1
|
Carzoli A, Meikle A, Pessina P. Canine obesity, overweight, and adipokine serum concentration are associated with hematological, biochemical, hormonal, and cardiovascular markers. Open Vet J 2025; 15:619-629. [PMID: 40201816 PMCID: PMC11974303 DOI: 10.5455/ovj.2025.v15.i2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/17/2024] [Indexed: 04/10/2025] Open
Abstract
Background Canine obesity is an increasingly concerning issue that negatively impacts dogs' health, quality of life, and lifespan. Aim This study aimed to evaluate the adipokine profiles of overweight (OW) and obese (OB) dogs and their associations with various hematological, biochemical, hormonal, and cardiovascular markers. Methods A total of 84 dogs were classified according to their body condition scores as normal weight (NW), OW, or OB, and were subsequently subjected to blood pressure measurement, blood testing, and urine sampling. Results The findings revealed that OB dogs had higher serum concentrations of leptin and resistin while exhibiting lower levels of adiponectin when compared to NW dogs. Additionally, they showed higher systolic blood pressure. Serum creatinine levels were lower in OB dogs, and urinary specific gravity was reduced in both OW and OB dogs compared to their NW counterparts. Furthermore, total leukocyte counts and neutrophil counts were elevated in OW and OB dogs. The study also found that serum insulin levels were positively correlated with triglycerides, cholesterol, and C-reactive protein. Conclusion Canine obesity is reflected in altered adipokine concentrations and is associated with insulin resistance, as well as changes in renal function, protein metabolism, and hematological markers.
Collapse
Affiliation(s)
- Adrián Carzoli
- Unidad de Imagenología, Laboratorio de Análisis Clínicos y LEMA, Facultad de Veterinaria-UdelaR, Montevideo, Uruguay
| | - Ana Meikle
- Unidad de Imagenología, Laboratorio de Análisis Clínicos y LEMA, Facultad de Veterinaria-UdelaR, Montevideo, Uruguay
| | - Paula Pessina
- Unidad de Imagenología, Laboratorio de Análisis Clínicos y LEMA, Facultad de Veterinaria-UdelaR, Montevideo, Uruguay
| |
Collapse
|
2
|
Cai Y, Tang H, Xiang G, Yi H, Zhong J, Xie Z, Hu Q, El Bouhi R, Zhou P, Zhang Y, Yan H. Deciphering of differences in gut microbiota and plasma metabolites profile between non-obese and obese Golden Retrievers dogs. Front Microbiol 2025; 15:1514633. [PMID: 39845032 PMCID: PMC11751222 DOI: 10.3389/fmicb.2024.1514633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Golden Retrievers have a high risk of obesity, which is prevalent in dogs and is associated with inflammation and cancer, impairing the health and life expectancy of companion animals. Microbial and metabolite biomarkers have been proposed for identifying the presence of obesity in humans and rodents. However, the effects of obesity on the microbiome and metabolome of Golden Retrievers remains unknown. Therefore, this study was designed to evaluate the signatures of serum biochemistry indexes, gut microbiota and plasma metabolites in non-obese and obese Golden Retrievers, aiming to recognize potential biomarkers of canine obesity. Methods A total of 8 non-obese (Ctrl group) and 8 obese (Obe group) Golden Retrievers were included in the present study to collect blood and feces samples for measurements. The fecal microbiome and plasma metabolome were determined using 16S rRNA amplicon sequencing and liquid chromatography-mass spectrometry, respectively. Results Results showed that the alanine aminotransferase activity and total bilirubin concentration, which have been measured using serum biochemistry analysis, were higher in the Obe group than in the Ctrl group (p < 0.05). Moreover, there was a significant difference in gut microbiota composition between the two groups (p < 0.05). The phyla Proteobacteria, Fusobacteriota, and Bacteroidota as well as genera Fusobacterium, Prevotella, Faecalibacterium, Escherichia-Shigell, and Alloprevotella were more abundant, while phylum Firmicutes and genera Peptoclostridium, Blautia, Turicibacter, Allobaculum, and Erysipelatoclostridium were less abundant in the Obe group compared to the Ctrl group (p < 0.05). Plasma concentrations of citrulline and 11-dehydrocorticosterone were significantly higher in the Obe group than those in the Ctrl group (p < 0.05). Close correlations between serum biochemistry parameters, gut microbiome, and plasma metabolites were observed in the current study. Conclusion The obesity-induced shifts in serum biochemistry indexes, gut microbiota, and plasma metabolites profiles suggest that obese Golden Retrievers exhibit a different microbiome and metabolome than non-obese ones, and the certain metabolites like citrulline and 11-dehydrocorticosterone could be considered as potential biomarkers to recognize obese Golden Retrievers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Honglin Yan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
3
|
Teixeira FA, Aicher KM, Duarte R. Nutritional Factors Related to Canine Gallbladder Diseases-A Scoping Review. Vet Sci 2024; 12:5. [PMID: 39852880 PMCID: PMC11768938 DOI: 10.3390/vetsci12010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
Gallbladder mucocele, cholelithiasis, choledocholithiasis, and cholecystitis are significant contributors to morbidity and mortality in dogs. The exact etiology of these conditions remains poorly understood, though various factors, such as endocrinopathies, dyslipidemia, and impaired gallbladder motility, have been suggested as potential contributors. Surgical intervention has been described as the first choice of treatment when biliary rupture or obstruction is suspected; however, medical management may be an important part of therapeutic or preventative strategy. Reports of medical management typically involve the use of a choleretic used to stimulate the flow of bile into the duodenum or substances that act as a "hepatoprotective" agent such as S-adenosylmethionine. In people, some nutrients appear to modify bile flow and are used as agents in the prevention and treatment of these conditions in the gallbladder. This paper provides a review of the literature about possible nutritional factors involved in the pathogenesis and treatment of canine gallbladder mucocele and cholelithiasis. Opportunities for the prevention and treatment of common biliary diseases in dogs may include the reduction of dietary fat, control of hyperlipidemia with omega-3 and fiber supplementation, ensuring an adequate supply of amino acids such as methionine and tryptophan, and the evaluation of vitamins such as vitamin D.
Collapse
Affiliation(s)
- Fabio Alves Teixeira
- School of Veterinary Medicine and Animal Science, University of São Paulo-Brazil, São Paulo 05508270, Brazil
| | - Kathleen Moira Aicher
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, 4474 TAMU, College Station, TX 77843-4474, USA
| | | |
Collapse
|
4
|
Xu H, Xue Z, Wang P, Lee Q, Chen Z, Liu B, Liu X, Zeng F. Edible fungi polysaccharides modulate gut microbiota and lipid metabolism: A review. Int J Biol Macromol 2024; 283:137427. [PMID: 39537059 DOI: 10.1016/j.ijbiomac.2024.137427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Edible fungi polysaccharides (EFPs) and gut microbiota (GM) play an important role in lipid metabolism. The structure of GM is complex and can be dynamically affected by the diet. EFPs can be used as dietary intervention to improve lipid metabolism directly, or by regulate the GM to participate in the host lipid metabolism by a complex mechanism. In this paper, we reviewed that EFPs regulate the balance of GM by increasing the number of beneficial bacteria and decreasing the number of harmful bacteria in the intestinal tract. The metabolites of GM are mainly bile acids (BAs), short-chain fatty acids (SCFAs), and lipopolysaccharides (LPS). EFPs can promote the synthesis of BAs and increase the content of SCFAs that produced by GM fermented EFPs, but reduce the content of LPS to regulate lipid metabolism. This review provides a valuable reference for further elucidation of the relationship between EFPs-GM-lipid metabolism and EFPs targeted regulation of GM to improve public health.
Collapse
Affiliation(s)
- Huanyi Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhixiang Xue
- Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
| | - Pengyi Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Quancen Lee
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zihui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
| | - Xiaoyan Liu
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fuzhou 350002, China.
| |
Collapse
|
5
|
Choi J, Son D, An S, Cho E, Lim S, Lee HJ. Effects of Lactiplantibacillus plantarum CBT LP3 and Bifidobacterium breve CBT BR3 supplementation on weight loss and gut microbiota of overweight dogs. Sci Rep 2024; 14:25446. [PMID: 39455650 PMCID: PMC11511819 DOI: 10.1038/s41598-024-75594-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The prevalence of obesity in dogs is increasing worldwide. This study evaluated the effects of a mixed probiotic formula on the weight, body condition score (BCS), blood metabolite profiles, and gut microbiota of overweight and obese dogs over a 12-week supplementation period to determine the anti-obesity effects of Lactiplantibacillus plantarum CBT LP3 and Bifidobacterium breve CBT BR3. This was a community-based, randomized study that sampled 41 overweight and obese dogs with a veterinarian-determined BCS of 6 or more. The physical activity of all the subjects was measured using a pedometer designed exclusively for dogs. The food intake was measured using the developed application. Only the treatment group received the mixed probiotic formula twice daily (3 g per dose). A significant decrease in body weight (p < 0.0001), BCS (p < 0.0001), serum TG (p < 0.0001), serum TC (p = 0.0400), and serum leptin (p = 0.0252), and a significantly increased serum adiponectin levels (p = 0.0007) were observed in the treatment group compared with the values in the control group. Microbiota analysis showed that Lactiplantibacillus increased and Erysipelatoclostridium, Staphylococcus, and Gemella decreased more significantly in the treatment group than in the control group. These results suggested that Lactiplantibacillus plantarum CBT LP3 and Bifidobacterium breve CBT BR3 may be effective in alleviating obesity in dogs.
Collapse
Grants
- 321036-05-1-HD040 The Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries funded by the Ministry of Agriculture, Food, and Rural Affairs
- 321036-05-1-HD040 The Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries funded by the Ministry of Agriculture, Food, and Rural Affairs
- 321036-05-1-HD040 The Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries funded by the Ministry of Agriculture, Food, and Rural Affairs
- 321036-05-1-HD040 The Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries funded by the Ministry of Agriculture, Food, and Rural Affairs
- 321036-05-1-HD040 The Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries funded by the Ministry of Agriculture, Food, and Rural Affairs
- 321036-05-1-HD040 The Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries funded by the Ministry of Agriculture, Food, and Rural Affairs
- 00218423 The Technology Development Program funded by the Ministry of SMEs and Startups (MSS, Korea)
- 00218423 The Technology Development Program funded by the Ministry of SMEs and Startups (MSS, Korea)
- 00218423 The Technology Development Program funded by the Ministry of SMEs and Startups (MSS, Korea)
- 00218423 The Technology Development Program funded by the Ministry of SMEs and Startups (MSS, Korea)
- 00218423 The Technology Development Program funded by the Ministry of SMEs and Startups (MSS, Korea)
- 00218423 The Technology Development Program funded by the Ministry of SMEs and Startups (MSS, Korea)
Collapse
Affiliation(s)
- Jihee Choi
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi- do, 13120, Republic of Korea
| | - Dooheon Son
- R&D Center, Cell Biotech Co. Ltd., Gimpo-si, Gyeonggi-do, 10003, Republic of Korea
| | - Subin An
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi- do, 13120, Republic of Korea
| | - Eunbee Cho
- R&D Center, Cell Biotech Co. Ltd., Gimpo-si, Gyeonggi-do, 10003, Republic of Korea
| | - Sanghyun Lim
- R&D Center, Cell Biotech Co. Ltd., Gimpo-si, Gyeonggi-do, 10003, Republic of Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi- do, 13120, Republic of Korea.
| |
Collapse
|
6
|
Wang S, Liu JX, Li F, Wang J, Gao YL. M 3HOGAT: A Multi-View Multi-Modal Multi-Scale High-Order Graph Attention Network for Microbe-Disease Association Prediction. IEEE J Biomed Health Inform 2024; 28:6259-6267. [PMID: 39012741 DOI: 10.1109/jbhi.2024.3429128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Numerous scientific studies have found a link between diverse microorganisms in the human body and complex human diseases. Because traditional experimental approaches are time-consuming and expensive, using computational methods to identify microbes correlated with diseases is critical. In this paper, a new microbe-disease association prediction model is proposed that combines a multi-view multi-modal network and a multi-scale feature fusion mechanism, called M3HOGAT. Firstly, a microbe-disease association network and multiple similarity views are constructed based on multi-source information. Then, consider that neighbor information from disparate orders might be more adept at learning node representations. Consequently, the higher-order graph attention network (HOGAT) is devised to aggregate neighbor information from disparate orders to extract microbe and disease features from different networks and views. Given that the embedding features of microbe and disease from different views possess varying importance, a multi-scale feature fusion mechanism is employed to learn their interaction information, thereby generating the final feature of microbes and diseases. Finally, an inner product decoder is used to reconstruct the microbe-disease association matrix. Compared with five state-of-the-art methods on the HMDAD and Disbiome datasets, the results of 5-fold cross-validations show that M3HOGAT achieves the best performance. Furthermore, case studies on asthma and obesity confirm the effectiveness of M3HOGAT in identifying potential disease-related microbes.
Collapse
|
7
|
Shah H, Trivedi M, Gurjar T, Sahoo DK, Jergens AE, Yadav VK, Patel A, Pandya P. Decoding the Gut Microbiome in Companion Animals: Impacts and Innovations. Microorganisms 2024; 12:1831. [PMID: 39338505 PMCID: PMC11433972 DOI: 10.3390/microorganisms12091831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The changing notion of "companion animals" and their increasing global status as family members underscores the dynamic interaction between gut microbiota and host health. This review provides a comprehensive understanding of the intricate microbial ecology within companion animals required to maintain overall health and prevent disease. Exploration of specific diseases and syndromes linked to gut microbiome alterations (dysbiosis), such as inflammatory bowel disease, obesity, and neurological conditions like epilepsy, are highlighted. In addition, this review provides an analysis of the various factors that impact the abundance of the gut microbiome like age, breed, habitual diet, and microbe-targeted interventions, such as probiotics. Detection methods including PCR-based algorithms, fluorescence in situ hybridisation, and 16S rRNA gene sequencing are reviewed, along with their limitations and the need for future advancements. Prospects for longitudinal investigations, functional dynamics exploration, and accurate identification of microbial signatures associated with specific health problems offer promising directions for future research. In summary, it is an attempt to provide a deeper insight into the orchestration of multiple microbial species shaping the health of companion animals and possible species-specific differences.
Collapse
Affiliation(s)
- Harsh Shah
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India (M.T.)
| | - Mithil Trivedi
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India (M.T.)
| | - Tejas Gurjar
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India (M.T.)
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot 360003, India;
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, India;
| | - Parth Pandya
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India (M.T.)
| |
Collapse
|
8
|
Móritz AV, Kovács H, Jerzsele Á, Psáder R, Farkas O. Flavonoids in mitigating the adverse effects of canine endotoxemia. Front Vet Sci 2024; 11:1396870. [PMID: 39193369 PMCID: PMC11347451 DOI: 10.3389/fvets.2024.1396870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
In dogs, chronic enteropathies, and impaired gut integrity, as well as microbiome imbalances, are a major problem. These conditions may represent a continuous low endotoxin load, which may result in the development of diseases that are attributable to chronic inflammation. Flavonoids are polyphenolic plant compounds with numerous beneficial properties such as antioxidant, anti-inflammatory and antimicrobial effects. For our experiments, we isolated primary white blood cells (peripheral blood mononuclear cells and polymorphonuclear leukocytes) from healthy dogs and induced inflammation and oxidative stress with Escherichia coli and Salmonella enterica serovar Enteritidis lipopolysaccharide (LPS). In parallel, we treated the cell cultures with various flavonoids luteolin, quercetin and grape seed extract oligomeric proanthocyanidins (GSOP) alone and also in combination with LPS treatments. Then, changes in viability, reactive oxygen species (ROS) and tumor necrosis factor alpha (TNF-α) levels were measured in response to treatment with quercetin, luteolin and GSOP at 25 and 50 μg/mL concentrations. We found that ROS levels were significantly lower in groups which were treated by flavonoid and LPS at the same time compared to LPS-treated groups, whereas TNF-α levels were significantly reduced only by luteolin and quercetin treatment. In contrast, treatment with lower concentrations of GSOP caused an increase in TNF-α levels, while higher concentrations caused a significant decrease. These results suggest that the use of quercetin, luteolin and GSOP may be helpful in the management of chronic intestinal diseases in dogs with reduced intestinal barrier integrity or altered microbiome composition, or in the mitigation of chronic inflammatory processes maintained by endotoxemia. Further in vitro and in vivo studies are needed before clinical use.
Collapse
Affiliation(s)
- Alma V. Móritz
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Hédi Kovács
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Roland Psáder
- Department of Internal Medicine, University of Veterinary Medicine, Budapest, Hungary
| | - Orsolya Farkas
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
9
|
Li K, Xiao X, Li Y, Lu S, Zi J, Sun X, Xu J, Liu HY, Li X, Song T, Cai D. Insights into the interplay between gut microbiota and lipid metabolism in the obesity management of canines and felines. J Anim Sci Biotechnol 2024; 15:114. [PMID: 39118186 PMCID: PMC11308499 DOI: 10.1186/s40104-024-01073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Obesity is a prevalent chronic disease that has significant negative impacts on humans and our companion animals, including dogs and cats. Obesity occurs with multiple comorbidities, such as diabetes, hypertension, heart disease and osteoarthritis in dogs and cats. A direct link between lipid metabolism dysregulation and obesity-associated diseases has been implicated. However, the understanding of such pathophysiology in companion animals is limited. This review aims to address the role of lipid metabolism in various metabolic disorders associated with obesity, emphasizing the involvement of the gut microbiota. Furthermore, we also discuss the management of obesity, including approaches like nutritional interventions, thus providing novel insights into obesity prevention and treatment for canines and felines.
Collapse
Affiliation(s)
- Kaiqi Li
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiangyu Xiao
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuling Li
- School of Life Science and Engineering, Foshan University, Foshan, 528231, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, People's Republic of China
| | - Sichen Lu
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jianghang Zi
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoqiang Sun
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia Xu
- College of Agriculture, Jinhua Polytechnic, Jinhua, 321017, China
| | - Hao-Yu Liu
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, People's Republic of China.
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Demin Cai
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
10
|
Kiełbik P, Witkowska-Piłaszewicz O. The Relationship between Canine Behavioral Disorders and Gut Microbiome and Future Therapeutic Perspectives. Animals (Basel) 2024; 14:2048. [PMID: 39061510 PMCID: PMC11273744 DOI: 10.3390/ani14142048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Canine behavioral disorders have become one of the most common concerns and challenging issues among dog owners. Thus, there is a great demand for knowledge about various factors affecting dogs' emotions and well-being. Among them, the gut-brain axis seems to be particularly interesting, especially since in many instances the standard treatment or behavioral therapies insufficiently improve animal behavior. Therefore, to face this challenge, the search for novel therapeutic methods is highly required. Existing data show that mammals' gut microbiome, immune system, and nervous system are in continuous communication and influence animal physiology and behavior. This review aimed to summarize and discuss the most important scientific evidence on the relationship between mental disorders and gut microbiota in dogs, simultaneously presenting comparable outcomes in humans and rodent models. A comprehensive overview of crucial mechanisms of the gut-brain axis is included. This refers especially to the neurotransmitters crucial for animal behavior, which are regulated by the gut microbiome, and to the main microbial metabolites-short-chain fatty acids (SCFAs). This review presents summarized data on gut dysbiosis in relation to the inflammation process within the organism, as well as the activation of the hypothalamic-pituitary-adrenal (HPA) axis. All of the above mechanisms are presented in this review in strict correlation with brain and/or behavioral changes in the animal. Additionally, according to human and laboratory animal studies, the gut microbiome appears to be altered in individuals with mental disorders; thus, various strategies to manipulate the gut microbiota are implemented. This refers also to the fecal microbiome transplantation (FMT) method, based on transferring the fecal matter from a donor into the gastrointestinal tract of a recipient in order to modulate the gut microbiota. In this review, the possible effects of the FMT procedure on animal behavioral disorders are discussed.
Collapse
Affiliation(s)
- Paula Kiełbik
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | | |
Collapse
|
11
|
Hong MG, Lee Y, Chung WS, Seo JG, Lee SN. Supplementation with heat-killed Akkermansia muciniphila EB-AMDK19 counteracts diet-induced overweight in beagles. Arch Anim Nutr 2024; 78:254-272. [PMID: 39264284 DOI: 10.1080/1745039x.2024.2397221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
Obesity is a major health problem in dogs and is strongly associated with an increased risk of chronic inflammatory and metabolic diseases. The microaerophilic human gut bacterium Akkermansia muciniphila has been proposed as a potential preventive and therapeutic agent against obesity in both humans and mice; however, the protective effects of human-derived A. muciniphila against canine obesity remain unstudied. We previously demonstrated that the heat-killed A. muciniphila strain EB-AMDK19 (AMDK19-HK) isolated from the faeces of a healthy Korean exerts similar protective effects as the live bacterium in mice with high-fat-diet (HFD)-induced obesity. Here, we evaluated the effects of AMDK19-HK on body weight, body fat mass, haematological and biochemical parameters, and faecal microbiota composition in beagles fed an HFD for 12 weeks. AMDK19-HK supplementation effectively suppressed body weight increase, body fat deposition and serum triglyceride increase in the canine model; however, no significant changes in the overall haematological and biochemical parameters were observed, reflecting the direct anti-obesity effect of AMDK19-HK. Additionally, 16S rRNA gene sequencing revealed that AMDK19-HK supplementation induced significant changes in the faecal bacterial community, with an increased abundance of Firmicutes and a decreased abundance of Bacteroidota. These results suggest that AMDK19-HK can be used as a dietary supplement to counteract diet-induced overweight in dogs.
Collapse
Affiliation(s)
- Moon-Gi Hong
- R&D Center, Enterobiome Inc. Goyang-si, Republic of Korea
| | - Yoonmi Lee
- R&D Center, Enterobiome Inc. Goyang-si, Republic of Korea
| | - Won-Seok Chung
- R&D Center, Enterobiome Inc. Goyang-si, Republic of Korea
| | - Jae-Gu Seo
- R&D Center, Enterobiome Inc. Goyang-si, Republic of Korea
| | - Sang-Nam Lee
- R&D Center, Enterobiome Inc. Goyang-si, Republic of Korea
| |
Collapse
|
12
|
Kayser E, He F, Nixon S, Howard-Varona A, Lamelas A, Martinez-Blanch J, Chenoll E, Davenport GM, de Godoy MRC. Effects of supplementation of live and heat-treated Bifidobacterium animalis subspecies lactis CECT 8145 on glycemic and insulinemic response, fecal microbiota, systemic biomarkers of inflammation, and white blood cell gene expression of adult dogs. J Anim Sci 2024; 102:skae291. [PMID: 39320367 PMCID: PMC11525486 DOI: 10.1093/jas/skae291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 09/24/2024] [Indexed: 09/26/2024] Open
Abstract
The popularity of functional ingredients such as probiotics and postbiotics has increased as pet owners seek ways to improve the health quality and longevity of their pets. Limited research has been conducted regarding the use of probiotics and postbiotics and their effects on canine health. The objective of this study was to evaluate the effects of daily supplementation of Bifidobacterium animalis subsp. lactis CECT 8145, in both live probiotic (PRO) and heat-treated postbiotic (POST) forms, on fecal fermentative end-products and microbiome, insulin sensitivity, serum gut hormones, oxidative stress, inflammatory biomarkers, and white blood cell gene expression of adult dogs. Eighteen adult beagles and 18 adult English pointers were used in a double-blinded placebo-controlled parallel group design, with 12 animals per group (6 English pointers and 6 beagles). The study began with a 60 d adaptation period followed by a 90 d period of daily supplementation with either PRO, POST, or placebo (maltodextrin; CON). Longitudinal assessment of body weight, body condition score, and pelvic circumference did not differ among dietary supplements (P > 0.05). Throughout the experimental period, fecal scores did not differ (P > 0.05); however, fecal pH was lower (P = 0.0049) in the dogs fed POST compared with CON. A higher fecal concentration of propionate (P = 0.043) was observed in dogs fed PRO and POST when compared with CON. While PRO and POST supplementation were associated with changes in bacterial composition at the family and genus level, the overall richness and diversity of the microbiome were not significantly affected. Functional analysis of the metagenome also suggests that PRO and POST supplementation induced potentially beneficial changes in the abundance of pathways involved in pathogenicity, amino acid biosynthesis, and DNA repair. No differences in glycemic or insulinemic responses were observed among the groups (P > 0.05). Dogs supplemented with PRO had a higher (P < 0.05) mean white blood cell leptin relative fold gene expression compared with groups POST and CON. Serum metabolites and complete blood cell counts were within normal ranges and all dogs remained healthy throughout the study. Together, these data suggest that the PRO and POST can safely be supplemented for dogs. Moreover, the results of this study support further investigation of the role of PRO and POST in supporting parameters related to gut health and hormonal regulation.
Collapse
Affiliation(s)
- Emanuela Kayser
- Division of Nutritional Sciences University of Illinois, Urbana, IL, 61801, USA
| | - Fei He
- Department of Animal Sciences University of Illinois, Urbana, IL, 61801, USA
| | | | - Adrian Howard-Varona
- ADM Biopolis, University of Valencia Science Park (Parc Científic de la Universitat de València), Valencia, 46980, Spain
| | - Araceli Lamelas
- ADM Biopolis, University of Valencia Science Park (Parc Científic de la Universitat de València), Valencia, 46980, Spain
| | - Juan Martinez-Blanch
- ADM Biopolis, University of Valencia Science Park (Parc Científic de la Universitat de València), Valencia, 46980, Spain
| | - Empar Chenoll
- ADM Biopolis, University of Valencia Science Park (Parc Científic de la Universitat de València), Valencia, 46980, Spain
| | | | - Maria R C de Godoy
- Division of Nutritional Sciences University of Illinois, Urbana, IL, 61801, USA
- Department of Animal Sciences University of Illinois, Urbana, IL, 61801, USA
| |
Collapse
|
13
|
Ji Y, Yang Y, Wu Z. Programming of metabolic and autoimmune diseases in canine and feline: linkage to the gut microbiome. Microb Pathog 2023; 185:106436. [PMID: 37913827 DOI: 10.1016/j.micpath.2023.106436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
Metabolic and autoimmune disorders have long represented challenging health problems because of their growing prevalence in companion animals. The gut microbiome, made up of trillions of microorganisms, is implicated in multiple physiological and pathological processes. Similar to human beings, the complicated microbiome harbored in the gut of canines and felines emerges as a key factor determining a wide range of normal and disease conditions. Evidence accumulated from recent findings on canine and feline research uncovered that the gut microbiome is actively involved in host metabolism and immunity. Notably, the composition, abundance, activity, and metabolites of the gut microbiome are all elements that shape clinical outcomes concerning metabolism and immune function. This review highlights the implications of the gut microbiome for metabolic disorders (obesity, diabetes, and hepatic lipidosis) and autoimmune diseases (inflammatory bowel disease, osteoarthritis, asthma, and myasthenia gravis) in canine and feline animals, providing novel strategies and therapeutic targets for the prevention and treatment of pet diseases.
Collapse
Affiliation(s)
- Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China.
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
14
|
Chaudhry TS, Senapati SG, Gadam S, Mannam HPSS, Voruganti HV, Abbasi Z, Abhinav T, Challa AB, Pallipamu N, Bheemisetty N, Arunachalam SP. The Impact of Microbiota on the Gut-Brain Axis: Examining the Complex Interplay and Implications. J Clin Med 2023; 12:5231. [PMID: 37629273 PMCID: PMC10455396 DOI: 10.3390/jcm12165231] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
The association and interaction between the central nervous system (CNS) and enteric nervous system (ENS) is well established. Essentially ENS is the second brain, as we call it. We tried to understand the structure and function, to throw light on the functional aspect of neurons, and address various disease manifestations. We summarized how various neurological disorders influence the gut via the enteric nervous system and/or bring anatomical or physiological changes in the enteric nervous system or the gut and vice versa. It is known that stress has an effect on Gastrointestinal (GI) motility and causes mucosal erosions. In our literature review, we found that stress can also affect sensory perception in the central nervous system. Interestingly, we found that mutations in the neurohormone, serotonin (5-HT), would result in dysfunctional organ development and further affect mood and behavior. We focused on the developmental aspects of neurons and cognition and their relation to nutritional absorption via the gastrointestinal tract, the development of neurodegenerative disorders in relation to the alteration in gut microbiota, and contrariwise associations between CNS disorders and ENS. This paper further summarizes the synergetic relation between gastrointestinal and neuropsychological manifestations and emphasizes the need to include behavioral therapies in management plans.
Collapse
Affiliation(s)
| | | | - Srikanth Gadam
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (S.G.); (N.P.)
| | - Hari Priya Sri Sai Mannam
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.P.S.S.M.); (H.V.V.); (Z.A.); (T.A.); (N.B.)
| | - Hima Varsha Voruganti
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.P.S.S.M.); (H.V.V.); (Z.A.); (T.A.); (N.B.)
| | - Zainab Abbasi
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.P.S.S.M.); (H.V.V.); (Z.A.); (T.A.); (N.B.)
| | - Tushar Abhinav
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.P.S.S.M.); (H.V.V.); (Z.A.); (T.A.); (N.B.)
| | | | - Namratha Pallipamu
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (S.G.); (N.P.)
| | - Niharika Bheemisetty
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.P.S.S.M.); (H.V.V.); (Z.A.); (T.A.); (N.B.)
| | - Shivaram P. Arunachalam
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (S.G.); (N.P.)
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.P.S.S.M.); (H.V.V.); (Z.A.); (T.A.); (N.B.)
- Microwave Engineering and Imaging Laboratory (MEIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Panja K, Areerat S, Chundang P, Palaseweenun P, Akrimajirachoote N, Sitdhipol J, Thaveethaptaikul P, Chonpathompikunlert P, Niwasabutra K, Phapugrangkul P, Kovitvadhi A. Influence of dietary supplementation with new Lactobacillus strains on hematology, serum biochemistry, nutritional status, digestibility, enzyme activities, and immunity in dogs. Vet World 2023; 16:834-843. [PMID: 37235154 PMCID: PMC10206979 DOI: 10.14202/vetworld.2023.834-843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/06/2023] [Indexed: 05/28/2023] Open
Abstract
Background and Aim The use of antibiotics is associated with many side effects, with the development of bacterial resistance being particularly important. It has been found that dogs and their owners host similar resistant bacteria. This contributes to increased concurrent bacterial resistance and a possible trend of increased bacterial resistance in humans. Thus, using probiotics in dogs is an alternative option for preventing and reducing the transmission of bacterial resistance from dogs to humans. Probiotics are characterized by their potential to endure low pH levels and high concentrations of bile acids in the gastrointestinal tract. Lactobacilli are more acid-tolerant and resistant to bile acid, so they are ideal probiotics to be added to the canine diet. According to the previous studies, the benefits of Lactobacillus are a stable nutritional status and greater digestibility, along with improved fecal scores and reduced ammonia in dogs. However, no studies have been conducted with Lactobacillus plantarum CM20-8 (TISTR 2676), Lactobacillus acidophilus Im10 (TISTR 2734), Lactobacillus rhamnosus L12-2 (TISTR 2716), Lactobacillus paracasei KT-5 (TISTR 2688), and Lactobacillus fermentum CM14-8 (TISTR 2720), or their use in combination. Hence, the aim of this study was to examine the possible effects of the aforementioned Lactobacillus on hematological indices, nutritional status, digestibility, enzyme activities, and immunity in dogs. From the results, a new and safe strain of Lactobacillus may emerge for use as a probiotic in the future. Materials and Methods In this study, 35 dogs were allocated equally into seven groups: Group 1 received a basal diet (control), while Groups 2-7 received the same diet further supplemented with L. plantarum CM20-8 (TISTR 2676), L. acidophilus Im10 (TISTR 2734), L. rhamnosus L12-2 (TISTR 2716), L. paracasei KT-5 (TISTR 2688), L. fermentum CM14-8 (TISTR 2720), or a mixture of probiotics (L. plantarum, L. acidophilus, L. rhamnosus, L. paracasei, and L. fermentum), respectively. All probiotics were administered at a dose of 109 colony-forming unit/dog for 28 days. Nutritional status, hematology, serum biochemistry, digestibility, enzyme activities, and immunity parameters were assessed. Results There were no differences among the groups in body weight, feed intake, body condition score, fecal score, and fecal dry matter on the different sampling days. The hematology and serum biochemical analyses showed a difference only in creatinine activity (p < 0.001), with higher values in group L. fermentum CM14-8 (TISTR 2720) and lower values in group L. paracasei KT-5 (TISTR 2688) than in controls. However, all measurements were within the normal laboratory reference ranges. Fecal characteristics (fecal ammonia and fecal pH), fecal digestive enzyme activities, serum immunoglobulin (IgG), and fecal IgA did not differ significantly among the groups (p > 0.05). Conclusion Lactobacillus plantarum CM20-8 (TISTR 2676), L. acidophilus Im10 (TISTR 2734), L. rhamnosus L12-2 (TISTR 2716), L. paracasei KT-5 (TISTR 2688), and L. fermentum CM14-8 (TISTR 2720), along with their mixture are safe and non-pathogenic additives for use as new probiotic strains of Lactobacillus in dogs. Although the new Lactobacillus strains had no effect on hematology, serum biochemistry, nutritional status, digestive enzyme activities, immunity, body weight, feed intake, or body condition scores in dogs, further studies should investigate the intestinal microbiota and the development of clinical treatments.
Collapse
Affiliation(s)
- Kamonporn Panja
- Graduate Student in Animal Health and Biomedical Science Program, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-ok, Bangpra, Chonburi 20110, Thailand
| | - Sathita Areerat
- Graduate Student in Animal Health and Biomedical Science Program, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Pipatpong Chundang
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Pornsucha Palaseweenun
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | | | - Jaruwan Sitdhipol
- Biodiversity Research Center, Thailand Institute of Scientific and Technological Research, Pathumthani 12120, Thailand
| | - Punnathorn Thaveethaptaikul
- Biodiversity Research Center, Thailand Institute of Scientific and Technological Research, Pathumthani 12120, Thailand
| | - Pennapa Chonpathompikunlert
- Biodiversity Research Center, Thailand Institute of Scientific and Technological Research, Pathumthani 12120, Thailand
- Expert Center of Innovative Health Food, Thailand Institute of Scientific and Technological Research, Pathumthani 12120, Thailand
| | - Kanidta Niwasabutra
- Biodiversity Research Center, Thailand Institute of Scientific and Technological Research, Pathumthani 12120, Thailand
| | - Pongsathon Phapugrangkul
- Biodiversity Research Center, Thailand Institute of Scientific and Technological Research, Pathumthani 12120, Thailand
| | - Attawit Kovitvadhi
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
16
|
Zhao D, Zhang R, Wang J, Zhang X, Liu K, Zhang H, Liu H. Effect of Limosilactobacillus reuteri ZJF036 on Growth Performance and Gut Microbiota in Juvenile Beagle Dogs. Curr Microbiol 2023; 80:155. [PMID: 36995478 DOI: 10.1007/s00284-023-03276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/18/2023] [Indexed: 03/31/2023]
Abstract
This experiment investigated the effects of Limosilactobacillus reuteri ZJF036 on growth performance, serum biochemical parameters, and gut microbiota in beagle dogs. Sixteen 75 ± 5-day-old healthy male beagles (4.51 ± 1.37 kg) were randomly divided into two groups; the experimental group (L1) and the control group (L0), and then fed with or without a basal diet containing L. reuteri ZJF036 (109 CFU/g), respectively. The results showed that there was no significant difference in daily weight gain between the two groups (P > 0.05). However, we found that L. reuteri ZJF036 decreased Chao1 index and ACE index and increased the relative abundance of Firmicutes and Fusobacteria (P < 0.05) compared to the L0 group. In addition, we also found that the ratio of Firmicutes to Bacteroidetes was decreased in L1 group. Furthermore, the relative abundance of Lactobacillus increased, while that of Turicibacter and Blautia decreased in L1 group (P < 0.05). In conclusion, L. reuteri ZJF036 appeared to regulate the intestinal microbiota of beagle dogs. This study revealed the potential use of L. reuteri ZJBF036 as a probiotic supplement for beagle dogs.
Collapse
Affiliation(s)
- Dehui Zhao
- College of Agriculture, Chifeng University, Chifeng, 024000, People's Republic of China
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, People's Republic of China
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China
| | - Ruchun Zhang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China
| | - Jinming Wang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China
| | - Xinyu Zhang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, 130112, People's Republic of China
| | - Keyuan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Haihua Zhang
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, People's Republic of China
| | - Hanlu Liu
- College of Agriculture, Chifeng University, Chifeng, 024000, People's Republic of China.
| |
Collapse
|
17
|
Kim H, Seo J, Park T, Seo K, Cho HW, Chun JL, Kim KH. Obese dogs exhibit different fecal microbiome and specific microbial networks compared with normal weight dogs. Sci Rep 2023; 13:723. [PMID: 36639715 PMCID: PMC9839755 DOI: 10.1038/s41598-023-27846-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Canine obesity is a major health concern that predisposes dogs to various disorders. The fecal microbiome has been attracting attention because of their impact on energy efficiency and metabolic disorders of host. However, little is known about specific microbial interactions, and how these may be affected by obesity in dogs. The objective of this study was to investigate the differences in fecal microbiome and specific microbial networks between obese and normal dogs. A total of 20 beagle dogs (males = 12, body weight [BW]: 10.5 ± 1.08 kg; females = 8, BW: 11.3 ± 1.71 kg; all 2-year-old) were fed to meet the maintenance energy requirements for 18 weeks. Then, 12 beagle dogs were selected based on body condition score (BCS) and divided into two groups: high BCS group (HBCS; BCS range: 7-9, males = 4, females = 2) and normal BCS group (NBCS; BCS range: 4-6, males = 4, females = 2). In the final week of the experiment, fecal samples were collected directly from the rectum, before breakfast, for analyzing the fecal microbiome using 16S rRNA gene amplicon sequencing. The HBCS group had a significantly higher final BW than the NBCS group (P < 0.01). The relative abundances of Faecalibacterium, Phascolarctobacterium, Megamonas, Bacteroides, Mucispirillum, and an unclassified genus within Ruminococcaceae were significantly higher in the HBCS group than those in the NBCS group (P < 0.05). Furthermore, some Kyoto Encyclopedia of Genes and Genomes (KEGG) modules related to amino acid biosynthesis and B vitamins biosynthesis were enriched in the HBCS group (P < 0.10), whereas those related to carbohydrate metabolism were enriched in the NBCS group (P < 0.10). Microbial network analysis revealed distinct co-occurrence and mutually exclusive interactions between the HBCS and NBCS groups. In conclusion, several genera related to short-chain fatty acid production were enriched in the HBCS group. The enriched KEGG modules in the HBCS group enhanced energy efficiency through cross-feeding between auxotrophs and prototrophs. However, further studies are needed to investigate how specific networks can be interpreted in the context of fermentation characteristics in the lower gut and obesity in dogs.
Collapse
Affiliation(s)
- Hanbeen Kim
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Jakyeom Seo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Tansol Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-Do, 17546, Republic of Korea
| | - Kangmin Seo
- Animal Welfare Research Team, National Institute of Animal Science, Wanju-gun, 55365, Republic of Korea
| | - Hyun-Woo Cho
- Animal Welfare Research Team, National Institute of Animal Science, Wanju-gun, 55365, Republic of Korea
| | - Ju Lan Chun
- Animal Welfare Research Team, National Institute of Animal Science, Wanju-gun, 55365, Republic of Korea
| | - Ki Hyun Kim
- Animal Welfare Research Team, National Institute of Animal Science, Wanju-gun, 55365, Republic of Korea.
| |
Collapse
|
18
|
Vecchiato CG, Golinelli S, Pinna C, Pilla R, Suchodolski JS, Tvarijonaviciute A, Rubio CP, Dorato E, Delsante C, Stefanelli C, Pagani E, Fracassi F, Biagi G. Fecal microbiota and inflammatory and antioxidant status of obese and lean dogs, and the effect of caloric restriction. Front Microbiol 2023; 13:1050474. [PMID: 36713218 PMCID: PMC9878458 DOI: 10.3389/fmicb.2022.1050474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Obesity is the most common nutritional disease in dogs, and is generally managed by caloric restriction. Gut microbiota alteration could represent a predisposing factor for obesity development, which has been associated with a low-grade inflammatory condition and an impaired antioxidant status. Besides, weight loss has been shown to influence the gut microbiota composition and reduce the inflammatory response and oxidative stress. Method However, these insights in canine obesity have not been fully elucidated. The aim of this study was to assess the differences in serum and inflammatory parameters, antioxidant status, fecal microbiota and bacterial metabolites in 16 obese and 15 lean client-owned dogs and how these parameters in obese may be influenced by caloric restriction. First, for 30 days, all dogs received a high-protein, high-fiber diet in amounts to maintain their body weight; later, obese dogs were fed for 180 days the same diet in restricted amounts to promote weight loss. Results Before the introduction of the experimental diet (T0), small differences in fecal microbial populations were detected between obese and lean dogs, but bacterial diversity and main bacterial metabolites did not differ. The fecal Dysbiosis Index (DI) was within the reference range (< 0) in most of dogs of both groups. Compared to lean dogs, obese dogs showed higher serum concentrations of acute-phase proteins, total thyroxine (TT4), and antioxidant capacity. Compared to T0, dietary treatment affected the fecal microbiota of obese dogs, decreasing the abundance of Firmicutes and increasing Bacteroides spp. However, these changes did not significantly affect the DI. The caloric restriction failed to exert significative changes on a large scale on bacterial populations. Consequently, the DI, bacterial diversity indices and metabolites were unaffected in obese dogs. Caloric restriction was not associated with a reduction of inflammatory markers or an improvement of the antioxidant status, while an increase of TT4 has been observed. Discussion In summary, the present results underline that canine obesity is associated with chronic inflammation. This study highlights that changes on fecal microbiota of obese dogs induced by the characteristics of the diet should be differentiated from those that are the consequence of the reduced energy intake.
Collapse
Affiliation(s)
- Carla Giuditta Vecchiato
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy,*Correspondence: Carla Giuditta Vecchiato, ✉
| | - Stefania Golinelli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Carlo Pinna
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Rachel Pilla
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - Camila Peres Rubio
- Department of Animal and Food Science, School of Veterinary Science, Autonomous University of Barcelona, Barcelona, Spain
| | - Elisa Dorato
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Costanza Delsante
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Claudio Stefanelli
- Dipartimento di Scienze per la Qualità della Vita, University of Bologna, Rimini, Italy
| | - Elena Pagani
- Monge & C. S.p.A., Monasterolo di Savigliano, Italy
| | - Federico Fracassi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Giacomo Biagi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Yang K, Lin X, Jian S, Wen J, Jian X, He S, Wen C, Liu T, Qi X, Yin Y, Deng B. Changes in gut microbiota and short-chain fatty acids are involved in the process of canine obesity after neutering. J Anim Sci 2023; 101:skad283. [PMID: 37632755 PMCID: PMC10558198 DOI: 10.1093/jas/skad283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/25/2023] [Indexed: 08/28/2023] Open
Abstract
Neutering is a significant risk factor for obesity in dogs. Changes in gut microbiota and its metabolites have been identified as a key player during obesity progression. However, the mechanisms that promote neuter-associated weight gain are not well understood. Therefore, in this study, sixteen clinically healthy Beagle dogs (6 male and 10 female, mean age = 8.22 ± 0.25 mo old) were neutered. Body weight (BW) and body condition score (BCS) were recorded at 1 d before neutering, 3, 6, 10, 16, and 21 mo after neutering. Dogs were grouped based on their BCS as ideal weight group (IW, n = 4, mean BW = 13.22 ± 1.30 kg, mean BCS = 5.00 ± 0.41) and obese group (OB, n = 12, mean BW = 18.57 ± 1.08 kg, mean BCS = 7.92 ± 0.82) at 21 mo after neutering. Serum lipid profile, glucose, and hormones and fecal microbiota and short-chain fatty acids (SCFAs) were measured. Our results showed that OB dogs had greater (P < 0.0001) BW (18.57 vs. 13.22 kg), BCS (7.92 vs. 5.00), and average daily gain (12.27 vs. 5.69 g/d) than IW dogs at 21 mo after neutering, and the obesity rate was up to 60%. In addition, significant increases (P < 0.05) in serum triglyceride (TG, 1.10 vs. 0.56 mmol/L) and high-density lipoprotein cholesterol (HDL-C, 6.96 vs. 5.40 mmol/L) levels and a significant decrease (P < 0.05) in serum adiponectin (APN, 54.06 vs. 58.39 μg/L) level were observed in OB dogs; serum total cholesterol (4.83 vs. 3.75 mmol/L) (P = 0.075) and leptin (LEP, 2.82 vs. 2.53 μg/L) (P = 0.065) levels tended to be greater in OB dogs; there was a trend towards a lower (P = 0.092) APN/LEP (19.32 vs. 21.81) in OB dogs. Results of fecal microbial alpha-diversity showed that Observed_species and Chao1 indices tended to be lower (P = 0.069) in OB dogs. The STAMP and LEfSe analyses revealed that OB dogs had a greater (P < 0.05 and LDA > 2) reduction in relative abundances of Bacteroides, Prevotella_9, and Megamonas than IW dogs. In addition, OB dogs also had greater (P < 0.05) reduction in fecal acetate, propionate, and butyrate concentrations than IW dogs. Moreover, clear negative correlations (|r| > 0.5 and P < 0.05) were found between SCFAs-producing bacteria and BW, TG, and HDL-C. The functional predictions of microbial communities based on PICRUSt2 analysis revealed that lipid metabolism and endocrine system were significantly disturbed in obese dogs after neutering. Thus, intervention with SCFAs-producing bacteria might represent a new target for the prevention or treatment of canine obesity after neutering. Moreover, weight control before neutering may also contribute to the prevention of canine obesity after neutering.
Collapse
Affiliation(s)
- Kang Yang
- School of Life and Health Science, Kaili University, Kaili 556011, China
| | - Xinye Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shiyan Jian
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiawei Wen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoying Jian
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shansong He
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chaoyu Wen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tingting Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xin Qi
- Department of Technology, Beijing Veterinary Drug and Feed Monitoring Center, Beijing 101127, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
20
|
Oba PM, Kelly J, Kostiuk D, Swanson KS. Effects of weight loss and feeding specially formulated diets on the body composition, blood metabolite profiles, voluntary physical activity, and fecal metabolites and microbiota of obese dogs. J Anim Sci 2023; 101:skad073. [PMID: 36879442 PMCID: PMC10083730 DOI: 10.1093/jas/skad073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Canine obesity negatively influences health and well-being, but can be managed by altering diet composition and caloric intake. Restricted feeding, dietary intervention, and consequent weight loss may be used to improve health and modify gastrointestinal microbiota. In this study, we aimed to determine the effects of restricted feeding of specially formulated foods on weight loss, body composition, voluntary physical activity, serum hormones and oxidative stress markers, and fecal metabolites and microbiota populations of obese dogs. Twenty-four obese dogs [body weight (BW) = 15.2 ± 1.7 kg; body condition score (BCS) = 8.7 ± 0.4; muscle condition score (MCS) = 3.5 ± 0.3; age = 7.2 ± 1.6 yr] were used in a 24-wk study. A control (OR) food was fed during a 4-wk baseline to identify intake needed to maintain BW. After baseline, dogs were allotted to one of two diets: OR or test (FT), and then fed to lose 1.5% BW/wk. Food intake, BW, BCS, and MCS were measured, blood and fecal samples were collected, DEXA scans were performed, and voluntary physical activity was measured over time. Microbiota data were evaluated using QIIME2 and change from baseline data from other measures were evaluated using the Mixed Models procedure of SAS, with P < 0.05 being significant. Restricted feeding led to reduced BW, BCS, fat mass, and blood cholesterol, triglyceride, glucose, and leptin concentrations, and increased MCS and lean body mass percentage. Blood cholesterol reduction was greater in dogs fed FT vs. OR. Fecal metabolites and bacterial alpha-diversity were affected by diet and weight loss. Dogs fed FT had greater reductions in fecal short-chain fatty acid, branched-chain fatty acid, and ammonia concentrations than those fed OR. Dogs fed OR had a higher alpha-diversity than those fed FT. Weight loss increased alpha-diversity (weeks 16, 20, and 24 > weeks 0 and 4). Beta-diversity showed separation between dietary groups and between week 0 and all other time points after week 8. Weight loss increased fecal Allobaculum and Ruminococcus torques. Weight loss also increased fecal Bifidobacterium, Faecalibaculum, and Parasutterella, but were greater in dogs fed OR. Weight loss decreased fecal Collinsella, Turicibacter, Blautia, Ruminococcus gnavus, Faecalibacterium, and Peptoclostridium, but were greater in dogs fed OR. In summary, restricted feeding promoted safe weight and fat loss, reduced blood lipid and leptin concentrations, and altered fecal microbiota of obese dogs.
Collapse
Affiliation(s)
- Patrícia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801USA
| |
Collapse
|
21
|
Gaillard V, Chastant S, England G, Forman O, German AJ, Suchodolski JS, Villaverde C, Chavatte-Palmer P, Péron F. Environmental risk factors in puppies and kittens for developing chronic disorders in adulthood: A call for research on developmental programming. Front Vet Sci 2022; 9:944821. [PMID: 36619947 PMCID: PMC9816871 DOI: 10.3389/fvets.2022.944821] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Many dogs and cats are affected by chronic diseases that significantly impact their health and welfare and relationships with humans. Some of these diseases can be challenging to treat, and a better understanding of early-life risk factors for diseases occurring in adulthood is key to improving preventive veterinary care and husbandry practices. This article reviews early-life risk factors for obesity and chronic enteropathy, and for chronic behavioral problems, which can also be intractable with life-changing consequences. Aspects of early life in puppies and kittens that can impact the risk of adult disorders include maternal nutrition, establishment of the gut microbiome, maternal behavior, weaning, nutrition during growth, growth rate, socialization with conspecifics and humans, rehoming and neutering. Despite evidence in some species that the disorders reviewed here reflect the developmental origins of health and disease (DOHaD), developmental programming has rarely been studied in dogs and cats. Priorities and strategies to increase knowledge of early-life risk factors and DOHaD in dogs and cats are discussed. Critical windows of development are proposed: preconception, gestation, the suckling period, early growth pre-neutering or pre-puberty, and growth post-neutering or post-puberty to adult size, the durations of which depend upon species and breed. Challenges to DOHaD research in these species include a large number of breeds with wide genetic and phenotypic variability, and the existence of many mixed-breed individuals. Moreover, difficulties in conducting prospective lifelong cohort studies are exacerbated by discontinuity in pet husbandry between breeders and subsequent owners, and by the dispersed nature of pet ownership.
Collapse
Affiliation(s)
- Virginie Gaillard
- Research and Development Center, Royal Canin, Aimargues, France,*Correspondence: Virginie Gaillard ✉
| | - Sylvie Chastant
- NeoCare, Université de Toulouse, Ecole Nationale Vétérinaire de Toulouse (ENVT), Toulouse, France
| | - Gary England
- School of Veterinary Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Oliver Forman
- Wisdom Panel, Kinship, Waltham-on-the-Wolds, Leicestershire, United Kingdom
| | - Alexander J. German
- Institute of Life Course and Medical Sciences of Small Animal Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | | | - Pascale Chavatte-Palmer
- Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Biologie de la Reproduction, Environnement, Epigénétique et Développement (BREED), Jouy-en-Josas, France,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Franck Péron
- Research and Development Center, Royal Canin, Aimargues, France
| |
Collapse
|
22
|
Marchi PH, Vendramini THA, Perini MP, Zafalon RVA, Amaral AR, Ochamotto VA, Da Silveira JC, Dagli MLZ, Brunetto MA. Obesity, inflammation, and cancer in dogs: Review and perspectives. Front Vet Sci 2022; 9:1004122. [PMID: 36262532 PMCID: PMC9573962 DOI: 10.3389/fvets.2022.1004122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is the most common nutritional disease in dogs, and its prevalence has increased in recent decades. Several countries have demonstrated a prevalence of obesity in dogs similar to that observed in humans. Chronic low-grade inflammation is a prominent basis used to explain how obesity results in numerous negative health consequences. This is well known and understood, and recent studies have pointed to the association between obesity and predisposition to specific types of cancers and their complications. Such elucidations are important because, like obesity, the prevalence of cancer in dogs has increased in recent decades, establishing cancer as a significant cause of death for these animals. In the same way, intensive advances in technology in the field of human and veterinary medicine (which even proposes the use of animal models) have optimized existing therapeutic methods, led to the development of innovative treatments, and shortened the time to diagnosis of cancer. Despite the great challenges, this review aims to highlight the evidence obtained to date on the association between obesity, inflammation, and cancer in dogs, and the possible pathophysiological mechanisms that link obesity and carcinogenesis. The potential to control cancer in animals using existing knowledge is also presented.
Collapse
Affiliation(s)
- Pedro H. Marchi
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Thiago H. A. Vendramini
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Mariana P. Perini
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Rafael V. A. Zafalon
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Andressa R. Amaral
- Veterinary Nutrology Service, Veterinary Teaching Hospital of the School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Vanessa A. Ochamotto
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Juliano C. Da Silveira
- Laboratory of Molecular, Morphophysiology and Development (LMMD), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Maria L. Z. Dagli
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science of the University of São Paulo, São Paulo, Brazil
| | - Marcio A. Brunetto
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil,Veterinary Nutrology Service, Veterinary Teaching Hospital of the School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil,*Correspondence: Marcio A. Brunetto
| |
Collapse
|
23
|
Montenegro Junior RM, Ponte CMM, Castelo MHCG, de Oliveira Silveira AC, Fernandes VO, D'Alva CB, Oliveira LFV, Hristov AD, Bandeira SP, da Cruz Paiva GE, Levi JE. Reduced gut microbiota diversity in patients with congenital generalized lipodystrophy. Diabetol Metab Syndr 2022; 14:136. [PMID: 36153588 PMCID: PMC9508722 DOI: 10.1186/s13098-022-00908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Previous studies suggest intestinal dysbiosis is associated with metabolic diseases. However, the causal relationship between them is not fully elucidated. Gut microbiota evaluation of patients with congenital generalized lipodystrophy (CGL), a disease characterized by the absence of subcutaneous adipose tissue, insulin resistance, and diabetes since the first years of life, could provide insights into these relationships. METHODS A cross-sectional study was conducted with patients with CGL (n = 17) and healthy individuals (n = 17). The gut microbiome study was performed by sequencing the 16S rRNA gene through High-Throughput Sequencing (BiomeHub Biotechnologies, Brazil). RESULTS The median age was 20.0 years old, and 64.7% were female. There was no difference between groups in pubertal stage, BMI, ethnicity, origin (rural or urban), delivery, breastfeeding, caloric intake, macronutrient, or fiber consumption. Lipodystrophic patients presented a lower alpha diversity (Richness index: 54.0 versus 67.5; p = 0.008). No differences were observed in the diversity parameters when analyzing the presence of diabetes, its complications, or the CGL subtype. CONCLUSION In this study, we demonstrate for the first time a reduced gut microbiota diversity in individuals with CGL. Dysbiosis was present despite dietary treatment and was also observed in young patients. Our findings allow us to speculate that the loss of intestinal microbiota diversity may be due to metabolic abnormalities present since the first years of life in CGL. Longitudinal studies are needed to confirm these findings, clarifying the possible causal link between dysbiosis and insulin resistance in humans.
Collapse
Affiliation(s)
| | - Clarisse Mourão Melo Ponte
- University Hospitals, Federal University of Ceará/Ebserh, Fortaleza, CE, Brazil.
- DASA, São Paulo, SP, Brazil.
- Christus University Center, CE, Fortaleza, Brazil.
| | - Maria Helane Costa Gurgel Castelo
- University Hospitals, Federal University of Ceará/Ebserh, Fortaleza, CE, Brazil
- DASA, São Paulo, SP, Brazil
- Christus University Center, CE, Fortaleza, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Phenotypic correlates of the working dog microbiome. NPJ Biofilms Microbiomes 2022; 8:66. [PMID: 35995802 PMCID: PMC9395329 DOI: 10.1038/s41522-022-00329-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Dogs have a key role in law enforcement and military work, and research with the goal of improving working dog performance is ongoing. While there have been intriguing studies from lab animal models showing a potential connection between the gut microbiome and behavior or mental health there is a dearth of studies investigating the microbiome-behavior relationship in working dogs. The overall objective of this study was to characterize the microbiota of working dogs and to determine if the composition of the microbiota is associated with behavioral and performance outcomes. Freshly passed stools from each working canine (Total n = 134) were collected and subject to shotgun metagenomic sequencing using Illumina technology. Behavior, performance, and demographic metadata were collected. Descriptive statistics and prediction models of behavioral/phenotypic outcomes using gradient boosting classification based on Xgboost were used to study associations between the microbiome and outcomes. Regarding machine learning methodology, only microbiome features were used for training and predictors were estimated in cross-validation. Microbiome markers were statistically associated with motivation, aggression, cowardice/hesitation, sociability, obedience to one trainer vs many, and body condition score (BCS). When prediction models were developed based on machine learning, moderate predictive power was observed for motivation, sociability, and gastrointestinal issues. Findings from this study suggest potential gut microbiome markers of performance and could potentially advance care for working canines.
Collapse
|
25
|
Morelli G, Patuzzi I, Losasso C, Ricci A, Contiero B, Andrighetto I, Ricci R. Characterization of intestinal microbiota in normal weight and overweight Border Collie and Labrador Retriever dogs. Sci Rep 2022; 12:9199. [PMID: 35655089 PMCID: PMC9163050 DOI: 10.1038/s41598-022-13270-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
Abstract
Obesity in dogs is an emerging issue that affects canine health and well-being. Its development is ascribed to several factors, including genetic predisposition and dietary management, and recent evidence suggests that intestinal microbiota may be involved as well. Previous works have shown obesity to be linked to significant changes in gut microbiota composition in humans and mice, but only limited information is available on the role played by canine gut microbiota. The aim of this exploratory study was to investigate whether composition of canine faecal microbiota may be influenced by overweight condition and breed. All the enrolled companion dogs were young adults, intact, healthy, and fed commercial extruded pet food; none had received antibiotics, probiotics or immunosuppressant drugs in the previous six months. Labrador Retriever (LR) and Border Collie (BC) were chosen as reference breeds and Body Condition Score (BCS) on a 9-point scale as reference method for evaluating body fat. The faecal microbial communities of 15 lean (BCS 4-5/9; 7 LRs and 8 BCs) and 14 overweight (BCS > 5/9; 8 LRs and 6 BCs) family dogs were analysed using 16S rRNA gene sequencing. Moreover, for each dog, the daily intake of energy (kcal/d) and dietary macronutrients (g/d) were calculated according to an accurate feeding history collection. Firmicutes and Bacteroidetes resulted the predominant phyla (51.5 ± 10.0% and 33.4 ± 8.5%, respectively) in all dogs. Bioinformatic and statistical analysis revealed that no bacterial taxon differed significantly based on body condition, except for genus Allisonella (p < 0.05); BC gut microbiota was richer (p < 0.05) in bacteria belonging to phyla Actinobacteria (family Coriobacteriaceae in particular) and Firmicutes (Allobaculum and Roseburia genera). No remarkable differences were recorded either for diversity indices (i.e., alpha diversity, p > 0.10) or for divergence within the sample set (i.e., beta diversity, p > 0.05). PERMANOVA tests performed on single factors demonstrated the tendency of dietary protein to influence the recruited dogs' microbiota beta-diversity at amplicon sequence variant level (p = 0.08). In conclusion, the faecal microbiota of dogs involved in this exploratory study showed no major variations based on body condition. However, our findings suggested that certain bacterial taxa previously acknowledged in obesity-related studies may be detected in dissimilar amounts depending on canine breed.
Collapse
Affiliation(s)
- Giada Morelli
- Department of Animal Medicine, Production and Health, University of Padua, 35020, Legnaro, PD, Italy.
| | - Ilaria Patuzzi
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, PD, Italy
- Research and Development Division, EuBiome S.R.L., 35129, Padua, Italy
| | - Carmen Losasso
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, PD, Italy
| | - Antonia Ricci
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, PD, Italy
| | - Barbara Contiero
- Department of Animal Medicine, Production and Health, University of Padua, 35020, Legnaro, PD, Italy
| | - Igino Andrighetto
- Department of Animal Medicine, Production and Health, University of Padua, 35020, Legnaro, PD, Italy
| | - Rebecca Ricci
- Department of Animal Medicine, Production and Health, University of Padua, 35020, Legnaro, PD, Italy
| |
Collapse
|
26
|
Domestic Environment and Gut Microbiota: Lessons from Pet Dogs. Microorganisms 2022; 10:microorganisms10050949. [PMID: 35630391 PMCID: PMC9143008 DOI: 10.3390/microorganisms10050949] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Accumulating data show the involvement of intestinal microbiota in the development and maintenance of numerous diseases. Many environmental factors influence the composition and function of the gut microbiota. An animal model subjected to the same environmental constraints that will allow better characterization of the microbiota–host dialogue is awaited. The domestic dog has physiological, dietary and pathological characteristics similar to those of humans and shares the domestic environment and lifestyle of its owner. This review exposes how the domestication of dogs has brought them closer to humans based on their intrinsic and extrinsic similarities which were discerned through examining and comparing the current knowledge and data on the intestinal microbiota of humans and canines in the context of several spontaneous pathologies, including inflammatory bowel disease, obesity and diabetes mellitus.
Collapse
|
27
|
Lee HJ, Cho JH, Cho WJ, Gang SH, Park SH, Jung BJ, Kim HB, Song KH. Effects of Synbiotic Preparation Containing Lactobacillus gasseri BNR17 on Body Fat in Obese Dogs: A Pilot Study. Animals (Basel) 2022; 12:ani12050642. [PMID: 35268209 PMCID: PMC8909091 DOI: 10.3390/ani12050642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The present study evaluated the effectiveness of a synbiotic preparation containing L. gasseri BNR17 on body fat in obese dogs. Body weight and the body condition score showed a significant reduction after 10 weeks of synbiotic preparation administration compared with those at baseline (0-week). The subcutaneous fat mass at the level of the third lumbar vertebra and its proportion, compared with the body mass, reduced significantly after 10 weeks of synbiotic preparation administration, compared with those at baseline. Following synbiotic supplementation, microbiome analysis revealed increased microbial diversity, and functional analysis of the microbiota showed an increased abundance of carbohydrate and lipid metabolism. Based on these results, we consider that synbiotic preparation containing L. gasseri BNR17 may play a role in reducing body fat and resolving obesity. Abstract Obesity is an important health concern in humans and dogs. It can cause a variety of secondary problems, including low bacterial diversity. Several approaches have been tried to solve this problem; one of them is probiotic supplementation. Lactobacillus gasseri BNR17 is derived from breast milk and has been proven to be effective for obesity in humans. However, there have been no studies using a synbiotic preparation containing L. gasseri BNR17 for obesity management in dogs. Therefore, the present study evaluated the effectiveness of a synbiotic preparation containing L. gasseri BNR17 in reducing body fat in obese dogs. A group of obese dogs were fed a synbiotic preparation for 10 weeks. Obesity variables included body weight, body condition score, subcutaneous fat thickness, subcutaneous fat mass and proportion of the fat mass. In addition, feces collected at 0-week and 10-week time points were analyzed for the intestinal microbiome. Results showed a significant decrease in body weight, body condition score, and subcutaneous fat mass and proportion at the level of the third lumbar vertebra. Diversity and functional analysis of the microbiota in obese dogs showed increased microbial diversity, and increased abundance of metabolism of carbohydrate, and lipid after supplementation with a synbiotic preparation. This study was conducted as a pilot study, and the results demonstrated that a synbiotic preparation containing L. gasseri BNR17 may play a role in reducing body fat and resolving the obesity in dogs.
Collapse
Affiliation(s)
- Han-Joon Lee
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
| | - Jae Hyoung Cho
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea;
| | - Woo-Jae Cho
- Veterinary Nutrition Laboratory, JEIL Feed Co., Ltd., Daejeon 34029, Korea;
| | - Seong-Ho Gang
- SNH Biotech Co., Ltd., Daejeon 34015, Korea; (S.-H.G.); (S.-H.P.)
| | - Seung-Hwan Park
- SNH Biotech Co., Ltd., Daejeon 34015, Korea; (S.-H.G.); (S.-H.P.)
| | | | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea;
- Correspondence: (H.B.K.); (K.H.S.)
| | - Kun Ho Song
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
- Correspondence: (H.B.K.); (K.H.S.)
| |
Collapse
|
28
|
Sriwichaiin S, Kittichotirat W, Chunchai T, Chattipakorn N, Chattipakorn SC. Profiles of gut microbiota in obese-insulin-resistant rats treated with biotics. Eur J Nutr 2022; 61:2493-2505. [PMID: 35199196 DOI: 10.1007/s00394-022-02839-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/11/2022] [Indexed: 12/17/2022]
Abstract
PURPOSE Our previous studies demonstrated the beneficial effects of the probiotic Lactobacillus paracasei HII01, prebiotic xylooligosaccharide (XOS), and synbiotics on several parameters in high-fat diet (HFD)-induced obese rats. However, the gut microbiota composition in these rats has not been investigated. Therefore, this study aimed to investigate the impact of biotic therapies on gut microbiota in HFD-induced obese-insulin-resistant rats. METHODS Male Wistar rats were fed with a normal diet (ND, n = 5) and a HFD (n = 20) for 24 weeks. At week 13, HFD-fed rats were given either a probiotic (L. paracasei, HF-Pro, n = 5), prebiotic (XOS, HF-Pre, n = 5), synbiotic (XOS + L. paracasei, HF-Syn, n = 5), or vehicle (HF-V, n = 5) for 12 weeks. ND-fed rats received vehicle (ND-V, n = 5). At week 24, all rats were decapitated, and metabolic parameters and gut microbiota were analyzed. RESULTS HF-V rats developed an obese-insulin-resistant condition as indicated by impaired metabolic parameters. The prebiotic and synbiotic restored those metabolic parameters to the same level of ND-V rats. The gut microbiota composition of ND-V and HF-V rats differed as indicated by beta diversity. Verrucomicrobia in ND-V rats and Firmicutes and Proteobacteria in HF-V rats were dominant. Interestingly, Verrucomicrobia was also prominent in the HF-Syn rats. HF-Pre rats showed a distinct gut microbiota the predominant family being Ruminococcaceae. CONCLUSION The changes in gut microbiota after HFD consumption included increased Firmicutes and Proteobacteria. The treatment with the prebiotic and synbiotic showed an association with the increase in Ruminococcaceae and Verrucomicrobia, respectively. These changes in gut microbiota due to biotics may mediate the beneficial effects on metabolic parameters.
Collapse
Affiliation(s)
- Sirawit Sriwichaiin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Weerayuth Kittichotirat
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.,Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
29
|
Thomson P, Santibáñez R, Rodríguez-Salas C, Flores-Yañez C, Garrido D. Differences in the composition and predicted functions of the intestinal microbiome of obese and normal weight adult dogs. PeerJ 2022; 10:e12695. [PMID: 35190784 PMCID: PMC8857902 DOI: 10.7717/peerj.12695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023] Open
Abstract
Obesity is a multifactorial nutritional disorder highly prevalent in dogs, observed in developed and developing countries. It is estimated that over 40% of the canine population suffers from obesity, which manifests in an increased risk of chronic osteoarticular, metabolic, and cardiovascular diseases. The intestinal microbiome of obese animals shows increases in the abundance of certain members capable of extracting energy from complex polysaccharides. The objective of this study was to compare the composition and predicted function of the intestinal microbiome of Chilean obese and normal weight adult dogs. Twenty clinically healthy dogs were classified according to their body condition score (BCS) as obese (n = 10) or normal weight (n = 10). DNA was extracted from stool samples, followed by next-generation sequencing of the 16S rRNA V3-V4 region and bioinformatics analysis targeting microbiome composition and function. Significant differences were observed between these groups at the phylum level, with anincrease in Firmicutes and a decrease in Bacteroidetes in obese dogs. Microbiome compositions of these animals correlated with their BCS, and obese dogs showed enrichment in pathways related to transport, chemotaxis, and flagellar assembly. These results highlight the differences in the gut microbiome between normal weight and obese dogs and prompt further research to improve animal health by modulating the gut microbiome.
Collapse
Affiliation(s)
- Pamela Thomson
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Nacional Andrés Bello., Santiago, Chile
| | - Rodrigo Santibáñez
- Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Rodríguez-Salas
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Nacional Andrés Bello., Santiago, Chile
| | | | - Daniel Garrido
- Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
30
|
Macedo HT, Rentas MF, Vendramini THA, Macegoza MV, Amaral AR, Jeremias JT, de Carvalho Balieiro JC, Pfrimer K, Ferriolli E, Pontieri CFF, Brunetto MA. Weight-loss in obese dogs promotes important shifts in fecal microbiota profile to the extent of resembling microbiota of lean dogs. Anim Microbiome 2022; 4:6. [PMID: 34991726 PMCID: PMC8740440 DOI: 10.1186/s42523-021-00160-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/30/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Among the undesirable changes associated with obesity, one possibility recently raised is dysbiosis of the intestinal microbiota. Studies have shown changes in microbiota in obese rats and humans, but there are still few studies that characterize and compare the fecal microbiota of lean, obese and dogs after weight loss. Thus, this study aimed to evaluate the effects of a weight loss program (WLP) in fecal microbiota of dogs in addition to comparing them with those of lean dogs. Twenty female dogs of different breeds, aged between 1 and 9 years were selected. They were equally divided into two groups: Obese group (OG), with body condition score (BCS) 8 or 9/9, and body fat percentage greater than 30%, determined by the deuterium isotope dilution method, and lean group (LG) with BCS 5/9, and maximum body fat of 15%. Weight loss group (WLG) was composed by OG after loss of 20% of their current body weight. Fecal samples were collected from the three experimental groups. Total DNA was extracted from the feces and these were sequenced by the Illumina methodology. The observed abundances were evaluated using a generalized linear model, considering binomial distribution and using the logit link function in SAS (p < 0.05). RESULTS The WLP modulated the microorganisms of the gastrointestinal tract, so that, WLG and LG had microbial composition with greater biodiversity than OG, and intestinal uniformity of the microbiota (Pielou's evenness index) was higher in OG than WLG dogs (P = 0.0493) and LG (P = 0.0101). In addition, WLG had values of relative frequency more similar to LG than to OG. CONCLUSION The fecal microbiota of the studied groups differs from each other. The weight loss program can help to reverse the changes observed in obese dogs.
Collapse
Affiliation(s)
- Henrique Tobaro Macedo
- Department of Animal Nutrition and Production, Pet Nutrology Research Center (CEPEN Pet), School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Duque de Caxias Norte Ave, 255, Pirassununga, São Paulo, 13635-900, Brazil
| | - Mariana Fragoso Rentas
- Department of Animal Nutrition and Production, Pet Nutrology Research Center (CEPEN Pet), School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Duque de Caxias Norte Ave, 255, Pirassununga, São Paulo, 13635-900, Brazil
| | - Thiago Henrique Annibale Vendramini
- Department of Animal Nutrition and Production, Pet Nutrology Research Center (CEPEN Pet), School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Duque de Caxias Norte Ave, 255, Pirassununga, São Paulo, 13635-900, Brazil
| | - Matheus Vinicius Macegoza
- Department of Animal Nutrition and Production, Pet Nutrology Research Center (CEPEN Pet), School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Duque de Caxias Norte Ave, 255, Pirassununga, São Paulo, 13635-900, Brazil
| | - Andressa Rodrigues Amaral
- Department of Animal Nutrition and Production, Pet Nutrology Research Center (CEPEN Pet), School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Duque de Caxias Norte Ave, 255, Pirassununga, São Paulo, 13635-900, Brazil
| | - Juliana Toloi Jeremias
- Nutritional Development Center (CDN), Grandfood Indústria E Comércio LTDA (Premier Pet), Luiz Augusto de Oliveira Hwy, Km 204, Dourado, São Paulo, 13590-000, Brazil
| | - Júlio César de Carvalho Balieiro
- Department of Animal Nutrition and Production, Pet Nutrology Research Center (CEPEN Pet), School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Duque de Caxias Norte Ave, 255, Pirassununga, São Paulo, 13635-900, Brazil
| | - Karina Pfrimer
- Medical School of Ribeirão Preto (FMRP), University of São Paulo (USP), Bandeirantes Ave, 3900 - Campus da USP, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Eduardo Ferriolli
- Medical School of Ribeirão Preto (FMRP), University of São Paulo (USP), Bandeirantes Ave, 3900 - Campus da USP, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Cristiana Ferreira Fonseca Pontieri
- Nutritional Development Center (CDN), Grandfood Indústria E Comércio LTDA (Premier Pet), Luiz Augusto de Oliveira Hwy, Km 204, Dourado, São Paulo, 13590-000, Brazil
| | - Marcio Antonio Brunetto
- Department of Animal Nutrition and Production, Pet Nutrology Research Center (CEPEN Pet), School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Duque de Caxias Norte Ave, 255, Pirassununga, São Paulo, 13635-900, Brazil.
| |
Collapse
|
31
|
Phungviwatnikul T, Lee AH, Belchik SE, Suchodolski JS, Swanson KS. Weight loss and high-protein, high-fiber diet consumption impact blood metabolite profiles, body composition, voluntary physical activity, fecal microbiota, and fecal metabolites of adult dogs. J Anim Sci 2021; 100:6490144. [PMID: 34967874 PMCID: PMC8846339 DOI: 10.1093/jas/skab379] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/29/2021] [Indexed: 01/01/2023] Open
Abstract
Canine obesity is associated with reduced lifespan and metabolic dysfunction, but can be managed by dietary intervention. This study aimed to determine the effects of restricted feeding of a high-protein, high-fiber (HPHF) diet and weight loss on body composition, physical activity, blood metabolites, and fecal microbiota and metabolites of overweight dogs. Twelve spayed female dogs (age: 5.5 ± 1.1 yr; body weight [BW]: 14.8 ± 2.0 kg, body condition score [BCS]: 7.9 ± 0.8) were fed a HPHF diet during a 4-wk baseline phase to maintain BW. After baseline (week 0), dogs were first fed 80% of baseline intake and then adjusted to target 1.5% weekly weight loss for 24 wk. Body composition using dual-energy x-ray absorptiometry and blood samples (weeks 0, 6, 12, 18, and 24), voluntary physical activity (weeks 0, 7, 15, and 23), and fresh fecal samples for microbiota and metabolite analysis (weeks 0, 4, 8, 12, 16, 20, and 24) were measured over time. Microbiota data were analyzed using QIIME 2. All data were analyzed statistically over time using SAS 9.4. After 24 wk, dogs lost 31.2% of initial BW and had 1.43 ± 0.73% weight loss per week. BCS decreased (P < 0.0001) by 2.7 units, fat mass decreased (P < 0.0001) by 3.1 kg, and fat percentage decreased (P < 0.0001) by 11.7% with weight loss. Many serum metabolites and hormones were altered, with triglycerides, leptin, insulin, C-reactive protein, and interleukin-6 decreasing (P < 0.05) with weight loss. Relative abundances of fecal Bifidobacterium, Coriobacteriaceae UCG-002, undefined Muribaculaceae, Allobaculum, Eubacterium, Lachnospira, Negativivibacillus, Ruminococcus gauvreauii group, uncultured Erysipelotrichaceae, and Parasutterella increased (P < 0.05), whereas Prevotellaceae Ga6A1 group, Catenibacterium, Erysipelatoclostridium, Fusobacterium, Holdemanella, Lachnoclostridium, Lactobacillus, Megamonas, Peptoclostridium, Ruminococcus gnavus group, and Streptococcus decreased (P < 0.01) with weight loss. Despite the number of significant changes, a state of dysbiosis was not observed in overweight dogs. Fecal ammonia and secondary bile acids decreased, whereas fecal valerate increased with weight loss. Several correlations between gut microbial taxa and biological parameters were observed. Our results suggest that restricted feeding of a HPHF diet and weight loss promotes fat mass loss, minimizes lean mass loss, reduces inflammatory marker and triglyceride concentrations, and modulates fecal microbiota phylogeny and activity in overweight dogs.
Collapse
Affiliation(s)
| | - Anne H Lee
- Department of Animal Sciences, University of Illinois at Urbana – Champaign, Urbana, IL 61801, USA
| | - Sara E Belchik
- Department of Animal Sciences, University of Illinois at Urbana – Champaign, Urbana, IL 61801, USA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana – Champaign, Urbana, IL 61801, USA,Department of Veterinary Clinical Medicine, University of Illinois at Urbana – Champaign, Urbana, IL 61801, USA,Division of Nutritional Sciences, University of Illinois at Urbana – Champaign, Urbana, IL 61801, USA,Corresponding author:
| |
Collapse
|
32
|
Lu X, Jing Y, Li Y, Zhang N, Zhang W, Cao Y. The differential modulatory effects of Eurotium cristatum on the gut microbiota of obese dogs and mice are associated with improvements in metabolic disturbances. Food Funct 2021; 12:12812-12825. [PMID: 34860235 DOI: 10.1039/d1fo02886c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is a disease in humans and companion animals that can cause many chronic diseases. Eurotium cristatum (E. cristatum) is a dominant fungus in Fuzhuan tea. In this study, we aimed to investigate the possibility that E. cristatum may reduce diet-induced obesity by regulating the gut microbiota and measuring the differences in the gut microbiota of obese mice and dogs under E. cristatum supplementation. High-fat diet-fed C57BL/6J mice and beagle dogs were supplemented with live E. cristatum for 8 or 12 weeks. Faecal microbiota transplantation (FMT) and 16S rRNA sequencing were used to evaluate the relationship between the anti-obesity effect of E. cristatum and the gut microbiota. The results suggested that live E. cristatum reduced obesity and metabolic disorders in obese mice and dogs. 16S rRNA sequencing results revealed that E. cristatum decreased the Firmicutes/Bacteroidetes (F/B) ratio and the abundance of members of the Firmicutes phylum, including Lactobacillus gasseri, Lactobacillus reuteri, and Lactobacillus intestinalis, in obese mice, but the opposite was true in obese dogs. Furthermore, to investigate whether the antiobesity effect of E. cristatum can be attributed to gut microbiota, FMT and 16S rRNA sequencing were employed. The FMT trial confirmed that the anti-obesity effect of E. cristatum was mediated by modulating gut dysbiosis. In addition, we isolated live E. cristatum from faeces and found the β-hydroxy acid metabolite of monacolin K (MKA) in E. cristatum culture. Our research implies that E. cristatum has the potential to treat obesity as a novel probiotic.
Collapse
Affiliation(s)
- Xiaojie Lu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.
| | - Yue Jing
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.
| | - Yanyi Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.
| |
Collapse
|
33
|
Li H, Wang Y, Zhang Z, Tan Y, Chen Z, Wang X, Pei T, Wang L. Identifying Microbe-Disease Association Based on a Novel Back-Propagation Neural Network Model. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2502-2513. [PMID: 32305935 DOI: 10.1109/tcbb.2020.2986459] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Over the years, numerous evidences have demonstrated that microbes living in the human body are closely related to human life activities and human diseases. However, traditional biological experiments are time-consuming and expensive, so it has become a research topic in bioinformatics to predict potential microbe-disease associations by adopting computational methods. In this study, a novel calculative method called BPNNHMDA is proposed to identify potential microbe-disease associations. In BPNNHMDA, a novel neural network model is first designed to infer potential microbe-disease associations, its input signal is a matrix of known microbe-disease associations, and its output signal is matrix of potential microbe-disease associations probabilities. And moreover, in the novel neural network model, a new activation function is designed to activate the hidden layer and the output layer based on the hyperbolic tangent function, and its initial connection weights are optimized by adopting Gaussian Interaction Profile kernel (GIP) similarity for microbes, which can improve the training speed of BPNNHMDA efficiently. Finally, in order to verify the performance of our prediction model, different frameworks such as the Leave-One-Out Cross Validation (LOOCV) and k-Fold Cross Validation ( k-Fold CV) are implemented on BPNNHMDA respectively. Simulation results illustrate that BPNNHMDA can achieve reliable AUCs of 0.9242, 0.9127 ± 0.0009 and 0.8955 ± 0.0018 in LOOCV, 5-Fold CV and 2-Fold CV separately, which are superior to previous state-of-the-art methods. Furthermore, case studies of inflammatory bowel disease (IBD), asthma and obesity demonstrate that BPNNHMDA has excellent prediction ability in practical applications as well.
Collapse
|
34
|
Pereira AM, Clemente A. Dogs' Microbiome From Tip to Toe. Top Companion Anim Med 2021; 45:100584. [PMID: 34509665 DOI: 10.1016/j.tcam.2021.100584] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022]
Abstract
Microbiota and microbiome, which refers, respectively, to the microorganisms and conjoint of microorganisms and genes are known to live in symbiosis with hosts, being implicated in health and disease. The advancements and cost reduction associated with high-throughput sequencing techniques have allowed expanding the knowledge of microbial communities in several species, including dogs. Throughout their body, dogs harbor distinct microbial communities according to the location (e.g., skin, ear canal, conjunctiva, respiratory tract, genitourinary tract, gut), which have been a target of study mostly in the last couple of years. Although there might be a core microbiota for different body sites, shared by dogs, it is likely influenced by intrinsic factors such as age, breed, and sex, but also by extrinsic factors such as the environment (e.g., lifestyle, urban vs rural), and diet. It starts to become clear that some medical conditions are mediated by alterations in microbiota namely dysbiosis. Moreover, understanding microbial colonization and function can be used to prevent medical conditions, for instance, modulation of gut microbiota of puppies is more effective to ensure a healthy gut than interventions in adults. This paper gathers current knowledge of dogs' microbial communities, exploring their function, implications in the development of diseases, and potential interactions among communities while providing hints for further research.
Collapse
Affiliation(s)
- Ana Margarida Pereira
- University of the Azores, Faculty of Agricultural and Environmental Sciences, Institute of Agricultural and Environmental Research and Technology (IITAA). Rua Capitão João d'Ávila, Azores, Portugal.
| | - Alfonso Clemente
- Department of Physiology and Biochemistry in Animal Nutrition, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
35
|
Phungviwatnikul T, Alexander C, Do S, He F, Suchodolski JS, de Godoy MRC, Swanson KS. Effects of Dietary Macronutrient Profile on Apparent Total Tract Macronutrient Digestibility and Fecal Microbiota, Fermentative Metabolites, and Bile Acids of Female Dogs after Spay Surgery. J Anim Sci 2021; 99:6333593. [PMID: 34333604 DOI: 10.1093/jas/skab225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Obesity and estrogen reduction are known to impact the gut microbiota and gut microbial-derived metabolites in some species, but limited information is available in dogs. The aim of this study was to determine the effects of dietary macronutrient profile on apparent total tract macronutrient digestibility, fecal microbiota, and fecal metabolites of adult female dogs after spay surgery. Twenty-eight adult intact female beagles (age: 3.02 ± 0.71 yr, BW: 10.28 ± 0.77 kg; BCS: 4.98 ± 0.57) were used. After a 5-wk baseline phase (wk 0), 24 dogs were spayed and randomly allotted to one of three experimental diets (n=8/group): 1) control (CO) containing moderate protein and fiber (COSP), 2) high-protein, high-fiber (HPHF), or 3) high-protein, high-fiber plus omega-3 and medium-chain fatty acids (HPHFO). Four dogs were sham-operated and fed CO (COSH). All dogs were fed to maintain BW for 12 wk after spay, then allowed to consume twice that amount for 12 wk. Fecal samples were collected at wk 0, 12, and 24 for digestibility, microbiota, and metabolite analysis. All data were analyzed using repeated measures and linear Mixed Models procedure of SAS 9.4, with results reported as change from baseline. Apparent organic matter and energy digestibilities had greater decreases in HPHF and HPHFO than COSH and COSP. Increases in fecal acetate, total short-chain fatty acids, and secondary bile acids were greater and decreases in primary bile acids were greater in HPHF and HPHFO. Principal coordinates analysis of weighted UniFrac distances revealed that HPHF and HPHFO clustered together and separately from COSH and COSP at wk 12 and 24, with relative abundances of Faecalibacterium, Romboutsia, and Fusobacterium increasing to a greater extent and Catenibacterium, Bifidobacterium, Prevotella 9, Eubacterium, and Megamonas decreasing to a greater extent in HPHF or HPHFO. Our results suggest that high-protein, high-fiber diets alter nutrient and energy digestibilities, fecal metabolite concentrations, and fecal gut microbiota, but spay surgery had minor effects. Future research is needed to investigate how food intake, nutrient profile, and changes in hormone production influence gut microbiota and metabolites of dogs individually and how this knowledge may be used to manage spayed pets.
Collapse
Affiliation(s)
| | - Celeste Alexander
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Sungho Do
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Fei He
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Maria R C de Godoy
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA.,Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
36
|
Bermudez Sanchez S, Pilla R, Sarawichitr B, Gramenzi A, Marsilio F, Steiner JM, Lidbury JA, Woods GRT, Suchodolski JS, German AJ. Untargeted fecal metabolome analysis in obese dogs after weight loss achieved by feeding a high-fiber-high-protein diet. Metabolomics 2021; 17:66. [PMID: 34228201 PMCID: PMC8260550 DOI: 10.1007/s11306-021-01815-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/15/2021] [Indexed: 01/01/2023]
Abstract
INTRODUCTION In humans and companion animals, obesity is accompanied by metabolic derangements. Studies have revealed differences in the composition of the fecal microbiome between obese dogs and those with an ideal body weight. OBJECTIVES We have previously reported that the fecal microbiome in obese dogs changes after controlled weight reduction, induced by feeding a diet high in fiber and protein. Despite these findings, it is unclear if taxonomic differences infer differences at the functional level between obese dogs and those with an ideal body weight. METHODOLOGY Untargeted fecal metabolome analysis was performed on dogs with obesity before and after weight loss achieved by feeding a high-fiber-high-protein diet. RESULTS Fecal metabolome analysis revealed a total of 13 compounds that changed in concentration in obese dogs after weight loss. Of these compounds, metabolites associated with bacterial metabolism decreased after weight loss including purine, L-(-)-methionine, coumestrol, and the alkaloids 1-methylxanthine and trigonelline. Conversely, the polyphenols (-)-epicatechin and matairesinol and the quinoline derivatives 1,5-isoquinolinediol and 2-hydroxiquinoline increased after weight loss. CONCLUSION These results suggest differences in intestinal microbiome at the functional level after weight loss, but further studies are needed to determine the role of these compounds in the etiology of obesity and weight loss.
Collapse
Affiliation(s)
- Sandra Bermudez Sanchez
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
- Veterinary Medicine Sciences, University of Teramo, Teramo, Italy.
| | - Rachel Pilla
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Benjamin Sarawichitr
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Fulvio Marsilio
- Veterinary Medicine Sciences, University of Teramo, Teramo, Italy
| | - Joerg M Steiner
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Jonathan A Lidbury
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Georgiana R T Woods
- Institute of Life Course and Medical Sciences, University of Liverpool, Leahurst, Neston, UK
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Alexander J German
- Institute of Life Course and Medical Sciences, University of Liverpool, Leahurst, Neston, UK
| |
Collapse
|
37
|
Tangmahakul N, Makoom P, Surachetpong SD. Assessment of Platelet and Plasma Serotonin in Canine Pulmonary Hypertension Secondary to Degenerative Mitral Valve Disease. Front Vet Sci 2021; 8:695492. [PMID: 34212025 PMCID: PMC8239174 DOI: 10.3389/fvets.2021.695492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Pulmonary hypertension (PH) is a common complication of degenerative mitral valve disease (DMVD), the most common cardiovascular disease in dogs. Serotonin has been suspected to play a role in the pathogenesis of PH, so this study aimed to investigate the differences in platelet and plasma serotonin between normal, DMVD and DMVD with PH (DMVD+PH) dogs. Materials and Methods: Sixty-two small-breed dogs were enrolled to the study and divided into the normal (n = 22), DMVD (n = 20), and DMVD+PH (n = 20) groups. The platelet and plasma serotonin concentrations were measured by the competitive ELISA. Results: The Kruskal-Wallis revealed the difference among the four groups of normal (179.73 [102.37-352.24] ng/109 platelets), DMVD (325.99 [96.84-407.66] ng/109 platelets), DMVD with intermediate probability of PH (291.11 [106.69-400.84] ng/109 platelets) and DMVD with high probability of PH (35.82 [2.69-126.35] ng/109 platelets) (p = 0.014). The Dunn's post-hoc test showed a decrease in the platelet serotonin concentration of the DMVD dogs with high probability of PH compared to the DMVD group (p = 0.008). The plasma serotonin concentration was not different between normal, DMVD, and DMVD+PH dogs. Conclusion: In conclusion, a decrease in platelet serotonin concentration, which is associated with a degree of PH probability was found in DMVD dogs with PH. Further studies investigating roles of platelet serotonin in PH secondary to DMVD should be performed.
Collapse
Affiliation(s)
- Nattawan Tangmahakul
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Pussadee Makoom
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
38
|
Chen X, Meng S, Li S, Zhang L, Wu L, Zhu H, Zhang Y. Role of 5-Hydroxytryptamine and Intestinal Flora on Depressive-Like Behavior Induced by Lead Exposure in Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5516604. [PMID: 33996997 PMCID: PMC8110379 DOI: 10.1155/2021/5516604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the effects of 5-hydroxytryptamine (5-HT) and intestinal flora on depression-like behavior induced by lead exposure in rats. METHODS 30 healthy SPF adult male SD rats were randomly divided into control group and lead exposure group. The depression-like behavior of rats was detected. The blood, striatum, and intestinal tissue were collected. The lead content was detected by ICP-MS. The mRNA expressions of ChgA, TPH1, 5-HT, and 5-HT3R were tested by qRT-PCR. The content of 5HT was checked by HPLC-ECD. The content of 5-HT3R was detected by ELISA. The protein expressions of 5-HT, 5-HT3R, ChgA, and TPH were gauged by immunohistochemistry. Fecal samples were collected, and the composition of intestinal flora in experimental rats was analyzed by 16 s RNA metagene sequencing. RESULTS Lead exposure can greatly cause depression. The content of 5-HT in blood and striatum in the lead exposure group decreased, and the expression levels of 5-HT, 5-HT3 R, ChgA, and TPH in the intestine decreased distinctly. Compared with the control group, the distribution of a-polymorphism related indexes Simpson, Chao1, Shannon, and ACE in rats with depressive-like behavior after lead exposure was significantly increased; in the lead exposure group, there were 61 different operational taxonomic units (OUTs) in intestinal flora at the family level. Based on linear discriminant analysis, it was found that the key bacteria were Lactobacillaceae and Bifidobacteriaceae, and their abundance decreased evidently in the lead exposure group. CONCLUSION Lead exposure improves depressive-like behavior by affecting intestinal flora and regulating neurotransmitter 5-HT through the intestinal-brain axis.
Collapse
Affiliation(s)
- Xiaojun Chen
- School of Public Health, North China University of Science and Technology, Hebei, China
- Workers' Hospital of Caofeidian District, China
| | | | - Shuang Li
- Experimental Animal Center, North China University of Science and Technology Tangshan, Hebei 063000, China
| | - Lijin Zhang
- School of Public Health, North China University of Science and Technology, Hebei, China
| | - Lei Wu
- School of Public Health, North China University of Science and Technology, Hebei, China
| | - Hao Zhu
- School of Public Health, North China University of Science and Technology, Hebei, China
| | - Yanshu Zhang
- School of Public Health, North China University of Science and Technology, Hebei, China
- Experimental Animal Center, North China University of Science and Technology Tangshan, Hebei 063000, China
| |
Collapse
|
39
|
Pilla R, Law TH, Pan Y, Zanghi BM, Li Q, Want EJ, Lidbury JA, Steiner JM, Suchodolski JS, Volk HA. The Effects of a Ketogenic Medium-Chain Triglyceride Diet on the Feces in Dogs With Idiopathic Epilepsy. Front Vet Sci 2020; 7:541547. [PMID: 33415132 PMCID: PMC7783044 DOI: 10.3389/fvets.2020.541547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 11/25/2020] [Indexed: 02/01/2023] Open
Abstract
Consumption of diets containing medium chain triglycerides have been shown to confer neuroprotective and behavior modulating effects. We aimed to identify metabolic and microbiome perturbations in feces that are associated with consumption of a medium chain triglyceride ketogenic diet (MCT-KD) in dogs with idiopathic epilepsy. We used 16S rRNA gene sequencing to generate microbiome profiles and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) to generate lipidomic profiles of canine feces. We made comparisons between the MCT-KD, standardized placebo diet and baseline pre-trial diet phases. Consumption of the MCT-KD resulted in a significant increase in the species richness (α-diversity) of bacterial communities found in the feces when compared to the baseline diet. However, phylogenetical diversity between samples (beta-diversity) was not affected by diet. An unnamed Bacteroidaceae species within genus 5-7N15 was identified by LEfSe as a potential biomarker associated with consumption of the MCT-KD, showing an increased abundance (p = 0.005, q = 0.230) during consumption of MCT-KD. In addition, unclassified members of families Erysipelotrichaceae (p = 0.013, q = 0.335) and Fusobacteriaceae (p = 0.022, q = 0.358) were significantly increased during MCT-KD consumption compared to baseline. Blautia sp. and Megamonas sp. instead were decreased during consumption of either placebo or MCT-KD (p = 0.045, q = 0.449, and p = 0.039, q = 0.449, respectively). Bacteroidaceae, including genus 5-7N15, have previously been associated with non-aggressive behavior in dogs. In addition, 5-7N15 is correlated in humans with Akkermansia, a genus known to be involved in the neuroprotective effect of ketogenic diets in mice models of seizures. Five metabolite features, tentatively identified as long chain triglycerides, were significantly higher after consumption of the placebo diet, but no unique features were identified after consumption of the MCT-KD. The data presented in this study highlight significant changes shown in both the fecal microbiome and lipidome as a result of consumption of the MCT-KD. Elucidating the global canine gut response to MCT consumption will improve our understanding of the potential mechanisms which confer anti-seizure and behavior modulating effects. Further studies should aim to characterize the gut microbiome of both dogs with epilepsy and healthy controls.
Collapse
Affiliation(s)
- Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Tsz Hong Law
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Yuanlong Pan
- Nestlé Purina Research, One Checkerboard Square, St. Louis, MO, United States
| | - Brian M Zanghi
- Nestlé Purina Research, One Checkerboard Square, St. Louis, MO, United States
| | - Qinghong Li
- Nestlé Purina Research, One Checkerboard Square, St. Louis, MO, United States
| | - Elizabeth J Want
- Division of Integrative Systems Medicine and Digestive Disease, Imperial College, London, United Kingdom
| | - Jonathan A Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Joerg M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Holger Andreas Volk
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom.,Small Animal Clinic, University of Veterinary Medicine, Hanover, Germany
| |
Collapse
|
40
|
Guan Y, Wang H, Gong Y, Ge J, Bao L. The gut microbiota in the common kestrel ( Falco tinnunculus): a report from the Beijing Raptor Rescue Center. PeerJ 2020; 8:e9970. [PMID: 33344069 PMCID: PMC7718788 DOI: 10.7717/peerj.9970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
As a complex microecological system, the gut microbiota plays crucial roles in many aspects, including immunology, physiology and development. The specific function and mechanism of the gut microbiota in birds are distinct due to their body structure, physiological attributes and life history. Data on the gut microbiota of the common kestrel, a second-class protected animal species in China, are currently scarce. With high-throughput sequencing technology, we characterized the bacterial community of the gut from nine fecal samples from a wounded common kestrel by sequencing the V3-V4 region of the 16S ribosomal RNA gene. Our results showed that Proteobacteria (41.078%), Firmicutes (40.923%) and Actinobacteria (11.191%) were the most predominant phyla. Lactobacillus (20.563%) was the most dominant genus, followed by Escherichia-Shigella (17.588%) and Acinetobacter (5.956%). Our results would offer fundamental data and direction for the wildlife rescue.
Collapse
Affiliation(s)
- Yu Guan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering and College of Life Science, Beijing Normal University, Beijing, China
| | - Hongfang Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering and College of Life Science, Beijing Normal University, Beijing, China
| | - Yinan Gong
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering and College of Life Science, Beijing Normal University, Beijing, China
| | - Jianping Ge
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering and College of Life Science, Beijing Normal University, Beijing, China
| | - Lei Bao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering and College of Life Science, Beijing Normal University, Beijing, China
| |
Collapse
|
41
|
Alessandri G, Argentini C, Milani C, Turroni F, Cristina Ossiprandi M, van Sinderen D, Ventura M. Catching a glimpse of the bacterial gut community of companion animals: a canine and feline perspective. Microb Biotechnol 2020; 13:1708-1732. [PMID: 32864871 PMCID: PMC7533323 DOI: 10.1111/1751-7915.13656] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Dogs and cats have gained a special position in human society by becoming our principal companion animals. In this context, efforts to ensure their health and welfare have increased exponentially, with in recent times a growing interest in assessing the impact of the gut microbiota on canine and feline health. Recent technological advances have generated new tools to not only examine the intestinal microbial composition of dogs and cats, but also to scrutinize the genetic repertoire and associated metabolic functions of this microbial community. The application of high-throughput sequencing techniques to canine and feline faecal samples revealed similarities in their bacterial composition, with Fusobacteria, Firmicutes and Bacteroidetes as the most prevalent and abundant phyla, followed by Proteobacteria and Actinobacteria. Although key bacterial members were consistently present in their gut microbiota, the taxonomic composition and the metabolic repertoire of the intestinal microbial population may be influenced by several factors, including diet, age and anthropogenic aspects, as well as intestinal dysbiosis. The current review aims to provide a comprehensive overview of the multitude of factors which play a role in the modulation of the canine and feline gut microbiota and that of their human owners with whom they share the same environment.
Collapse
Affiliation(s)
- Giulia Alessandri
- Department of Veterinary Medical ScienceUniversity of ParmaParmaItaly
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Maria Cristina Ossiprandi
- Department of Veterinary Medical ScienceUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience InstituteNational University of IrelandCorkIreland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| |
Collapse
|
42
|
Bermudez Sanchez S, Pilla R, Sarawichitr B, Gramenzi A, Marsilio F, Steiner JM, Lidbury JA, Woods GRT, German AJ, Suchodolski JS. Fecal microbiota in client-owned obese dogs changes after weight loss with a high-fiber-high-protein diet. PeerJ 2020; 8:e9706. [PMID: 33083100 PMCID: PMC7543742 DOI: 10.7717/peerj.9706] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Background The fecal microbiota from obese individuals can induce obesity in animal models. In addition, studies in humans, animal models and dogs have revealed that the fecal microbiota of subjects with obesity is different from that of lean subjects and changes after weight loss. However, the impact of weight loss on the fecal microbiota in dogs with obesity has not been fully characterized. Methods In this study, we used 16S rRNA gene sequencing to investigate the differences in the fecal microbiota of 20 pet dogs with obesity that underwent a weight loss program. The endpoint of the weight loss program was individually tailored to the ideal body weight of each dog. In addition, we evaluated the qPCR based Dysbiosis Index before and after weight loss. Results After weight loss, the fecal microbiota structure of dogs with obesity changed significantly (weightedANOSIM; p = 0.016, R = 0.073), showing an increase in bacterial richness (p = 0.007), evenness (p = 0.007) and the number of bacterial species (p = 0.007). The fecal microbiota composition of obese dogs after weight loss was characterized by a decrease in Firmicutes (92.3% to 78.2%, q = 0.001), and increase in Bacteroidetes (1.4% to 10.1%, q = 0.002) and Fusobacteria (1.6% to 6.2%, q = 0.040). The qPCR results revealed an overall decrease in the Dysbiosis Index, driven mostly due to a significant decrease in E. coli (p = 0.030), and increase in Fusobacterium spp. (p = 0.017). Conclusion The changes observed in the fecal microbiota of dogs with obesity after weight loss with a weight loss diet rich in fiber and protein were in agreement with previous studies in humans, that reported an increase of bacterial biodiversity and a decrease of the ratio Firmicutes/Bacteroidetes.
Collapse
Affiliation(s)
- Sandra Bermudez Sanchez
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy.,Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States of America
| | - Rachel Pilla
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States of America
| | - Benjamin Sarawichitr
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States of America
| | | | - Fulvio Marsilio
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Joerg M Steiner
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States of America
| | - Jonathan A Lidbury
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States of America
| | - Georgiana R T Woods
- Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Neston, United Kingdom
| | - Alexander J German
- Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Neston, United Kingdom.,School of Veterinary Science, University of Liverpool, Leahurst Neston, United Kingdom
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
43
|
Moinard A, Payen C, Ouguerram K, André A, Hernandez J, Drut A, Biourge VC, Suchodolski JS, Flanagan J, Nguyen P, Leray V. Effects of High-Fat Diet at Two Energetic Levels on Fecal Microbiota, Colonic Barrier, and Metabolic Parameters in Dogs. Front Vet Sci 2020; 7:566282. [PMID: 33102570 PMCID: PMC7545960 DOI: 10.3389/fvets.2020.566282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
Increased consumption of energy-rich foods is a key factor in overweight, obesity, and associated metabolic disorders. This would be, at least in part, related to microbiota disturbance. In rodent models of obesity, microbiota disruption has been associated with alteration of the intestinal barrier, endotoxemia, inflammation grade, and insulin sensitivity. The aim of the present study was to assess the effects of a high-fat diet (HFD), fed at two energetic levels, on microbiota, intestinal barrier, and inflammatory and metabolic parameters in dogs. A HFD (33% fat as fed, 4,830 kcal/kg) was given to 24 healthy Beagle dogs at 100% (HF-100; n = 8) and at 150% (HF-150; n = 16) of their maintenance energy requirements for 8 weeks. Analysis of similarity revealed a significant difference in gut microbiota β-diversity following the diet compared to week 0 in both groups while α-diversity was lower only in the HF-150 group. Firmicutes/Bacteroidetes ratio was higher in the HF-150 group compared to the HF-100 group at weeks 2 and 8. A reduction in insulin sensitivity was observed over time in the HF150 group. Neither endotoxemia nor inflammation was observed in either group, did not find supporting data for the hypothesis that the microbiota is involved in the decline of insulin sensitivity through metabolic endotoxemia and low-grade inflammation. Colonic permeability was increased at week 4 in both groups and returned to initial levels at week 8, and was associated with modifications to the expression of genes involved in colonic barrier function. The increase in intestinal permeability may have been caused by the altered intestinal microbiota and increased expression of genes encoding tight junction proteins might indicate a compensatory mechanism to restore normal permeability. Although simultaneous changes to the microbiota, barrier permeability, inflammatory, and metabolic status have not been observed, such a causal link cannot be excluded in dogs overfed on a HFD. Further studies are necessary to better understand the link between HFD, intestinal microbiota and the host.
Collapse
Affiliation(s)
- Alex Moinard
- Nutrition, PhysioPathology and Pharmacology Unit (NP3), Oniris, College of Veterinary Medicine, Food Sciences and Engineering, CRNH, Nantes, France
| | - Cyrielle Payen
- Nutrition, PhysioPathology and Pharmacology Unit (NP3), Oniris, College of Veterinary Medicine, Food Sciences and Engineering, CRNH, Nantes, France
| | - Khadija Ouguerram
- UMR 1280 Physiopathology of Nutritional Adaptations (PhAN), INRAE, CRNH, West Human Nutrition Research Center, CHU, Nantes, France
| | - Agnès André
- Nutrition, PhysioPathology and Pharmacology Unit (NP3), Oniris, College of Veterinary Medicine, Food Sciences and Engineering, CRNH, Nantes, France
| | - Juan Hernandez
- USC 1383 Cellular and Molecular Immunoendocrinology (IECM), INRAE, Oniris, College of Veterinary Medicine, Food Sciences and Engineering, Nantes, France
| | - Amandine Drut
- Nutrition, PhysioPathology and Pharmacology Unit (NP3), Oniris, College of Veterinary Medicine, Food Sciences and Engineering, CRNH, Nantes, France
| | | | - Jan S Suchodolski
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States
| | | | - Patrick Nguyen
- Nutrition, PhysioPathology and Pharmacology Unit (NP3), Oniris, College of Veterinary Medicine, Food Sciences and Engineering, CRNH, Nantes, France
| | - Véronique Leray
- Nutrition, PhysioPathology and Pharmacology Unit (NP3), Oniris, College of Veterinary Medicine, Food Sciences and Engineering, CRNH, Nantes, France
| |
Collapse
|
44
|
Muñoz-Prieto A, Cerón JJ, Martínez-Subiela S, Mrljak V, Tvarijonaviciute A. A Systematic Review and Meta-Analysis of Serum Adiponectin Measurements in the Framework of Dog Obesity. Animals (Basel) 2020; 10:E1650. [PMID: 32937899 PMCID: PMC7552203 DOI: 10.3390/ani10091650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/29/2022] Open
Abstract
Adiponectin is an abundant plasma protein that is closely related to obesity and obesity-related pathologies. The molecule can be found in three different isoforms, each with different biological activities. Studies on canine obesity have suggested that adiponectin concentrations are decreased in obesity; however, no canine meta-analyses have been performed that feature all the required data. The aim of this study is to perform a systematic review and meta-analysis of studies that pertain to total and high molecular weight (HMW) adiponectin in relation to canine obesity. From 20 different studies, a total of 366 dogs with obesity and 349 normal weight dogs are included in the meta-analysis. Client-owned dogs were most represented, accounting for 54.3% of the dogs used, while experimental dogs enrolled in the studies made up the remaining 45.7%. The concentrations of total adiponectin in dogs with obesity were significantly lower compared with normal weight dogs. Additionally, adiponectin concentrations were significantly higher in dogs after a successful weight loss protocol compared to the start of the protocol and were significantly lower in dogs after gaining weight. In conclusion, although caution should be taken due to the relatively low number of studies that exist and the high heterogeneity between them, this meta-analysis indicates that adiponectin is decreased in obese dogs.
Collapse
Affiliation(s)
- Alberto Muñoz-Prieto
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (A.M.-P.); (V.M.)
| | - José Joaquín Cerón
- Interlab-UMU, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (S.M.-S.)
| | - Silvia Martínez-Subiela
- Interlab-UMU, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (S.M.-S.)
| | - Vladimir Mrljak
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (A.M.-P.); (V.M.)
| | - Asta Tvarijonaviciute
- Interlab-UMU, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (S.M.-S.)
| |
Collapse
|
45
|
Scarsella E, Stefanon B, Cintio M, Licastro D, Sgorlon S, Dal Monego S, Sandri M. Learning machine approach reveals microbial signatures of diet and sex in dog. PLoS One 2020; 15:e0237874. [PMID: 32804973 PMCID: PMC7431105 DOI: 10.1371/journal.pone.0237874] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
The characterization of the microbial population of many niches of the organism, as the gastrointestinal tract, is now possible thanks to the use of high-throughput DNA sequencing technique. Several studies in the companion animals field already investigated faecal microbiome in healthy or affected subjects, although the methodologies used in the different laboratories and the limited number of animals recruited in each experiment does not allow a straight comparison among published results. In the present study, we report data collected from several in house researches carried out in healthy dogs, with the aim to seek for a variability of microbial taxa in the faeces, caused by factors such as diet and sex. The database contains 340 samples from 132 dogs, collected serially during dietary intervention studies. The procedure of samples collection, storage, DNA extraction and sequencing, bioinformatic and statistical analysis followed a standardized pipeline. Microbial profiles of faecal samples have been analyzed applying dimensional reduction discriminant analysis followed by random forest analysis to the relative abundances of genera in the feces as variables. The results supported the responsiveness of microbiota at a genera taxonomic level to dietary factor and allowed to cluster dogs according this factor with high accuracy. Also sex factor clustered dogs, with castrated males and spayed females forming a separated group in comparison to intact dogs, strengthening the hypothesis of a bidirectional interaction between microbiota and endocrine status of the host. The findings of the present analysis are promising for a better comprehension of the mechanisms that regulate the connection of the microorganisms living the gastrointestinal tract with the diet and the host. This preliminary study deserves further investigation for the identification of the factors affecting faecal microbiome in dogs.
Collapse
Affiliation(s)
- Elisa Scarsella
- Department of AgroFood, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Bruno Stefanon
- Department of AgroFood, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Michela Cintio
- Department of AgroFood, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Danilo Licastro
- ARGO Open Lab Platform for Genome sequencing, AREA Science Park, Padriciano, Trieste, Italy
| | - Sandy Sgorlon
- Department of AgroFood, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Simeone Dal Monego
- ARGO Open Lab Platform for Genome sequencing, AREA Science Park, Padriciano, Trieste, Italy
| | - Misa Sandri
- Department of AgroFood, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
46
|
The gut microbiome in dogs with congestive heart failure: a pilot study. Sci Rep 2020; 10:13777. [PMID: 32792610 PMCID: PMC7426839 DOI: 10.1038/s41598-020-70826-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Compromised gut health and dysbiosis in people with heart failure has received a great deal of attention over the last decade. Whether dogs with heart failure have a similar dysbiosis pattern to what is described in people is currently unknown. We hypothesised that dogs with congestive heart failure have quantifiable dysbiosis compared to healthy dogs that are similar in sex and age. A total of 50 dogs (15 healthy dogs and 35 dogs with congestive heart failure) were prospectively recruited, and their faecal gut microbiome was assessed using 16S rRNA sequencing (Illumina MiSeq platform). There was no significant change in the microbial diversity and richness in dogs with congestive heart failure. However, there was an increase in abundance of Proteobacteria in the congestive heart failure group (p = 0.014), particularly due to an increase in the family Enterobacteriaceae (p = 0.002) and Escherichia coli (p = 0.033). We conclude that dogs with congestive heart failure have dysbiosis, and we show additional trends in our data suggesting that dogs may have a similar pattern to that described in people. The results of this study provide useful preliminary information and raise the possibility that dogs represent a clinically relevant animal model of dysbiosis in people with heart failure.
Collapse
|
47
|
Factors Affecting Canine Obesity Seem to Be Independent of the Economic Status of the Country-A Survey on Hungarian Companion Dogs. Animals (Basel) 2020; 10:ani10081267. [PMID: 32722190 PMCID: PMC7459892 DOI: 10.3390/ani10081267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Obesity is an ever-growing epidemic among people and their pets. Recently, more and more studies investigated the risk factors of dog obesity, but most of them only included data from high-income Western countries. We surveyed Hungarian dog owners about their dogs’ body conditions and social and demographic factors that might affect it. Factors affecting canine body condition seem to be similar to those of high-GDP (Gross Domestic Product) countries, suggesting that these findings are more or less universal. Older dogs are more likely to be overweight/obese than younger ones. Joint activity and sports performed with the owner, even on a hobby level decrease the likelihood of obesity, and the main source of calories (kibble, human leftovers, or raw food) also had an effect on body condition. These findings support that the main risk factors of dog obesity are the ones controlled by the caretakers of dogs, therefore it is important to educate dog owners about how they can prevent the development of this condition. Abstract For a companion dog, the most important environmental factor is the owner, who is responsible for providing everything that is necessary for the health and welfare of the dog. Still, one of the most often compromised measures of an average companion dog is its body condition, with overweight and obese animals representing a growing welfare problem around the world. Using an extensive online survey that was distributed among Hungarian dog owners, we wanted to know whether those obesogenic factors that were identified mostly in high-GDP countries’ pet dog populations would hold their relevance in a much lower average income country as well. We found several associations between the body condition of canine companions and various demographics, environmental and behavioral factors. Older dogs reportedly had an accelerating propensity for being overweight. Joint activity and performing dog sports both reduced the likelihood of being an overweight dog. Main food types also had significant associations with the body condition of dogs—meanwhile, the feeding of commercial dog food (kibble) and/or leftovers of human meals coincided with being overweight, dogs that were fed (fully, or at least partly) with raw food were less likely overweight. In the case of owner-reported behavioral problems, the food-related issues (stealing food, overeating, etc.) were clustered to a dimension together with problem behaviors such as excessive barking and overt aggression. Beyond showing a good agreement with earlier surveys on associated factors with canine obesity, our study revealed some interesting new details that could be used in the prevention of overweight problems in dogs.
Collapse
|
48
|
Huang Z, Pan Z, Yang R, Bi Y, Xiong X. The canine gastrointestinal microbiota: early studies and research frontiers. Gut Microbes 2020; 11:635-654. [PMID: 31992112 PMCID: PMC7524387 DOI: 10.1080/19490976.2019.1704142] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The canine gut microbiota is a complex microbial population that is potentially related to metabolism, immunologic activity and gastrointestinal (GI) diseases. Early studies revealed that the canine gut microbiota was dynamic, and bacterial populations in the adjacent gut segments were similar, with anaerobes predominating. Metagenomics analysis revealed that nutrient contents in the diet modulated bacterial populations and metabolites in the canine gut. Further research revealed significant correlations between dietary factors and canine gut core microbiomes. Canine GI diseases are closely correlated with gut microbiota dysbiosis and metabolic disorders. Probiotic-related therapies can effectively treat canine GI diseases. Recent studies have revealed that the canine gut microbiota is similar to the human gut microbiota, and dietary factors affect both. Studying canine intestinal microorganisms enables clarifying changes in the canine intestinal bacteria under different conditions, simulating human diseases in dog models, and conducting in-depth studies of the interactions between intestinal bacteria and disease.
Collapse
Affiliation(s)
- Zongyu Huang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhiyuan Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China,CONTACT Yujing Bi State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaohui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China,Xiaohui Xiong Nanjing Tech University, Nanjing, China
| |
Collapse
|
49
|
Lucena S, Coelho AV, Muñoz-Prieto A, Anjo SI, Manadas B, Capela E Silva F, Lamy E, Tvarijonaviciute A. Changes in the salivary proteome of beagle dogs after weight loss. Domest Anim Endocrinol 2020; 72:106474. [PMID: 32361424 DOI: 10.1016/j.domaniend.2020.106474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/07/2020] [Accepted: 03/01/2020] [Indexed: 10/24/2022]
Abstract
Being overweight or obese represents an important health issue in humans and pets. The aim of this study was to investigate changes in the salivary proteome of overweight beagles after induced weight loss to better understand the physiological changes involved in this process. Five overweight/obese neutered males of pure breed beagles were evaluated. During the 3-mo period of weight loss, each animal received a strictly controlled amount of a low fat commercial diet per day. Body condition scores (BCS), body weight (BW), and serum biochemical parameters (total cholesterol, triglycerides, and C-reactive protein) were assessed weekly. Quantitative proteomics analysis by SWATH was used to evaluate the salivary proteome changes induced by weight loss treatment. BCS, BW, serum total cholesterol concentration, and abundances of 23 salivary proteins differed significantly between before and after treatment. Some of the altered protein amounts, namely of peptidyl-prolyl cis-trans isomerase, fructose-bisphosphate aldolase C, and 78-kDa glucose-regulated protein, increased after weight loss. These proteins are related with the immune system, inflammatory status, oxidative stress, and glucose metabolism. The results obtained suggest a potential use of salivary proteins in monitoring physiological changes in dogs subjected to weight loss. Moreover, the type of changes identified reinforces the postulated physiological improvements, which weight loss induces. Further research is needed to determine whether the changes observed in this study are due to weight loss, dietary changes, or a combination of both.
Collapse
Affiliation(s)
- S Lucena
- Mediterranean Institute for Agriculture, Environment and Development (MED), Universidade de Évora, Évora, Portugal; Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Evora, Portugal
| | - A V Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal
| | - A Muñoz-Prieto
- Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum", University of Murcia, Espinardo, 30100 Murcia, Spain
| | - S I Anjo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - B Manadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - F Capela E Silva
- Mediterranean Institute for Agriculture, Environment and Development (MED), Universidade de Évora, Évora, Portugal; Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora, Evora, Portugal
| | - E Lamy
- Mediterranean Institute for Agriculture, Environment and Development (MED), Universidade de Évora, Évora, Portugal.
| | - A Tvarijonaviciute
- Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum", University of Murcia, Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
50
|
Williams CL, Garcia-Reyero N, Martyniuk CJ, Tubbs CW, Bisesi JH. Regulation of endocrine systems by the microbiome: Perspectives from comparative animal models. Gen Comp Endocrinol 2020; 292:113437. [PMID: 32061639 DOI: 10.1016/j.ygcen.2020.113437] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
The microbiome regulates endocrine systems and influences many aspects of hormone signaling. Using examples from different animal taxa, we highlight the state of the science in microbiome research as it relates to endocrinology and endocrine disruption research. Using a comparative approach discussing fish, birds, and mammals, we demonstrate the bidirectional interaction between microbiota and hormone systems, presenting concepts that include (1) gastrointestinal microbiome regulation of the neuroendocrine feeding axis; (2) stress hormones and microbial communities; (3) the role of site-specific microbiota in animal reproduction; (4) microbiome effects on the neuroendocrine systems and behavior; and (5) novel mechanisms of endocrine disruption through the microbiome. This mini-review demonstrates that hormones can directly affect the richness and diversity of microbiota and conversely, microbiota can influence hormone production and mediate their functions in animals. In addition, microbiota can influence the action of a diverse range of neurotransmitters and neuropeptides in the central nervous system, which can lead to behavioral disruptions. As many animals have species-specific reproductive behaviors, it is important to understand how shifts in the microbiota relate to these complex interactions between sexes. This is especially important for captive animals on specialized diets, and there are significant implications for microbiome research in conservation and reproductive biology. For example, microbial metabolites may modify motility of gametes or modulate hormone-receptor interactions in reproductive tissues. Thus, efforts to incorporate metabolomics into the science of microbiome-endocrine relationships, both those produced by the host and those generated from microbial metabolism, are increasingly needed. These concepts have fostered an exciting emerging era in comparative endocrinology.
Collapse
Affiliation(s)
- Candace L Williams
- Reproductive Sciences, San Diego Zoo Global Institute for Conservation Research, Escondido, CA 92027, USA.
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher W Tubbs
- Reproductive Sciences, San Diego Zoo Global Institute for Conservation Research, Escondido, CA 92027, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|