1
|
Bayrak O, Alper M, Basbinar Y, Bayrak S. The role of thrombin in the paradoxical interplay of cancer metastasis and the vascular system: A driving dynamic. Biomed Pharmacother 2025; 186:118031. [PMID: 40215647 DOI: 10.1016/j.biopha.2025.118031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/25/2025] Open
Abstract
The coagulation system plays a complex role in cancer therapy. Endothelial damage and tissue factor increased by chemotherapy initiate the coagulation cascade, producing active FXa and releasing thrombin. Thrombin triggers tumor growth and metastasis, leading to severe thromboembolic events in cancer patients. Direct thrombin inhibitors do not have the expected anti-metastatic effect as PAR-2 remains active and increases the risk of bleeding. Therefore, dual inhibition of thrombin by FXa inhibition and plasmin inhibition, which converts fibrin to fibrinogen, is targeted. Clinical studies show that the use of tranexamic acid in patients on NOAC therapy may be beneficial without increasing the risk of bleeding. This approach offers a promising strategy to provide an anti-metastatic effect in cancer treatment.
Collapse
Affiliation(s)
- Ozge Bayrak
- Dokuz Eylul University, Institute of Health Sciences, Department of Oncology, Izmir, Turkey
| | - Meltem Alper
- Dokuz Eylul University, Institute of Oncology, Department of Translational Oncology, Izmir, Turkey
| | - Yasemin Basbinar
- Dokuz Eylul University, Institute of Oncology, Department of Translational Oncology, Izmir, Turkey
| | - Serdar Bayrak
- Dokuz Eylul University, Institute of Oncology, Department of Translational Oncology, Izmir, Turkey; Dokuz Eylul University, Faculty of Medicine, Department of Cardiovascular Surgery, Izmir, Turkey.
| |
Collapse
|
2
|
Asmael Al-Azzawi HM, Paolini R, McCullough M, Reilly LO, Hamza SA, Hadjigol S, Yap T, Celentano A. Assessment of anticoagulant safety and coagulation analysis in mice using the VETSCAN ® VSpro analyzer. J Thromb Thrombolysis 2025; 58:427-432. [PMID: 39702894 DOI: 10.1007/s11239-024-03066-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2024] [Indexed: 12/21/2024]
Abstract
Animal models of thrombosis play a critical role in research, helping us understand the mechanisms of hemostasis and thrombus formation, as well as in the screening of anti-thrombotic drugs. This study aimed to evaluate the safety profile of two anticoagulants in murine research and to assess coagulation parameters, including prothrombin time (PT) and activated partial thromboplastin time (aPTT), using the VETSCAN® VSpro coagulation analyzer in wild-type (C57BL/6) mice following administration of anticoagulants. Two experiments were conducted involving a total of sixty wild-type mice that received two common anticoagulants. Warfarin was administered in the drinking water at varying dosages, while dabigatran was incorporated into a custom-chow diet at two dosages (10 mg/g and 15 mg/g chow). The VSpro was used to establish a reference range for PT and aPTT values in untreated wild-type mice and to monitor coagulation changes in mice undergoing anticoagulant therapy. Dabigatran was well tolerated at both concentrations (10 mg/g and 15 mg/g chow), while warfarin was safe at a concentration of 2.5 mg/L, resulting in a doubling of PT and aPTT compared to baseline levels. Although the VSpro effectively detected coagulation abnormalities in murine models, certain limitations were observed, including out-of-range measurements in cases of coagulopathy. This study provides insights into safe anticoagulant dosages for murine models, supporting the use of dabigatran at 10 mg/g and 15 mg/g chow and warfarin at 2.5 mg/L. The VSpro analyzer was able to monitor coagulation parameters under these conditions, making it a feasible tool for murine research.
Collapse
Affiliation(s)
| | - Rita Paolini
- Melbourne Dental School, The University of Melbourne Melbourne Dental School, Victoria, Australia
| | - Michael McCullough
- Melbourne Dental School, The University of Melbourne Melbourne Dental School, Victoria, Australia
| | - Lorraine O' Reilly
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Syed Ameer Hamza
- Melbourne Dental School, The University of Melbourne Melbourne Dental School, Victoria, Australia
| | - Sara Hadjigol
- Melbourne Dental School, The University of Melbourne Melbourne Dental School, Victoria, Australia
| | - Tami Yap
- Melbourne Dental School, The University of Melbourne Melbourne Dental School, Victoria, Australia
| | - Antonio Celentano
- Melbourne Dental School, The University of Melbourne Melbourne Dental School, Victoria, Australia.
| |
Collapse
|
3
|
Ghosh A, Bhoumick A, Paul S, Chatterjee A, Mandal S, Basu A, Mukhopadhyay S, Das K, Sen P. FVIIa-PAR2 signaling facilitates immune escape by reducing phagocytic potential of macrophages in breast cancer. J Thromb Haemost 2025; 23:903-920. [PMID: 39667690 DOI: 10.1016/j.jtha.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Treatment of breast cancers with immunotherapy has so far achieved limited success. Traditional immunotherapies focusing on cytotoxic T cells have attained modest success, while the approval of phagocytic checkpoint blockers is still pending. Coagulation proteases are crucial to cancer growth and proliferation, but their relevance in altering the immunologic topography in tumors remains largely unknown. OBJECTIVES In this study, we aimed to examine whether factor VIIa (FVIIa)-driven protease-activated receptor 2 (PAR2) activation and its subsequent signaling pathways assist cancer cells in evading phagocytic macrophages. METHODS Peripheral blood mononuclear cell- or THP-1-derived macrophages were cocultured with MDA-MB-468 cells that were pretreated with or without FVIIa. The phagocytic activity of macrophages was assessed through flow cytometry and immunofluorescence. Additionally, an allograft model using wild-type and PAR2-deleted 4T1 cells was employed to investigate the impact of PAR2 activation on immune escape from macrophages in vivo. RESULTS We found evidence that FVIIa-induced PAR2 cleavage activates downstream signaling cascades and augments cellular levels of microRNA221, which transcriptionally activates both CD47 and stanniocalcein 1 expression, thereby assisting the escape from phagocytosis by macrophages. Stanniocalcein 1 decreases the surface expression of calreticulin, a dominant prophagocytic signal, thereby tilting it in favor of phagocytic evasion. Mouse models using PAR2-depleted cells displayed smaller tumor volumes and corresponding greater phagocytic events when combined with anti-CD47/anti-PD-L1 antibodies. CONCLUSION PAR2 signaling initiates an intrinsic mechanism of immune escape by diminishing phagocytosis of cancer cells.
Collapse
Affiliation(s)
- Arnab Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Avinandan Bhoumick
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Akash Chatterjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Subhasis Mandal
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | | | | | - Kaushik Das
- Biotechnology Research and Innovation Council, National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Prosenjit Sen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India.
| |
Collapse
|
4
|
Ünlü B, Heestermans M, Laghmani EH, Buijs JT, van den Akker RFP, van Vlijmen BJM, Versteeg HH. The effects of an aggressive breast tumor on thrombosis after antithrombin downregulation in a hypercoagulable mouse model. Thromb Res 2024; 244:109200. [PMID: 39476730 DOI: 10.1016/j.thromres.2024.109200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Despite improvements in therapy, breast cancer still contributes to high mortality rates. Survival of these patients becomes progressively worse upon diagnosis with cancer-associated thrombosis (CAT). Unfortunately, the mechanism causing CAT has remained unclear. OBJECTIVE Set up an acute and non-invasive hypercoagulable mouse model with an aggressive breast cancer and study the mechanism of cancer-associated thrombosis. METHODS Mice were grafted with the aggressive breast cancer cell line MDA-MB-231 or sham-treated. Subsequently, an acute imbalance in coagulation was introduced by injecting a synthetic small interfering (si) RNA targeting hepatic Serpinc1 to knockdown antithrombin - a condition known to predispose to cause a hypercoagulant state in vivo. RESULTS Silencing Serpinc1 with siRNA decreased plasma antithrombin levels. siRNA treatment had no short-term effects on tumor characteristics, but increased distant metastasis within the timeframe of this study. The systemic pro-inflammatory status, with elevated platelet counts and fibrinogen levels in tumor-bearing mice, was also not affected by antithrombin silencing. While elevated fibrin deposition in the liver upon Serpinc1 targeting was not significantly affected by the presence of breast cancer, knockdown of antithrombin did significantly increase intratumoral fibrin deposition and inflammation. Surprisingly, in the presence of an aggressive tumor, a protective outcome with less clinical features coinciding with venous thrombosis were observed in mice with antithrombin knockdown. CONCLUSION We conclude that the presence of a breast tumor protects hypercoagulant mice from severe consumption of coagulation factors after lowering hepatic antithrombin levels, possibly due to elevated platelet counts. However, the consequences on cancer-associated thrombosis remained inconclusive.
Collapse
Affiliation(s)
- Betül Ünlü
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Marco Heestermans
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - El Houari Laghmani
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jeroen T Buijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Rob F P van den Akker
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Bart J M van Vlijmen
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Henri H Versteeg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
5
|
Al-Azzawi HMA, Hamza SA, Paolini R, Arshad F, Patini R, O'Reilly L, McCullough M, Celentano A. Towards an emerging role for anticoagulants in cancer therapy: a systematic review and meta-analysis. FRONTIERS IN ORAL HEALTH 2024; 5:1495942. [PMID: 39568788 PMCID: PMC11576436 DOI: 10.3389/froh.2024.1495942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024] Open
Abstract
Background Anticoagulants, renowned for their role in preventing blood clot formation, have captivated researchers' attention for the exploitation of their potential to inhibit cancer in pre-clinical models. Objectives To undertake a systematic review and meta-analysis of the effects of anticoagulants in murine cancer research models. Further, to present a reference tool for anticoagulant therapeutic modalities relating to future animal pre-clinical models of cancer and their translation into the clinic. Methods Four databases were utilized including Medline (Ovid), Embase (Ovid), Web of science, and Scopus databases. We included studies relating to any cancer conducted in murine models that assessed the effect of traditional anticoagulants (heparin and its derivatives and warfarin) and newer oral anticoagulants on cancer. Results A total of 6,158 articles were identified in an initial multi-database search. A total of 157 records were finally included for data extraction. Studies on heparin species and warfarin demonstrated statistically significant results in favour of tumour growth and metastasis inhibition. Conclusion Our findings constitute a valuable reference guide for the application of anticoagulants in cancer research and explore the promising utilization of non-anticoagulants heparin in preclinical cancer research. Systematic Review Registration PROSPERO [CRD42024555603].
Collapse
Affiliation(s)
| | - Syed Ameer Hamza
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| | - Rita Paolini
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| | - Fizza Arshad
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| | - Romeo Patini
- Head and Neck Department, "Fondazione Policlinico Universitario A. Gemelli-IRCCS" School of Dentistry, Catholic University of Sacred Heart-Rome Largo A. Gemelli, Rome, Italy
| | - Lorraine O'Reilly
- Clinical Translation Centre, Cancer Biology and Stem Cells Division and Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Michael McCullough
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| | - Antonio Celentano
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| |
Collapse
|
6
|
Li X, Gao L, Wang B, Hu J, Yu Y, Gu B, Xiang L, Li X, Li H, Zhang T, Wang Y, Ma C, Dong J, Lu J, Lucas A, Chen H. FXa-mediated PAR-2 promotes the efficacy of immunotherapy for hepatocellular carcinoma through immune escape and anoikis resistance by inducing PD-L1 transcription. J Immunother Cancer 2024; 12:e009565. [PMID: 39060025 PMCID: PMC11284825 DOI: 10.1136/jitc-2024-009565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The high metastasis rate is one of the main reasons for the poor prognosis of patients with hepatocellular carcinoma (HCC). Coagulation factor Xa (FXa) and its receptor proteinase-activated receptor-2 (PAR-2) proven to promote tumor metastasis in other forms of cancer. Here, we explore the role and mechanism of FXa in the regulation of resistance of anoikis and immune escape of HCC. METHODS In vitro and in vivo experiments were conducted to explore the role of FXa in HCC metastasis and its potential mechanism. The effects of FXa inhibitor rivaroxaban on HCC immunotherapy were evaluated using intrahepatic metastasis animal models and clinical trial (No. ChiCTR20000040540). We investigated the potential of FXa inhibition as a treatment for HCC. RESULTS FXa was highly expressed in HCC and promoted metastasis by activating PAR-2. Mechanistically, FXa-activated PAR-2 endows HCC cells with the ability of anoikis resistance to survive in the circulating blood by inhibiting the extrinsic apoptosis pathway. Furthermore, suspension stimulation-induced phosphorylation of STAT2, which promotes programmed death-ligand 1 (PD-L1) transcription and inhibits the antitumor effects of immune cells by inhibiting the infiltration of CD8+T cells in tumors and the levels of secreted cytokines. In vivo inhibition of FXa with rivaroxaban reduced HCC metastasis by decreasing PD-L1 expression and exhausting tumor-infiltrating lymphocytes. Notably, the combination of rivaroxaban and anti-programmed death-1 monoclonal antibody (anti-PD-1) programmed Death-1 monoclonal antibody (anti-PD-1) induced synergistic antitumor effects in animal models. Most importantly, rivaroxaban improved the objective response rate of patients with HCC to immune checkpoint inhibitors and prolonged overall survival time. CONCLUSIONS FXa-activated PAR-2 promotes anoikis resistance and immune escape in HCC, suggesting the potential for combining coagulation inhibitors and PD-1/PD-L1 immune checkpoint blockade to enhance the therapeutic efficacy of HCC.
Collapse
Affiliation(s)
- Xuemei Li
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Environmental Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Lei Gao
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Environmental Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Bofang Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Environmental Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jike Hu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Environmental Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yang Yu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Environmental Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Baohong Gu
- Department of Surgical Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Lin Xiang
- Department of Pathology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xiaomei Li
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Environmental Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Haiyuan Li
- Department of Surgical Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Tao Zhang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yunpeng Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Environmental Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Chenhui Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Environmental Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreas Surgery, Tsinghua University, Beijing, China
| | - Jianrong Lu
- Departments of Biochemistry and Molecular Biology, Florida College of Medicine, Gainesville, Florida, USA
| | | | - Hao Chen
- Department of Surgical Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- The Key Laboratory of Humanized Animal Models, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Kroone C, Tieken C, Kocatürk B, Paauwe M, Blok EJ, Ünlü B, van den Berg YW, Stanganello E, Kapteijn MY, Swier N, Zhang X, Duits DEM, Lin Y, Oostenbrink LVE, van den Akker RFP, Mosnier LO, Hawinkels LJ, van Vlijmen BJM, Ruf W, Kuppen PJ, Cannegieter SC, Buijs JT, Versteeg HH. Tumor-expressed factor VII is associated with survival and regulates tumor progression in breast cancer. Blood Adv 2023; 7:2388-2400. [PMID: 36920782 PMCID: PMC10238845 DOI: 10.1182/bloodadvances.2022008455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer enhances the risk of venous thromboembolism, but a hypercoagulant microenvironment also promotes cancer progression. Although anticoagulants have been suggested as a potential anticancer treatment, clinical studies on the effect of such modalities on cancer progression have not yet been successful for unknown reasons. In normal physiology, complex formation between the subendothelial-expressed tissue factor (TF) and the blood-borne liver-derived factor VII (FVII) results in induction of the extrinsic coagulation cascade and intracellular signaling via protease-activated receptors (PARs). In cancer, TF is overexpressed and linked to poor prognosis. Here, we report that increased levels of FVII are also observed in breast cancer specimens and are associated with tumor progression and metastasis to the liver. In breast cancer cell lines, tumor-expressed FVII drives changes reminiscent of epithelial-to-mesenchymal transition (EMT), tumor cell invasion, and expression of the prometastatic genes, SNAI2 and SOX9. In vivo, tumor-expressed FVII enhanced tumor growth and liver metastasis. Surprisingly, liver-derived FVII appeared to inhibit metastasis. Finally, tumor-expressed FVII-induced prometastatic gene expression independent of TF but required a functional endothelial protein C receptor, whereas recombinant activated FVII acting via the canonical TF:PAR2 pathway inhibited prometastatic gene expression. Here, we propose that tumor-expressed FVII and liver-derived FVII have opposing effects on EMT and metastasis.
Collapse
Affiliation(s)
- Chantal Kroone
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris Tieken
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Begüm Kocatürk
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Madelon Paauwe
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik J. Blok
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Betül Ünlü
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Yascha W. van den Berg
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Eliana Stanganello
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike Y. Kapteijn
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Nathalie Swier
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Xi Zhang
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Danique E. M. Duits
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Yazhi Lin
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa V. E. Oostenbrink
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob F. P. van den Akker
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Lukas J. Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart J. M. van Vlijmen
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Wolfram Ruf
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Peter J. Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne C. Cannegieter
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen T. Buijs
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Henri H. Versteeg
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Hiramoto K, Akita N, Nishioka J, Suzuki K. Edoxaban, a Factor Xa-Specific Direct Oral Anticoagulant, Significantly Suppresses Tumor Growth in Colorectal Cancer Colon26-Inoculated BALB/c Mice. TH OPEN : COMPANION JOURNAL TO THROMBOSIS AND HAEMOSTASIS 2023; 7:e1-e13. [PMID: 36751299 PMCID: PMC9825203 DOI: 10.1055/s-0042-1758855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/10/2022] [Indexed: 01/09/2023]
Abstract
Introduction Certain low-molecular-weight heparins have been reported to reduce tumor growth and metastasis in tumor cell-inoculated mouse models and cancer patients. Recently, direct oral anticoagulants (DOACs) have been widely used in patients with thromboembolism. This study was aimed at investigating the effect of DOACs, which target thrombin or factor Xa, on tumor growth in a syngeneic mouse model comprising BALB/c mice inoculated with colon cancer Colon26 cells. Materials and Methods DOACs targeting thrombin (dabigatran etexilate [DABE]) or factor Xa (rivaroxaban [RVX] and edoxaban [EDX]) were orally administered daily to male BALB/c mice inoculated with Colon26 cells, followed by analyses of tumor growth and plasma levels of coagulation- and tumor-related factors such as tissue factor (TF), plasminogen activator inhibitor-1 (PAI-1), interleukin-6 (IL-6), and matrix metalloproteinase-2 (MMP-2). Results Colon26 cells expressed significant amounts of functionally active TF. Tumor growth in Colon26-inoculated mice was significantly suppressed in DABE- or RVX-treated mice ( p <0.05) and was suppressed more significantly in EDX-treated mice ( p <0.01). Therefore, the antitumor mechanism of action of EDX was investigated next. Plasma levels of TF, PAI-1, IL-6, and MMP-2 were elevated in Colon26-inoculated mice but were significantly reduced in EDX-treated mice ( p <0.01). The expression of protease-activated receptor (PAR)1, PAR2, signal transducer and activator of transcription-3 (STAT3), cyclin D1, and Ki67 was increased in tumor tissue of Colon26-inoculated mice but (except for PAR1) was significantly decreased in tumor tissues of EDX-treated mice ( p <0.01). In addition, apoptotic cells and p53 protein levels were significantly increased in tumor tissues of EDX-treated mice. Conclusion The data suggest that among the tested DOACs, EDX significantly suppresses tumor cell proliferation via the factor Xa-PAR2 pathway, which is activated by coagulation and inflammation in Colon26-inoculated mice and induces tumor cell apoptosis.
Collapse
Affiliation(s)
- Keiichi Hiramoto
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka-city, Mie, Japan
| | - Nobuyuki Akita
- Department of Clinical Engineering, Faculty of Medical Engineering, Suzuka University of Medical Science, Suzuka-city, Mie, Japan
| | - Junji Nishioka
- Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, Suzuka-city, Mie, Japan
| | - Koji Suzuki
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka-city, Mie, Japan,Address for correspondence Koji Suzuki, PhD Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science.Minamitamagaki-cho 3500-3, Suzuka-city, Mie 513-8670Japan
| |
Collapse
|
9
|
Buijs JT, Ünlü B, Laghmani EH, Heestermans M, van Vlijmen BJM, Versteeg HH. Assessment of breast cancer progression and metastasis during a hypercoagulable state induced by silencing of antithrombin in a xenograft mouse model. Thromb Res 2023; 221:51-57. [PMID: 36470070 DOI: 10.1016/j.thromres.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 10/14/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Local coagulation activation has been shown to impact both primary tumor growth and metastasis in mice. It is well known that components of the blood clotting cascade such as tissue factor and thrombin play a role in tumor progression by activating cellular receptors and local formation of fibrin. However, whether venous thromboembolism (VTE) or a hypercoagulable state has a direct impact on cancer progression is unknown. Here we have combined an orthotopic murine breast cancer model, using female Nod-SCID mice, with siRNA-mediated silencing of antithrombin (siAT) leading to the induction of a systemic hypercoagulable state. We show that, compared to control siRNA-treated (not experiencing a hypercoagulable state) tumor-bearing mice, siAT treated tumor-bearing mice do not show enhanced tumor growth nor enhanced metastasis. We conclude that, in this murine model for hypercoagulability, induction of a hypercoagulable state does not contribute to breast cancer progression.
Collapse
Affiliation(s)
- J T Buijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Medicine, Leiden University Medical Centre, Leiden, the Netherlands
| | - B Ünlü
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Medicine, Leiden University Medical Centre, Leiden, the Netherlands
| | - E H Laghmani
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Medicine, Leiden University Medical Centre, Leiden, the Netherlands
| | - M Heestermans
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Medicine, Leiden University Medical Centre, Leiden, the Netherlands
| | - B J M van Vlijmen
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Medicine, Leiden University Medical Centre, Leiden, the Netherlands
| | - H H Versteeg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Medicine, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
10
|
Commonly Prescribed Anticoagulants Exert Anticancer Effects in Oral Squamous Cell Carcinoma Cells In Vitro. BIOLOGY 2022; 11:biology11040596. [PMID: 35453795 PMCID: PMC9027634 DOI: 10.3390/biology11040596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022]
Abstract
Simple Summary Oral squamous cell carcinoma (OSCC) is the sixth most common cancer worldwide with 840,000 new cases and 420,000 deaths in 2020. Anticoagulants are widely prescribed medications routinely administered to help prevent blood clots. Despite the great relevance of these two topics, there is complete lack of knowledge regarding the potential effects that these drugs could exert on oral cancer patients. In this in vitro study, we comprehensively investigated the effect of anticoagulants on OSCC activity. This includes the effect of these drugs on cancer cell ability to survive, migrate to colonise distant sites, and resist treatment with conventional chemotherapy. We have demonstrated for the first time that various anticoagulants have anticancer effects on OSCC. Moreover, some of the anticoagulants tested were able to reduce the migratory ability of cancer cells. Finally, the great majority of anticoagulants studied reduced the effectiveness of the tested chemotherapeutic agent, allowing an increase in cancer cell proliferation. Our results highlight the need for urgent further research in the field, to improve the anticoagulant strategies in patients with oral cancer, and in turn their prognosis. Abstract Oral squamous cell carcinoma (OSCC) is the most common head and neck cancer. With anticoagulant usage on the rise, it is important to elucidate their potential effects on tumour biology and interactions with chemotherapeutics. The aim of the present study was to investigate the effects of anticoagulants on OSCC cell lines and their interactions with the drug 5-fluorouracil (5-FU). Cell proliferation was assessed using an MTS in vitro assay in two human OSCC cell lines (H357/H400) and in normal oral keratinocytes (OKF6) treated with the 5-FU (0.2/1/5/10 μg/mL), conventional anticoagulants warfarin (1/5/10/20 μM) and heparin (5/20/80 U), as well as four new oral anticoagulants, dabigatran (5/10/20 μM), rivaroxaban (5/10/20 μM), apixaban (0.1/1/5 μg/mL), and edoxaban (5/10/20 μM). Cell migration was assessed at 3 h intervals up to18 h using a wound healing assay. Our results clearly demonstrate, for the first time, that commonly prescribed anticoagulants exert in vitro antiproliferative effects on OSCC cells. Furthermore, treatment with some anticoagulants reduced the migration of OSCC cell lines. Nevertheless, most of the anticoagulants tested reduced the effectiveness of the chemotherapeutic agent tested, 5-FU, highlighting potential flaws in the current pharmacological management of these patients. Our findings showed the need for the immediate translation of this research to preclinical animal models.
Collapse
|
11
|
Smeda M, Stojak M, Przyborowski K, Sternak M, Suraj-Prazmowska J, Kus K, Derszniak K, Jasztal A, Kij A, Kurpinska A, Kieronska-Rudek A, Wojnar-Lason K, Buczek E, Mohaissen T, Chlopicki S. Direct Thrombin Inhibitor Dabigatran Compromises Pulmonary Endothelial Integrity in a Murine Model of Breast Cancer Metastasis to the Lungs; the Role of Platelets and Inflammation-Associated Haemostasis. Front Pharmacol 2022; 13:834472. [PMID: 35295330 PMCID: PMC8918823 DOI: 10.3389/fphar.2022.834472] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Activation of the coagulation cascade favours metastatic spread, but antithrombotic therapy might also have detrimental effects on cancer progression. In this study, we characterized the effects of dabigatran, a direct reversible thrombin inhibitor, on the pulmonary endothelial barrier and metastatic spread in a murine model of breast cancer metastasis. Dabigatran etexilate (100 mg kg−1) was administered to mice twice daily by oral gavage. Pulmonary metastasis, pulmonary endothelium permeability in vivo, and platelet reactivity were evaluated after intravenous injection of 4T1 breast cancer cells into BALB/c mice. The effect of dabigatran on platelet-dependent protection of pulmonary endothelial barrier in the presence of an inflammatory stimulus was also verified in vitro using human lung microvascular endothelial cell (HLMVEC) cultures. Dabigatran-treated mice harbored more metastases in their lungs and displayed increased pulmonary endothelium permeability after cancer cell injection. It was not associated with altered lung fibrin deposition, changes in INFγ, or complement activation. In the in vitro model of the pulmonary endothelial barrier, dabigatran inhibited platelet-mediated protection of pulmonary endothelium. In a murine model of breast cancer metastasis, dabigatran treatment promoted pulmonary metastasis by the inhibition of platelet-dependent protection of pulmonary endothelial barrier integrity.
Collapse
Affiliation(s)
- Marta Smeda
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- *Correspondence: Marta Smeda, ; Stefan Chlopicki,
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Magdalena Sternak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Joanna Suraj-Prazmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Katarzyna Derszniak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kieronska-Rudek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Elzbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Tasnim Mohaissen
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
- *Correspondence: Marta Smeda, ; Stefan Chlopicki,
| |
Collapse
|
12
|
Castle J, Blower E, Kirwan CC. Update on the role of circulating tumour cells in cancer-associated thrombosis. THROMBOSIS UPDATE 2021. [DOI: 10.1016/j.tru.2021.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
13
|
Ruf W, Graf C. Coagulation signaling and cancer immunotherapy. Thromb Res 2021; 191 Suppl 1:S106-S111. [PMID: 32736766 DOI: 10.1016/s0049-3848(20)30406-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
The last decades have delineated many interactions of the hemostatic system with cancer cells that are pivotal for cancer-associated thrombosis, angiogenesis and metastasis. Expanding evidence shows that platelets, the tissue factor pathway, and proteolytic signaling involving protease-activated receptors (PARs) are also central players in innate and adaptive immunity. Recent studies in immune-competent mice have uncovered new immune-evasive roles of coagulation signaling networks in the development and growth of different preclinical tumor models. Tumor-type specific PAR1 signaling facilitates the escape from immune surveillance by cytotoxic T cells. In addition, tumor-associated macrophages produce factor X (FX) and cell autonomous FXa-PAR2 signaling emerges as a central mechanism for tumor-promoting macrophage polarization in the tumor microenvironment. Pharmacological targeting of this signaling pathway with tissue penetrating oral FXa inhibitor reprograms macrophage phenotypes, enhances tumor antigen presentation, and expands tumor-killing cytotoxic lymphocytes. Importantly, by specifically targeting innate immune cells, the oral FXa inhibitor rivaroxaban synergizes with checkpoint inhibitor therapy in enhancing antigen-specific antitumor immunity. In similar experiments, anticoagulation with heparin is inefficient to block extravascular coagulation signaling. Thus, antithrombotic therapy with oral FXa inhibitors may contribute to reversing tumor immune-evasive mechanisms and enhance the clinical outcome of targeted immuno-therapy regimens.
Collapse
Affiliation(s)
- Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
| | - Claudine Graf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
14
|
Ward MP, E Kane L, A Norris L, Mohamed BM, Kelly T, Bates M, Clarke A, Brady N, Martin CM, Brooks RD, Brooks DA, Selemidis S, Hanniffy S, Dixon EP, A O'Toole S, J O'Leary J. Platelets, immune cells and the coagulation cascade; friend or foe of the circulating tumour cell? Mol Cancer 2021; 20:59. [PMID: 33789677 PMCID: PMC8011144 DOI: 10.1186/s12943-021-01347-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer cells that transit from primary tumours into the circulatory system are known as circulating tumour cells (CTCs). These cancer cells have unique phenotypic and genotypic characteristics which allow them to survive within the circulation, subsequently extravasate and metastasise. CTCs have emerged as a useful diagnostic tool using "liquid biopsies" to report on the metastatic potential of cancers. However, CTCs by their nature interact with components of the blood circulatory system on a constant basis, influencing both their physical and morphological characteristics as well as metastatic capabilities. These properties and the associated molecular profile may provide critical diagnostic and prognostic capabilities in the clinic. Platelets interact with CTCs within minutes of their dissemination and are crucial in the formation of the initial metastatic niche. Platelets and coagulation proteins also alter the fate of a CTC by influencing EMT, promoting pro-survival signalling and aiding in evading immune cell destruction. CTCs have the capacity to directly hijack immune cells and utilise them to aid in CTC metastatic seeding processes. The disruption of CTC clusters may also offer a strategy for the treatment of advance staged cancers. Therapeutic disruption of these heterotypical interactions as well as direct CTC targeting hold great promise, especially with the advent of new immunotherapies and personalised medicines. Understanding the molecular role that platelets, immune cells and the coagulation cascade play in CTC biology will allow us to identify and characterise the most clinically relevant CTCs from patients. This will subsequently advance the clinical utility of CTCs in cancer diagnosis/prognosis.
Collapse
Affiliation(s)
- Mark P Ward
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin 8, Ireland.
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin 8, Ireland.
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin 8, Ireland.
| | - Laura E Kane
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin 8, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin 8, Ireland
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin 8, Ireland
| | - Lucy A Norris
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin 8, Ireland
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin 8, Ireland
| | - Bashir M Mohamed
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin 8, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin 8, Ireland
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin 8, Ireland
| | - Tanya Kelly
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin 8, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin 8, Ireland
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin 8, Ireland
| | - Mark Bates
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin 8, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin 8, Ireland
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin 8, Ireland
| | - Andres Clarke
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin 8, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin 8, Ireland
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin 8, Ireland
| | - Nathan Brady
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin 8, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin 8, Ireland
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin 8, Ireland
| | - Cara M Martin
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin 8, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin 8, Ireland
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin 8, Ireland
| | - Robert D Brooks
- Cancer Research Institute, University of South Australia, 5001, Adelaide, Australia
| | - Doug A Brooks
- Cancer Research Institute, University of South Australia, 5001, Adelaide, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Victoria, 3083, Bundoora, Australia
| | | | - Eric P Dixon
- BD Technologies and Innovation, Research Triangle Park, NC, USA
| | - Sharon A O'Toole
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin 8, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin 8, Ireland
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin 8, Ireland
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin 8, Ireland
| | - John J O'Leary
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin 8, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin 8, Ireland
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin 8, Ireland
| |
Collapse
|
15
|
Lin Z, Ling LQR, Ng M, Matlub L, Mehta K, Linus RA, Looker MJ, Melia Y, Loong J, Paolini R, Farah CS, Celentano A. The effect of anticoagulants on oral squamous cell carcinoma: A systematic review. J Oral Pathol Med 2020; 50:118-121. [PMID: 33184943 DOI: 10.1111/jop.13125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 01/06/2023]
Abstract
Tumour progression allows for aberrant angiogenesis. Consequently, cancer-associated thrombosis is a prevalent complication that is coupled with poor prognosis. Anticoagulants have therefore been prescribed with chemotherapeutic agents to target potential thrombo-embolic risk. A systematic review was carried out to summarise existing evidence on the interactions between anticoagulants and oral cancer. This treatment paradigm has demonstrated beneficial results in some oncology patients, thus associating anticoagulants with anticancer effects. Increasing prevalence of oral cancer presents a need to source alternative therapeutic means to prevent disease progression, and thus the use of anticoagulants in these patients may provide an avenue for this to occur. The paucity of evidence regarding the interactions between oral squamous cell carcinoma and anticoagulants emphasises the urgency with which further research should be conducted.
Collapse
Affiliation(s)
- Zichen Lin
- Melbourne Dental School, The University of Melbourne, Carlton, Vic, Australia
| | - Li-Qiao R Ling
- Melbourne Dental School, The University of Melbourne, Carlton, Vic, Australia
| | - Mabel Ng
- Melbourne Dental School, The University of Melbourne, Carlton, Vic, Australia
| | - Laith Matlub
- Melbourne Dental School, The University of Melbourne, Carlton, Vic, Australia
| | - Kunal Mehta
- Melbourne Dental School, The University of Melbourne, Carlton, Vic, Australia
| | - Roshine A Linus
- Melbourne Dental School, The University of Melbourne, Carlton, Vic, Australia
| | - Mitchell J Looker
- Melbourne Dental School, The University of Melbourne, Carlton, Vic, Australia
| | - Yovita Melia
- Melbourne Dental School, The University of Melbourne, Carlton, Vic, Australia
| | - Junhan Loong
- Melbourne Dental School, The University of Melbourne, Carlton, Vic, Australia
| | - Rita Paolini
- Melbourne Dental School, The University of Melbourne, Carlton, Vic, Australia
| | - Camile S Farah
- Australian Centre for Oral Oncology Research & Education, Nedlands, WA, Australia.,Oral, Maxillofacial and Dental Surgery, Fiona Stanley Hospital, Murdoch, WA, Australia.,Head and Neck Pathology, Australian Clinical Labs, Subiaco, WA, Australia
| | - Antonio Celentano
- Melbourne Dental School, The University of Melbourne, Carlton, Vic, Australia
| |
Collapse
|
16
|
Rudzinski JK, Govindasamy NP, Lewis JD, Jurasz P. The role of the androgen receptor in prostate cancer-induced platelet aggregation and platelet-induced invasion. J Thromb Haemost 2020; 18:2976-2986. [PMID: 32692888 DOI: 10.1111/jth.15020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Metastatic prostate cancer progresses from a hormone sensitive androgen receptor expressing phenotype to a hormone insensitive androgen receptor-independent subtype with low overall survival. Human platelets contribute to metastasis via tumor cell-induced platelet aggregation, which in part enhances cancer cell invasion. Given the more aggressive nature of hormone insensitive prostate cancer, we hypothesized that androgen receptor-negative prostate cancer cells exhibit higher platelet aggregation potency and invasive response compared to cells with androgen receptor. OBJECTIVE To characterize the role of androgen receptors in prostate cancer-induced platelet aggregation and platelet-induced invasion. METHODS Tumor cell-induced platelet aggregation experiments were performed with platelets from healthy human donors and benign prostate (RWPE-1) and prostate cancer cell lines positive (LNCaP) and negative for androgen receptor (DU145 and PC3). Immunoblot measured prostate cancer prothrombin. Modified Boyden chamber invasion assays and zymography were performed to assess the effects of platelets on prostate cancer cell invasion and matrix metalloproteinase (MMP) expression, respectively. RESULTS Androgen receptor-positive prostate cancer cell lines failed to induce platelet aggregation. However, androgen receptor-inhibited and -negative cell lines all induced platelet aggregation, which was abolished by dabigatran. Androgen receptor-inhibited and -negative cell lines demonstrated greater expression of prothrombin than androgen receptor-positive cells. Platelets enhanced invasion and MMP-2 and -9 expression by androgen receptor-inhibited and negative prostate cancer cells, but not that of the androgen receptor-positive cells. CONCLUSIONS Androgen receptor loss within prostate cancer results in increased thrombogenicity due to upregulation of prothrombin expression. Reciprocally, platelets enhance invasion of androgen receptor-negative prostate cancer cells via increased MMP expression.
Collapse
Affiliation(s)
- Jan K Rudzinski
- Division of Urology, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Natasha P Govindasamy
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - John D Lewis
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
Cantrell R, Palumbo JS. The thrombin–inflammation axis in cancer progression. Thromb Res 2020; 191 Suppl 1:S117-S122. [DOI: 10.1016/s0049-3848(20)30408-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
|
18
|
Wojtukiewicz MZ, Skalij P, Tokajuk P, Politynska B, Wojtukiewicz AM, Tucker SC, Honn KV. Direct Oral Anticoagulants in Cancer Patients. Time for a Change in Paradigm. Cancers (Basel) 2020; 12:cancers12051144. [PMID: 32370207 PMCID: PMC7281117 DOI: 10.3390/cancers12051144] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022] Open
Abstract
Thrombosis is a more common occurrence in cancer patients compared to the general population and is one of the main causes of death in these patients. Low molecular weight heparin (LMWH) has been the recognized standard treatment for more than a decade, both in cancer-related thrombosis and in its prevention. Direct oral anticoagulants (DOACs) are a new option for anticoagulation therapy. Recently published results of large randomized clinical trials have confirmed that DOAC may be a reasonable alternative to LMWH in cancer patients. The following review summarizes the current evidence on the safety and efficacy of DOAC in the treatment and prevention of cancer-related thrombosis. It also draws attention to the limitations of this group of drugs, knowledge of which will facilitate the selection of optimal therapy.
Collapse
Affiliation(s)
- Marek Z. Wojtukiewicz
- Department of Oncology, Medical University of Białystok, 12 Ogrodowa St., 15-027 Białystok, Poland; (P.S.); (P.T.)
- Department of Clinical Oncology, Comprehensive Cancer Center, 12 OgrodowaSt., 15-369 Białystok, Poland
- Correspondence:
| | - Piotr Skalij
- Department of Oncology, Medical University of Białystok, 12 Ogrodowa St., 15-027 Białystok, Poland; (P.S.); (P.T.)
- Department of Clinical Oncology, Comprehensive Cancer Center, 12 OgrodowaSt., 15-369 Białystok, Poland
| | - Piotr Tokajuk
- Department of Oncology, Medical University of Białystok, 12 Ogrodowa St., 15-027 Białystok, Poland; (P.S.); (P.T.)
- Department of Clinical Oncology, Comprehensive Cancer Center, 12 OgrodowaSt., 15-369 Białystok, Poland
| | - Barbara Politynska
- Department of Philosophy and Human Psychology, Medical University of Białystok, 37 Szpitalna St., 15-295 Białystok, Poland; (B.P.); (A.M.W.)
- Robinson College, University of Cambridge, Cambridge CB3 9AN, UK
| | - Anna M. Wojtukiewicz
- Department of Philosophy and Human Psychology, Medical University of Białystok, 37 Szpitalna St., 15-295 Białystok, Poland; (B.P.); (A.M.W.)
| | - Stephanie C. Tucker
- Bioactive Lipids Research Program, Department of Pathology-School of Medicine, Detroit, MI 48202, USA; (S.C.T.); (K.V.H.)
| | - Kenneth V. Honn
- Bioactive Lipids Research Program, Department of Pathology-School of Medicine, Detroit, MI 48202, USA; (S.C.T.); (K.V.H.)
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48202, USA
| |
Collapse
|
19
|
The endothelial barrier and cancer metastasis: Does the protective facet of platelet function matter? Biochem Pharmacol 2020; 176:113886. [PMID: 32113813 DOI: 10.1016/j.bcp.2020.113886] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
Overwhelming evidence suggests that platelets have a detrimental role in promoting cancer spread via platelet-cancer cell interactions linked to thrombotic mechanisms. On the other hand, a beneficial role of platelets in the preservation of the endothelial barrier in inflammatory conditions has been recently described, a phenomenon that could also operate in cancer-related inflammation. It is tempting to speculate that some antiplatelet strategies to combat cancer metastasis may impair the endogenous platelet-dependent mechanisms preserving endothelial barrier function. If the protective function of platelets is impaired, it may lead to increased endothelial permeability and more efficient cancer cell intravasation in the primary tumor and cancer cell extravasation at metastatic sites. In this commentary, we discuss current evidence that could support this hypothesis.
Collapse
|
20
|
Najidh S, Versteeg HH, Buijs JT. A systematic review on the effects of direct oral anticoagulants on cancer growth and metastasis in animal models. Thromb Res 2020; 187:18-27. [PMID: 31945588 DOI: 10.1016/j.thromres.2019.12.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/18/2019] [Accepted: 12/28/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Direct oral anticoagulants (DOACs) are now the first choice thromboprophylaxis in cancer patients who do not have a high risk of bleeding. In addition to the anticoagulant effects, potential anti-tumor effects of DOACs have also been studied in animal cancer models. In this study, we summarize the effects of DOACs on cancer growth and metastasis in animal models through a systematic review with a qualitative analysis. METHODS PubMed, EMBASE and Web of Science were systematically searched for original studies that describe animal models of cancer in which one of the experimental groups received DOAC monotherapy, and which reported quantitatively on primary tumor or metastases. RESULTS Nine studies - reporting a total of 19 animal experiments - met the inclusion criteria. These 19 experiments included spontaneous cancer (n = 2), carcinogenicity (n = 2), xenograft (n = 7) and syngeneic (n = 8) models, encompassing orthotopic (n = 7), subcutaneous (n = 5), intraperitoneal (n = 1) and intravenous (n = 2) injection of cancer cells and included treatments with the DOACs ximelagatran (n = 4), dabigatran etexilate (n = 6) and/or rivaroxaban (n = 11). DOAC treatment decreased tumor growth at implanted and metastatic site in 18.8% (3/16) and 20.0% (3/15) of the experiments, respectively. Conversely, DOACs increased tumor growth at implanted and metastatic site in 6.3% (1/16) and 20.0% (3/15) of the experiments, respectively. CONCLUSION DOAC monotherapy resulted in neoplastic changes in a rat carcinogenicity study, showed a lack of effect in mouse xenograft models, while the effect on cancer growth and metastasis in mouse syngeneic models depended on the timing of DOAC treatment and type of cancer model used.
Collapse
Affiliation(s)
- Safa Najidh
- Dept. of Dermatology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Henri H Versteeg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Div. of Thrombosis & Hemostasis, Dept. of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Jeroen T Buijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Div. of Thrombosis & Hemostasis, Dept. of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
21
|
Maqsood A, Hisada Y, Garratt KB, Homeister J, Mackman N. Rivaroxaban does not affect growth of human pancreatic tumors in mice. J Thromb Haemost 2019; 17:2169-2173. [PMID: 31393055 PMCID: PMC6893077 DOI: 10.1111/jth.14604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 08/02/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Some clinical studies have shown that low-molecular-weight heparins (LMWHs) prolong the survival of cancer patients. In addition, various anticoagulants have been shown to reduce growth of tumors in mice. However, there are no studies on the effect of the factor Xa inhibitor rivaroxaban on growth of human pancreatic tumors in nude mice. OBJECTIVES To test the hypothesis that the factor Xa inhibitor rivaroxaban reduces the growth of tissue factor (TF)-positive pancreatic tumors but not TF-negative pancreatic tumors in mice. METHODS The TF-positive human pancreatic cancer cell line BxPc-3 and the TF-negative human pancreatic cancer cell line MIA PaCa-2 were injected subcutaneously into nude mice and tumors grown to a mean volume of ~100 mm3 . Mice were then divided into two groups. One group was fed chow containing rivaroxaban (0.5 g/kg chow) whereas the other group was fed chow without rivaroxaban. RESULTS Rivaroxaban significantly prolonged prothrombin time in tumor-bearing mice. Rivaroxaban did not affect cell proliferation or growth of either BxPc-3 or MIA PaCa-2 tumors grown subcutaneously in nude mice. CONCLUSION Our results indicate that inhibition of factor Xa with rivaroxaban does not affect the growth of two human pancreatic tumors in nude mice.
Collapse
Affiliation(s)
- Anaum Maqsood
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yohei Hisada
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kenison B. Garratt
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jonathan Homeister
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nigel Mackman
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
22
|
Arce M, Pinto MP, Galleguillos M, Muñoz C, Lange S, Ramirez C, Erices R, Gonzalez P, Velasquez E, Tempio F, Lopez MN, Salazar-Onfray F, Cautivo K, Kalergis AM, Cruz S, Lladser Á, Lobos-González L, Valenzuela G, Olivares N, Sáez C, Koning T, Sánchez FA, Fuenzalida P, Godoy A, Contreras Orellana P, Leyton L, Lugano R, Dimberg A, Quest AFG, Owen GI. Coagulation Factor Xa Promotes Solid Tumor Growth, Experimental Metastasis and Endothelial Cell Activation. Cancers (Basel) 2019; 11:cancers11081103. [PMID: 31382462 PMCID: PMC6721564 DOI: 10.3390/cancers11081103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/11/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023] Open
Abstract
Hypercoagulable state is linked to cancer progression; however, the precise role of the coagulation cascade is poorly described. Herein, we examined the contribution of a hypercoagulative state through the administration of intravenous Coagulation Factor Xa (FXa), on the growth of solid human tumors and the experimental metastasis of the B16F10 melanoma in mouse models. FXa increased solid tumor volume and lung, liver, kidney and lymph node metastasis of tail-vein injected B16F10 cells. Concentrating on the metastasis model, upon coadministration of the anticoagulant Dalteparin, lung metastasis was significantly reduced, and no metastasis was observed in other organs. FXa did not directly alter proliferation, migration or invasion of cancer cells in vitro. Alternatively, FXa upon endothelial cells promoted cytoskeleton contraction, disrupted membrane VE-Cadherin pattern, heightened endothelial-hyperpermeability, increased inflammatory adhesion molecules and enhanced B16F10 adhesion under flow conditions. Microarray analysis of endothelial cells treated with FXa demonstrated elevated expression of inflammatory transcripts. Accordingly, FXa treatment increased immune cell infiltration in mouse lungs, an effect reduced by dalteparin. Taken together, our results suggest that FXa increases B16F10 metastasis via endothelial cell activation and enhanced cancer cell-endothelium adhesion advocating that the coagulation system is not merely a bystander in the process of cancer metastasis.
Collapse
Affiliation(s)
- Maximiliano Arce
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Mauricio P Pinto
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Macarena Galleguillos
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Catalina Muñoz
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Soledad Lange
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Carolina Ramirez
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Rafaela Erices
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Vicerrectoría de Investigación, Universidad Mayor, Santiago 7510041, Chile
| | - Pamela Gonzalez
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Ethel Velasquez
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Comisión Chilena de Energía Nuclear (CCHEN), Santiago, Chile
| | - Fabián Tempio
- Institute of Biomedical Sciences, Faculty of Medicine, University de Chile, Santiago 8380453, Chile
| | - Mercedes N Lopez
- Institute of Biomedical Sciences, Faculty of Medicine, University de Chile, Santiago 8380453, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
| | - Flavio Salazar-Onfray
- Institute of Biomedical Sciences, Faculty of Medicine, University de Chile, Santiago 8380453, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
| | - Kelly Cautivo
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alexis M Kalergis
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- Biomedical Research Consortium of Chile, Santiago 8331010, Chile
| | - Sebastián Cruz
- Laboratory of Immunoncology, Fundación Ciencia & Vida, Santiago, Chile
| | - Álvaro Lladser
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- Laboratory of Immunoncology, Fundación Ciencia & Vida, Santiago, Chile
| | - Lorena Lobos-González
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Immunoncology, Fundación Ciencia & Vida, Santiago, Chile
- Regenerative Medicine Center, Faculty of Medicine, Clinica Alemana-Universidad Del Desarrollo, Santiago 7650568, Chile
| | - Guillermo Valenzuela
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Nixa Olivares
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Claudia Sáez
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Tania Koning
- Immunology Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Fabiola A Sánchez
- Immunology Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Patricia Fuenzalida
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alejandro Godoy
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Pamela Contreras Orellana
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Cellular Communication, ICBM, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Lisette Leyton
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Cellular Communication, ICBM, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Cellular Communication, ICBM, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Gareth I Owen
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile.
| |
Collapse
|
23
|
Buijs JT, Laghmani EH, van den Akker RFP, Tieken C, Vletter EM, van der Molen KM, Crooijmans JJ, Kroone C, Le Dévédec SE, van der Pluijm G, Versteeg HH. The direct oral anticoagulants rivaroxaban and dabigatran do not inhibit orthotopic growth and metastasis of human breast cancer in mice. J Thromb Haemost 2019; 17:951-963. [PMID: 30929299 PMCID: PMC6849835 DOI: 10.1111/jth.14443] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/18/2019] [Indexed: 12/21/2022]
Abstract
Essentials Factor Xa (FXa)-targeting direct oral anticoagulants (DOACs) reduce venous thromboembolism (VTE) The effects of FXa-targeting DOACs on cancer progression remain to be studied In xenograft models, a FXa-targeting DOAC did not inhibit breast cancer growth and metastasis A thrombin-targeting DOAC, dabigatran, also did not inhibit breast cancer growth and metastasis ABSTRACT: Background Factor Xa-targeting DOACs were recently found to reduce recurrent VTE efficiently in cancer patients when compared to the standard treatment with low-molecular-weight heparins (LMWHs). While the anticancer effects of LMWHs have been extensively studied in preclinical cancer models, the effects of FXa-targeting DOACs on cancer progression remain to be studied. Objective We investigated whether the FXa-targeting DOAC rivaroxaban and the thrombin-targeting DOAC dabigatran etexilate (DE) affected human breast cancer growth and metastasis in orthotopic xenograft models. Methods/results Mice that were put on a custom-made chow diet supplemented with rivaroxaban (0.4 or 1.0 mg/g diet) or dabigatran etexilate (DE) (10 mg/g diet) showed prolonged ex vivo coagulation times (prothrombin time [PT] and activated partial thromboplastin time [aPTT] assay, respectively). However, rivaroxaban and DE did not inhibit MDA-MB-231 tumor growth and metastasis formation in lungs or livers of 7-week-old fully immunodeficient NOD/SCID/ƴC-/- (NSG) mice. Comparable data were obtained for rivaroxaban-treated mice when using NOD-SCID mice. Rivaroxaban and DE treatment also did not significantly inhibit tumor growth and metastasis formation when using another human triple negative breast cancer (TNBC) cell line (HCC1806) in NOD-SCID mice. The FXa and thrombin-induced gene expression of the downstream target CXCL8 in both cell lines, but FXa and thrombin, did not significantly stimulate migration, proliferation, or stemness in vitro. Conclusion Although effectively inhibiting coagulation, the DOACs rivaroxaban and DE did not inhibit orthotopic growth and metastasis of human TNBC. It remains to be investigated whether DOACs exert antitumorigenic effects in other types of cancer.
Collapse
Affiliation(s)
- Jeroen T. Buijs
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - El H. Laghmani
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Rob F. P. van den Akker
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Chris Tieken
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Esther M. Vletter
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Kim M. van der Molen
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Juliette J. Crooijmans
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Chantal Kroone
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Sylvia E. Le Dévédec
- Division of Drug Discovery and SafetyLeiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | | | - Henri H. Versteeg
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|