1
|
Miyashita A, Mikami K, Nakajima H, Yu Y, Miyauchi M, Sekimizu K. Silkworm (Bombyx mori) as a novel infection model for fish-derived Aeromonas hydrophila. Drug Discov Ther 2025; 19:83-89. [PMID: 40301084 DOI: 10.5582/ddt.2025.01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Aeromonas hydrophila is a significant pathogenic bacterium in aquaculture and the ornamental fish industry, causing lethal infections in fish and contributing to rising drug resistance. This leads to substantial economic losses and underscores the urgent need for new treatments and infection controls. However, the lack of a simple, sensitive infection model has hindered studies on the pathogenicity of A. hydrophila and therapeutic evaluation. This study introduces the silkworm (Bombyx mori) as a highly sensitive and cost-effective infection model for A. hydrophila. Using a strain isolated from diseased Wakins (goldfish), the pathogenicity of A. hydrophila was confirmed in silkworms, which exhibited a much lower median lethal dose (LD₅₀ = 0.3 CFU/larva) compared to Wakins (LD₅₀ = 5.1 × 10⁶ CFU/g body weight). This demonstrates the silkworm's higher sensitivity to A. hydrophila. The in vivo efficacy of three antibiotics (gentamicin, kanamycin, and tetracycline) was also tested. Gentamicin and kanamycin prolonged survival in both models, while tetracycline also showed efficacy in both models, though its effect was weaker in the silkworm model. This highlights the silkworm model's utility in evaluating bactericidal agents against A. hydrophila. This model addresses key limitations of traditional fish infection models, including low sensitivity, long experimental durations, and high costs. The silkworm-based method enables efficient investigation of A. hydrophila pathogenicity and rapid screening of potential treatments, accelerating the development of new therapeutic strategies for aquaculture and beyond.
Collapse
Affiliation(s)
| | - Kazuhiro Mikami
- Institute of Medical Mycology, Teikyo University, Tokyo, Japan
- Graduate School of Medical Care and Technology, Teikyo University, Tokyo, Japan
| | - Hiroto Nakajima
- Institute of Medical Mycology, Teikyo University, Tokyo, Japan
| | - Yidong Yu
- Institute of Medical Mycology, Teikyo University, Tokyo, Japan
| | - Masanobu Miyauchi
- Institute of Medical Mycology, Teikyo University, Tokyo, Japan
- Department of Psychology, Faculty of Liberal Arts, Teikyo University, Tokyo, Japan
| | | |
Collapse
|
2
|
Au-Yeung C, Tsui YL, Choi MH, Chan KW, Wong SN, Ling YK, Lam CM, Lam KL, Mo WY. Antibiotic Abuse in Ornamental Fish: An Overlooked Reservoir for Antibiotic Resistance. Microorganisms 2025; 13:937. [PMID: 40284775 PMCID: PMC12029747 DOI: 10.3390/microorganisms13040937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Ornamental fish represent a significant aquaculture sector with notable economic value, yet their contribution to antibiotic residues and resistance remains underrecognized. This review synthesizes evidence on widespread and often unregulated antibiotic use-including tetracyclines and fluoroquinolones-in ornamental fish production, transportation, and retail, primarily targeting bacterial diseases such as aeromonosis and vibriosis. Pathogenic microorganisms including Edwardsiella, Flavobacterium, and Shewanella spp. cause diseases like hemorrhagic septicemia, fin rot, skin ulcers, and exophthalmia, impairing fish health and marketability. Prophylactic and therapeutic antibiotic applications elevate antibiotic residues in fish tissues and carriage water, thereby selecting for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). These resistant elements pose significant risks to fish health, human exposure via direct contact and bioaerosols, and environmental health through contamination pathways. We emphasize the urgent need for a holistic One Health approach, involving enhanced surveillance, stringent regulatory oversight, and adoption of alternative antimicrobial strategies, such as probiotics and advanced water treatments. Coordinated global actions are crucial to effectively mitigate antibiotic resistance within the ornamental fish industry, ensuring sustainable production, safeguarding public health, and protecting environmental integrity.
Collapse
Affiliation(s)
- Chun Au-Yeung
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yat-Lai Tsui
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
| | - Man-Hay Choi
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
| | - Ka-Wai Chan
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
| | - Sze-Nga Wong
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
| | - Yuk-Ki Ling
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
| | - Cheuk-Ming Lam
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
| | - Kit-Ling Lam
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
| | - Wing-Yin Mo
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
| |
Collapse
|
3
|
Larcombe E, Alexander ME, Snellgrove D, Henriquez FL, Sloman KA. Current disease treatments for the ornamental pet fish trade and their associated problems. REVIEWS IN AQUACULTURE 2025; 17. [DOI: 10.1111/raq.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/21/2024] [Indexed: 01/05/2025]
Abstract
AbstractThe trade in live ornamental fishes to be held as companion animals or displayed in public aquaria has an estimated global annual value of US$15–20 billion. Supply chains for ornamental pet fishes often involve many more parties than for fish farmed as food fishes, and at each stage, fishes are exposed to stressors including handling, confinement, crowding, mechanical disturbance, and poor water quality. If chronic, these stressors can compromise their immune system, making fishes more susceptible to pathogens. Mortality and morbidity from infectious disease can result in considerable welfare impacts and massive economic losses for the industry, and the range of infective agents seen in ornamental species is well documented. However, treating these diseases is not straightforward with practices varying greatly across the trade and with several approaches having unintended consequences, such as the emergence of resistant strains of pathogens. While disease treatments for a handful of fish species (e.g., koi, goldfish) have received focused research attention, for the home aquarium owner, there is an increasing reliance on products based on natural compounds which have received far less scientific attention. This review aims to highlight the gaps in our knowledge surrounding the range of disease treatments used across the ornamental pet fish trade, with a particular focus on freshwater tropical species destined for home aquaria. Consideration is given to the potential problems arising from these treatments, including microbial resistance and effects of treatments themselves on fish health and welfare.
Collapse
Affiliation(s)
- E. Larcombe
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| | - M. E. Alexander
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| | - D. Snellgrove
- Waltham Petcare Science Institute Waltham‐on‐the‐Wolds Leicestershire UK
| | - F. L. Henriquez
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| | - K. A. Sloman
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| |
Collapse
|
4
|
González-Machado C, Alonso-Calleja C, Capita R. Methicillin-Resistant Staphylococcus aureus (MRSA) in Different Food Groups and Drinking Water. Foods 2024; 13:2686. [PMID: 39272452 PMCID: PMC11394615 DOI: 10.3390/foods13172686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/15/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has been included by the World Health Organization in its list of "priority pathogens" because of its widespread prevalence and the severity of the infections it causes. The role of food in infections caused by MRSA is unknown, although strains of this microorganism have been detected in various items for human consumption. In order to gain an overview of any possible role of food in MRSA infections, a review was undertaken of studies published between January 2001 and February 2024 relating to MRSA. These comprised research that focused on fish and shellfish, eggs and egg products, foods of vegetable origin, other foodstuffs (e.g., honey or edible insects), and drinking water. In most of these investigations, no prior enrichment was carried out when isolating strains. Three principal methods were used to confirm the presence of MRSA, namely amplification of the mecA gene by PCR, amplification of the mecA and the mecC genes by PCR, and disc diffusion techniques testing susceptibility to cefoxitin (30 μg) and oxacillin (1 μg). The great diversity of methods used for the determination of MRSA in foods and water makes comparison between these research works difficult. The prevalence of MRSA varied according to the food type considered, ranging between 0.0% and 100% (average 11.7 ± 20.3%) for fish and shellfish samples, between 0.0% and 11.0% (average 1.2 ± 3.5%) for egg and egg products, between 0.0% and 20.8% (average 2.5 ± 6.8%) for foods of vegetable origin, between 0.6% and 29.5% (average 28.2 ± 30.3%) for other foodstuffs, and between 0.0% and 36.7% (average 17.0 ± 14.0%) for drinking water.
Collapse
Affiliation(s)
- Camino González-Machado
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| |
Collapse
|
5
|
Dawar FU, Shi Y, Zhou Y, Jin X, Zhao Z. Bacterial infection-biased abundance of proteins in the skin mucus of obscure puffer (Takifugu Obscurus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101306. [PMID: 39116716 DOI: 10.1016/j.cbd.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
The skin mucus of fish is equipped with immunological and antimicrobial peptides that confer protection against invading pathogens. The skin mucus has been studied in fish however information regarding its immunological roles in bacterial infection is rare. This study highlighted the proteins and peptides in the skin mucus of Obscure puffer Takifugu obscurus that quantitatively altered against Aeromonas hydrophila infection. We infected the fish through bath immersion, intraperitonially, and treated with PBS (control) then compared the level of proteins in the skin mucus among the groups using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The Tandem Mass Tag (TMT) based quantification showed that 4896 proteins were Deferentially Quantified Proteins (DQPs), based on 19,751 unique peptides. Of which 170 were depleted (decreased in abundance) and 69 were abundant in comparison of Bath Treated (BT) vs Control (C) groups. Similarly, 76 DQPs were depleted and 70 were abundant in comparison of Treated (T) vs BT groups. Further, 126 DQPs were depleted, and 34 were abundant in comparison to T vs C groups. The DQPs we report were mostly immunological and were involved in unique biological functions and pathways. The interesting protein we report, where some of the proteins are for the first time in fish, shows the protein-rich structure of the mucus of fish, which may act as a biomarker to be targeted for bacterial disease therapy in fish and ultimately hint to the way of making resistance in fish against bacterial pathogens.
Collapse
Affiliation(s)
- Farman Ullah Dawar
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China; Laboratory of Fisheries and Aquaculture, Department of Zoology, Kohat University of Science and Technology Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Yan Shi
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China
| | - Yu Zhou
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China
| | - Xingkun Jin
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China.
| |
Collapse
|
6
|
Ma YH, Sheng YD, Zhang D, Liu JT, Tian Y, Li H, Li XF, Li N, Sun P, Siddiqui SA, Sun WW, Zhang L, Shan XF, Wang CF, Qian AD, Zhang DX. Acanthopanax senticosus cultures fermented by Lactobacillus rhamnosus enhanced immune response through improvement of antioxidant activity and inflammation in crucian carp (Carassius auratus). Microb Pathog 2024; 190:106614. [PMID: 38492825 DOI: 10.1016/j.micpath.2024.106614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Lactic acid bacteria (LAB) have been recognized as safe microorganism that improve micro-flora disturbances and enhance immune response. A well-know traditional herbal medicine, Acanthopanax senticosus (As) was extensively utilized in aquaculture to improve growth performance and disease resistance. Particularly, the septicemia, skin wound and gastroenteritis caused by Aeromonas hydrophila threaten the health of aquatic animals and human. However, the effects of probiotic fermented with A. senticosus product on the immune regulation and pathogen prevention in fish remain unclear. Here, the aim of the present study was to elucidate whether the A. senticosus fermentation by Lactobacillus rhamnosus improve immune barrier function. The crucian carp were fed with basal diet supplemented with L. rhamnosus fermented A. senticosus cultures at 2 %, 4 %, 6 % and 8 % bacterial inoculum for 8 weeks. After trials, the weight gain rate (WGR), specific growth rate (SGR) were significantly increased, especially in LGG-6 group. The results confirmed that the level of the CAT, GSH-PX, SOD, lysozyme, and MDA was enhanced in fish received with probiotic fermented product. Moreover, the L. rhamnosus fermented A. senticosus cultures could trigger innate and adaptive immunity, including the up-regulation of the C3, C4, and IgM concentration. The results of qRT-PCR revealed that stronger mRNA transcription of IL-1β, IL-10, IFN-γ, TNF-α, and MyD88 genes in the liver, spleen, kidney, intestine and gills tissues of fish treated with probiotic fermented with A. senticosus product. After infected with A. hydrophila, the survival rate of the LGG-2 (40 %), LGG-4 (50 %), LGG-6 (60 %), LGG-8 (50 %) groups was higher than the control group. Meanwhile, the pathological damage of the liver, spleen, head-kidney, and intestine tissues of probiotic fermentation-fed fish could be alleviated after pathogen infection. Therefore, the present work indicated that L. rhamnosus fermented A. senticosus could be regard as a potential intestine-target therapy strategy to protecting fish from pathogenic bacteria infection.
Collapse
Affiliation(s)
- Yi-Han Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yu-Di Sheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Di Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jun-Tong Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ye Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hui Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao-Fei Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Na Li
- Ministry of Agriculture and Rural Affairs of Mudanjiang, Mudanjiang, 157020, China
| | - Peng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | | | - Wu-Wen Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Dong-Xing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
7
|
Mahboub HH, Gad WM, Aziz EK, Nasr MA, Fahmy EM, Mansour DM, Rasheed N, Ali HS, Ismail SH, Abdel Rahman AN. Silica nanoparticles alleviate the immunosuppression, oxidative stress, biochemical, behavioral, and histopathological alterations induced by Aeromonas veronii infection in African catfish (Clarias gariepinus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:767-783. [PMID: 38060081 PMCID: PMC11021351 DOI: 10.1007/s10695-023-01274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
In the aquaculture industry, silica nanoparticles (SiNPs) have great significance, mainly for confronting diseases. Therefore, the present study aims to assess the antibacterial efficiency of SiNPs as a versatile trial against Aeromonas veronii infection in African catfish (Clarias gariepinus). Further, we investigated the influence of SiNPs in palliating the immune-antioxidant stress biochemical, ethological, and histopathological alterations induced by A. veronii. The experiment was conducted for 10 days, and about 120 fish were distributed into four groups at random, with 30 fish each. The first group is a control that was neither exposed to infection nor SiNPs. The second group (SiNPs) was vulnerable to SiNPs at a concentration of 20 mg/L in water. The third group was experimentally infected with A. veronii at a concentration of 1.5 × 107 CFU/mL. The fourth group (A. veronii + SiNPs) was exposed to SiNPs and infected with A. veronii. Results outlined that A. veronii infection induced behavioral alterations and suppression of immune-antioxidant responses that appeared as a clear decline in protein profile indices, complement 3, lysozyme activity, glutathione peroxidase, and total antioxidant capacity. The kidney and liver function biomarkers (creatinine, urea, alkaline phosphatase, and alanine aminotransferase) and lipid peroxide (malondialdehyde) were substantially increased in the A. veronii group, with marked histopathological changes and immunohistochemical alterations in these tissues. Interestingly, the exposure to SiNPs resulted in a clear improvement in all measured biomarkers and a noticeable regeneration of the histopathological changes. Overall, it will establish that SiNPs are a new, successful tool for opposing immunological, antioxidant, physiological, and histopathological alterations induced by A. veronii infection.
Collapse
Affiliation(s)
- Heba H Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Box 44511, Sharkia, Zagazig, PO, Egypt.
| | - Wafaa M Gad
- Department of Bacteriology, Animal Health Research Institute (AHRI) (Mansoura Branch), Agriculture Research Center (ARC), Box 246 Dokki, Giza, PO, 12618, Egypt
| | - Enas K Aziz
- Department of Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, University of Sadat, Box 32897, Menofia, Sadat City, PO, Egypt
| | - Mona Abdelghany Nasr
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Box 32897, Menofia, Sadat City, PO, Egypt
| | - Esraa M Fahmy
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Box 44511, Sharkia, Zagazig, PO, Egypt
| | - Dina Mohamed Mansour
- Department of Fish Diseases and Management, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC) (Hurghada branch), Box 246 Dokki, Giza, PO, 12618, Egypt
| | - Nesma Rasheed
- Department of Pathology, Animal Health Research Institute (AHRI) (Mansoura Branch), Agriculture Research Center (ARC), Box 246 Dokki, Giza, PO, 12618, Egypt
| | - Hanaa S Ali
- Department of Pathology, Animal Health Research Institute (AHRI) (Mansoura Branch), Agriculture Research Center (ARC), Box 246 Dokki, Giza, PO, 12618, Egypt
| | - Sameh H Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Box 12588, Giza, PO, Egypt
| | - Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Box 44511, Sharkia, Zagazig, PO, Egypt.
| |
Collapse
|
8
|
Attia ASA, Abou Elez RMM, El-Gazzar N, Elnahriry SS, Alfifi A, Al-Harthi HF, Alkhalifah DHM, Hozzein WN, Diab HM, Ibrahim D. Cross-sectional analysis of risk factors associated with Mugil cephalus in retail fish markets concerning methicillin-resistant Staphylococcus aureus and Aeromonas hydrophila. Front Cell Infect Microbiol 2024; 14:1348973. [PMID: 38371296 PMCID: PMC10869461 DOI: 10.3389/fcimb.2024.1348973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction Aeromonas hydrophila and methicillin-resistant Staphylococcus aureus (MRSA) are potent bacterial pathogens posing major hazards to human health via consuming fish harboring these pathogens or by cross-contamination beyond the contaminated environment. The aim of this study was to determine risk variables associated with the presence of certain pathogenic bacteria from Mugil cephalus fish in retail markets in Egypt. The virulence genes of A. hydrophila and S. aureus were also studied. Furthermore, the antibiotic sensitivity and multidrug resistance of the microorganisms were evaluated. Methods In a cross-sectional investigation, 370 samples were collected from mullet skin and muscle samples, washing water, fish handlers, knives, and chopping boards. Furthermore, fish handlers' public health implications were assessed via their response to a descriptive questionnaire. Results S. aureus and Aeromonas species dominated the investigated samples with percentages of 26.76% and 30.81%, respectively. Furthermore, A. hydrophila and MRSA were the predominant recovered bacterial pathogens among washing water and knives (53.85% and 46.66%, respectively). The virulence markers aerA and hlyA were found in 90.7% and 46.5% of A. hydrophila isolates, respectively. Moreover, the virulence genes nuc and mec were prevalent in 80% and 60% of S. aureus isolates, respectively. Antimicrobial susceptibility results revealed that all A. hydrophila isolates were resistant to amoxicillin and all MRSA isolates were resistant to amoxicillin and ampicillin. Remarkably, multiple drug resistance (MDR) patterns were detected in high proportions in A. hydrophila (88.37%) and MRSA (100%) isolates. The prevalence of Aeromonas spp. and S. aureus had a positive significant correlation with the frequency of handwashing and use of sanitizer in cleaning of instruments. MRSA showed the highest significant prevalence rate in the oldest age category. Conclusion The pathogenic bacteria recovered in this study were virulent and had a significant correlation with risk factors associated with improper fish handling. Furthermore, a high frequency of MDR was detected in these pathogenic bacteria, posing a significant risk to food safety and public health.
Collapse
Affiliation(s)
- Amira S. A. Attia
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha M. M. Abou Elez
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nashwa El-Gazzar
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Shimaa S. Elnahriry
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ahmed Alfifi
- Department of Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Helal F. Al-Harthi
- Department of Biology, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wael N. Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hassan Mohmoud Diab
- Department of Animal and Poultry Health and Environment, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
de Oliveira CH, Moreno LZ, Cardoso PHM, Silva APS, Gomes VTM, Barbosa MRF, Balian SC, Moreno AM. Characterization of Aeromonas Isolates from Ornamental Fish: Species, Virulence Genes, and Antimicrobial Susceptibility. Microorganisms 2024; 12:176. [PMID: 38258002 PMCID: PMC10819562 DOI: 10.3390/microorganisms12010176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
This study aimed to characterize 300 Aeromonas spp. strains isolated from 123 ornamental fish of 32 different species presenting with septicemia, skin lesions, and/or eye lesions. Within the 300 strains, 53.0% were identified as A. veronii, 41.3% as A. hydrophila, and 5.7% as A. caviae. Among the six virulence genes investigated, the most frequent were act (90.3%) and aer (79.3%). More than 50% of A. hydrophila strains were positive for all the studied genes. A total of 30 virulence profiles were identified, with the five main profiles identified comprising 75% of strains. Only five strains were negative for all genes and were identified as A. caviae and A. veronii. The antimicrobial susceptibility profile was performed for 234 strains, with sulfonamides presenting more than 50% of the resistance rates. Susceptibility was observed mainly for cephalosporins, aminoglycosides, chloramphenicol and piperacillin-tazobactam. Multidrug resistance was detected in 82.5% of the studied strains, including A. caviae with 100% multidrug resistance, and A. hydrophila with 90.9% multidrug resistance. The SE-AFLP analysis resulted in 66 genotypes of A. hydrophila, 118 genotypes of A. veronii, and 14 genotypes of A. caviae, demonstrating the greater heterogeneity of A. veronii and A. caviae. However, no direct correlation was observed between the genotypes and the strains' origins or virulence and resistance profiles.
Collapse
Affiliation(s)
- Carolina H. de Oliveira
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, São Paulo 05508-270, SP, Brazil; (C.H.d.O.); (L.Z.M.); (P.H.M.C.); (A.P.S.S.); (V.T.M.G.); (S.C.B.)
| | - Luisa Z. Moreno
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, São Paulo 05508-270, SP, Brazil; (C.H.d.O.); (L.Z.M.); (P.H.M.C.); (A.P.S.S.); (V.T.M.G.); (S.C.B.)
| | - Pedro H. M. Cardoso
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, São Paulo 05508-270, SP, Brazil; (C.H.d.O.); (L.Z.M.); (P.H.M.C.); (A.P.S.S.); (V.T.M.G.); (S.C.B.)
| | - Ana Paula S. Silva
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, São Paulo 05508-270, SP, Brazil; (C.H.d.O.); (L.Z.M.); (P.H.M.C.); (A.P.S.S.); (V.T.M.G.); (S.C.B.)
| | - Vasco T. M. Gomes
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, São Paulo 05508-270, SP, Brazil; (C.H.d.O.); (L.Z.M.); (P.H.M.C.); (A.P.S.S.); (V.T.M.G.); (S.C.B.)
| | - Mikaela R. F. Barbosa
- Division of Microbiology and Parasitology, Department of Environmental Analysis, Environmental Company of the State of São Paulo (CETESB), Av. Prof. Frederico Hermann Júnior 345, São Paulo 05459-900, SP, Brazil;
| | - Simone C. Balian
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, São Paulo 05508-270, SP, Brazil; (C.H.d.O.); (L.Z.M.); (P.H.M.C.); (A.P.S.S.); (V.T.M.G.); (S.C.B.)
| | - Andrea M. Moreno
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, São Paulo 05508-270, SP, Brazil; (C.H.d.O.); (L.Z.M.); (P.H.M.C.); (A.P.S.S.); (V.T.M.G.); (S.C.B.)
| |
Collapse
|
10
|
Yunis-Aguinaga J, Sotil G, Morey GAM, Fernandez-Espinel C, Flores-Dominick V, Rengifo-Marin G, da Silva Claudiano G, Medina-Morillo M. Susceptibility of the cultured Amazonian fish, Colossoma macropomum, to experimental infection with Aeromonas species from ornamental fish. Microb Pathog 2024; 186:106461. [PMID: 38048837 DOI: 10.1016/j.micpath.2023.106461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/21/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023]
Abstract
The global ornamental fish trade carries important risk factors for spreading pathogens between different countries and regions, not only for ornamental fish but also for cultured fish and even other animal species. In the current study, we reported the capacity of Aeromonas veronii and A. hydrophila isolated from ornamental fish to experimentally infect the reared Amazonian fish Colossoma macropomum. For this, those bacteria were identified, and a primary characterization was performed. Fish were inoculated with 0.1 mL of increasing concentrations of A. hydrophila or A. veronii (C1 = 1 × 102; C2 = 1.8 × 104; C3 = 2.1 × 106; C4 = 2.4 × 108 bacterial cells per mL) in the coelomic cavity. In the control group, fish received the same volume of sterile saline solution (0.9 %). Fish presented petechiae, skin suffusions, and mortality rates up to 100 % according to the inoculum concentration. Histopathologically, fish presented necrosis with karyolysis, loss of the cytoplasmic delimitation of cells of the renal tubules and hepatocytes, hemorrhage, cellular edema, and the presence of bacterial cells. The LD50-96h of A. veronii on C. macropomum was estimated at 2.4 × 106 CFU mL-1 and of A. hydrophila at 1.408 × 105 CFU mL-1. The results demonstrated that it is possible that Aeromonas species isolated from ornamental fish affect C. macropomum, causing similar clinical signs and lesions. This shows the importance of promoting risk control measures worldwide regarding the trade of ornamental fish.
Collapse
Affiliation(s)
- Jefferson Yunis-Aguinaga
- Laboratorio de Patobiología Acuática, Instituto del Mar del Perú (IMARPE), Callao, Peru; Universidad Científica del Sur, Lima, Peru.
| | - Giovanna Sotil
- Laboratorio de Genética Molecular, Instituto del Mar del Perú (IMARPE), Callao, Peru; Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - German Augusto Murrieta Morey
- Instituto de Investigaciones de la Amazonía Peruana (IIAP), Iquitos, Peru; Universidade Estadual do Maranhão- UEMA, Programa de Pós-graduação em Ciência Animal - PPGCA, São Luís, Maranhão- Brasil
| | | | | | - Gino Rengifo-Marin
- Instituto de Investigaciones de la Amazonía Peruana (IIAP), Iquitos, Peru
| | | | - Marco Medina-Morillo
- Laboratorio de Patobiología Acuática, Instituto del Mar del Perú (IMARPE), Callao, Peru.
| |
Collapse
|
11
|
Au-Yeung C, Lam KL, Chan KW, Mo WY. Uses of Antibiotics in Ornamental Fish in Hong Kong and the Antibiotic Resistance in the Associated Zoonotic Pathogens. J Xenobiot 2022; 12:365-377. [PMID: 36547470 PMCID: PMC9783315 DOI: 10.3390/jox12040026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The use of antibiotics in ornamental fish is not regulated, as they are not intended for human consumption. Although antibiotic resistant bacteria have been detected in ornamental fish worldwide, there have been no studies to look at the situation in Hong Kong. Therefore, the present study was conducted to investigate the use of antibiotics in ornamental fish. Ornamental fish were purchased from five local pet fish shops and the antibiotics in carriage water were quantified using liquid chromatography tandem mass spectrometry. Moreover, Aeromonas and Pseudomonas spp. present in carriage water were isolated and their minimum inhibitory concentrations against selected antibiotics were determined. Results indicated that among the twenty antibiotics screened, doxycycline (0.0155-0.0836 µg L-1), oxytetracycline (0.0102-29.0 µg L-1), tetracycline (0.0350-0.244 µg L-1), enrofloxacin (0.00107-0.247 µg L-1), and oxalinic acid (n.d.-0.514 µg L-1) were detected in all sampled shops. Additionally, MIC results revealed that some of the Aeromonas and Pseudomonas spp. isolates were highly resistant to all antibiotics selected. Our findings confirmed that multiple antibiotics are being used in ornamental fish and the associated bacteria are resistant to selected antibiotics, suggesting that this could be a significant transmission route of antibiotic resistant bacteria to household indoor environments.
Collapse
|
12
|
Prakash H, Sato M, Kojima K, Sato A, Maruyama S, Nagasawa T, Nakao M, Somamoto T. Development of a filter device for the prevention of aquatic bacterial disease using a single-chain variable fragment (scFv)-conjugated affinity silk. Sci Rep 2022; 12:9475. [PMID: 35676314 PMCID: PMC9177605 DOI: 10.1038/s41598-022-13408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Infectious disease is one of the most serious problems in the aquaculture industry for ornamental or edible fish. This study attempted to develop a new device for preventing an aquatic bacterial disease, ulcer disease, caused by Aeromonas salmonicida (As), using “affinity silk”. Affinity silk is a silk protein-containing fibroin L-chain (FibL) fused to the single-chain variable fragment (scFv). It can be easily processed into different formats such as fibers, gels, sponges, or films. A transgenic silkworm that could express a cDNA construct containing FibL fused to an scFv derived from a monoclonal antibody (MAb) against As was successfully generated. An enzyme-linked immunosorbent assay was used to detect As by employing 96-well plates coated with scFv-conjugated affinity silk. As could be captured efficiently by glass wool coated with affinity silk in the column. Furthermore, the air-lift water filter equipped with the affinity silk-coated wool could considerably reduce the concentration of As in water and was estimated to have sufficient ability to trap a lethal dose of As. These findings show that the “affinity silk filter” is a potential device for the prophylaxis of aquatic animal diseases.
Collapse
Affiliation(s)
- Harsha Prakash
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Nishi-ku Motooka 744, Fukuoka, 819-0395, Japan
| | - Mitsuru Sato
- Silkworm Research Group, Division of Silk-Producing Insect Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Katsura Kojima
- Silk Materials Research Group, Division of Silk-Producing Insect Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Atsushi Sato
- Kyorin Co. Ltd., 9 Shirogane-machi, Himeji, Hyogo, 670-0902, Japan
| | - Shinpei Maruyama
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Nishi-ku Motooka 744, Fukuoka, 819-0395, Japan
| | - Takahiro Nagasawa
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Nishi-ku Motooka 744, Fukuoka, 819-0395, Japan
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Nishi-ku Motooka 744, Fukuoka, 819-0395, Japan
| | - Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Nishi-ku Motooka 744, Fukuoka, 819-0395, Japan.
| |
Collapse
|
13
|
Li J, Wu Z, Wu C, Chen DD, Zhou Y, Zhang YA. VasH Contributes to Virulence of Aeromonas hydrophila and Is Necessary to the T6SS-mediated Bactericidal Effect. Front Vet Sci 2021; 8:793458. [PMID: 34966816 PMCID: PMC8710571 DOI: 10.3389/fvets.2021.793458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Aeromonas hydrophila is a Gram-negative bacterium that is commonly distributed in aquatic surroundings and has been considered as a pathogen of fish, amphibians, reptiles, and mammals. In this study, a virulent strain A. hydrophila GD18, isolated from grass carp (Ctenopharyngodon idella), was characterized to belong to a new sequence type ST656. Whole-genome sequencing and phylogenetic analysis showed that GD18 was closer to environmental isolates, however distantly away from the epidemic ST251 clonal group. The type VI secretion system (T6SS) was known to target both eukaryotic and prokaryotic cells by delivering various effector proteins in diverse niches by Gram-negative bacteria. Genome-wide searching and hemolysin co-regulated protein (Hcp) expression test showed that GD18 possessed a functional T6SS and is conditionally regulated. Further analysis revealed that VasH, a σ54-transcriptional activator, was strictly required for the functionality of T6SS in A. hydrophila GD18. Mutation of vasH gene by homologous recombination significantly abolished the bactericidal property. Then the virulence contribution of VasH was characterized in both in vitro and in vivo models. The results supported that VasH not only contributed to the bacterial cytotoxicity and resistance against host immune cleaning, but also was required for virulence and systemic dissemination of A. hydrophila GD18. Taken together, these findings provide a perspective for understanding the VasH-mediated regulation mechanism and T6SS-mediated virulence and bactericidal effect of A. hydrophila.
Collapse
Affiliation(s)
- Jihong Li
- Institute of Hydrobiology, Chinese Academy of Sciences (CAS), Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhihao Wu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Changsong Wu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences (CAS), Wuhan, China
| | - Yang Zhou
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences (CAS), Wuhan, China.,State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
14
|
Aeromonas: the multifaceted middleman in the One Health world. Curr Opin Microbiol 2021; 65:24-32. [PMID: 34717260 DOI: 10.1016/j.mib.2021.09.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023]
Abstract
Aeromonas is at the interface of all the One Health components and represents an amazingly sound test case in the One Health approach, from economic loss in aquaculture tochallenges related to antibiotic-resistant bacteria selected from the environment. In human health, infections following leech therapy is an outstanding example of such One Health challenges. Aeromonads are not only ubiquitous environmental bacteria, able to rapidly colonize and cause opportunistic infections in humans and animals, they are also capable of promoting interactions and gene exchanges between the One Health components. This makes this genus a key amplifier of genetic transfer, especially of antibiotic resistance genes.
Collapse
|
15
|
Dhanapala PM, Kalupahana RS, Kalupahana AW, Wijesekera D, Kottawatta SA, Jayasekera NK, Silva-Fletcher A, Jagoda SDS. Characterization and Antimicrobial Resistance of Environmental and Clinical Aeromonas Species Isolated from Fresh Water Ornamental Fish and Associated Farming Environment in Sri Lanka. Microorganisms 2021; 9:2106. [PMID: 34683427 PMCID: PMC8537582 DOI: 10.3390/microorganisms9102106] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/31/2022] Open
Abstract
The aims of this study were to characterize and investigate antimicrobial susceptibility and presence of integrons in 161 Aeromonas spp. isolated from ornamental freshwater fish farming environment, apparently healthy and diseased fish. Phylogenetic analyses of the gyrB gene sequences identified Aeromonas veronii as the most abundant species (75.8%) followed by Aeromonashydrophila (9.3%), Aeromonas caviae (5%), Aeromonas jandaei (4.3%), Aeromonas dhakensis (3.7%), Aeromonas sobria (0.6%), Aeromonas media (0.6%), and Aeromonas popoffii (0.6%). Susceptibility to thirteen antimicrobials was determined and antimicrobial resistance frequencies were: amoxicillin (92.5%), enrofloxacin (67.1%), nalidixic acid (63.4%), erythromycin (26.1%), tetracycline (23.6%), imipenem (18%), trimethoprim-sulfamethoxazole (16.8%), and gentamicin (16.8%). Multi-drug resistance (MDR) was widespread among the isolates (51.6%, 83/161) with 51.6% (63/122) A. veronii isolates being MDR. In addition, 68.3% of isolates had multiple antibiotic resistance (MAR) indexes higher than 0.2, suggesting that they originated from a high-risk source of contamination where antimicrobials are often used. In all, 21.7% isolates carried class 1 integrons, with 97.1% having gene cassettes, while there were 12 isolates carrying class 2 integron gene cassettes. Our findings highlight that the aquatic environment and ornamental fish act as reservoirs of multidrug resistant Aeromonas spp. and underline the need for a judicious use of antimicrobials and timely surveillance of antimicrobial resistance (AMR) in aquaculture.
Collapse
Affiliation(s)
- Pavithra M. Dhanapala
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka; (P.M.D.); (A.W.K.); (D.P.H.W.)
| | - Ruwani S. Kalupahana
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka; (R.S.K.); (S.A.K.)
| | - Anil W. Kalupahana
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka; (P.M.D.); (A.W.K.); (D.P.H.W.)
| | - D.P.H. Wijesekera
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka; (P.M.D.); (A.W.K.); (D.P.H.W.)
| | - Sanda A. Kottawatta
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka; (R.S.K.); (S.A.K.)
| | - Niromi K. Jayasekera
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | | | - S.S.S. de S. Jagoda
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka; (P.M.D.); (A.W.K.); (D.P.H.W.)
| |
Collapse
|
16
|
The influence of dietary Motore™ supplement on antioxidant status to Aeromonas hydrophila infection in Rhamdia quelen. Microb Pathog 2021; 154:104871. [PMID: 33771632 DOI: 10.1016/j.micpath.2021.104871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/22/2022]
Abstract
This study points to evaluate the effects of pre-treatment with standardized dry extract of Curcuma longa (Motore™) added to the diet (0; 250; 500; and 750 mg/kg) on oxidative stress parameters, longevity, and therapeutic success in Rhamdia quelen experimentally infected with Aeromonas hydrophila (MF 372510). After treatment, the liver and kidney were collected to determine non-enzymatic oxidative parameters such as the formation of thiobarbituric acid reactive substances (TBARS), non-protein thiols (NPSH), and quantification of reactive oxygen species (ROS) levels. Also, two enzymatic antioxidant parameters were evaluated: superoxide dismutase (SOD) and catalase (CAT) activities. The results showed an increase of ROS and TBARS levels, a depletion in NPSH, and a decrease of SOD and CAT activities in infected fish compared to control. The highest Motore™ dose minimized the deleterious effect of A. hydrophila infection improving longevity, oxidative status, and survival rate. The addition of 750 mg Motore™/kg feed is recommended for silver catfish in fish farming. Serious economic losses in Rhamdia quelen culture caused by Aeromonas hydrophila infections can be prevented by the addition of Motore™ to the diet.
Collapse
|