripheral-blood immune cells in patients and changes in the mononuclear phagocytic system in passive mouse models of ITP receiving anti-CD38 therapy were monitored. RESULTS Of the 22 patients included in the study, 21 (95%) had two consecutive platelet counts of at least 50×109 per liter during the treatment period, with a median cumulative response duration of 23 weeks (interquartile range, 17 to 24). The median time to the first platelet count of at least 50×109 per liter was 1 week (range, 1 to 3). The most common adverse events that occurred during the study were infusion-related reaction (in 32% of the patients) and upper respiratory tract infection (in 32%). After CD38-targeted therapy, the percentage of CD56dimCD16+ natural killer cells, the expression of CD32b on monocytes in peripheral blood, and the number of macrophages in the spleen of the passive mouse models of ITP all decreased. CONCLUSIONS In this study, anti-CD38 targeted therapy rapidly boosted platelet levels by inhibiting antibody-dependent cell-mediated cytotoxicity on platelets, maintained long-term efficacy by clearing plasma cells, and was associated with mainly low-grade toxic effects. (Funded by the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences and others; ClinicalTrials.gov number, NCT05694767).
Collapse
Affiliation(s)
- Yunfei Chen
- From the National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, and the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and the Tianjin Institutes of Health Science, Tianjin (Y.C., Y.X., H.L., T.S., X.C., Y.W., F.X., W.L., X.L., H.D., R.F., X.D., W.W., Y.M., Z.S., Y.C., M.J., W.G., X.P., R.Y., L.Z.), and the School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Z.) - all in China
| | - Yanmei Xu
- From the National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, and the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and the Tianjin Institutes of Health Science, Tianjin (Y.C., Y.X., H.L., T.S., X.C., Y.W., F.X., W.L., X.L., H.D., R.F., X.D., W.W., Y.M., Z.S., Y.C., M.J., W.G., X.P., R.Y., L.Z.), and the School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Z.) - all in China
| | - Huiyuan Li
- From the National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, and the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and the Tianjin Institutes of Health Science, Tianjin (Y.C., Y.X., H.L., T.S., X.C., Y.W., F.X., W.L., X.L., H.D., R.F., X.D., W.W., Y.M., Z.S., Y.C., M.J., W.G., X.P., R.Y., L.Z.), and the School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Z.) - all in China
| | - Ting Sun
- From the National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, and the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and the Tianjin Institutes of Health Science, Tianjin (Y.C., Y.X., H.L., T.S., X.C., Y.W., F.X., W.L., X.L., H.D., R.F., X.D., W.W., Y.M., Z.S., Y.C., M.J., W.G., X.P., R.Y., L.Z.), and the School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Z.) - all in China
| | - Xuan Cao
- From the National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, and the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and the Tianjin Institutes of Health Science, Tianjin (Y.C., Y.X., H.L., T.S., X.C., Y.W., F.X., W.L., X.L., H.D., R.F., X.D., W.W., Y.M., Z.S., Y.C., M.J., W.G., X.P., R.Y., L.Z.), and the School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Z.) - all in China
| | - Yuhua Wang
- From the National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, and the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and the Tianjin Institutes of Health Science, Tianjin (Y.C., Y.X., H.L., T.S., X.C., Y.W., F.X., W.L., X.L., H.D., R.F., X.D., W.W., Y.M., Z.S., Y.C., M.J., W.G., X.P., R.Y., L.Z.), and the School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Z.) - all in China
| | - Feng Xue
- From the National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, and the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and the Tianjin Institutes of Health Science, Tianjin (Y.C., Y.X., H.L., T.S., X.C., Y.W., F.X., W.L., X.L., H.D., R.F., X.D., W.W., Y.M., Z.S., Y.C., M.J., W.G., X.P., R.Y., L.Z.), and the School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Z.) - all in China
| | - Wei Liu
- From the National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, and the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and the Tianjin Institutes of Health Science, Tianjin (Y.C., Y.X., H.L., T.S., X.C., Y.W., F.X., W.L., X.L., H.D., R.F., X.D., W.W., Y.M., Z.S., Y.C., M.J., W.G., X.P., R.Y., L.Z.), and the School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Z.) - all in China
| | - Xiaofan Liu
- From the National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, and the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and the Tianjin Institutes of Health Science, Tianjin (Y.C., Y.X., H.L., T.S., X.C., Y.W., F.X., W.L., X.L., H.D., R.F., X.D., W.W., Y.M., Z.S., Y.C., M.J., W.G., X.P., R.Y., L.Z.), and the School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Z.) - all in China
| | - Huan Dong
- From the National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, and the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and the Tianjin Institutes of Health Science, Tianjin (Y.C., Y.X., H.L., T.S., X.C., Y.W., F.X., W.L., X.L., H.D., R.F., X.D., W.W., Y.M., Z.S., Y.C., M.J., W.G., X.P., R.Y., L.Z.), and the School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Z.) - all in China
| | - Rongfeng Fu
- From the National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, and the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and the Tianjin Institutes of Health Science, Tianjin (Y.C., Y.X., H.L., T.S., X.C., Y.W., F.X., W.L., X.L., H.D., R.F., X.D., W.W., Y.M., Z.S., Y.C., M.J., W.G., X.P., R.Y., L.Z.), and the School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Z.) - all in China
| | - Xinyue Dai
- From the National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, and the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and the Tianjin Institutes of Health Science, Tianjin (Y.C., Y.X., H.L., T.S., X.C., Y.W., F.X., W.L., X.L., H.D., R.F., X.D., W.W., Y.M., Z.S., Y.C., M.J., W.G., X.P., R.Y., L.Z.), and the School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Z.) - all in China
| | - Wentian Wang
- From the National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, and the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and the Tianjin Institutes of Health Science, Tianjin (Y.C., Y.X., H.L., T.S., X.C., Y.W., F.X., W.L., X.L., H.D., R.F., X.D., W.W., Y.M., Z.S., Y.C., M.J., W.G., X.P., R.Y., L.Z.), and the School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Z.) - all in China
| | - Yueshen Ma
- From the National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, and the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and the Tianjin Institutes of Health Science, Tianjin (Y.C., Y.X., H.L., T.S., X.C., Y.W., F.X., W.L., X.L., H.D., R.F., X.D., W.W., Y.M., Z.S., Y.C., M.J., W.G., X.P., R.Y., L.Z.), and the School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Z.) - all in China
| | - Zhen Song
- From the National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, and the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and the Tianjin Institutes of Health Science, Tianjin (Y.C., Y.X., H.L., T.S., X.C., Y.W., F.X., W.L., X.L., H.D., R.F., X.D., W.W., Y.M., Z.S., Y.C., M.J., W.G., X.P., R.Y., L.Z.), and the School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Z.) - all in China
| | - Ying Chi
- From the National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, and the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and the Tianjin Institutes of Health Science, Tianjin (Y.C., Y.X., H.L., T.S., X.C., Y.W., F.X., W.L., X.L., H.D., R.F., X.D., W.W., Y.M., Z.S., Y.C., M.J., W.G., X.P., R.Y., L.Z.), and the School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Z.) - all in China
| | - Mankai Ju
- From the National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, and the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and the Tianjin Institutes of Health Science, Tianjin (Y.C., Y.X., H.L., T.S., X.C., Y.W., F.X., W.L., X.L., H.D., R.F., X.D., W.W., Y.M., Z.S., Y.C., M.J., W.G., X.P., R.Y., L.Z.), and the School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Z.) - all in China
| | - Wenjing Gu
- From the National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, and the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and the Tianjin Institutes of Health Science, Tianjin (Y.C., Y.X., H.L., T.S., X.C., Y.W., F.X., W.L., X.L., H.D., R.F., X.D., W.W., Y.M., Z.S., Y.C., M.J., W.G., X.P., R.Y., L.Z.), and the School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Z.) - all in China
| | - Xiaolei Pei
- From the National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, and the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and the Tianjin Institutes of Health Science, Tianjin (Y.C., Y.X., H.L., T.S., X.C., Y.W., F.X., W.L., X.L., H.D., R.F., X.D., W.W., Y.M., Z.S., Y.C., M.J., W.G., X.P., R.Y., L.Z.), and the School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Z.) - all in China
| | - Renchi Yang
- From the National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, and the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and the Tianjin Institutes of Health Science, Tianjin (Y.C., Y.X., H.L., T.S., X.C., Y.W., F.X., W.L., X.L., H.D., R.F., X.D., W.W., Y.M., Z.S., Y.C., M.J., W.G., X.P., R.Y., L.Z.), and the School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Z.) - all in China
| | - Lei Zhang
- From the National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, and the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and the Tianjin Institutes of Health Science, Tianjin (Y.C., Y.X., H.L., T.S., X.C., Y.W., F.X., W.L., X.L., H.D., R.F., X.D., W.W., Y.M., Z.S., Y.C., M.J., W.G., X.P., R.Y., L.Z.), and the School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Z.) - all in China
| |
Collapse
|
10
|
Karakas D, Ni H. Unveiling Platelets as Immune Regulatory Cells. Circ Res 2024; 134:987-989. [PMID: 38603477 DOI: 10.1161/circresaha.124.324167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Affiliation(s)
- Danielle Karakas
- Toronto Platelet Immunobiology Group (D.K., H.N.)
- Department of Laboratory Medicine and Pathobiology (D.K., H.N.)
- University of Toronto, ON, Canada (D.K., H.N.)
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada (D.K., H.N.)
| | - Heyu Ni
- Toronto Platelet Immunobiology Group (D.K., H.N.)
- Department of Laboratory Medicine and Pathobiology (D.K., H.N.)
- Department of Medicine (H.N.)
- Department of Physiology (H.N.)
- University of Toronto, ON, Canada (D.K., H.N.)
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada (D.K., H.N.)
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada (H.N.)
| |
Collapse
|
11
|
Ding B, Liu L, Li M, Song X, Zhang Y, Xia A, Liu J, Zhou H. Anti-GPIb/IX autoantibodies are associated with poor response to dexamethasone combined with rituximab therapy in primary immune thrombocytopenia patients. Platelets 2023; 34:2258988. [PMID: 37722393 DOI: 10.1080/09537104.2023.2258988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023]
Abstract
This retrospective study aimed to evaluate whether anti-glycoproteins (GPs) autoantibodies can be used as predictors of response to high-dose dexamethasone combined with rituximab (DXM-RTX) in the treatment of primary immune thrombocytopenia (ITP) patients. One-hundred twenty-six ITP patients were included and retrospectively analyzed, 66.7% of anti-GPIb/IX and 65.9% of anti-GPIIb/IIIa autoantibodies. Results showed that overall response (OR) and complete response (CR) rates of patients without anti-GPIb/IX autoantibodies to DXM-RTX were significantly higher than those with anti-GPIb/IX autoantibodies at 4 weeks (OR: 73.8% vs. 47.6%, CR: 50.0% vs. 26.2%; P < 0.05) and 6 months (OR: 71.4% vs. 45.2%, CR: 42.9% vs. 25.0%; P < .05). Furthermore, patients with anti-GPIb/IX single-positivity exhibited higher resistance to DXM-RTX than patients with anti-GPIIb/IIIa single-positivity at 4 weeks (OR: 37.5% vs. 78.3%; P < .05) and 6 months (OR: 29.2% vs. 78.3%; P < .05). Multivariable logistic regression analysis revealed that anti-GPIb/IX autoantibodies and megakaryocytes were associated with the OR rate of patients at both 4 weeks and 6 months, and anti-GPIb/IX autoantibodies at 4 weeks represented the only significant factor affecting OR rate with DXM-RTX (F = 9.128, P = .003). Therefore, platelet anti-GPIb/IX autoantibodies might predict poor response to DXM-RTX in ITP patients.
Collapse
Affiliation(s)
- Bingjie Ding
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Hemostasis and Thrombosis Diagnostic Engineering Research Center of Henan Province, Zhengzhou, China
| | - Liu Liu
- Department of Hematology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengjuan Li
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Hemostasis and Thrombosis Diagnostic Engineering Research Center of Henan Province, Zhengzhou, China
| | - Xuewen Song
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Hemostasis and Thrombosis Diagnostic Engineering Research Center of Henan Province, Zhengzhou, China
| | - Yuanyuan Zhang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Hemostasis and Thrombosis Diagnostic Engineering Research Center of Henan Province, Zhengzhou, China
| | - Ao Xia
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Hemostasis and Thrombosis Diagnostic Engineering Research Center of Henan Province, Zhengzhou, China
| | - Jingyuan Liu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Hemostasis and Thrombosis Diagnostic Engineering Research Center of Henan Province, Zhengzhou, China
| | - Hu Zhou
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Hemostasis and Thrombosis Diagnostic Engineering Research Center of Henan Province, Zhengzhou, China
| |
Collapse
|
12
|
Song M, Wang X, Sun M, Wang L, Wang X, Liu Y, Fan W, Li Q, Guo X. Relationships of platelet glycoprotein specific antibody with therapeutic efficacy of short-term high-dose dexamethasone and bleeding score in the newly diagnosed adult patients with primary immune thrombocytopenia. Hematology 2023; 28:2255801. [PMID: 37702365 DOI: 10.1080/16078454.2023.2255801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023] Open
Abstract
Objectives: We aimed to investigate relationships of platelet glycoprotein (GP) specific antibody with therapeutic efficacy of high-dose dexamethasone (HD-DXM) and bleeding score in primary immune thrombocytopenia (ITP) adults. Methods: A retrospective study was carried out to analyze relationships of polymorphism of GP specific antibody with initial therapeutic efficacy of HD-DXM and bleeding score of newly diagnosed ITP adults between 1 June, 2016 and 31 January, 2020. Results: 59 patients were involved in the study, with 33 cases of responders and 26 cases of non-responders between June 2016 and January 2020. At admission, there were 31 (52.5%) GP antibody-positive patients. Initial therapy of HD-DXM was effective for 78.6% GP antibody-negative patients and 35.5% GP antibody-positive patients, with a better therapeutic efficacy in patients with anti-GP Ib/IX antibody or anti-GP IIb/IIIa antibody but not in those with anti-GP Ib/IX antibody plus anti-GP IIb/IIIa antibody. Notably, therapeutic efficacy is much worse for minority (Uyghur) patients compared with corresponding Han patients. Similarly, it was much lower in GP antibody-positive patients compared with corresponding negative ones at low and medium bleeding score, with no response in GP antibody-positive patients at high bleeding score. Furthermore, there was a moderate negative correlation between therapeutic efficacy and GP-specific antibody (p < 0.05), but no obvious linear relationship between clinical bleeding degree and GP-specific antibody (p > 0.05). Conclusion: Collectively, the newly diagnosed ITP adults with GP-specific antibody have a poor response to short-term HD-DXM, especially in minority (Uyghur) patients with GP-specific antibody in China.
Collapse
Affiliation(s)
- Mengting Song
- Hematology Center, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Institute of Hematology, Urumqi, People's Republic of China
| | - Xiujuan Wang
- Hematology Center, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Institute of Hematology, Urumqi, People's Republic of China
| | - Mingling Sun
- Hematology Center, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Institute of Hematology, Urumqi, People's Republic of China
| | - Lei Wang
- Hematology Center, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Institute of Hematology, Urumqi, People's Republic of China
| | - Xinyou Wang
- Hematology Center, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Institute of Hematology, Urumqi, People's Republic of China
| | - Ying Liu
- Hematology Center, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Institute of Hematology, Urumqi, People's Republic of China
| | - Wenxia Fan
- Hematology Center, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Institute of Hematology, Urumqi, People's Republic of China
| | - Qinzhi Li
- Hematology Center, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Institute of Hematology, Urumqi, People's Republic of China
| | - Xinhong Guo
- Hematology Center, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Institute of Hematology, Urumqi, People's Republic of China
| |
Collapse
|
13
|
Gilanchi S, Faranoush M, Daskareh M, Sadjjadi FS, Zali H, Ghassempour A, Rezaei Tavirani M. Proteomic-Based Discovery of Predictive Biomarkers for Drug Therapy Response and Personalized Medicine in Chronic Immune Thrombocytopenia. BIOMED RESEARCH INTERNATIONAL 2023; 2023:9573863. [PMID: 37942029 PMCID: PMC10630023 DOI: 10.1155/2023/9573863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/17/2023] [Accepted: 09/30/2023] [Indexed: 11/10/2023]
Abstract
Purpose ITP is the most prevalent autoimmune blood disorder. The lack of predictive biomarkers for therapeutic response is a major challenge for physicians caring of chronic ITP patients. This study is aimed at identifying predictive biomarkers for drug therapy responses. Methods 2D gel electrophoresis (2-DE) was performed to find differentially expressed proteins. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF MS) analysis was performed to identify protein spots. The Cytoscape software was employed to visualize and analyze the protein-protein interaction (PPI) network. Then, enzyme-linked immunosorbent assays (ELISA) were used to confirm the results of the proteins detected in the blood. The DAVID online software was used to explore the Gene Ontology and pathways involved in the disease. Results Three proteins, including APOA1, GC, and TF, were identified as hub-bottlenecks and confirmed by ELISA. Enrichment analysis results showed the importance of several biological processes and pathway, such as the PPAR signaling pathway, complement and coagulation cascades, platelet activation, vitamin digestion and absorption, fat digestion and absorption, cell adhesion molecule binding, and receptor binding. Conclusion and Clinical Relevance. Our results indicate that plasma proteins (APOA1, GC, and TF) can be suitable biomarkers for the prognosis of the response to drug therapy in ITP patients.
Collapse
Affiliation(s)
- Samira Gilanchi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Faranoush
- Pediatric Growth and Development Research Center, Institute of Endocrinology, Iran University of Medical Sciences, Tehran, Iran
| | - Mahyar Daskareh
- Department of Radiology, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sadat Sadjjadi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
| | | |
Collapse
|
14
|
Li J, Karakas D, Xue F, Chen Y, Zhu G, Yucel YH, MacParland SA, Zhang H, Semple JW, Freedman J, Shi Q, Ni H. Desialylated Platelet Clearance in the Liver is a Novel Mechanism of Systemic Immunosuppression. RESEARCH (WASHINGTON, D.C.) 2023; 6:0236. [PMID: 37808178 PMCID: PMC10551749 DOI: 10.34133/research.0236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/02/2023] [Indexed: 10/10/2023]
Abstract
Platelets are small, versatile blood cells that are critical for hemostasis/thrombosis. Local platelet accumulation is a known contributor to proinflammation in various disease states. However, the anti-inflammatory/immunosuppressive potential of platelets has been poorly explored. Here, we uncovered, unexpectedly, desialylated platelets (dPLTs) down-regulated immune responses against both platelet-associated and -independent antigen challenges. Utilizing multispectral photoacoustic tomography, we tracked dPLT trafficking to gut vasculature and an exclusive Kupffer cell-mediated dPLT clearance in the liver, a process that we identified to be synergistically dependent on platelet glycoprotein Ibα and hepatic Ashwell-Morell receptor. Mechanistically, Kupffer cell clearance of dPLT potentiated a systemic immunosuppressive state with increased anti-inflammatory cytokines and circulating CD4+ regulatory T cells, abolishable by Kupffer cell depletion. Last, in a clinically relevant model of hemophilia A, presensitization with dPLT attenuated anti-factor VIII antibody production after factor VIII ( infusion. As platelet desialylation commonly occurs in daily-aged and activated platelets, these findings open new avenues toward understanding immune homeostasis and potentiate the therapeutic potential of dPLT and engineered dPLT transfusions in controlling autoimmune and alloimmune diseases.
Collapse
Affiliation(s)
- June Li
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
| | - Danielle Karakas
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
| | - Feng Xue
- Departments of Pediatrics,
Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Yingyu Chen
- Departments of Pediatrics,
Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Guangheng Zhu
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
| | - Yeni H. Yucel
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Departments of Ophthalmology and Vision Sciences Medicine,
University of Toronto, Toronto, ON, Canada
- Faculty of Engineering and Architectural Science,
Ryerson University, Toronto, ON, Canada
| | - Sonya A. MacParland
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Multi-Organ Transplant Program,
Toronto General Hospital Research Institute, Toronto, ON, Canada
- Department of Immunology,
University of Toronto, Toronto, ON, Canada
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Critical Care Medicine, Department of Anesthesiology and Pain,
University of Toronto, Toronto, ON, Canada
- Department of Physiology,
University of Toronto, Toronto, ON, Canada
| | - John W. Semple
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Pharmacology,
University of Toronto, Toronto, ON, Canada
- Division of Hematology and Transfusion Medicine,
Lund University, Lund, Sweden
- Clinical Immunology and Transfusion Medicine,
Office of Medical Services, Region Skåne, Lund, Sweden
| | - John Freedman
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Department of Medicine,
University of Toronto, Toronto, ON, Canada
| | - Qizhen Shi
- Departments of Pediatrics,
Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
- Children’s Research Institute, Children’s Wisconsin, Wauwatosa, WI, USA
- Midwest Athletes Against Childhood Cancer Fund Research Center, Milwaukee, WI, USA
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
- Department of Physiology,
University of Toronto, Toronto, ON, Canada
- Department of Medicine,
University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Neunert C, Heitink-Polle KMJ, Lambert MP. A proposal for new definition (s) and management approach to paediatric refractory ITP: Reflections from the Intercontinental ITP Study Group. Br J Haematol 2023; 203:17-22. [PMID: 37641973 DOI: 10.1111/bjh.19072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
Immune thrombocytopenia (ITP) in children is a relatively mild and self-limited disorder with the majority of children demonstrating normalization of platelet count by 12 months from diagnosis. Because of this, many children with ITP can be observed without the need for treatment. When needed, treatment with either intravenous immunoglobulin (IVIG) or corticosteroids is highly effective (>80% IVIG and >95% corticosteroids). For those children who require second-line therapies, response rates of >60% are seen with both the thrombopoietin-receptor agonists and rituximab. Despite this, some children will have 'refractory' ITP (rITP) with poor or transient responses to platelet-raising therapies. Here, we review the clinical features of rITP in children, outline proposed classifications and explore potential predictors for children with rITP.
Collapse
Affiliation(s)
- Cindy Neunert
- Vagelos College of Physicians and Surgeons, Columbia University Medical School, New York, New York, USA
| | | | - Michele P Lambert
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at UPENN, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Liu N, Lv D, Schneider RR, Yang H, Zhang M, Liu Y, Sun M. Intracavitary cardiac metastasis of cervical squamous cell carcinoma with immune thrombocytopenia: a rare case report. Front Oncol 2023; 13:1239606. [PMID: 37711205 PMCID: PMC10499513 DOI: 10.3389/fonc.2023.1239606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
Cervical cancer is a prevalent gynecological malignancy; however, intracavitary cardiac metastasis of cervical squamous cell carcinoma is exceptionally rare. In addition, the co-occurrence of cervical cancer and right ventricular cancer thrombus with autoimmune diseases is extremely uncommon. Furthermore, the role of immune checkpoint inhibitors in the treatment process of such cases remains controversial. Given the scarcity of reported cases, it is imperative to document and highlight this unique presentation, providing novel insights into diagnosis and management strategies. We present the case of an adult patient diagnosed with cervical cancer and concurrent right ventricular cancer thrombus, accompanied by immune thrombocytopenia (ITP). The patient exhibited resistance to conventional ITP drugs, with suboptimal platelet response. However, upon achieving initial control of the tumor, the patient's platelet counts returned to normal. Notably, the addition of immune checkpoint inhibitors targeting PD-L1 resulted in effective tumor control, accompanied by sustained high platelet levels. Unfortunately, during subsequent anti-tumor therapy, the patient experienced a prolonged platelet rise time, rendering continuous effective anti-tumor therapy and anticoagulant therapy unattainable. This led to a gradual increase in intraventricular thrombosis, ultimately resulting in the patient's demise due to circulatory failure. This rare case sheds light on the potential alleviation of ITP in patients with tumor complications through effective antitumor therapy. The successful control of ITP after tumor management highlights the importance of integrated treatment approaches. Furthermore, the inclusion of immune checkpoint inhibitors demonstrated their potential role in achieving tumor control and maintaining platelet levels. However, the prolonged platelet rise time observed during subsequent therapy underscores the challenges in maintaining both effective anti-tumor therapy and anticoagulant therapy, necessitating careful management strategies. This case report emphasizes the need for a comprehensive evaluation and tailored therapeutic interventions in similar complex scenarios. In summary, this case report offers valuable clinical insights into the management of intracavitary cardiac metastasis of cervical squamous cell carcinoma, the coexistence of immune thrombocytopenia, and the potential implications of immune checkpoint inhibitors in such cases. Understanding these rare occurrences and their clinical impact can contribute to improved diagnostic approaches, therapeutic decision-making, and patient outcomes.
Collapse
Affiliation(s)
- Ning Liu
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Deguan Lv
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Hongyan Yang
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mingyan Zhang
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yanan Liu
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Meili Sun
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, China
| |
Collapse
|
17
|
Allegra A, Cicero N, Mirabile G, Giorgianni CM, Gangemi S. Novel Biomarkers for Diagnosis and Monitoring of Immune Thrombocytopenia. Int J Mol Sci 2023; 24:ijms24054438. [PMID: 36901864 PMCID: PMC10003036 DOI: 10.3390/ijms24054438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Lower-than-normal platelet counts are a hallmark of the acquired autoimmune illness known as immune thrombocytopenia, which can affect both adults and children. Immune thrombocytopenia patients' care has evolved significantly in recent years, but the disease's diagnosis has not, and it is still only clinically achievable with the elimination of other causes of thrombocytopenia. The lack of a valid biomarker or gold-standard diagnostic test, despite ongoing efforts to find one, adds to the high rate of disease misdiagnosis. However, in recent years, several studies have helped to elucidate a number of features of the disease's etiology, highlighting how the platelet loss is not only caused by an increase in peripheral platelet destruction but also involves a number of humoral and cellular immune system effectors. This made it possible to identify the role of immune-activating substances such cytokines and chemokines, complement, non-coding genetic material, the microbiome, and gene mutations. Furthermore, platelet and megakaryocyte immaturity indices have been emphasized as new disease markers, and prognostic signs and responses to particular types of therapy have been suggested. Our review's goal was to compile information from the literature on novel immune thrombocytopenia biomarkers, markers that will help us improve the management of these patients.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98100 Messina, Italy
- Correspondence:
| | - Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, 98100 Messina, Italy
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98100 Messina, Italy
| | - Concetto Mario Giorgianni
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, 98100 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy
| |
Collapse
|
18
|
Liu XG, Hou Y, Hou M. How we treat primary immune thrombocytopenia in adults. J Hematol Oncol 2023; 16:4. [PMID: 36658588 PMCID: PMC9850343 DOI: 10.1186/s13045-023-01401-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Primary immune thrombocytopenia (ITP) is an immune-mediated bleeding disorder characterized by decreased platelet counts and an increased risk of bleeding. Multiple humoral and cellular immune abnormalities result in accelerated platelet destruction and suppressed platelet production in ITP. The diagnosis remains a clinical exclusion of other causes of thrombocytopenia. Treatment is not required except for patients with active bleeding, severe thrombocytopenia, or cases in need of invasive procedures. Corticosteroids, intravenous immunoglobulin, and anti-RhD immunoglobulin are the classical initial treatments for newly diagnosed ITP in adults, but these agents generally cannot induce a long-term response in most patients. Subsequent treatments for patients who fail the initial therapy include thrombopoietic agents, rituximab, fostamatinib, splenectomy, and several older immunosuppressive agents. Other potential therapeutic agents, such as inhibitors of Bruton's tyrosine kinase and neonatal Fc receptor, are currently under clinical evaluation. An optimized treatment strategy should aim at elevating the platelet counts to a safety level with minimal toxicity and improving patient health-related quality of life, and always needs to be tailored to the patients and disease phases. In this review, we address the concepts of adult ITP diagnosis and management and provide a comprehensive overview of current therapeutic strategies under general and specific situations.
Collapse
Affiliation(s)
- Xin-Guang Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China. .,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
19
|
Low-dose decitabine modulates myeloid-derived suppressor cell fitness via LKB1 in immune thrombocytopenia. Blood 2022; 140:2818-2834. [PMID: 36037415 DOI: 10.1182/blood.2022016029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 01/05/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature cells and natural inhibitors of adaptive immunity. Metabolic fitness of MDSCs is fundamental for its suppressive activity toward effector T cells. Our previous studies showed that the number and inhibitory function of MDSCs were impaired in patients with immune thrombocytopenia (ITP) compared with healthy controls. In this study, we analyzed the effects of decitabine on MDSCs from patients with ITP, both in vitro and in vivo. We found that low-dose decitabine promoted the generation of MDSCs and enhanced their aerobic metabolism and immunosuppressive functions. Lower expression of liver kinase 1 (LKB1) was found in MDSCs from patients with ITP, which was corrected by decitabine therapy. LKB1 short hairpin RNA (shRNA) transfection effectively blocked the function of MDSCs and almost offset the enhanced effect of decitabine on impaired MDSCs. Subsequently, anti-CD61 immune-sensitized splenocytes were transferred into severe combined immunodeficient (SCID) mice to induce ITP in murine models. Passive transfer of decitabine-modulated MDSCs significantly raised platelet counts compared with that of phosphate buffered saline-modulated MDSCs. However, when LKB1 shRNA-transfected MDSCs were transferred into SCID mice, the therapeutic effect of decitabine in alleviating thrombocytopenia was quenched. In conclusion, our study suggests that the impaired aerobic metabolism of MDSCs is involved in the pathogenesis of ITP, and the modulatory effect of decitabine on MDSC metabolism contributes to the improvement of its immunosuppressive function. This provides a possible mechanism for sustained remission elicited by low-dose decitabine in patients with ITP.
Collapse
|
20
|
Wang C, Walter JE. Autoantibodies in immunodeficiency syndromes: The Janus faces of immune dysregulation. Blood Rev 2022; 55:100948. [PMID: 35428517 PMCID: PMC11166480 DOI: 10.1016/j.blre.2022.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/23/2022] [Accepted: 03/13/2022] [Indexed: 11/02/2022]
Abstract
Immunodeficiency syndromes represent a diverse group of inherited and acquired disorders, characterized by a spectrum of clinical manifestations, including recurrent infections, autoimmunity, lymphoproliferation and malignancy. Autoantibodies against various self-antigens reflect the immune dysregulation underlying these disorders, and could contribute to certain clinical findings, such as susceptibility to opportunistic infections, cytopenia of different hematopoietic lineages, and organ-specific autoimmune diseases. The mechanism of autoantibody production in the context of immunodeficiency remains largely unknown but is likely shaped by both intrinsic genetic aberrations and extrinsic exposures to possible infectious agents. These autoantibodies if harbor neutralizing activities and reach certain levels in the circulation, could disrupt the biological functions of their targets, resulting in specific clinical manifestations. Herein, we reviewed the prevalence of autoantibodies against cytokines, hematopoietic cells and organ-specific antigens in immunodeficiency syndromes and examined their associations with certain clinical findings. Moreover, the potential mechanism of autoantibody production was also discussed. These may shed light on the development of mechanism-based therapies to reset the dysregulated immune system in immunodeficient patients.
Collapse
Affiliation(s)
- Chen Wang
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jolan E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, FL, USA; Division of Pediatric Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, USA.
| |
Collapse
|
21
|
Zheng SS, Ahmadi Z, Leung HHL, Wong R, Yan F, Perdomo JS, Chong BH. Antiplatelet antibody predicts platelet desialylation and apoptosis in immune thrombocytopenia. Haematologica 2022; 107:2195-2205. [PMID: 35199503 PMCID: PMC9425302 DOI: 10.3324/haematol.2021.279751] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/18/2021] [Indexed: 11/09/2022] Open
Abstract
Immune thrombocytopenia (ITP) is a bleeding disorder caused by dysregulated B- and T- cell functions, which lead to platelet destruction. A well-recognized mechanism of ITP pathogenesis involves anti-platelet and anti-megakaryocyte antibodies recognizing membrane glycoprotein (GP) complexes, mainly GPIb/IX and GPIIb/IIIa. In addition to the current view of phagocytosis of the opsonised platelets by splenic and hepatic macrophages via their Fc γ receptors, antibodyinduced platelet desialylation and apoptosis have also been reported to contribute to ITP pathogenesis. Nevertheless, the relationship between the specific thrombocytopenic mechanisms and various types of anti-platelet antibodies has not been established. In order to ascertain such association, we used sera from 61 ITP patients and assessed the capacity of anti-platelet antibodies to induce neuraminidase 1 (NEU1) surface expression, RCA-1 lectin binding and loss of mitochondrial inner membrane potential on donors' platelets. Sera from ITP patients with detectable antibodies caused significant platelet desialylation and apoptosis. Anti-GPIIb/IIIa antibodies appeared more capable of causing NEU1 surface translocation while anti-GPIb/IX complex antibodies resulted in a higher degree of platelet apoptosis. In ITP patients with anti-GPIIb/IIIa antibodies, both desialylation and apoptosis were dependent on FcγRIIa signaling rather than platelet activation. Finally, we confirmed in a murine model of ITP that destruction of human platelets induced by anti-GPIIb/IIIa antibodies can be prevented with the NEU1 inhibitor oseltamivir. A collaborative clinical trial is warranted to investigate the utility of oseltamivir in the treatment of ITP.
Collapse
Affiliation(s)
- Shiying Silvia Zheng
- Haematology Research Unit, St. George and Sutherland Clinical School, University of New South Wales, Sydney, Australia; Department of Haematology, St. George Hospital, Kogarah, New South Wales.
| | - Zohra Ahmadi
- Haematology Research Unit, St. George and Sutherland Clinical School, University of New South Wales, Sydney
| | - Halina Hoi Laam Leung
- Haematology Research Unit, St. George and Sutherland Clinical School, University of New South Wales, Sydney
| | - Rose Wong
- Haematology Research Unit, St. George and Sutherland Clinical School, University of New South Wales, Sydney, Australia; Department of Haematology, St. George Hospital, Kogarah, New South Wales
| | - Feng Yan
- Haematology Research Unit, St. George and Sutherland Clinical School, University of New South Wales, Sydney, Australia; Department of Haematology, St. George Hospital, Kogarah, New South Wales
| | - Jose Sail Perdomo
- Haematology Research Unit, St. George and Sutherland Clinical School, University of New South Wales, Sydney
| | - Beng Hock Chong
- Haematology Research Unit, St. George and Sutherland Clinical School, University of New South Wales, Sydney, Australia; Department of Haematology, St. George Hospital, Kogarah, New South Wales
| |
Collapse
|
22
|
Systemic lupus erythematosus-complicating immune thrombocytopenia: From pathogenesis to treatment. J Autoimmun 2022; 132:102887. [PMID: 36030136 DOI: 10.1016/j.jaut.2022.102887] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022]
Abstract
Immune thrombocytopenia (ITP) is a common hematological manifestation of systemic lupus erythematosus (SLE). The heterogeneity of its clinical characteristics and therapeutic responses reflects a complex pathogenesis. A better understanding of its pathophysiological mechanisms and employing an optimal treatment regimen is therefore important to improve the response rate and prognosis, and avoid unwanted outcomes. Besides glucocorticoids, traditional immunosuppressants (i.e. cyclosporine, mycophenolate mofetil) and intravenous immunoglobulins, new therapies are emerging and promising for the treatment of intractable SLE-ITP, such as thrombopoietin receptor agonists (TPO-RAs), platelet desialylation inhibitors(i.e. oseltamivir), B-cell targeting therapy(i.e. rituximab, belimumab), neonatal Fc receptor(FcRn) inhibitor, spleen tyrosine kinase(Syk) inhibitor and Bruton tyrosine kinase(BTK) inhibitor et al., although more rigorous randomized controlled trials are needed to substantiate their efficacy. In this review, we update our current knowledge on the pathogenesis and treatment of SLE-ITP.
Collapse
|
23
|
Du M, Huang L, Kou H, Li C, Hu Y, Mei H. Case Report: ITP Treatment After CAR-T Cell Therapy in Patients With Multiple Myeloma. Front Immunol 2022; 13:898341. [PMID: 35784357 PMCID: PMC9244693 DOI: 10.3389/fimmu.2022.898341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy is an attractive strategy for patients with relapsed or refractory hematological malignancies including multiple myeloma (MM). T cells are engineered to attack malignant cells that express tumor-associated antigens and better efficacy could be achieved. However, cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and hematologic toxicity are still challenges for CAR-T cell therapy. Among them, hematologic toxicity including thrombocytopenia has a longer duration and lasting effect during and after the treatment for some patients. Here, we present 3 cases of hematologic toxicity manifested as refractory thrombocytopenia with platelet autoantibodies positive and plasma thrombopoietin (TPO) concentration elevated after bispecific CAR-T cell therapy in relapsed/refractory (R/R) MM patients who were successfully treated with standard therapy of immune thrombocytopenia (ITP). Without clear pathogenesis or guidance on therapy published, our cases provide a reference for the treatment of thrombocytopenia after CAR-T cell therapy and inspire exploration of the underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Yu Hu
- *Correspondence: Heng Mei, ; Yu Hu,
| | - Heng Mei
- *Correspondence: Heng Mei, ; Yu Hu,
| |
Collapse
|
24
|
Chen Y, Luo L, Zheng Y, Zheng Q, Zhang N, Gan D, Yirga SK, Lin Z, Shi Q, Fu L, Hu J, Chen Y. Association of Platelet Desialylation and Circulating Follicular Helper T Cells in Patients With Thrombocytopenia. Front Immunol 2022; 13:810620. [PMID: 35450072 PMCID: PMC9016750 DOI: 10.3389/fimmu.2022.810620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
Thrombocytopenia is a multifactorial condition that frequently involves concomitant defects in platelet production and clearance. The physiopathology of low platelet count in thrombocytopenia remains unclear. Sialylation on platelet membrane glycoprotein and follicular helper T cells (TFHs) are thought to be the novel platelet clearance pathways. The aim of this study was to clarify the roles of platelet desialylation and circulating TFHs in patients with immune thrombocytopenia (ITP) and non-ITP thrombocytopenia. We enrolled 190 patients with ITP and 94 patients with non-ITP related thrombocytopenia including case of aplastic anemia (AA) and myelodysplastic syndromes (MDS). One hundred and ten healthy volunteers were included as controls. We found significantly increased desialylated platelets in patients with ITP or thrombocytopenia in the context of AA and MDS. Platelet desialylation was negatively correlated with platelet count. Meanwhile, the circulating TFH levels in patients with thrombocytopenia were significantly higher than those of normal controls, and were positively correlated with desialylated platelet levels. Moreover, TFHs-related chemokine CXCL13 and apoptotic platelet levels were abnormally high in ITP patients. The upregulation of pro-apoptotic proteins and the activation of the MAPK/mTOR pathway were observed in the same cohort. These findings suggested that platelet desialylation and circulating TFHs may become the potential biomarkers for evaluating the disease process associated with thrombocytopenia in patients with ITP and non-ITP.
Collapse
Affiliation(s)
- Yuwen Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liping Luo
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yongzhi Zheng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qiaoyun Zheng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Na Zhang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Donghui Gan
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shimuye Kalayu Yirga
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhenxing Lin
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qizhen Shi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Blood Research Institute, Versiti, Milwaukee, WI, United States
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianda Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
- *Correspondence: Yingyu Chen, ; Jianda Hu,
| | - Yingyu Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
- *Correspondence: Yingyu Chen, ; Jianda Hu,
| |
Collapse
|
25
|
Kwag D, Yoon JH, Min GJ, Park SS, Park S, Lee SE, Cho BS, Eom KS, Kim YJ, Kim HJ, Lee S, Min CK, Cho SG, Kim DW, Lee JW. Splenectomy Outcomes in Relapsed or Refractory Immune Thrombocytopenia according to First-Line Intravenous Immunoglobulin Response. Acta Haematol 2022; 145:465-475. [PMID: 35016175 DOI: 10.1159/000521912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/29/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Although splenectomy has long been second-line option for immune thrombocytopenia (ITP) patients, an indicator that reliably predicts the efficacy of splenectomy is still being explored. We investigated the treatment outcomes of splenectomy as a second-line therapy for relapsed/refractory ITP according to first-line intravenous immunoglobulin (IVIG) responses. METHODS Fifty-two adult patients treated with splenectomy as second-line therapy for ITP between 2009 and 2019 were included, and they were classified according to first-line IVIG responses (no response to IVIG: nonresponders; only transient IVIG response shorter than 4 weeks: poor responders; IVIG response for a longer period; stable responders). The efficacy of splenectomy was analyzed in the three subgroups. RESULTS Of the 52 patients, 10 were IVIG nonresponders, 34 were poor responders, and the remaining 8 were stable responders. Response to splenectomy was observed in 50.0% of IVIG nonresponders, 94.1% of poor responders, and 100% of stable responders (p = 0.0030). Among the 45 patients who responded to splenectomy, 51.1% relapsed subsequently, and a significantly lower relapse rate was noted in the stable IVIG responders (12.5%, p = 0.0220) than in nonresponders (60.0%) and poor responders (59.4%). CONCLUSIONS First-line IVIG response is indicated as a useful predictive factor for response to splenectomy.
Collapse
Affiliation(s)
- Daehun Kwag
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae-Ho Yoon
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gi June Min
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Soo Park
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Silvia Park
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Eun Lee
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung-Sin Cho
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki-Seong Eom
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo-Jin Kim
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee-Je Kim
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok Lee
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang-Ki Min
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok-Goo Cho
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Wook Kim
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Wook Lee
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
26
|
Nakamura T, Morodomi Y, Kanaji S, Okamura T, Nagafuji K, Kanaji T. Detection of anti-GPIbα autoantibodies in a case of immune thrombocytopenia following COVID-19 vaccination. Thromb Res 2022; 209:80-83. [PMID: 34894532 PMCID: PMC8648379 DOI: 10.1016/j.thromres.2021.11.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Takayuki Nakamura
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yosuke Morodomi
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Sachiko Kanaji
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Takashi Okamura
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan; Center for Hematology and Oncology, St. Mary's Hospital, Kurume, Japan
| | - Koji Nagafuji
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Taisuke Kanaji
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA, United States of America.
| |
Collapse
|
27
|
Anti-ADAMTS13 autoantibody profiling in patients with immune-mediated thrombotic thrombocytopenic purpura. Blood Adv 2021; 5:3427-3435. [PMID: 34495312 DOI: 10.1182/bloodadvances.2020004172] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/30/2021] [Indexed: 12/27/2022] Open
Abstract
Anti-A Disintegrin and Metalloproteinase with a ThromboSpondin type 1 motif, member 13 (ADAMTS13) autoantibodies cause a severe ADAMTS13 deficiency in immune-mediated thrombotic thrombocytopenic purpura (iTTP). ADAMTS13 consists of a metalloprotease (M), a disintegrin-like (D) domain, 8 thrombospondin type 1 repeats (T1-T8), a cysteine-rich (C), a spacer (S), and 2 CUB domains (CUB1-2). We recently developed a high-throughput epitope mapping assay based on small, nonoverlapping ADAMTS13 fragments (M, DT, CS, T2-T5, T6-T8, CUB1-2). With this assay, we performed a comprehensive epitope mapping using 131 acute-phase samples and for the first time a large group of remission samples (n = 50). Next, samples were stratified according to their immunoprofiles, a field that is largely unexplored in iTTP. Three dominant immunoprofiles were found in acute-phase samples: profile 1: only anti-CS autoantibodies (26.7%); profile 2: both anti-CS and anti-CUB1-2 autoantibodies (12.2%); and profile 3: anti-DT, anti-CS, anti-T2-T5, anti-T6-T8, and anti-CUB1-2 autoantibodies (8.4%). Interestingly, profile 1 was the only dominant immunoprofile in remission samples (52.0%). Clinical data were available for a relatively small number of patients with acute iTTP (>68), and no correlation was found between immunoprofiles and disease severity. Nevertheless, profile 1 was linked with younger and anti-T2-T5 autoantibodies with older age and the absence of anti-CUB1-2 autoantibodies with cerebral involvement. In conclusion, identifying acute phase and remission immunoprofiles in iTTP revealed that anti-CS autoantibodies seem to persist or reappear during remission providing further support for the clinical development of a targeted anti-CS autoantibody therapy. A large cohort study with acute iTTP samples will validate possible links between immunoprofiles or anti-domain autoantibodies and clinical data.
Collapse
|
28
|
Jafarzadeh A, Marzban H, Nemati M, Jafarzadeh S, Mahjoubin-Tehran M, Hamblin MR, Mirzaei H, Mirzaei HR. Dysregulated expression of miRNAs in immune thrombocytopenia. Epigenomics 2021; 13:1315-1325. [PMID: 34498489 DOI: 10.2217/epi-2021-0092] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years the critical role of miRNAs has been established in many diseases, including autoimmune disorders. Immune thrombocytopenia purpura (ITP) is a predominant autoimmune disease, in which aberrant expression of miRNAs has been observed, suggesting that miRNAs are involved in its development. miRNAs could induce an imbalance in the T helper (Th)1/Th2 cell and Th17/Treg cell-related responses. Moreover, they could also cause alterations in Th9 and Th22 cell responses, and activate Tfh (T follicular helper) cell-dependent auto-reactive B cells, thus influencing megakaryogenesis. Herein, we summarize the role of immune-related miRNAs in ITP pathogenesis, and look forward to clinical applications.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, 76169-13555, Kerman, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, 7718175911, Rafsanjan, Iran
| | - Havva Marzban
- Department of Pathology & Experimental Animals, Razi Vaccine & Serum Research Institute, Agricultural Research, Education & Extension Organization (AREEO), 31975/148 Karaj, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, 77181/75911, Rafsanjan, Iran.,Department of Hematology & Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, 76169-13555, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, 76169-13555, Kerman, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, 13131- 99137, Mashhad, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, 2028 Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, 87159-88141, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, 87159-88141, Kashan, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, 1417613151, Tehran, Iran
| |
Collapse
|
29
|
Abstract
Platelet adhesion to the site of vascular damage is a critical early step in hemostasis. The platelet glycoprotein (GP) Ib-IX-V plays a key role in this step via its interaction with immobilized von Willebrand Factor (VWF). In addition to its well-known role in adhesion, GPIb-IX-V is critical for platelets' survival in circulation and plays an important role in the regulation of platelet clearance. Several mechanisms of platelet clearance work in concert to maintain a normal platelet count and ensure that circulating platelets are functionally viable via removal of senescent or activated platelets. Furthermore, dysregulation of platelet clearance underlies several bleeding disorders. GPIb-IX-V is central to many physiological mechanisms of platelet clearance including clearance via glycan receptors, clearance of VWF-platelet complexes, and fast clearance of transfused platelets. GPIb-IX-V dependent clearance also underlies thrombocytopenia in several bleeding disorders, including von Willebrand disease (VWD) and immune thrombocytopenia. This review will cover physiological and pathological mechanisms of platelet clearance, focusing on the role of GPIb-IX-V.
Collapse
Affiliation(s)
- M Edward Quach
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
30
|
Immune Thrombocytopenia: Recent Advances in Pathogenesis and Treatments. Hemasphere 2021; 5:e574. [PMID: 34095758 PMCID: PMC8171374 DOI: 10.1097/hs9.0000000000000574] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/08/2021] [Indexed: 11/26/2022] Open
Abstract
Immune thrombocytopenia (ITP) is a rare autoimmune disease due to both a peripheral destruction of platelets and an inappropriate bone marrow production. Although the primary triggering factors of ITP remain unknown, a loss of immune tolerance-mostly represented by a regulatory T-cell defect-allows T follicular helper cells to stimulate autoreactive splenic B cells that differentiate into antiplatelet antibody-producing plasma cells. Glycoprotein IIb/IIIa is the main target of antiplatelet antibodies leading to platelet phagocytosis by splenic macrophages, through interactions with Fc gamma receptors (FcγRs) and complement receptors. This allows macrophages to activate autoreactive T cells by their antigen-presenting functions. Moreover, the activation of the classical complement pathway participates to platelet opsonization and also to their destruction by complement-dependent cytotoxicity. Platelet destruction is also mediated by a FcγR-independent pathway, involving platelet desialylation that favors their binding to the Ashwell-Morell receptor and their clearance in the liver. Cytotoxic T cells also contribute to ITP pathogenesis by mediating cytotoxicity against megakaryocytes and peripheral platelets. The deficient megakaryopoiesis resulting from both the humoral and the cytotoxic immune responses is sustained by inappropriate levels of thrombopoietin, the major growth factor of megakaryocytes. The better understanding of ITP pathogenesis has provided important therapeutic advances. B cell-targeting therapies and thrombopoietin-receptor agonists (TPO-RAs) have been used for years. New emerging therapeutic strategies that inhibit FcγR signaling, the neonatal Fc receptor or the classical complement pathway, will deeply modify the management of ITP in the near future.
Collapse
|
31
|
Yu Y, Hou Y, Zhao Y, Zhou H, Jing F, Liu Y, Peng J, Liu X, Hou M. Platelet autoantibody specificity and response to rhTPO treatment in patients with primary immune thrombocytopenia. Br J Haematol 2021; 194:191-194. [PMID: 33993469 DOI: 10.1111/bjh.17510] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
This retrospective study aimed to evaluate the relationship between plasma autoantibody species and rhTPO response in adult ITP patients who failed the first-line treatments. Plasma anti-glycoprotein (GP) IIb/IIIa and anti-GPIb/IX autoantibodies were detected in 47·2% and 40·6% of the 123 patients, respectively. Overall response rate to rhTPO treatment in patients without anti-GPIb/IX autoantibodies was significantly higher than patients with anti-GPIb/IX autoantibodies (82·2% vs. 60·0%, P = 0·006). By contrast, no statistical difference in response rate was observed between patients with or without anti-GPIIb/IIIa autoantibodies (74·1% vs. 72·3%, P = 0·819). Therefore, the presence of anti-GPIb/IX autoantibodies might serve as a predictive factor for poor response to rhTPO treatment in ITP.
Collapse
Affiliation(s)
- Yafei Yu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yajing Zhao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hai Zhou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fangmiao Jing
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanfeng Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xinguang Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
32
|
A modern reassessment of glycoprotein-specific direct platelet autoantibody testing in immune thrombocytopenia. Blood Adv 2021; 4:9-18. [PMID: 31891657 DOI: 10.1182/bloodadvances.2019000868] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/21/2019] [Indexed: 12/30/2022] Open
Abstract
Platelet autoantibody (PA) testing has previously shown poor sensitivity for immune thrombocytopenia (ITP) diagnosis, but no previous study used both 2011 American Society of Hematology (ASH) guidelines for ITP diagnosis and 2012 International Society on Thrombosis and Haemostasis (ISTH) PA testing recommendations. We therefore performed a comprehensive retrospective study of PA testing in adult patients with ITP strictly applying these criteria. Of 986 PA assays performed, 485 assays in 368 patients met criteria and were included. Sensitivity and specificity of a positive test result for diagnosis of active ITP (n = 228 patients) were 90% and 78%, respectively. Sensitivity and specificity of a negative test result for clinical remission (n = 61 assays) were 87% and 91%. Antibodies against both glycoprotein IIb (GPIIb)/IIIa and GPIb/IX were required for the presence of antibodies against GPIa/IIa in patients with ITP. Logistic regression analysis revealed that more positive autoantibodies predicted more severe disease (relative to nonsevere ITP, relative risk ratio for severe ITP and refractory ITP was 2.27 [P < .001] and 3.09 [P < .001], respectively, per additional autoantibody); however, serologic testing did not meaningfully predict treatment response to glucocorticoids, intravenous immunoglobulin, or thrombopoietin receptor agonists. Sixty-four patients with ITP had multiple PA assays performed longitudinally: all 10 patients achieving remission converted from positive to negative serologic results, and evidence for epitope spreading was observed in 35% of patients with ongoing active disease. In conclusion, glycoprotein-specific direct PA testing performed using ISTH recommendations in patients meeting ASH diagnostic criteria is sensitive and specific for ITP diagnosis and reliably confirms clinical remission. More glycoproteins targeted by autoantibodies predicts for more severe disease.
Collapse
|
33
|
Karakas D, Xu M, Ni H. GPIbα is the driving force of hepatic thrombopoietin generation. Res Pract Thromb Haemost 2021; 5:e12506. [PMID: 33977209 PMCID: PMC8105161 DOI: 10.1002/rth2.12506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 12/25/2022] Open
Abstract
Thrombopoietin (TPO), a glycoprotein hormone produced predominantly in the liver, plays important roles in the hematopoietic stem cell (HSC) niche, and is essential for megakaryopoiesis and platelet generation. Long-standing understanding proposes that TPO is constitutively produced by hepatocytes, and levels are fine-tuned through platelet and megakaryocyte internalization/degradation via the c-Mpl receptor. However, in immune thrombocytopenia (ITP) and several other diseases, TPO levels are inconsistent with this theory. Recent studies showed that platelets, besides their TPO clearance, can induce TPO production in the liver. Our group also accidentally discovered that platelet glycoprotein (GP) Ibα is required for platelet-mediated TPO generation, which is underscored in both GPIbα-/- mice and patients with Bernard-Soulier syndrome. This review will introduce platelet versatilities and several new findings in hemostasis and platelet consumption but focus on its roles in TPO regulation. The implications of these new discoveries in hematopoiesis and the HSC niche, particularly in ITP, will be discussed.
Collapse
Affiliation(s)
- Danielle Karakas
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Toronto Platelet Immunobiology GroupTorontoONCanada
- Department of Laboratory MedicineKeenan Research Centre for Biomedical ScienceSt. Michael’s HospitalTorontoONCanada
| | - Miao Xu
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Heyu Ni
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Toronto Platelet Immunobiology GroupTorontoONCanada
- Department of Laboratory MedicineKeenan Research Centre for Biomedical ScienceSt. Michael’s HospitalTorontoONCanada
- Canadian Blood Services Centre for InnovationTorontoONCanada
- Department of MedicineUniversity of TorontoTorontoONCanada
- Department of PhysiologyUniversity of TorontoTorontoONCanada
| |
Collapse
|
34
|
Schmidt DE, Heitink‐Pollé KMJ, Mertens B, Porcelijn L, Kapur R, van der Schoot CE, Vidarsson G, van der Bom JG, Bruin MCA, de Haas M. Biological stratification of clinical disease courses in childhood immune thrombocytopenia. J Thromb Haemost 2021; 19:1071-1081. [PMID: 33386662 PMCID: PMC8048469 DOI: 10.1111/jth.15232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/04/2020] [Accepted: 12/22/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND In childhood immune thrombocytopenia (ITP), an autoimmune bleeding disorder, there is a need for better prediction of individual disease courses and treatment outcomes. OBJECTIVE To predict the response to intravenous immunoglobulins (IVIg) and ITP disease course using genetic and immune markers. METHODS Children aged younger than 7 years with newly diagnosed ITP (N = 147) from the Treatment With or Without IVIG for Kids with ITP study were included, which randomized children to an IVIg or observation group. A total of 46 variables were available: clinical characteristics, targeted genotyping, lymphocyte immune phenotyping, and platelet autoantibodies. RESULTS In the treatment arm, 48/80 children (60%) showed a complete response (platelets ≥100 × 109 /L) that lasted for at least 1 month (complete sustained response [CSR]) and 32 exhibited no or a temporary response (absence of a sustained response [ASR]). For a biological risk score, five variables were selected by regularized logistic regression that predicted ASR vs CSR: (1) hemoglobin; (2) platelet count; (3) genetic polymorphisms of Fc-receptor (FcγR) IIc; (4) the presence of immunoglobulin G (IgG) anti-platelet antibodies; and (5) preceding vaccination. The ASR sensitivity was 0.91 (95% confidence interval, 0.80-1.00) and specificity was 0.67 (95% confidence interval, 0.53-0.80). In the 67 patients of the observation arm, this biological score was also associated with recovery during 1 year of follow-up. The addition of the biological score to a predefined clinical score further improved the discrimination of favorable ITP disease courses. CONCLUSIONS The prediction of disease courses and IVIg treatment responses in ITP is improved by using both clinical and biological stratification.
Collapse
Affiliation(s)
- David E. Schmidt
- Sanquin ResearchDepartment of Experimental ImmunohematologyAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Katja M. J. Heitink‐Pollé
- Department of Pediatric HematologyWilhelmina Children’s HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Bart Mertens
- Department of Medical StatisticsLeiden University Medical CenterLeidenThe Netherlands
| | - Leendert Porcelijn
- Department of Immunohematology DiagnosticsSanquin Diagnostic ServicesAmsterdamThe Netherlands
| | - Rick Kapur
- Sanquin ResearchDepartment of Experimental ImmunohematologyAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - C. Ellen van der Schoot
- Sanquin ResearchDepartment of Experimental ImmunohematologyAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Gestur Vidarsson
- Sanquin ResearchDepartment of Experimental ImmunohematologyAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Johanna G. van der Bom
- Sanquin ResearchCenter for Clinical Transfusion ResearchLeidenThe Netherlands
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Marrie C. A. Bruin
- Department of Pediatric HematologyWilhelmina Children’s HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
- Princess Maxima Pediatric Oncology CenterUtrechtNetherlands
| | - Masja de Haas
- Department of Immunohematology DiagnosticsSanquin Diagnostic ServicesAmsterdamThe Netherlands
- Department of Immunohematology and Blood TransfusionLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
35
|
Jaime-Pérez JC, Ramos-Dávila EM, Meléndez-Flores JD, Gómez-De León A, Gómez-Almaguer D. Insights on chronic immune thrombocytopenia pathogenesis: A bench to bedside update. Blood Rev 2021; 49:100827. [PMID: 33771403 DOI: 10.1016/j.blre.2021.100827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Immune thrombocytopenia (ITP) is a heterogeneous disease with an unpredictable course. Chronicity can develop in up to two-thirds of adults and 20-25% of children, representing a significant burden on patients' quality of life. Despite acceptable responses to treatment, precise etiology and pathophysiology phenomena driving evolution to chronicity remain undefined. We analyzed reported risk factors for chronic ITP and associated them with proposed underlying mechanisms in its pathogenesis, including bone marrow (BM) microenvironment disturbances, clinical features, and immunological markers. Their understanding has diagnostic implications, such as screening for the presence of specific antibodies or BM examination employing molecular tools, which could help predict prognosis and recognize main pathogenic pathways in each patient. Identifying these underlying mechanisms could guide the use of personalized therapies such as all-trans retinoic acid, mTor inhibitors, FcRn inhibitors, oseltamivir, and others. Further research should lead to tailored treatments and chronic course prevention, improving patients' quality of life.
Collapse
Affiliation(s)
- José Carlos Jaime-Pérez
- Department of Hematology, Internal Medicine Division, Dr. Jose E. González University Hospital and School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico.
| | - Eugenia M Ramos-Dávila
- Department of Hematology, Internal Medicine Division, Dr. Jose E. González University Hospital and School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Jesús D Meléndez-Flores
- Department of Hematology, Internal Medicine Division, Dr. Jose E. González University Hospital and School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Andrés Gómez-De León
- Department of Hematology, Internal Medicine Division, Dr. Jose E. González University Hospital and School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - David Gómez-Almaguer
- Department of Hematology, Internal Medicine Division, Dr. Jose E. González University Hospital and School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| |
Collapse
|
36
|
Chen Y, Hu J, Chen Y. Platelet desialylation and TFH cells-the novel pathway of immune thrombocytopenia. Exp Hematol Oncol 2021; 10:21. [PMID: 33722280 PMCID: PMC7958461 DOI: 10.1186/s40164-021-00214-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/07/2021] [Indexed: 12/15/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by immune-mediated destruction of one's own platelets. The progression of thrombocytopenia involves an imbalance of platelet production and clearance. B cells can induce autoantibodies, and T cells contribute to the pathological progression as well. Some patients with ITP have a poor response to common first-line therapies. Recent studies have shown that a novel Fc-independent platelet clearance pathway is associated with poor prognosis in these patients. By this pathway, desialylated platelets can be cleared by Ashwell-Morell receptor (AMR) on hepatocytes. Research has demonstrated that patients with refractory ITP usually have a high level of desialylation, indicating the important role of sialylation on platelet membrane glycoprotein (GP) in patients with primary immune thrombocytopenia, and neuraminidase 1(NEU1) translocation might be involved in this process. Patients with ITP who are positive for anti-GPIbα antibodies have a poor prognosis, which indicates that anti-GPIbα antibodies are associated with this Fc-independent platelet clearance pathway. Experiments have proven that these antibodies could lead to the desialylation of GPs on platelets. The T follicular helper (TFH) cell level is related to the expression of the anti-GPIbα antibody, which indicates its role in the progression of desialylation. This review will discuss platelet clearance and production, especially the role of the anti-GPIbα antibody and desialylation in the pathophysiology of ITP and therapy for this disease.
Collapse
Affiliation(s)
- Yuwen Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, 350001, Fuzhou, Fujian, China
| | - Jianda Hu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, 350001, Fuzhou, Fujian, China
| | - Yingyu Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, 350001, Fuzhou, Fujian, China.
| |
Collapse
|
37
|
Emerging Therapies in Immune Thrombocytopenia. J Clin Med 2021; 10:jcm10051004. [PMID: 33801294 PMCID: PMC7958340 DOI: 10.3390/jcm10051004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Immune thrombocytopenia (ITP) is a rare autoimmune disorder caused by peripheral platelet destruction and inappropriate bone marrow production. The management of ITP is based on the utilization of steroids, intravenous immunoglobulins, rituximab, thrombopoietin receptor agonists (TPO-RAs), immunosuppressants and splenectomy. Recent advances in the understanding of its pathogenesis have opened new fields of therapeutic interventions. The phagocytosis of platelets by splenic macrophages could be inhibited by spleen tyrosine kinase (Syk) or Bruton tyrosine kinase (BTK) inhibitors. The clearance of antiplatelet antibodies could be accelerated by blocking the neonatal Fc receptor (FcRn), while new strategies targeting B cells and/or plasma cells could improve the reduction of pathogenic autoantibodies. The inhibition of the classical complement pathway that participates in platelet destruction also represents a new target. Platelet desialylation has emerged as a new mechanism of platelet destruction in ITP, and the inhibition of neuraminidase could dampen this phenomenon. T cells that support the autoimmune B cell response also represent an interesting target. Beyond the inhibition of the autoimmune response, new TPO-RAs that stimulate platelet production have been developed. The upcoming challenges will be the determination of predictive factors of response to treatments at a patient scale to optimize their management.
Collapse
|
38
|
Li X, Sheng Z, Sun Y, Wang Y, Xu M, Zhang Z, Li H, Shao L, Zhang Y, Yu J, Ma C, Gao C, Hou M, Ni H, Peng J, Ma J, Feng Q. Human leukocyte antigen-G upregulates immunoglobulin-like transcripts and corrects dysfunction of immune cells in immune thrombocytopenia. Haematologica 2021; 106:770-781. [PMID: 32079695 PMCID: PMC7927897 DOI: 10.3324/haematol.2018.204040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Human leukocyte antigen-G (HLA-G) is a non-classical major histocompatibility complex class I antigen with potent immune-inhibitory function. HLA-G benefit patients in allotransplantation and autoimmune diseases by interacting with its receptors, immunoglobulinlike transcripts. Here we observed significantly less HLA-G in plasma from immune thrombocytopenia (ITP) patients positive for anti-platelet autoantibodies compared with autoantibodies-negative patients or healthy controls, while we found that HLA-G is positively correlated with platelet counts in both patients and healthy controls. We also found less membranebound HLA-G and immunoglobulin-like transcripts on CD4+ and CD14+ cells in patients. Recombinant HLA-G upregulated immunoglobulin-like transcript 2 expression on CD4+ and immunoglobulin-like transcript 4 on CD14+ cells. HLA-G upregulated IL-4 and IL-10, and downregulated tumor necrosis factor-a, IL-12 and IL-17 secreted by patient peripheral blood mononuclear cells, suggesting a stimulation of Th2 differentiation and downregulation of Th1 and Th17 immune response. HLA-G-modulated dendritic cells from ITP patients showed decreased expression of CD80 and CD86, and suppressed CD4+ T-cell proliferation compared to unmodulated cells. Moreover, HLA-G-modulated cells from patients induced less platelet apoptosis. HLA-G administration also significantly alleviated thrombocytopenia in a murine model of ITP. In conclusion, our data demonstrated that impaired expression of HLA-G and immunoglobulin-like transcripts is involved in the pathogenesis of ITP; recombinant HLA-G can correct this abnormality via upregulation of immunoglobulin-like transcripts, indicating that HLA-G can be a diagnostic marker and a therapeutic option for ITP.
Collapse
Affiliation(s)
- Xin Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Zi Sheng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yuanxin Sun
- Department of Medical Oncology, Shandong Provincial Institute of Cancer Prevention and Treatment, Shandong Cancer Hospital, Shandong University, Jinan, China
| | - Yuanjian Wang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Miao Xu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhiyue Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hui Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Linlin Shao
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yanqi Zhang
- Department of Medical Oncology, Shandong Provincial Institute of Cancer Prevention and Treatment, Shandong Cancer Hospital, Shandong University, Jinan, China
| | - Jinming Yu
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chunhong Ma
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Chengjiang Gao
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Ming Hou
- Department of Medical Oncology, Shandong Provincial Institute of Cancer Prevention and Treatment, Shandong Cancer Hospital, Shandong University, Jinan, China
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada,Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada,Department of Laboratory Medicine, Keenan Research Center for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada,Canadian Blood Services Center for Innovation, Toronto, Ontario, Canada
| | - Jun Peng
- Department of Medical Oncology, Shandong Provincial Institute of Cancer Prevention and Treatment, Shandong Cancer Hospital, Shandong University, Jinan, China
| | - Ji Ma
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,Department of Medical Oncology, Tianjin Medical University, Tianjin, China
| | - Qi Feng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
39
|
Mei H, Liu X, Li Y, Zhou H, Feng Y, Gao G, Cheng P, Huang R, Yang L, Hu J, Hou M, Yao Y, Liu L, Wang Y, Wu D, Zhang L, Zheng C, Shen X, Hu Q, Liu J, Jin J, Luo J, Zeng Y, Gao S, Zhang X, Zhou X, Shi Q, Xia R, Xie X, Jiang Z, Gao L, Bai Y, Li Y, Xiong J, Li R, Zou J, Niu T, Yang R, Hu Y. A multicenter, randomized phase III trial of hetrombopag: a novel thrombopoietin receptor agonist for the treatment of immune thrombocytopenia. J Hematol Oncol 2021; 14:37. [PMID: 33632264 PMCID: PMC7905908 DOI: 10.1186/s13045-021-01047-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
Background Hetrombopag, a novel thrombopoietin receptor agonist, has been found in phase I studies to increase platelet counts and reduce bleeding risks in adults with immune thrombocytopenia (ITP). This phase III study aimed to evaluate the efficacy and safety of hetrombopag in ITP patients. Methods Patients who had not responded to or had relapsed after previous treatment were treated with an initial dosage of once-daily 2.5 or 5 mg hetrombopag (defined as the HETROM-2.5 or HETROM-5 group) or with matching placebo in a randomized, double-blind, 10-week treatment period. Patients who received placebo and completed 10 weeks of treatment switched to receive eltrombopag, and patients treated with hetrombopag in the double-blind period continued hetrombopag during the following open-label 14-week treatment. The primary endpoint was the proportion of responders (defined as those achieving a platelet count of ≥ 50 × 109/L) after 8 weeks of treatment. Results The primary endpoint was achieved by significantly more patients in the HETROM-2.5 (58.9%; odds ratio [OR] 25.97, 95% confidence interval [CI] 9.83–68.63; p < 0.0001) and HETROM-5 (64.3%; OR 32.81, 95% CI 12.39–86.87; p < 0.0001) group than in the Placebo group (5.9%). Hetrombopag was also superior to placebo in achieving a platelet response and in reducing the bleeding risk and use of rescue therapy throughout 8 weeks of treatment. The durable platelet response to hetrombopag was maintained throughout 24 weeks. The most common adverse events were upper respiratory tract infection (42.2%), urinary tract infection (17.1%), immune thrombocytopenic purpura (17.1%) and hematuria (15%) with 24-week hetrombopag treatment. Conclusions In ITP patients, hetrombopag is efficacious and well tolerated with a manageable safety profile.
Trial registration Clinical trials.gov NCT03222843, registered July 19, 2017, retrospectively registered.
Collapse
Affiliation(s)
- Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xiaofan Liu
- Thrombosis and Hemostasis Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Laboratory of Blood Disease Gene Therapy, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Yan Li
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hu Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Feng
- Department of Hematopathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guangxun Gao
- The Blood Internal Medicine, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Peng Cheng
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ruibin Huang
- Hematology Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linhua Yang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianda Hu
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yazhou Yao
- Hematology Department, Baoji Central Hospital, Baoji, China
| | - Li Liu
- Department of Hematopathology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yi Wang
- Department of Hematopathology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Depei Wu
- Hematology Department, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liansheng Zhang
- Hematology Department, Lanzhou University Second Hospital, Lanzhou, China
| | - Changcheng Zheng
- Hematology Department, The First Affiliated Hospital of USTC, Hefei, China
| | - Xuliang Shen
- Department of Hematology, Heping Hospital Affiliated To Changzhi Medical College, Changzhi, China
| | - Qi Hu
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Jing Liu
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Jianmin Luo
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yun Zeng
- Department of Hematology, First Affiliated Hospital of Kunming Medical University, KunMing, China
| | - Sujun Gao
- The First Hospital of Jilin University, Changchun, China
| | - Xiaohui Zhang
- Department of Hematology, Peking University People's Hospital, Beijing, China
| | - Xin Zhou
- Hematology Department, Wuxi People's Hospital, Wuxi, China
| | - Qingzhi Shi
- Hematology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ruixiang Xia
- Hematology Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaobao Xie
- Hematology Department, The First People's Hospital of Changzhou, Changzhou, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Gao
- Department of Hematology, The Second Affiliated Hospital of Military Medical University PLA, Chongqing, China
| | - Yuansong Bai
- Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Li
- Hematology Department, The First Hospital of China Medical University, Shenyang, China
| | - Junye Xiong
- Clinical Research & Development, Jiangsu Hengrui Medicine Co., Ltd, Shanghai, China
| | - Runzi Li
- Clinical Research & Development, Jiangsu Hengrui Medicine Co., Ltd, Shanghai, China
| | - Jianjun Zou
- Clinical Research & Development, Jiangsu Hengrui Medicine Co., Ltd, Shanghai, China
| | - Ting Niu
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Renchi Yang
- Thrombosis and Hemostasis Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Laboratory of Blood Disease Gene Therapy, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
40
|
Mechanisms of anti-GPIbα antibody-induced thrombocytopenia in mice. Blood 2021; 135:2292-2301. [PMID: 32157300 DOI: 10.1182/blood.2019003770] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an acquired bleeding disorder characterized by antibody-mediated platelet destruction. Different mechanisms have been suggested to explain accelerated platelet clearance and impaired thrombopoiesis, but the pathophysiology of ITP has yet to be fully delineated. In this study, we tested 2 mouse models of immune-mediated thrombocytopenia using the rat anti-mouse GPIbα monoclonal antibody 5A7, generated in our laboratory. After a single IV administration of high-dose (2 mg/kg) 5A7, opsonized platelets were rapidly cleared from the circulation into the spleen and liver; this was associated with rapid upregulation of thrombopoietin (TPO) messenger RNA. In contrast, subcutaneous administration of low-dose 5A7 (0.08-0.16 mg/kg) every 3 days gradually lowered the platelet count; in this case, opsonized platelets were observed only in the spleen, and TPO levels remained unaltered. Interestingly, in both models, the 5A7 antibody was found on the surface of, as well as internalized to, bone marrow megakaryocytes. Consequently, platelets generated in the chronic phase of repeated subcutaneous 5A7 administration model showed reduced GPIbα membrane expression on their surface. Our findings indicate that evaluation of platelet surface GPIbα relative to platelet size may be a useful marker to support the diagnosis of anti-GPIbα antibody-induced ITP.
Collapse
|
41
|
Singh A, Uzun G, Bakchoul T. Primary Immune Thrombocytopenia: Novel Insights into Pathophysiology and Disease Management. J Clin Med 2021; 10:jcm10040789. [PMID: 33669423 PMCID: PMC7920457 DOI: 10.3390/jcm10040789] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/19/2023] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder defined by a significantly reduced number of platelets in blood circulation. Due to low levels of platelets, ITP is associated with frequent bruising and bleeding. Current evidence suggests that low platelet counts in ITP are the result of multiple factors, including impaired thrombopoiesis and variations in immune response leading to platelet destruction during pathological conditions. Patient outcomes as well as clinic presentation of the disease have largely been shown to be case-specific, hinting towards ITP rather being a group of clinical conditions sharing common symptoms. The most frequent characteristics include dysfunction in primary haemostasis and loss of immune tolerance towards platelet as well as megakaryocyte antigens. This heterogeneity in patient population and characteristics make it challenging for the clinicians to choose appropriate therapeutic regimen. Therefore, it is vital to understand the pathomechanisms behind the disease and to consider various factors including patient age, platelet count levels, co-morbidities and patient preferences before initiating therapy. This review summarizes recent developments in the pathophysiology of ITP and provides a comprehensive overview of current therapeutic strategies as well as potential future drugs for the management of ITP.
Collapse
Affiliation(s)
- Anurag Singh
- Institute for Clinical and Experimental Transfusion Medicine (IKET), University Hospital of Tuebingen, 72076 Tuebingen, Germany;
| | - Günalp Uzun
- Centre for Clinical Transfusion Medicine, University Hospital of Tuebingen, 72076 Tuebingen, Germany;
| | - Tamam Bakchoul
- Institute for Clinical and Experimental Transfusion Medicine (IKET), University Hospital of Tuebingen, 72076 Tuebingen, Germany;
- Centre for Clinical Transfusion Medicine, University Hospital of Tuebingen, 72076 Tuebingen, Germany;
- Correspondence: ; Tel.: +49-7071-29-81601
| |
Collapse
|
42
|
Marini I, Zlamal J, Faul C, Holzer U, Hammer S, Pelzl L, Bethge W, Althaus K, Bakchoul T. Autoantibody-mediated desialylation impairs human thrombopoiesis and platelet lifespan. Haematologica 2021; 106:196-207. [PMID: 31857361 PMCID: PMC7776251 DOI: 10.3324/haematol.2019.236117] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/11/2019] [Indexed: 11/09/2022] Open
Abstract
Immune thrombocytopenia is a common bleeding disease caused by autoantibody-mediated accelerated platelet clearance and impaired thrombopoiesis. Accumulating evidence suggests that desialylation affects platelet life span in immune thrombocytopenia. Herein, we report on novel effector functions of autoantibodies from immune thrombocytopenic patients which might interfere with the clinical picture of the disease. Data from our study show that a subgroup of autoantibodies is able to induce cleave of sialic acid residues from the surface of human platelets and megakaryocytes. Moreover, autoantibody-mediated desialylation interferes with the interaction between cells and extracellular matrix proteins leading to impaired platelet adhesion and megakaryocyte differentiation. Using a combination of ex vivo model of thrombopoiesis, a humanized animal model, and a clinical cohort study, we demonstrate that cleavage of sialic acid induces significant impairment in production, survival as well as function of human platelets. These data may indicate that prevention of desialylation should be investigated in the future in clinical studies as a potential therapeutic approach to treat bleeding in immune thrombocytopenia.
Collapse
Affiliation(s)
- Irene Marini
- Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen
| | - Jan Zlamal
- Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen
| | - Christoph Faul
- Department of Internal Medicine II, University Hospital of Tübingen
| | - Ursula Holzer
- Dept. of Pediatric Hematology-Oncology, University Children's Hospital of Tübingen, Germany
| | - Stefanie Hammer
- Center for Clinical Transfusion Medicine, University Hospital of Tübingen, Germany
| | - Lisann Pelzl
- Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen
| | - Wolfgang Bethge
- Department of Internal Medicine II, University Hospital of Tübingen
| | - Karina Althaus
- Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen, Germany
| | - Tamam Bakchoul
- Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen
| |
Collapse
|
43
|
Quach ME, Li R. Structure-function of platelet glycoprotein Ib-IX. J Thromb Haemost 2020; 18:3131-3141. [PMID: 32735697 PMCID: PMC7854888 DOI: 10.1111/jth.15035] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
The glycoprotein (GP)Ib-IX receptor complex plays a critical role in platelet physiology and pathology. Its interaction with von Willebrand factor (VWF) on the subendothelial matrix instigates platelet arrest at the site of vascular injury and is vital to primary hemostasis. Its reception to other ligands and counter-receptors in the bloodstream also contribute to various processes of platelet biology that are still being discovered. While its basic composition and its link to congenital bleeding disorders were well documented and firmly established more than 25 years ago, recent years have witnessed critical advances in the organization, dynamics, activation, regulation, and functions of the GPIb-IX complex. This review summarizes important findings and identifies questions that remain about this unique platelet mechanoreceptor complex.
Collapse
Affiliation(s)
- M Edward Quach
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
44
|
Belizaire R, Makar RS. Non-Alloimmune Mechanisms of Thrombocytopenia and Refractoriness to Platelet Transfusion. Transfus Med Rev 2020; 34:242-249. [PMID: 33129606 PMCID: PMC7494440 DOI: 10.1016/j.tmrv.2020.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022]
Abstract
Refractoriness to platelet transfusion is a common clinical problem encountered by the transfusion medicine specialist. It is well recognized that most causes of refractoriness to platelet transfusion are not a consequence of alloimmunization to human leukocyte, platelet-specific, or ABO antigens, but are a consequence of platelet sequestration and consumption. This review summarizes the clinical factors that result in platelet refractoriness and highlights recent data describing novel biological mechanisms that contribute to this clinical problem.
Collapse
Affiliation(s)
- Roger Belizaire
- Associate Director, Adult Transfusion Medicine, Brigham and Women's Hospital, Boston, MA
| | - Robert S Makar
- Director, Blood Transfusion Service, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
45
|
Porcelijn L, Schmidt DE, Oldert G, Hofstede-van Egmond S, Kapur R, Zwaginga JJ, de Haas M. Evolution and Utility of Antiplatelet Autoantibody Testing in Patients with Immune Thrombocytopenia. Transfus Med Rev 2020; 34:258-269. [PMID: 33046350 DOI: 10.1016/j.tmrv.2020.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/01/2023]
Abstract
To this day, immune thrombocytopenia (ITP) remains a clinical diagnosis made by exclusion of other causes for thrombocytopenia. Reliable detection of platelet autoantibodies would support the clinical diagnosis, but the lack of specificity and sensitivity of the available methods for platelet autoantibody testing limits their value in the diagnostic workup of thrombocytopenia. The introduction of methods for glycoprotein-specific autoantibody detection has improved the specificity of testing and is acceptable for ruling in ITP but not ruling it out as a diagnosis. The sensitivity of these assays varies widely, even between studies using comparable assays. A review of the relevant literature combined with our own laboratory's experience of testing large number of serum and platelet samples makes it clear that this variation can be explained by variations in the characteristics of the tests, including in the glycoprotein-specific monoclonal antibodies, the glycoproteins that are tested, the platelet numbers used in the assay and the cutoff levels for positive and negative results, as well as differences in the tested patient populations. In our opinion, further standardization and optimization of the direct autoantibody detection methods to increase sensitivity without compromising specificity seem possible but will still likely be insufficient to distinguish the often very weak specific autoantibody signals from background signals. Further developments of autoantibody detection methods will therefore be necessary to increase sensitivity to a level acceptable to provide laboratory confirmation of a diagnosis of ITP.
Collapse
Affiliation(s)
- Leendert Porcelijn
- Department of Immunohematology Diagnostics, Sanquin Diagnostic Services, Amsterdam, the Netherlands.
| | - David E Schmidt
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Gonda Oldert
- Department of Immunohematology Diagnostics, Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | | | - Rick Kapur
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jaap Jan Zwaginga
- Department of Immuno-hematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands; Sanquin Research, Center for Clinical Transfusion Research, Leiden, the Netherlands; Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Masja de Haas
- Department of Immunohematology Diagnostics, Sanquin Diagnostic Services, Amsterdam, the Netherlands; Sanquin Research, Center for Clinical Transfusion Research, Leiden, the Netherlands; Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
46
|
[Chinese guideline on the diagnosis and management of adult primary immune thrombocytopenia (version 2020)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:617-623. [PMID: 32942813 PMCID: PMC7525165 DOI: 10.3760/cma.j.issn.0253-2727.2020.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 12/15/2022]
|
47
|
Audia S, Mahevas M, Bonnotte B. [Immune thrombocytopenia: From pathogenesis to treatment]. Rev Med Interne 2020; 42:16-24. [PMID: 32741715 DOI: 10.1016/j.revmed.2020.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Accepted: 06/20/2020] [Indexed: 12/13/2022]
Abstract
Immune thrombocytopenia (ITP) is a rare autoimmune disease due to an immune peripheral destruction of platelets and an inappropriate platelet production. The pathogenesis of ITP is now better understood: it involves a humoral immune response which dependents on the stimulation of B cells by specific T cells called T follicular helper cells, leading to their differentiation into plasma cells that produce antiplatelet antibodies thus promoting the phagocytosis of platelets mainly by splenic macrophages. The deciphering of ITP pathogenesis has led to a better understanding of the inefficiency of treatments such as rituximab, although it has not provided yet the determination of biological predictive factor of response to treatments. Moreover, new therapeutic perspectives have been opened in the last few years with the development of molecules targeting Fcγ receptor signalling such as Syk inhibitor, or molecules increasing the clearance of pathogenic autoantibodies such as inhibitors of the neonatal Fc receptor (FcRn).
Collapse
Affiliation(s)
- S Audia
- Service de Médecine Interne et Immunologie Clinique, Médecine 1-SOC 1, Hôpital François Mitterrand, Centre de référence des cytopénies auto-immunes de l'adulte, CHU Dijon-Bourgogne, 14 rue Paul Gaffarel, 21079 Dijon, France; Unité RIGHT, INSERM UMR 1098, Équipe "Immunorégulation et immunopathologie", Bâtiment B3, 15 rue Maréchal de Lattre de Tassigny, 21000 Dijon, France.
| | - M Mahevas
- 1 Service de Médecine Interne, Centre National de Référence des Cytopénies Auto-Immunes de l'Adulte, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris Est Créteil, Créteil, France; IMRB - U955 - Equipe n°2 "Transfusion et maladies du globule rouge" EFS Île-de-France, Hôpital Henri-Mondor, AP-HP, 51, avenue du Maréchal-de-Lattre-de-Tassigny, France
| | - B Bonnotte
- Service de Médecine Interne et Immunologie Clinique, Médecine 1-SOC 1, Hôpital François Mitterrand, Centre de référence des cytopénies auto-immunes de l'adulte, CHU Dijon-Bourgogne, 14 rue Paul Gaffarel, 21079 Dijon, France; Unité RIGHT, INSERM UMR 1098, Équipe "Immunorégulation et immunopathologie", Bâtiment B3, 15 rue Maréchal de Lattre de Tassigny, 21000 Dijon, France
| |
Collapse
|
48
|
Godeau B, Bonnotte B, Michel M. [Challenges and potential solutions in first-line treatments for immune thrombocytopenia in adults]. Rev Med Interne 2020; 42:25-31. [PMID: 32713675 DOI: 10.1016/j.revmed.2020.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/04/2020] [Accepted: 06/20/2020] [Indexed: 10/23/2022]
Abstract
The first line treatment of immune thrombocytopenic purpura (ITP) is well established and based on short course of corticosteroids associated with intravenous immunoglobulins (IVIg) for the most severe forms. Predniso(lo)ne is the corticosteroid agent usually given but dexamethasone appears as an alternative. Some guidelines recommend to use dexamethasone as first line when a rapid increase of platelet count is required. Dexamethasone could be used rather than IVIg for moderate to severe but non life-threatening bleeding manifestations. Other therapeutic options such as anti FcRn monoclonal antibodies or recombinant FcγR currently in development for ITP could be an option in the future. In newly diagnosed ITP, we unfortunately lack robust predictive risk factors of severity and chronic outcome. Identifying such factors could be helpful for considering the early use of some treatments which are commonly used as second or third line.
Collapse
Affiliation(s)
- B Godeau
- Service de médecine interne, Centre de références sur les cytopénies auto-immunes de l'adulte, CHU Henri Mondor, APHP, UPEC, 94010 Créteil, France.
| | - B Bonnotte
- Service de médecine interne et immunologie clinique, CHU Dijon Bourgogne, Université Bourgogne-Franche Comté, Inserm, EFS UMR1098, 21000 Dijon, France
| | - M Michel
- Service de médecine interne, Centre de références sur les cytopénies auto-immunes de l'adulte, CHU Henri Mondor, APHP, UPEC, 94010 Créteil, France
| |
Collapse
|
49
|
Rogier T, Samson M, Mourey G, Falvo N, Magy-Bertrand N, Ouandji S, Picque JB, Greigert H, Mausservey C, Imbach A, Ghesquière T, Voillat L, Caillot D, Deconinck E, Bonnotte B, Audia S. Antiplatelet Antibodies Do Not Predict the Response to Intravenous Immunoglobulins during Immune Thrombocytopenia. J Clin Med 2020; 9:E1998. [PMID: 32630482 PMCID: PMC7357034 DOI: 10.3390/jcm9061998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 11/17/2022] Open
Abstract
Immune thrombocytopenia (ITP) is a rare autoimmune disease due to autoantibodies targeting platelet glycoproteins (GP). The mechanism of platelet destruction could differ depending on the specificity of antiplatelet antibodies: anti-GPIIb/IIIa antibodies lead to phagocytosis by splenic macrophages, in a Fcγ receptor (FcγR)-dependent manner while anti-GPIb/IX antibodies induce platelet desialylation leading to their destruction by hepatocytes after binding to the Ashwell-Morell receptor, in a FcγR-independent manner. Considering the FcγR-dependent mechanism of action of intravenous immunoglobulins (IVIg), we assumed that the response to IVIg could be less efficient in the presence of anti-GPIb/IX antibodies. We conducted a multicentric, retrospective study including all adult ITP patients treated with IVIg who had antiplatelet antibodies detected between January 2013 and October 2017. Among the 609 identified, 69 patients were included: 17 had anti-GPIb/IX antibodies and 33 had anti-GPIIb/IIIa antibodies. The response to IVIg was not different between the patients with or without anti-GPIb/IX (88.2% vs. 73.1%). The response to IVIg was better in the case of newly diagnosed ITP (odds ratio (OR) = 5.4 (1.2-24.7)) and in presence of anti-GPIIb/IIIa (OR = 4.82 (1.08-21.5)), while secondary ITP had a poor response (OR = 0.1 (0.02-0.64)). In clinical practice, the determination of antiplatelet antibodies is therefore of little value to predict the response to IVIg.
Collapse
Affiliation(s)
- Thomas Rogier
- Service de Médecine Interne et Immunologie Clinique, Centre de Référence Constitutif des Cytopénies Auto-immunes de l’adulte, Centre Hospitalo-Universitaire Dijon Bourgogne, Université de Bourgogne Franche Comté, 21000 Dijon, France; (T.R.); (M.S.); (N.F.); (S.O.); (H.G.); (T.G.); (B.B.)
| | - Maxime Samson
- Service de Médecine Interne et Immunologie Clinique, Centre de Référence Constitutif des Cytopénies Auto-immunes de l’adulte, Centre Hospitalo-Universitaire Dijon Bourgogne, Université de Bourgogne Franche Comté, 21000 Dijon, France; (T.R.); (M.S.); (N.F.); (S.O.); (H.G.); (T.G.); (B.B.)
| | - Guillaume Mourey
- Laboratoire d’Hématologie et d’Immunologie Régional, Établissement Français du Sang (EFS) Bourgogne/Franche-Comté, 25000 Besançon, France; (G.M.); (A.I.)
| | - Nicolas Falvo
- Service de Médecine Interne et Immunologie Clinique, Centre de Référence Constitutif des Cytopénies Auto-immunes de l’adulte, Centre Hospitalo-Universitaire Dijon Bourgogne, Université de Bourgogne Franche Comté, 21000 Dijon, France; (T.R.); (M.S.); (N.F.); (S.O.); (H.G.); (T.G.); (B.B.)
| | - Nadine Magy-Bertrand
- Service de Médecine Interne, Centre Hospitalo-Universitaire, Université de Bourgogne Franche-Comté, 25000 Besançon, France;
| | - Sethi Ouandji
- Service de Médecine Interne et Immunologie Clinique, Centre de Référence Constitutif des Cytopénies Auto-immunes de l’adulte, Centre Hospitalo-Universitaire Dijon Bourgogne, Université de Bourgogne Franche Comté, 21000 Dijon, France; (T.R.); (M.S.); (N.F.); (S.O.); (H.G.); (T.G.); (B.B.)
| | | | - Hélène Greigert
- Service de Médecine Interne et Immunologie Clinique, Centre de Référence Constitutif des Cytopénies Auto-immunes de l’adulte, Centre Hospitalo-Universitaire Dijon Bourgogne, Université de Bourgogne Franche Comté, 21000 Dijon, France; (T.R.); (M.S.); (N.F.); (S.O.); (H.G.); (T.G.); (B.B.)
| | - Christelle Mausservey
- Service de Médecine Interne, Centre Hospitalier William-Morey, 71100 Chalon/Saône, France;
| | - Arthur Imbach
- Laboratoire d’Hématologie et d’Immunologie Régional, Établissement Français du Sang (EFS) Bourgogne/Franche-Comté, 25000 Besançon, France; (G.M.); (A.I.)
| | - Thibault Ghesquière
- Service de Médecine Interne et Immunologie Clinique, Centre de Référence Constitutif des Cytopénies Auto-immunes de l’adulte, Centre Hospitalo-Universitaire Dijon Bourgogne, Université de Bourgogne Franche Comté, 21000 Dijon, France; (T.R.); (M.S.); (N.F.); (S.O.); (H.G.); (T.G.); (B.B.)
| | - Laurent Voillat
- Service d’Hématologie et Oncologie, Centre Hospitalier William-Morey, 71100 Chalon/Saône, France;
| | - Denis Caillot
- Service d’Hématologie, Centre Hospitalo-Universitaire Dijon Bourgogne, 21000 Dijon, France;
| | - Eric Deconinck
- Service d’Hématologie, Centre Hospitalo-Universitaire, Université de Bourgogne Franche-Comté, 25000 Besançon, France;
| | - Bernard Bonnotte
- Service de Médecine Interne et Immunologie Clinique, Centre de Référence Constitutif des Cytopénies Auto-immunes de l’adulte, Centre Hospitalo-Universitaire Dijon Bourgogne, Université de Bourgogne Franche Comté, 21000 Dijon, France; (T.R.); (M.S.); (N.F.); (S.O.); (H.G.); (T.G.); (B.B.)
| | - Sylvain Audia
- Service de Médecine Interne et Immunologie Clinique, Centre de Référence Constitutif des Cytopénies Auto-immunes de l’adulte, Centre Hospitalo-Universitaire Dijon Bourgogne, Université de Bourgogne Franche Comté, 21000 Dijon, France; (T.R.); (M.S.); (N.F.); (S.O.); (H.G.); (T.G.); (B.B.)
| |
Collapse
|
50
|
Schmidt DE, Heitink‐Polle KMJ, Porcelijn L, van der Schoot CE, Vidarsson G, Bruin MCA, de Haas M. Anti-platelet antibodies in childhood immune thrombocytopenia: Prevalence and prognostic implications. J Thromb Haemost 2020; 18:1210-1220. [PMID: 32053276 PMCID: PMC7318215 DOI: 10.1111/jth.14762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Anti-platelet antibody testing may be useful for the diagnosis and management of childhood immune thrombocytopenia (ITP). OBJECTIVES Here we aimed to assess the prevalence and prognostic significance of anti-platelet glycoprotein-specific IgM and IgG antibodies. METHODS Children with newly diagnosed ITP were included at diagnosis and randomized to an intravenous immunoglobulins (IVIg) or careful observation group (TIKI trial). In this well-defined and longitudinally followed cohort (N = 179), anti-platelet glycoprotein-specific IgM and IgG antibodies were determined by monoclonal antibody-immobilization of platelet antigens. RESULTS The dominant circulating anti-platelet antibody class in childhood ITP was IgM (62% of patients); but IgG antibodies were also found (10%). Children without IgM platelet antibodies were older and more often female. There was weak evidence for an association between IgM anti-GP IIb/IIIa antibodies and an increased bleeding severity (P = .03). The IgM and IgG anti-platelet responses partially overlapped, and reactivity was frequently directed against multiple glycoproteins. During 1-year follow-up, children with IgM antibodies in the observation group displayed a faster platelet recovery compared to children without, also after adjustment for age and preceding infections (P = 7.1 × 10-5 ). The small group of patients with detectable IgG anti-platelet antibodies exhibited an almost complete response to IVIg treatment (N = 12; P = .02), suggesting that IVIg was particularly efficacious in these children. CONCLUSIONS Testing for circulating anti-platelet antibodies may be helpful for the clinical prognostication and the guidance of treatment decisions in newly diagnosed childhood ITP. Our data suggest that the development of even more sensitive tests may further improve the clinical value of antibody testing.
Collapse
Affiliation(s)
- David E. Schmidt
- Department of Experimental ImmunohematologySanquin ResearchAmsterdamthe Netherlands
- Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | | | - Leendert Porcelijn
- Laboratory for Platelet and Leukocyte SerologyDepartment of Immunohematology DiagnosticsSanquin Diagnostic ServicesAmsterdamthe Netherlands
| | - C. Ellen van der Schoot
- Department of Experimental ImmunohematologySanquin ResearchAmsterdamthe Netherlands
- Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Gestur Vidarsson
- Department of Experimental ImmunohematologySanquin ResearchAmsterdamthe Netherlands
- Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Marrie C. A. Bruin
- Department of Pediatric HematologyUniversity Medical Center UtrechtUtrechtthe Netherlands
- Princess Maxima Center for Pediatric OncologyUtrechtthe Netherlands
| | - Masja de Haas
- Laboratory for Platelet and Leukocyte SerologyDepartment of Immunohematology DiagnosticsSanquin Diagnostic ServicesAmsterdamthe Netherlands
- Center for Clinical Transfusion ResearchSanquin ResearchLeidenthe Netherlands
- Jon J van Rood Center for Clinical Transfusion ScienceLeiden University Medical CenterLeidenthe Netherlands
- Department of Immunohematology and Blood TransfusionLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|