1
|
Galinelli NC, Bamford NJ, Erdody ML, Warnken T, de Laat MA, Sillence MN, Harris PA, Bailey SR. Effect of short-term dopamine reduction on insulin sensitivity and post-prandial insulin and glucose responses in Standardbred horses. Domest Anim Endocrinol 2025; 90:106893. [PMID: 39486097 DOI: 10.1016/j.domaniend.2024.106893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/30/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
The role of dopamine in the regulation of insulin secretion in horses is poorly understood and requires further investigation. Pituitary pars intermedia dysfunction (PPID) is associated with decreased activity of dopaminergic neurons which normally suppress peptide hormone secretion from the pituitary pars intermedia. A high proportion of horses with PPID also have insulin dysregulation (ID), characterised by post-prandial hyperinsulinaemia and/or tissue insulin resistance, which are risk factors for the development of laminitis. The aim of this study was to investigate the effects of alpha-methyl-para-tyrosine (AMPT), a tyrosine hydroxylase inhibitor that reduces dopamine production, on insulin sensitivity and the post-prandial insulin response to a glucose-containing meal. Six healthy Standardbred horses were enrolled in a placebo-controlled randomised crossover study, in which one dose of AMPT (40 mg/kg BW) or placebo was administered orally, prior to performing an in-feed oral glucose test (OGT) and a frequently sampled intravenous glucose tolerance test (FSIGTT). Dopamine reduction by AMPT was confirmed by an increase in plasma prolactin concentration and the lack of post-prandial increase in plasma dopamine concentration compared to placebo. Post-prandial insulin responses, both peak and AUCi, were increased after AMPT compared to placebo (P=0.048 and P=0.005, respectively), without affecting blood glucose concentrations. However, one dose of AMPT did not appear to affect tissue sensitivity as assessed by the FSIGTT. This study confirmed that dopamine plays a role in the regulation of insulin secretion in horses, as it does in other species, whereby the post-prandial release of dopamine into the circulation may inhibit pancreatic insulin secretion. Further studies are required to evaluate different dosing protocols for AMPT, and to further investigate the links between PPID, ID and laminitis risk in horses.
Collapse
Affiliation(s)
- Nicolas C Galinelli
- Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas J Bamford
- Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Madison L Erdody
- Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Tobias Warnken
- Boehringer Ingelheim Vetmedica GmbH, Ingelheim am Rhein, Germany
| | - Melody A de Laat
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Martin N Sillence
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Patricia A Harris
- Equine Studies Group, Waltham Petcare Science Institute, Melton Mowbray, United Kingdom
| | - Simon R Bailey
- Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Frers F, Delarocque J, Feige K, Huber K, Warnken T. Insulin signaling in insulin-dysregulated Icelandic horses. Domest Anim Endocrinol 2023; 86:106822. [PMID: 39491260 DOI: 10.1016/j.domaniend.2023.106822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
The underlying molecular mechanisms leading to insulin dysregulation are poorly understood in horses. Therefore, this study aimed to determine if insulin dysregulation is associated with an altered basal expression and extent of phosphorylation of key proteins of the insulin signaling cascade in liver (LT), muscle (MT), and subcutaneous adipose tissue (AT) under basal and stimulated conditions. Twelve Icelandic horses were subjected (1) to an oral glucose (Gluc PO) challenge and (2) to an intravenous (Ins IV) insulin challenge in a crossover study. Biopsies of LT, MT, and AT were taken in vivo under basal conditions and after Gluc PO and Ins IV stimulation. Corresponding insulin levels were measured by an equine optimized ELISA (Mercodia AB, Uppsala). Insulin levels ≥ 110 µIU/mL at 120 min indicated that six horses were insulin dysregulated (HI), while six were not (NI). Gluc PO stimulation resulted in a more pronounced hyperinsulinemia and hyperglycemia in HI horses compared to NI horses. Western blot analysis of key proteins of the insulin signaling cascade revealed an enhanced phosphorylation of the insulin receptor (InsR) under Gluc PO (P = 0.001) and Ins IV stimulation (P = 0.017) within LT, but not in MT and AT. Phosphorylation of protein kinase B was enhanced under Gluc PO stimulation in all tissues and under Ins IV stimulation in MT and AT, while phosphorylation of adenosine monophosphate protein kinase α was reduced after glucose administration (P = 0.005) in all horses. Interestingly, HI horses had significantly higher amounts of phosphorylated mechanistic target of rapamycin (mTOR) in MT (P = 0.049), irrespective of any stimulation. In LT, the amount of phosphorylated mTOR decreased under Gluc PO conditions in HI horses, while an increase was observed in NI horses (P = 0.015). A major limitation was the inclusion of only Icelandic horses of advanced age since insulin dysregulation could be related to both the equine metabolic syndrome and/or pituitary pars intermedia dysfunction. In summary, insulin signaling appeared to be maintained in both HI and NI Icelandic horses, although post-receptor alterations were observed. Thus, ID might be an equine-specific metabolic condition, in which alterations of the mTOR signaling pathway may play a crucial role, as emphasized by higher mTOR phosphorylation in HI horses.
Collapse
Affiliation(s)
- F Frers
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, Hannover 30559, Germany.
| | - J Delarocque
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, Hannover 30559, Germany
| | - K Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, Hannover 30559, Germany
| | - K Huber
- Institute of Animal Science, Faculty of Agricultural Sciences, University of Hohenheim, Fruwirthstr. 35, Stuttgart 70599, Germany
| | - T Warnken
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, Hannover 30559, Germany; Boehringer Ingelheim Vetmedica GmbH, Binger Straße 173, Ingelheim am Rhein 55216, Germany
| |
Collapse
|
3
|
Cummings CO, Krucik DD, Price E. Clinical predictive models in equine medicine: A systematic review. Equine Vet J 2023; 55:573-583. [PMID: 36199162 PMCID: PMC10073351 DOI: 10.1111/evj.13880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022]
Abstract
Clinical predictive models use a patient's baseline demographic and clinical data to make predictions about patient outcomes and have the potential to aid clinical decision making. The extent of equine clinical predictive models is unknown in the literature. Using PubMed and Google Scholar, we systematically reviewed the predictive models currently described for use in equine patients. Models were eligible for inclusion if they were published in a peer-reviewed article as a multivariable model used to predict a clinical/laboratory/imaging outcome in an individual horse or herd. The agreement of at least two authors was required for model inclusion. We summarised the patient populations, model development methods, performance metric reporting, validation efforts, and, using the Predictive model Risk of Bias Assessment Tool (PROBAST), assessed the risk of bias and applicability concerns for these models. In addition, we summarised the index conditions for which models were developed and provided detailed information on included models. A total of 90 predictive models and 9 external validation studies were included in the final systematic review. A plurality of models (41%) was developed to predict outcomes associated with colic, for example, need for surgery or survival to discharge. All included models were at high risk of bias, defined as failing one or more PROBAST signalling questions, primarily for analysis-related reasons. Importantly, a high risk of bias does not necessarily mean that models are unusable, but that they require more careful consideration prior to clinical use. Concerns about applicability were low for the majority of models. Systematic reviews such as this can serve to increase veterinarians' awareness of predictive models, including evaluation of their performance and their use in different patient populations.
Collapse
Affiliation(s)
- Charles O. Cummings
- Tufts Clinical and Translational Science Institute, Tufts
Medical Center, Boston, MA 02111, USA
| | - David D.R. Krucik
- Department of Comparative Medicine, Stanford University,
Stanford, California 94305, USA
| | - Emma Price
- Tufts Clinical and Translational Science Institute, Tufts
Medical Center, Boston, MA 02111, USA
| |
Collapse
|
4
|
Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, Zhang A. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther 2023; 8:132. [PMID: 36941259 PMCID: PMC10026263 DOI: 10.1038/s41392-023-01399-3] [Citation(s) in RCA: 292] [Impact Index Per Article: 146.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is well-recognized hallmarks of diseases. Metabolite signatures that have close proximity to subject's phenotypic informative dimension, are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers could lead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity and selectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolic biomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeutic potentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathways changes as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists have established a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutic target exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-molecule candidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening and treatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.
Collapse
Affiliation(s)
- Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
5
|
The Influence of Exercise Intensity on Tryptophan Metabolites in Thoroughbred Horses. Pharmaceuticals (Basel) 2023; 16:ph16010107. [PMID: 36678604 PMCID: PMC9864980 DOI: 10.3390/ph16010107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Catabolism of tryptophan (Trp) is modulated by physical activity and provides a pool of active compounds: Trp is considered a calmative agent, kynurenine (Kyn) and 3-hydroxykynurenine (3-HKyn) show neurotoxic effects, kynurenic acid (Kyna) and xanthurenic acid (XA) have neuroprotective properties like nicotinamide (NAm), while serotonin is the neurotransmitter. The study was conducted to investigate the dependence of exercise intensity, measured by plasma lactic acid (LA) concentration, on the level of Trp, its catabolites (serotonin, Kyn, 3-HKyn, Kyna and XA), and NAm in Thoroughbred horses. A total of 18 young race Thoroughbred horses were investigated during exercise tests. Blood samples for analysis were collected: at rest, 10 min after the end of the exercise, and 60 min after the end of the exercise. Plasma LA was determined by the enzymatic method, Trp, and other metabolites using liquid chromatography coupled with mass spectrometry. In horses performing intense exercise, the concentration of LA, Kyn, XA and NAm was increased, while Trp was decreased. Significant correlations were detected for exercise-induced increase in LA and 3-HKyn, XA, and NAm. Considering the scope of changes in analyzed data, there is an expected neutral effect on the health status of exercised horses.
Collapse
|
6
|
Warnken T, Schaub C, Delarocque J, Frers F, Feige K, Sonntag J, Reiche DB. Palatability, glycemic, and insulinemic responses to various carbohydrate formulations: Alternatives for the diagnosis of insulin dysregulation in horses? Vet Med (Auckl) 2023; 37:282-291. [PMID: 36625459 PMCID: PMC9889704 DOI: 10.1111/jvim.16614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Oral glycemic challenge (GC) tests are recommended for diagnosis of insulin dysregulation (ID). Various protocols are used, but all have limitations in terms of palatability, ease of use, variable composition, geographic availability, or some combination of these. HYPOTHESIS/OBJECTIVE To evaluate newly developed formulations with defined carbohydrate composition for use as oral GCs. ANIMALS Thirty-four horses and ponies in various metabolic states. METHODS Our objectives were carried out in 2 separate cross-over experiments. First, the palatability and acceptance of various GCs (2 syrups, 1 granulate) offered for free intake were compared to glucose mixed in a chaff-based diet. Subsequently, syrups were administered by syringe and compared to an oral glucose test using naso-gastric tubing (tube OGT) to investigate the glycemic and insulinemic responses. Second, these variables were compared in the best performing GC-formulations (granulate further optimized to pelleted formulation and 1 syrup) and a tube OGT. All GCs were administered with equivalent amounts of 0.5 g glycemic carbohydrates per kg body weight. RESULTS Only the GC pellets were consumed completely by all horses (consumption time 5 ± 2 min). When administered by syringe, the GC syrup also was well accepted. The insulin concentrations at 120 min correlated significantly between tube OGT and GC pellets (r = .717; P < .001) or GC syrup (r = .913; P < .001). The new GC syrup and GC pellets discriminate between healthy and ID horses. CONCLUSIONS AND CLINICAL SIGNIFICANCE The GC pellets (DysChEq)™ and GC syrup can be used as palatable and well-accepted oral GC tests for assessment of ID in horses.
Collapse
Affiliation(s)
- Tobias Warnken
- Clinic for HorsesUniversity of Veterinary Medicine Hannover, Foundation, Bünteweg 930559 HannoverGermany
| | - Claudia Schaub
- Clinic for HorsesUniversity of Veterinary Medicine Hannover, Foundation, Bünteweg 930559 HannoverGermany
| | - Julien Delarocque
- Clinic for HorsesUniversity of Veterinary Medicine Hannover, Foundation, Bünteweg 930559 HannoverGermany
| | - Florian Frers
- Clinic for HorsesUniversity of Veterinary Medicine Hannover, Foundation, Bünteweg 930559 HannoverGermany
| | - Karsten Feige
- Clinic for HorsesUniversity of Veterinary Medicine Hannover, Foundation, Bünteweg 930559 HannoverGermany
| | - Johanna Sonntag
- Boehringer Ingelheim Vetmedica GmbH, Binger Straße 17355216 Ingelheim am RheinGermany
| | - Dania Birte Reiche
- Boehringer Ingelheim Vetmedica GmbH, Binger Straße 17355216 Ingelheim am RheinGermany
| |
Collapse
|
7
|
Plasma Amino Acids in Horses Suffering from Pituitary Pars Intermedia Dysfunction. Animals (Basel) 2022; 12:ani12233315. [PMID: 36496836 PMCID: PMC9737035 DOI: 10.3390/ani12233315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Pituitary pars intermedia dysfunction is one of the most common diseases of aged horses and ponies. In Parkinson's disease, which is, similar to PPID, a disease that involves oxidative damage to dopaminergic pathways but with different clinical signs, alterations to the serum amino acid profile have been reported. To examine changes in the plasma amino acid profile in horses with PPID, EDTA plasma of horses that were presented for various reasons that required laboratory examinations of blood anticoagulated with EDTA was collected. With this plasma, the basal ACTH concentration as well as the amino acid profile was determined. Horses were considered PPID patients if the ACTH concentration was ≥ 100 pg/mL, i.e., they would be considered affected at any time. Horses were defined as non-PPID (nPPID) patients if the ACTH concentration was below 30 pg/mL. Horses receiving pergolide with ACTH ≤ 30 pg/mL were allocated to the group PPIDrr (PPID, ACTH in reference range) and horses receiving pergolide with ACTH ≥ 100 pg/mL to the group PPIDarr (PPID, ACTH above reference range). In total, 93 horses were examined, including 88 horses at the clinic and 5 horses at a private practice. Of these, 53 horses fulfilled the inclusion criteria (ACTH ≤ 30 pg/mL or ACTH ≥ 100 pg/mL). A total of 25 horses were diagnosed as nPPID, 20 as PPID, 5 as PPIDrr, and 3 as PPIDarr. Arginine was significantly higher in PPIDrr than in PPID and nPPID, asparagine was significantly higher in PPID, PPIDrr, and PPIDarr than in nPPID, citrulline was significantly higher in PPIDrr than in nPPID and PPID, cysteine was significantly lower in PPIDrr than in PPID, nPPID, and PPIDarr, and glutamine was significantly higher in PPID and PPIDarr than in nPPID. Especially, asparagine, citrulline, and glutamine may be potential diagnostic markers and may offer interesting approaches for research regarding amino supplementation in PPID.
Collapse
|
8
|
Jorge-Smeding E, Warnken T, Grob AJ, Feige K, Pudert T, Leung YH, Go YY, Kenez A. The sphingolipidome of plasma, liver, and adipose tissues and its association with insulin response to oral glucose testing in Icelandic horses. Am J Physiol Regul Integr Comp Physiol 2022; 323:R397-R409. [PMID: 35938687 DOI: 10.1152/ajpregu.00018.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin dysregulation (ID) is a determinant of equine metabolic syndrome. Among the sphingolipids, ceramides contribute to the development of ID; however, the crosstalk between the liver and adipose tissue (AT) depots and the variation among AT depots in terms of ceramide metabolism are not well-understood. We aimed to characterize the sphingolipidome of plasma, liver, and AT (nuchal, NUAT; subcutaneous, SCAT; omental, OMAT; retroperitoneal, RPAT) and their associations with insulin response to oral glucose testing (OGT) in normoinsulinemic and hyperinsulinemic horses. Plasma, liver, and AT samples were collected from 12 Icelandic horses upon euthanasia and analyzed by liquid chromatography-mass spectrometry. Eighty-four targeted compounds were effectively quantified. Comparing the AT depots, greater (FDR < 0.05) ceramide, dihydroceramide, and sphingomyelin concentrations and lower glucosyl- and galactosyl-ceramides were found in RPAT and OMAT than in NUAT and SCAT. Hyperinsulinemic response to OGT was associated with sphingolipidome alterations primarily in the RPAT and OMAT, while the NUAT sphingolipidome did not show signs of ceramide accumulation, which was inconsistent with the previously proposed role of nuchal adiposity in ID. The plasma sphingolipidome was not significantly associated with the liver or AT sphingolipidomes, indicating that plasma profiles are determined by an interplay of various organs. Further, hepatic sphingolipid profiles were not correlated with the profiles of AT depots. Finally, statistically valid partial least square regression models predicting insulin response were found in the plasma (Q2= 0.58, R2= 0.98), liver (Q2= 0.64, R2= 0.74), and RPAT (Q2= 0.68, R2= 0.79) sphingolipidome, but not in the other adipose tissues.
Collapse
Affiliation(s)
- Ezequiel Jorge-Smeding
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| | - Tobias Warnken
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Anne Julia Grob
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Tanja Pudert
- Clinic for Horses, Department of Surgery and Orthopaedics, Faculty of Veterinary Medicine, Justus-Liebig-University, Giessen, Germany
| | - Yue Hei Leung
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| | - Yun Young Go
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| | - Akos Kenez
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
Dänicke S, Saltzmann J, Liermann W, Glatter M, Hüther L, Kersten S, Zeyner A, Feige K, Warnken T. Evaluation of Inner Exposure of Horses to Zearalenone (ZEN), Deoxynivalenol (DON) and Their Metabolites in Relation to Colic and Health-Related Clinical-Chemical Traits. Toxins (Basel) 2021; 13:toxins13080588. [PMID: 34437459 PMCID: PMC8402592 DOI: 10.3390/toxins13080588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022] Open
Abstract
Mycotoxin contaminated feed has been associated with colic of horses caused by intestinal disorders. Whether such disease conditions alter the intestinal toxin metabolism and transfer across a compromised mucosal barrier is unknown. A screening approach was used to relate blood residue levels of DON, ZEN and their metabolites to the status of the horses (sick vs. healthy). A total of 55 clinically healthy horses from 6 different farms with varying feeding background served as control for sick horses (N = 102) hospitalized due to colic. ZEN, alpha-zearalenol (ZEL), beta-ZEL and DON were detectable in peripheral blood as indicators for the inner exposure with significant farm effects for alpha- and beta-ZEL. However, the levels in sick horses were similar to all farms. Moreover, the proportion of beta-ZEL of all detected ZEN metabolites as an indicator for the degree of metabolism of ZEN was not different for sick horses but differed amongst the control farms. Although the incidence of DON in blood was generally low and not significantly different amongst healthy and sick horses, the positive samples were nearly exclusively found in sick horses suggesting either a higher toxin transfer, an association of DON with the development of colic or a different feeding background.
Collapse
Affiliation(s)
- Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Bundesallee 37, 38116 Braunschweig, Germany; (J.S.); (L.H.); (S.K.)
- Correspondence: ; Tel.: +49-531-58044-102
| | - Janine Saltzmann
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Bundesallee 37, 38116 Braunschweig, Germany; (J.S.); (L.H.); (S.K.)
| | - Wendy Liermann
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Maren Glatter
- Group Animal Nutrition, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Theodor-Lieser-Str.11, D-06120 Halle/Saale, Germany; (M.G.); (A.Z.)
| | - Liane Hüther
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Bundesallee 37, 38116 Braunschweig, Germany; (J.S.); (L.H.); (S.K.)
| | - Susanne Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Bundesallee 37, 38116 Braunschweig, Germany; (J.S.); (L.H.); (S.K.)
| | - Annette Zeyner
- Group Animal Nutrition, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Theodor-Lieser-Str.11, D-06120 Halle/Saale, Germany; (M.G.); (A.Z.)
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Bünteweg 9, 30559 Hannover, Germany; (K.F.); (T.W.)
| | - Tobias Warnken
- Clinic for Horses, University of Veterinary Medicine Hannover, Bünteweg 9, 30559 Hannover, Germany; (K.F.); (T.W.)
| |
Collapse
|
10
|
Leung YH, Kenéz Á, Grob AJ, Feige K, Warnken T. Associations of plasma sphingolipid profiles with insulin response during oral glucose testing in Icelandic horses. J Vet Intern Med 2021; 35:2009-2018. [PMID: 34105193 PMCID: PMC8295691 DOI: 10.1111/jvim.16200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Sphingolipids modulate insulin sensitivity in mammals. Increased synthesis of ceramides is linked to decreased insulin sensitivity of tissues. Conversely, activation of the insulin signaling pathway can downregulate ceramide synthesis. Elucidating the association between sphingolipid metabolism and insulin response during oral glucose testing may help explain the pathophysiology of insulin dysregulation in horses. HYPOTHESES Horses with insulin dysregulation will have a plasma sphingolipid profile characterized by increased ceramide concentrations. The plasma sphingolipid profile will have decreased ceramide concentrations after acute activation of the insulin signaling pathway by oral glucose testing. ANIMALS Twelve Icelandic horses. METHODS Horses were subjected to an oral glucose test (0.5 g/kg body weight glucose), with plasma insulin concentrations measured at 0, 30, 60, 120, 180, and 240 minutes postglucose administration. Plasma samples were collected at 0 and 120 minutes for sphingolipid profiling using a liquid chromatography-mass spectrometry-based metabolomics analysis. Eighty-three species of sphingolipids were detected, including 3-ketosphinganines, dihydroceramides, ceramides, dihydrosphingomyelins, sphingomyelins, galatosylceramides, glucosylceramides, lactosylceramides, and ceramide-1-phosphates. RESULTS Glucose administration did not significantly alter plasma sphingolipid profiles. C22:0-ceramide, C24:1-ceramide, C23:0-ceramide, C16:1-sphingomyelin, C22:0-dihydroceramide, and C24:0-ceramide were positively correlated with the insulin response (area under the curve). CONCLUSION AND CLINICAL IMPORTANCE Positive correlation between the insulin response and sphingolipid concentrations implies upregulated sphingolipid metabolism in insulin dysregulated horses. A high plasma ceramide concentration can indicate insulin dysregulation in horses.
Collapse
Affiliation(s)
- Yue Hei Leung
- Department of Infectious Diseases and Public HealthCity University of Hong KongKowloonHong Kong
| | - Ákos Kenéz
- Department of Infectious Diseases and Public HealthCity University of Hong KongKowloonHong Kong
| | - Anne Julia Grob
- Clinic for HorsesUniversity of Veterinary Medicine Hannover, FoundationHanoverGermany
| | - Karsten Feige
- Clinic for HorsesUniversity of Veterinary Medicine Hannover, FoundationHanoverGermany
| | - Tobias Warnken
- Clinic for HorsesUniversity of Veterinary Medicine Hannover, FoundationHanoverGermany
| |
Collapse
|
11
|
Delarocque J, Frers F, Huber K, Jung K, Feige K, Warnken T. Metabolic impact of weight variations in Icelandic horses. PeerJ 2021; 9:e10764. [PMID: 33575132 PMCID: PMC7847705 DOI: 10.7717/peerj.10764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/22/2020] [Indexed: 12/27/2022] Open
Abstract
Background Insulin dysregulation (ID) is an equine endocrine disorder, which is often accompanied by obesity and various metabolic perturbations. The relationship between weight variations and fluctuations of the insulin response to oral glucose tests (OGT) as well as the metabolic impact of ID have been described previously. The present study seeks to characterize the concomitant metabolic impact of variations in the insulin response and bodyweight during repeated OGTs using a metabolomics approach. Methods Nineteen Icelandic horses were subjected to five OGTs over one year and their bodyweight, insulin and metabolic response were monitored. Analysis of metabolite concentrations depending on time (during the OGT), relative bodyweight (rWeight; defined as the bodyweight at one OGT divided by the mean bodyweight across all OGTs) and relative insulin response (rAUCins; defined accordingly from the area under the insulin curve during OGT) was performed using linear models. Additionally, the pathways significantly associated with time, rWeight and rAUCins were identified by rotation set testing. Results The results suggested that weight gain and worsening of ID activate distinct metabolic pathways. The metabolic profile associated with weight gain indicated an increased activation of arginase, while the pathways associated with time and rAUCins were consistent with the expected effect of glucose and insulin, respectively. Overall, more metabolites were significantly associated with rWeight than with rAUCins.
Collapse
Affiliation(s)
- Julien Delarocque
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Florian Frers
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Korinna Huber
- Institute of Animal Science, Faculty of Agricultural Sciences, Universität Hohenheim, Stuttgart, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Tobias Warnken
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|