1
|
Wurtzel JGT, Gray BD, Pak KY, Zhao X, Ma P, McKenzie SE, Tanujaya M, Rizzo V, Del Carpio-Cano F, Rao AK, Lee-Gau Chong P, Goldfinger LE. Phosphatidylserine-blocking nanoparticles inhibit thrombosis without increased bleeding in mice. J Thromb Haemost 2025; 23:108-122. [PMID: 39423958 PMCID: PMC11725446 DOI: 10.1016/j.jtha.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Phosphatidylserine (PS) is a procoagulant phospholipid enriched on surfaces of activated vascular cells including platelets, endothelium, monocytes, and microvesicles. As a molecular driver of thrombosis accessible to drug blockade, PS is an attractive pharmacologic target for modulating thrombogenesis, with potentially reduced bleeding risk compared to anticoagulant and antiplatelet therapies. OBJECTIVES Test antithrombotic capabilities of a liposomal formulation, Zn-dipicolylamine cyanine-3[22,22]/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (molar ratio, 3:97), designated as DPAL, which we previously described binds selectively to PS-enriched cell surfaces, compared with effects on bleeding, in mouse models. METHODS PS-dependent DPAL binding to human and murine platelets was tested in vitro. Thrombosis and bleeding after DPAL intravenous administration were tested in C57Bl/6J mice following FeCl3 carotid arterial injury and tail tip amputation, respectively. Incorporation in hemostatic clots was investigated in the cremaster muscle laser injury model. Toxicity was tested by direct exposure to human endothelial cell cultures. RESULTS DPAL bound agonist-stimulated, PS-positive human and murine platelets, blocked by Annexin V or Ano6 deletion, which ablate PS exposure. DPAL prolonged prothrombin time, but did not prevent thrombin-induced fibrinogen receptor activation or aggregation, nor alter blood cell counts including platelets. Following arteriolar laser injury, DPAL bound wound surfaces and edges without destabilizing plugs. DPAL dose-dependently blocked FeCl3-induced arterial thrombosis but did not substantially increase bleeding, or induce endothelial cell death. CONCLUSION DPAL reduces thrombogenesis with minimal effects on bleeding in mouse models via selective binding to PS. DPAL may support novel approaches to modulate pathogenic thrombin generation with improved safety profiles in multiple contexts.
Collapse
Affiliation(s)
- Jeremy G T Wurtzel
- Cardeza Foundation for Hematologic Research, Department of Medicine, Division of Hematology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Brian D Gray
- Molecular Targeting Technologies Inc, West Chester, Pennsylvania, USA
| | - Koon Y Pak
- Molecular Targeting Technologies Inc, West Chester, Pennsylvania, USA
| | - Xuefei Zhao
- Cardeza Foundation for Hematologic Research, Department of Medicine, Division of Hematology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Peisong Ma
- Cardeza Foundation for Hematologic Research, Department of Medicine, Division of Hematology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Steven E McKenzie
- Cardeza Foundation for Hematologic Research, Department of Medicine, Division of Hematology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michelle Tanujaya
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Fabiola Del Carpio-Cano
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - A Koneti Rao
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA; Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Parkson Lee-Gau Chong
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Lawrence E Goldfinger
- Cardeza Foundation for Hematologic Research, Department of Medicine, Division of Hematology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
2
|
Fierro-Angulo OM, González-Regueiro JA, Pereira-García A, Ruiz-Margáin A, Solis-Huerta F, Macías-Rodríguez RU. Hematological abnormalities in liver cirrhosis. World J Hepatol 2024; 16:1229-1244. [PMID: 39351511 PMCID: PMC11438588 DOI: 10.4254/wjh.v16.i9.1229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/23/2024] Open
Abstract
Hematological abnormalities are common in cirrhosis and are associated with various pathophysiological mechanisms. Studies have documented a prevalence of thrombocytopenia, leukopenia, and anemia in patients with compensated cirrhosis of 77.9%, 23.5%, and 21.1%, respectively. These abnormalities carry significant clinical implications, including considerations for invasive procedures, infection risk, bleeding risk, and prognosis. Previously, cirrhosis was believed to predispose patients to bleeding due to alterations observed in classical coagulation tests such as prothrombin time, partial thromboplastin time, international normalized ratio, and thrombocytopenia. However, this understanding has evolved, and cirrhosis patients are now also acknowledged as being at a high risk for thrombotic events. Hemostasis in cirrhosis patients presents a complex phenotype, with procoagulant and anticoagulant abnormalities offsetting each other. This multifactorial phenomenon is inadequately reflected by routine laboratory tests. Thrombotic complications are more prevalent in decompensated cirrhosis and may correlate with disease severity. Bleeding is primarily associated with portal hypertension, endothelial dysfunction, mechanical vessel injury, disseminated intravascular coagulation, endotoxemia, and renal injury. This review comprehensively outlines hematologic index abnormalities, mechanisms of hemostasis, coagulation, and fibrinolysis abnormalities, limitations of laboratory testing, and clinical manifestations of bleeding and thrombosis in patients with liver cirrhosis.
Collapse
Affiliation(s)
- Oscar Manuel Fierro-Angulo
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 14080, Mexico
| | - José Alberto González-Regueiro
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 14080, Mexico
| | - Ariana Pereira-García
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 14080, Mexico
| | - Astrid Ruiz-Margáin
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 14080, Mexico
| | - Fernando Solis-Huerta
- Department of Hematology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 14080, Mexico
| | | |
Collapse
|
3
|
Galasso L, Cerrito L, Termite F, Mignini I, Esposto G, Borriello R, Ainora ME, Gasbarrini A, Zocco MA. The Molecular Mechanisms of Portal Vein Thrombosis in Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:3247. [PMID: 39409869 PMCID: PMC11482560 DOI: 10.3390/cancers16193247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents the sixth most diagnosed cancer worldwide and is the second leading cause of cancer-related death in the world. The association of HCC and portal vein thrombosis (PVT) represents an advanced stage of the tumor. PVT has a prevalence of about 25-50% in HCC, determining poor prognosis and a remarkable reduction in therapeutic perspectives in these patients, leading to severe complications such as ascites, metastasis, an increase in portal hypertension and potentially fatal gastrointestinal bleeding. The aim of this review is to evaluate the molecular mechanisms that are at the basis of PVT development, trying to evaluate possible strategies in the early detection of patients at high risk of PVT.
Collapse
Affiliation(s)
- Linda Galasso
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Lucia Cerrito
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Fabrizio Termite
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
| | - Irene Mignini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Giorgio Esposto
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Raffaele Borriello
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Elena Ainora
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Assunta Zocco
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| |
Collapse
|
4
|
Zeng Y, Zhang L, Zheng Z, Su J, Fu Y, Chen T, Lin K, Liu C, Huang H, Ou Q, Zeng Y. Targeted quantitative lipidomic uncovers lipid biomarkers for predicting the presence of compensated cirrhosis and discriminating decompensated cirrhosis from compensated cirrhosis. Clin Chem Lab Med 2024; 62:506-521. [PMID: 37924531 DOI: 10.1515/cclm-2023-0798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/23/2023] [Indexed: 11/06/2023]
Abstract
OBJECTIVES This study aimed to characterize serum lipid metabolism and identify potential biomarkers for compensated cirrhosis (CC) predicting and decompensated cirrhosis (DC) discrimination using targeted quantitative lipidomics and machine learning approaches. METHODS Serum samples from a cohort of 120 participants was analyzed, including 90 cirrhosis patients (45 CC patients and 45 DC patients) and 30 healthy individuals. Lipid metabolic profiling was performed using targeted LC-MS/MS. Two machine learning methods, least absolute shrinkage and selection operator (LASSO), and random forest (RF) were applied to screen for candidate metabolite biomarkers. RESULTS The metabolic profiling analysis showed a significant disruption in patients with CC and DC. Compared to the CC group, the DC group exhibited a significant upregulation in the abundance of glycochenodeoxycholic acid (GCDCA), glyco-ursodeoxycholic acid (GUDCA), glycocholic acid (GCA), phosphatidylethanolamine (PE), N-acyl-lyso-phosphatidylethanolamine (LNAPE), and triglycerides (TG), and a significant downregulation in the abundance of ceramides (Cer) and lysophosphatidylcholines (LPC). Machine learning identified 11 lipid metabolites (abbreviated as BMP11) as potential CC biomarkers with excellent prediction performance, with an AUC of 0.944, accuracy of 94.7 %, precision of 95.6 %, and recall of 95.6 %. For DC discrimination, eight lipids (abbreviated as BMP8) were identified, demonstrating strong efficacy, with an AUC of 0.968, accuracy of 92.2 %, precision of 88.0 %, and recall of 97.8 %. CONCLUSIONS This study unveiled distinct lipidomic profiles in CC and DC patients and established robust lipid-based models for CC predicting and DC discrimination.
Collapse
Affiliation(s)
- Yongbin Zeng
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Li Zhang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Zhiyi Zheng
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Jingyi Su
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Ya Fu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Tianbin Chen
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Kun Lin
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Can Liu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Huanhuan Huang
- Department of Pediatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Yongjun Zeng
- Department of Cardiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| |
Collapse
|
5
|
Giuli L, Pallozzi M, Venturini G, Gasbarrini A, Ponziani FR, Santopaolo F. Molecular Mechanisms Underlying Vascular Liver Diseases: Focus on Thrombosis. Int J Mol Sci 2023; 24:12754. [PMID: 37628933 PMCID: PMC10454315 DOI: 10.3390/ijms241612754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Vascular liver disorders (VLDs) comprise a wide spectrum of clinical-pathological entities that primarily affect the hepatic vascular system of both cirrhotic and non-cirrhotic patients. VLDs more frequently involve the portal and the hepatic veins, as well as liver sinusoids, resulting in an imbalance of liver homeostasis with serious consequences, such as the development of portal hypertension and liver fibrosis. Surprisingly, many VLDs are characterized by a prothrombotic phenotype. The molecular mechanisms that cause thrombosis in VLD are only partially explained by the alteration in the Virchow's triad (hypercoagulability, blood stasis, and endothelial damage) and nowadays their pathogenesis is incompletely described and understood. Studies about this topic have been hampered by the low incidence of VLDs in the general population and by the absence of suitable animal models. Recently, the role of coagulation imbalance in liver disease has been postulated as one of the main mechanisms linked to fibrogenesis, so a novel interest in vascular alterations of the liver has been renewed. This review provides a detailed analysis of the current knowledge of molecular mechanisms of VLD. We also focus on the promising role of anticoagulation as a strategy to prevent liver complications and to improve the outcome of these patients.
Collapse
Affiliation(s)
- Lucia Giuli
- Hepatology Unit, CEMAD Centro Malattie Dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (L.G.); (M.P.); (G.V.); (F.R.P.); (F.S.)
| | - Maria Pallozzi
- Hepatology Unit, CEMAD Centro Malattie Dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (L.G.); (M.P.); (G.V.); (F.R.P.); (F.S.)
| | - Giulia Venturini
- Hepatology Unit, CEMAD Centro Malattie Dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (L.G.); (M.P.); (G.V.); (F.R.P.); (F.S.)
| | - Antonio Gasbarrini
- Hepatology Unit, CEMAD Centro Malattie Dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (L.G.); (M.P.); (G.V.); (F.R.P.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Hepatology Unit, CEMAD Centro Malattie Dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (L.G.); (M.P.); (G.V.); (F.R.P.); (F.S.)
| | - Francesco Santopaolo
- Hepatology Unit, CEMAD Centro Malattie Dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (L.G.); (M.P.); (G.V.); (F.R.P.); (F.S.)
| |
Collapse
|
6
|
Zhu J, Li W, Jing J. Design, Synthesis and Anti-Melanoma Activity of Novel Annexin V Derivative with β 3-Integrin Affinity. Int J Mol Sci 2023; 24:11107. [PMID: 37446286 DOI: 10.3390/ijms241311107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Tumor tissues often exhibit unique integrin receptor presentation during development, such as high exposures of αvβ3 and αIIbβ3 integrins. These features are not present in normal tissues. The induction of selective thrombosis and infarction in the tumor-feeding vessels, as well as specific antagonism of αvβ3 integrin on the surface of tumor endothelial cells, is a potential novel antitumor strategy. The Echistatin-Annexin V (EAV) fusion protein is a novel Annexin V (ANV) derivative that possesses a high degree of αvβ3 and αIIbβ3 integrin receptor recognition and binding characteristics while retaining the specific binding ability of the natural ANV molecule for phosphatidylserine (PS). We systematically investigated the biological effects of this novel molecule with superimposed functions on mouse melanoma. We found that EAV inhibited the viability and migration of B16F10 murine melanoma cells in a dose-dependent manner, exhibited good tumor suppressive effects in a xenograft mouse melanoma model, strongly induced tumor tissue necrosis in mice, and targeted the inhibition of angiogenesis in mouse melanoma tumor tissue. EAV exhibited stronger biological effects than natural ANV molecules in inhibiting melanoma in mice. The unique biological effects of EAV are based on its high β3-type integrin receptor-specific recognition and binding ability, as well as its highly selective binding to PS molecules. Based on these findings, we propose that EAV-mediated tumor suppression is a novel and promising antitumor strategy that targets both PS- and integrin β3-positive tumor neovascularization and the tumor cells themselves, thus providing a possible mechanism for the treatment of melanoma.
Collapse
Affiliation(s)
- Jingyi Zhu
- Beijing Key Lab of Biotechnology and Genetic Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Wenjuan Li
- Beijing Key Lab of Biotechnology and Genetic Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Jian Jing
- Beijing Key Lab of Biotechnology and Genetic Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
7
|
Zhi Y, Sun Y, Jiao Y, Pan C, Wu Z, Liu C, Su J, Zhou J, Shang D, Niu J, Hua R, Yin P. HR-MS Based Untargeted Lipidomics Reveals Characteristic Lipid Signatures of Wilson's Disease. Front Pharmacol 2021; 12:754185. [PMID: 34880754 PMCID: PMC8645799 DOI: 10.3389/fphar.2021.754185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Aims: The diagnosis of Wilson's disease (WD) is challenging by clinical or genetic criteria. A typical early pathological change of WD is the increased liver lipid deposition and lowered serum triglyceride (TG). Therefore, the contents of serum lipids may provide evidence for screening of biomarkers for WD. Methods: 34 WD patients, 31 WD relatives, and 65 normal controls were enrolled in this study. Serum lipidomics data was acquired by an ultra-high-performance liquid chromatography high-resolution mass spectrometry system, and the data were analyzed by multivariate statistical methods. Results: Of all 510 identified lipids, there are 297 differential lipids between the WD and controls, 378 differential lipids between the relatives and controls, and 119 differential lipids between the patients and relatives. In WD, the abundances of most saturated TG were increased, whereas other unsaturated lipids decreased, including phosphatidylcholine (PC), sphingomyelin (SM), lysophosphatidylcholine (LPC), ceramide (Cer), and phosphatidylserine (PS). We also found many serum lipid species may be used as biomarkers for WD. The areas under the receiver operating characteristic curve (AUC) of PS (35:0), PS (38:5), and PS (34:0) were 0.919, 0.843, and 0.907. The AUCs of TG (38:0) and CerG1 (d42:2) were 0.948 and 0.915 and the AUCs of LPC (17:0) and LPC (15:0) were 0.980 and 0.960, respectively. The lipid biomarker panel exhibits good diagnostic performance for WD. The correlation networks were built among the different groups and the potential mechanisms of differential lipids were discussed. Interestingly, similar lipid profile of WD is also found in their relatives, which indicated the changes may also related to the mutation of the ATP7B gene. Conclusions: Lipid deregulation is another important hallmark of WD besides the deposition of copper. Our lipidomic results provide new insights into the diagnostic and therapeutic targets of WD.
Collapse
Affiliation(s)
- Yixiao Zhi
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Yujiao Sun
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yonggeng Jiao
- Department of Anesthesiology Jilin Province FAW General Hospital, Changchun, China
| | - Chen Pan
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zeming Wu
- iPhenome biotechnology Inc. Dalian (Yun Pu Kang), Dalian, China
| | - Chang Liu
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jie Su
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhou
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Hepatology, The First Hospital of Jilin University, Changchun, China.,Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Rui Hua
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Peiyuan Yin
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Yoshimori M, Nishio M, Ohashi A, Tateishi M, Mimura A, Wada N, Saito M, Shimizu N, Imadome KI, Arai A. Interferon-γ Produced by EBV-Positive Neoplastic NK-Cells Induces Differentiation into Macrophages and Procoagulant Activity of Monocytes, Which Leads to HLH. Cancers (Basel) 2021; 13:cancers13205097. [PMID: 34680246 PMCID: PMC8533691 DOI: 10.3390/cancers13205097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary Epstein–Barr virus (EBV), a common virus all over the world, infects not only B-cells but also T- and NK-cells. Once infected with EBV, human beings remain infected for life, and EBV renders infected B-cells immortal. EBV-positive NK-cell neoplasms, such as extranodal NK/T-cell lymphoma of nasal type, aggressive NK-cell leukemia, and chronic active EBV infection, are relatively rare but lethal disorders. They show systemic inflammation and progress to hemophagocytic lymphohistiocytosis (HLH), a life-threatening state of immune hyperactivation. The suppression and prevention of HLH are important to treat the neoplasms. Revealing the mechanism will pave a new path for treatment. We show herein that IFN-γ produced by EBV-positive neoplastic NK-cell is responsible for inducing the differentiation and the activation of M1-like macrophages. Suppressing IFN-γ may regulate HLH in EBV-positive NK-cell neoplasms. Abstract Epstein–Barr virus (EBV)-positive T- or NK-cell neoplasms show progressive systemic inflammation and abnormal blood coagulation causing hemophagocytic lymphohistiocytosis (HLH). It was reported that inflammatory cytokines were produced and secreted by EBV-positive neoplastic T- or NK-cells. These cytokines can induce the differentiation of monocytes into macrophages leading to HLH. To clarify which products of EBV-positive neoplastic T- or NK-cells have effects on monocytes, we performed a co-culture assay of monocytes with the supernatants of EBV-positive T- or NK-cell lines. The expression of differentiation markers, the phagocytosis ability, and the mRNA expression of the inflammatory cytokines of THP-1, a monocytic cell line, clearly increased after culturing with the supernatants from EBV-NK-cell lines. Co-culturing with the supernatants promoted the expression of CD80 and CD206 as well as M1 and M2 macrophage markers in human monocytes. Co-culturing with the supernatants of EBV-NK-cell lines significantly enhanced the procoagulant activity and the tissue factor expression of monocytes. Interferon (IFN)-γ was elevated extremely not only in the supernatant of EBV-NK-cell lines but also in the plasma of EBV-positive NK-cell neoplasms patients accompanying HLH. Finally, we confirmed that IFN-γ directly enhanced the differentiation into M1-like macrophages and the procoagulant activity of monocytes. Our findings suggest that IFN-γ may potentially serve as a therapeutic target to regulate HLH in EBV-positive NK-cell neoplasms.
Collapse
Affiliation(s)
- Mayumi Yoshimori
- Department of Hematological Therapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan;
| | - Miwako Nishio
- Department of Laboratory Molecular Genetics of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan; (M.N.); (A.O.); (M.T.); (A.M.); (M.S.)
| | - Ayaka Ohashi
- Department of Laboratory Molecular Genetics of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan; (M.N.); (A.O.); (M.T.); (A.M.); (M.S.)
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Megumi Tateishi
- Department of Laboratory Molecular Genetics of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan; (M.N.); (A.O.); (M.T.); (A.M.); (M.S.)
| | - Ayaka Mimura
- Department of Laboratory Molecular Genetics of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan; (M.N.); (A.O.); (M.T.); (A.M.); (M.S.)
| | - Naomi Wada
- Department of Advanced Medicine for Infections, National Center for Child Health and Development (NCCHD), Tokyo 157-8535, Japan; (N.W.); (K.-I.I.)
| | - Minori Saito
- Department of Laboratory Molecular Genetics of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan; (M.N.); (A.O.); (M.T.); (A.M.); (M.S.)
| | - Norio Shimizu
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan;
| | - Ken-Ichi Imadome
- Department of Advanced Medicine for Infections, National Center for Child Health and Development (NCCHD), Tokyo 157-8535, Japan; (N.W.); (K.-I.I.)
| | - Ayako Arai
- Department of Hematological Therapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan;
- Division of Hematology and Oncology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
- Correspondence: ; Tel.: +81-44-977-8111; Fax: +81-44-977-8361
| |
Collapse
|
9
|
Zuo N, Liu W, Hu T, Liu Y, Li B, Liu H, Jing H, Chen X, Li Y, Du J, Hu T, Dong Z, Niu Y, Shi J. Microvesicles, blood cells, and endothelial cells mediate phosphatidylserine-related prothrombotic state in patients with periodontitis. J Periodontol 2021; 93:287-297. [PMID: 34155635 DOI: 10.1002/jper.21-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Phosphatidylserine (PS) is essential for inflammation-associated thrombogenesis, but the exact effect of PS on the prothrombotic state in periodontitis is uncertain. This study aimed to determine the PS-related procoagulant state in patients with periodontitis. METHODS A total of 138 patients with periodontitis were examined compared with 42 healthy controls. PS-exposing cells and microvesicles in blood samples were detected by confocal microscopy and flow cytometry. The clotting time assay and prothrombinase complex formation assay were used to measure the procoagulant activity of microvesicles, blood cells and endothelial cells. Periodontal clinical parameters and laboratory characteristics of patients with severe periodontitis were recorded and analyzed at baseline and 6 months after non-surgical periodontal therapy. RESULTS Total PS-positive (PS+ ) microvesicles and the percentage of PS+ blood cells increased in patients with severe periodontitis compared with patients with moderate/mild periodontitis or healthy controls. Endothelial cells cultured in serum from patients with severe periodontitis expressed more PS compared with those cultured in serum from healthy controls. Specifically, PS exposure on blood cells and endothelial cells significantly decreased after inhibiting the effect of inflammatory cytokines. The elevated levels of PS+ cells and microvesicles in severe periodontitis shortened clotting time and led to increased prothrombinase complex formation. Non-surgical periodontal therapy significantly attenuated the release of microvesicles and the PS exposure of blood cells in severe periodontitis. CONCLUSIONS The prothrombotic state of patients with periodontitis is mediated by PS+ cells and microvesicles stimulated by elevated levels of inflammatory cytokines.
Collapse
Affiliation(s)
- Nan Zuo
- Department of Stomatology, the First Hospital, Harbin Medical University, Harbin, China
| | - Wenhui Liu
- Department of Stomatology, the First Hospital, Harbin Medical University, Harbin, China
| | - Tenglong Hu
- Department of Stomatology, the First Hospital, Harbin Medical University, Harbin, China.,Department of Oral Anatomy & Physiology, Stomatology School, Harbin Medical University, Harbin, China
| | - Yingmiao Liu
- Department of Stomatology, the First Hospital, Harbin Medical University, Harbin, China
| | - Baorong Li
- Department of Stomatology, the First Hospital, Harbin Medical University, Harbin, China
| | - Huan Liu
- Department of Stomatology, the First Hospital, Harbin Medical University, Harbin, China
| | - Haijiao Jing
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
| | - Xiaojing Chen
- Department of Nephrology, the First Hospital, Harbin Medical University, Harbin, China
| | - Yueyue Li
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
| | - Jingwen Du
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
| | - Tianshui Hu
- Department of Stomatology, the First Hospital, Harbin Medical University, Harbin, China
| | - Zengxiang Dong
- Department of Cardiology, the First Hospital, Harbin Medical University, Harbin, China
| | - Yumei Niu
- Department of Stomatology, the First Hospital, Harbin Medical University, Harbin, China
| | - Jialan Shi
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China.,Departments of Research and Surgery, VA Boston Healthcare System, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Zhang J, Yu M, Liu B, Zhou P, Zuo N, Wang Y, Feng Y, Zhang Y, Wang J, He Y, Wu Y, Dong Z, Hong L, Shi J. Neutrophil extracellular traps enhance procoagulant activity and thrombotic tendency in patients with obstructive jaundice. Liver Int 2021; 41:333-347. [PMID: 33159371 DOI: 10.1111/liv.14725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Patients with obstructive jaundice (OJ) are considered to be prothrombotic with increased risk of thromboembolism complications. The role of neutrophil extracellular traps (NETs) in procoagulant activity (PCA) and thrombosis risk in patients with OJ is unclear. In this study, we investigated NETs formation in OJ patients and the role of elevated unconjugated bilirubin (UCB) in inducing NETs, resulting in enhanced PCA and endothelial injury. METHODS NETs of OJ patients and healthy controls were measured. NETs PCA was assessed via coagulation time (CT), fibrin formation and purified coagulation complex production assays. Visualization of NETs and mitochondrial reactive oxygen species (MitoROS) were performed with a fluorescence microscope. We further used confocal microscopy to quantify the exposure of phosphatidylserine (PS), fibrin strands and FVa/Xa on Human umbilical vein endothelial cells (HUVECs). RESULTS Assessment of NETs components levels revealed greater NETs production in OJ patients than in healthy controls. Importantly, OJ-NETs were responsible for enhanced PCA. UCB induced NETs formation via MitoROS accumulation and mitochondrial mobilization. HUVECs cocultured with OJ NETs lost their cell-cell junctions and consequently converted to a procoagulant phenotype. The PCA was attenuated by using DNase I alone or in combination with lactadherin. CONCLUSIONS Our results suggest that UCB-induced NETs play a prominent role in promoting the hypercoagulable and prothrombotic state in OJ patients. The increased MitoROS accumulation in neutrophils initiated NETosis. NETs are promising targets for indicating or improving coagulation disorders in OJ patients.
Collapse
Affiliation(s)
- Jinming Zhang
- Department of Hematology and Rheumatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Muxin Yu
- Jiaxing University College of Medicine, Jiaxing, China
| | - Biou Liu
- Department of General Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Peng Zhou
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Nan Zuo
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yufeng Wang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yiming Feng
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yue Zhang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jiaojiao Wang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yujing He
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yinsong Wu
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zengxiang Dong
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Luojia Hong
- Department of Hematology and Rheumatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jialan Shi
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China.,Departments of Research and Medicine, VA Boston Healthcare System, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Serag WM, Mohammed BSE, Mohamed MM, Elsayed BE. Predicting the risk of portal vein thrombosis in patients with liver cirrhosis and hepatocellular carcinoma. Heliyon 2020; 6:e04677. [PMID: 32904199 PMCID: PMC7452450 DOI: 10.1016/j.heliyon.2020.e04677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 01/24/2023] Open
Abstract
The mechanisms of the hypercoagulable state in cirrhotics with and without hepatocellular carcinoma are incompetently comprehended. Objective: We aimed to explore the plasma Annexin A5/PS + MP ratio in these patients. Higher levels of Annexin A5 and PhosphatidylSerine bearing microparticles have been observed in cases of inflammation and increased coagulation but there are no studies which explore if there is an association between them and PVT in cirrhotics with and without HCC. So, our goal is to estimate their role in predicting PVT within HCV cirrhotics with and without HCC. 91 HCV cirrhotics with and without HCC and 20 healthy people (controls) were enlisted. Cirrhotics with and without HCC who developed PVT displayed higher levels of PS + MPs and lower Annexin A5/PS + MPs ratio (38.73 ± 1.92) and (0.00238 ± 0.00047) than cirrhotics who didn't develop PVT (22.19 ± 10.58) and (0.00451 ± 0.0023) (P < 0.001). Among the tested factors, lower Annexin A5/PS + MPs ratio show higher performance in predicting PVT in total cirrhotics, AUC, 0.919 followed by PS + MPs level, 0.876, Portal flow velocity, 0.842, Plasma Annexin A5 level, 0.509. In our hypothesis, As phosphatidylserine exposure increase due to increased level of circulating microparticles in cirrhotics with and without HCC, anenxin-A5 may be secreted by platelets and endothelial cells into the circulation as a physiological response to inactivate the elevated levels of PS bearing MPs produced in these patients but the increase in anenxin-A5 level isn't equivalent to the increase in PS bearing MPs levels. The equilibrium between plasma annexin A5 and PS bearing MPs levels is defected.
Collapse
Affiliation(s)
| | | | | | - Basem Eysa Elsayed
- National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| |
Collapse
|
12
|
Zermatten MG, Fraga M, Moradpour D, Bertaggia Calderara D, Aliotta A, Stirnimann G, De Gottardi A, Alberio L. Hemostatic Alterations in Patients With Cirrhosis: From Primary Hemostasis to Fibrinolysis. Hepatology 2020; 71:2135-2148. [PMID: 32090357 DOI: 10.1002/hep.31201] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/20/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022]
Abstract
In the setting of liver cirrhosis (LC), profound hemostatic changes occur, which affect primary hemostasis, coagulation, and fibrinolysis. They involve prohemorrhagic and prothrombotic alterations at each of these steps. Patients with cirrhosis exhibit multifactorial thrombocytopenia and in vitro thrombocytopathy, counterbalanced by increased von Willebrand factor. The resultant shift is difficult to assess, but overall these changes probably result in a rebalanced primary hemostasis. Concerning coagulation, the reduced activity of coagulation factors is counterbalanced by an increase in factor VIII (produced by liver sinusoidal endothelial cells), a decrease of the natural anticoagulants, and complex changes, including changes in circulating microparticles, cell-free DNA, and neutrophil extracellular traps. Overall, these alterations result in a procoagulant state. As for fibrinolysis, increased tissue-type and urokinase-type plasminogen activators, a relatively decreased plasminogen activator inhibitor 1, and decreased levels of thrombin-activatable fibrinolysis inhibitor and α2-antiplasmin are counterbalanced by decreased plasminogen and a decreased fibrin clot permeability. Whether and how these changes shift fibrinolysis remains to be determined. Overall, the current consensus is that in patients with cirrhosis, the hemostasis is shifted toward a procoagulant state. We review the published evidence for the concept of LC as a prothrombotic state, discuss discordant data, and highlight the impact of the underlying cause of LC on the resultant imbalance.
Collapse
Affiliation(s)
- Maxime G Zermatten
- Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Montserrat Fraga
- Division of Gastroenterology and Hepatology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Debora Bertaggia Calderara
- Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Alessandro Aliotta
- Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Guido Stirnimann
- University Clinic for Visceral Surgery and Medicine, University Hospital Inselspital and University of Bern, Bern, Switzerland
| | - Andrea De Gottardi
- University Clinic for Visceral Surgery and Medicine, University Hospital Inselspital and University of Bern, Bern, Switzerland.,Gastroenterology and Hepatology, Ente Ospedaliero Cantonale, Università della Svizzera Italiana, Lugano, Switzerland
| | - Lorenzo Alberio
- Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
13
|
Wan J, Roberts LN, Hendrix W, Konings J, Ow T, Rabinowich L, Barbouti O, de Laat B, Arya R, Patel VC, Roest M, Lisman T, Bernal W. Whole blood thrombin generation profiles of patients with cirrhosis explored with a near patient assay. J Thromb Haemost 2020; 18:834-843. [PMID: 31997515 PMCID: PMC7186949 DOI: 10.1111/jth.14751] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Patients with cirrhosis have a rebalanced hemostasis, often with normal or elevated thrombin-generating (TG) capacity in plasma. Whole blood (WB) TG allows faster determination and, importantly, includes the influence of all circulating blood cells. We aimed to study the TG profile of patients with cirrhosis in WB and in platelet poor plasma. METHODS Thrombin-generating capacity in WB and plasma were assessed with a near-patient WB-TG assay and the calibrated automated thrombinography assay, respectively. TG assays were tested in presence and absence of thrombomodulin. Conventional coagulation tests were also performed. RESULTS Thirty-four patients with cirrhosis and twenty-two controls were analyzed. Compared with controls, patients had substantially deranged results in conventional coagulation tests. Comparable WB-TG capacity (endogenous thrombin potential until peak, ETPp) but significantly lower peak thrombin were found in patients, and these results persisted when thrombomodulin was present. TG of the patients was more resistant to thrombomodulin than controls in both WB and plasma, although the inhibitory effect of thrombomodulin was drastically weaker in WB than in plasma. The peak of WB-TG in patients correlated moderately with their hematocrit and platelet count. Significant correlations were found between TG results in WB and plasma. CONCLUSIONS The WB-TG assay shows a normal to hypocoagulable state in patients with cirrhosis with a decreased anticoagulant activity of TM compared to plasma-TG. The clinical value of this assay needs further validation.
Collapse
Affiliation(s)
- Jun Wan
- Synapse Research InstituteMaastrichtthe Netherlands
- Cardiovascular Research InstituteMaastricht UniversityMaastrichtthe Netherlands
| | - Lara N. Roberts
- King's Thrombosis CentreDepartment of Haematological MedicineKing's College HospitalLondonUK
| | | | - Joke Konings
- Synapse Research InstituteMaastrichtthe Netherlands
- Cardiovascular Research InstituteMaastricht UniversityMaastrichtthe Netherlands
| | - Tsai‐Wing Ow
- Institute of Liver StudiesKing's College HospitalLondonUK
| | | | - Omar Barbouti
- Institute of Liver StudiesKing's College HospitalLondonUK
| | - Bas de Laat
- Synapse Research InstituteMaastrichtthe Netherlands
- Cardiovascular Research InstituteMaastricht UniversityMaastrichtthe Netherlands
| | - Roopen Arya
- King's Thrombosis CentreDepartment of Haematological MedicineKing's College HospitalLondonUK
| | - Vishal C. Patel
- Institute of Liver StudiesKing's College HospitalLondonUK
- School of Immunology and Microbial SciencesFaculty of Life Sciences and MedicineKing's College LondonLondonUK
- Institute of Hepatology LondonFoundation for Liver ResearchLondonUK
| | - Mark Roest
- Synapse Research InstituteMaastrichtthe Netherlands
- Cardiovascular Research InstituteMaastricht UniversityMaastrichtthe Netherlands
| | - Ton Lisman
- Surgical Research LaboratorySection of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - William Bernal
- Institute of Liver StudiesKing's College HospitalLondonUK
- School of Immunology and Microbial SciencesFaculty of Life Sciences and MedicineKing's College LondonLondonUK
| |
Collapse
|
14
|
Dayoub AS, Brekken RA. TIMs, TAMs, and PS- antibody targeting: implications for cancer immunotherapy. Cell Commun Signal 2020; 18:29. [PMID: 32087708 PMCID: PMC7036251 DOI: 10.1186/s12964-020-0521-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy for cancer is making impressive strides at improving survival of a subset of cancer patients. To increase the breadth of patients that benefit from immunotherapy, new strategies that combat the immunosuppressive microenvironment of tumors are needed. Phosphatidylserine (PS) signaling is exploited by tumors to enhance tumor immune evasion and thus strategies to inhibit PS-mediated immune suppression have potential to increase the efficacy of immunotherapy. PS is a membrane lipid that flips to the outer surface of the cell membrane during apoptosis and/or cell stress. Externalized PS can drive efferocytosis or engage PS receptors (PSRs) to promote local immune suppression. In the tumor microenvironment (TME) PS-mediated immune suppression is often termed apoptotic mimicry. Monoclonal antibodies (mAbs) targeting PS or PSRs have been developed and are in preclinical and clinical testing. The TIM (T-cell/transmembrane, immunoglobulin, and mucin) and TAM (Tyro3, AXL, and MerTK) family of receptors are PSRs that have been shown to drive PS-mediated immune suppression in tumors. This review will highlight the development of mAbs targeting PS, TIM-3 and the TAM receptors. Video Abstract
Collapse
Affiliation(s)
- Adam S Dayoub
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-8593, USA
| | - Rolf A Brekken
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-8593, USA. .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
Xu W, Peng F, Deng Y, Fan X, Li N. The emerging roles of eryptosis in liver diseases. Transfus Clin Biol 2019; 26:336-340. [PMID: 31201023 DOI: 10.1016/j.tracli.2019.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/23/2019] [Indexed: 12/16/2022]
Abstract
Erythrocytes undergo programmed cell death, similar to apoptosis, known as eryptosis. This process is a result of several factors including hyperosmolarity, oxidative stress, and exposure to xenobiotics, and is characterized by the breakdown of membrane phospholipid asymmetry, the clustering of band 3, and the generation of red blood cell-derived microparticles. Under pathological conditions, the liver is the primary site of erythrocyte clearance and plays an important role in iron recycling. Phosphatidylserine exposure and band-3 clustering on eryptotic erythrocytes represent mainly pro-phagocytic signals. Further, the percentage of eryptotic erythrocytes is enhanced in the circulating blood of patients with hepatic failure, hyperbilirubinemia, and nonalcoholic steatohepatitis. In this review, we concentrate on recent progress regarding the pathophysiological roles of eryptosis in liver diseases.
Collapse
Affiliation(s)
- Wei Xu
- Department of Blood Transfusion, Central South University, Xiangya Hospital, 410008 Changsha, China
| | - Fang Peng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Central South University, Xiangya Hospital, 410008 Changsha, China
| | - Ying Deng
- The Hospital of Ningxiang County People, 410600 Changsha, China
| | - Xuegong Fan
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan Province, Central South University, Xiangya Hospital, 410008 Changsha, China
| | - Ning Li
- Department of Blood Transfusion, Central South University, Xiangya Hospital, 410008 Changsha, China.
| |
Collapse
|
16
|
Intagliata NM, Caldwell SH, Tripodi A. Diagnosis, Development, and Treatment of Portal Vein Thrombosis in Patients With and Without Cirrhosis. Gastroenterology 2019; 156:1582-1599.e1. [PMID: 30771355 DOI: 10.1053/j.gastro.2019.01.265] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/11/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023]
Abstract
Portal vein thrombosis unrelated to solid malignancy is common in patients with cirrhosis, but less frequently observed in patients without cirrhosis. Prompt diagnosis and management of acute symptomatic portal vein thrombosis are essential. Failure to detect and treat thromboses can result in mesenteric ischemia, chronic cavernous transformation, and complications of portal hypertension. In patients with cirrhosis, development of portal vein thrombosis is often insidious and remains undetected until its incidental detection. Management of portal vein thrombosis in patients with cirrhosis is more controversial. However, there are data to support treatment of specific patients with anticoagulation agents. We review the common and distinct features of portal vein thromboses in patients without liver tumors, with and without cirrhosis.
Collapse
Affiliation(s)
- Nicolas M Intagliata
- Division of Gastroenterology and Hepatology, University of Virginia Medical CenterCharlottesville, Virginia.
| | - Stephen H Caldwell
- Division of Gastroenterology and Hepatology, University of Virginia Medical CenterCharlottesville, Virginia
| | - Armando Tripodi
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Cà Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Milano, Italy
| |
Collapse
|
17
|
Kyle JE, Clair G, Bandyopadhyay G, Misra RS, Zink EM, Bloodsworth KJ, Shukla AK, Du Y, Lillis J, Myers JR, Ashton J, Bushnell T, Cochran M, Deutsch G, Baker ES, Carson JP, Mariani TJ, Xu Y, Whitsett JA, Pryhuber G, Ansong C. Cell type-resolved human lung lipidome reveals cellular cooperation in lung function. Sci Rep 2018; 8:13455. [PMID: 30194354 PMCID: PMC6128932 DOI: 10.1038/s41598-018-31640-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
Cell type-resolved proteome analyses of the brain, heart and liver have been reported, however a similar effort on the lipidome is currently lacking. Here we applied liquid chromatography-tandem mass spectrometry to characterize the lipidome of major lung cell types isolated from human donors, representing the first lipidome map of any organ. We coupled this with cell type-resolved proteomics of the same samples (available at Lungmap.net). Complementary proteomics analyses substantiated the functional identity of the isolated cells. Lipidomics analyses showed significant variations in the lipidome across major human lung cell types, with differences most evident at the subclass and intra-subclass (i.e. total carbon length of the fatty acid chains) level. Further, lipidomic signatures revealed an overarching posture of high cellular cooperation within the human lung to support critical functions. Our complementary cell type-resolved lipid and protein datasets serve as a rich resource for analyses of human lung function.
Collapse
Affiliation(s)
- Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Gautam Bandyopadhyay
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Ravi S Misra
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Erika M Zink
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kent J Bloodsworth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Anil K Shukla
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yina Du
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jacquelyn Lillis
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Jason R Myers
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - John Ashton
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Timothy Bushnell
- Flow Cytometry Core Facility, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Matthew Cochran
- Flow Cytometry Core Facility, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Gail Deutsch
- Department of Pathology, Seattle Children's Hospital, Seattle, WA, 98105, USA
| | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - James P Carson
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX, 78712, USA
| | - Thomas J Mariani
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Yan Xu
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Gloria Pryhuber
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
18
|
Bissinger R, Bhuyan AAM, Qadri SM, Lang F. Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J 2018; 286:826-854. [PMID: 30028073 DOI: 10.1111/febs.14606] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/15/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022]
Abstract
The average lifespan of circulating erythrocytes usually exceeds hundred days. Prior to that, however, erythrocytes may be exposed to oxidative stress in the circulation which could cause injury and trigger their suicidal death or eryptosis. Oxidative stress activates Ca2+ -permeable nonselective cation channels in the cell membrane, thus, stimulating Ca2+ entry and subsequent cell membrane scrambling resulting in phosphatidylserine exposure and activation of Ca2+ -sensitive K+ channels leading to K+ exit, hyperpolarization, Cl- exit, and ultimately cell shrinkage due to loss of KCl and osmotically driven water. While the mechanistic link between oxidative stress and anemia remains ill-defined, several diseases such as diabetes, hepatic failure, malignancy, chronic kidney disease and inflammation have been identified to display both increased oxidative stress as well as eryptosis. Recent compelling evidence suggests that oxidative stress is an important perpetrator in accelerating erythrocyte loss in different systemic conditions and an underlying mechanism for anemia associated with these pathological states. In the present review, we discuss the role of oxidative stress in reducing erythrocyte survival and provide novel insights into the possible use of antioxidants as putative antieryptotic and antianemic agents in a variety of systemic diseases.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Internal Medicine III, Eberhard-Karls-University Tübingen, Germany
| | - Abdulla Al Mamun Bhuyan
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard-Karls-University Tübingen, Germany
| | - Syed M Qadri
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Florian Lang
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard-Karls-University Tübingen, Germany.,Department of Molecular Medicine II, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
19
|
Qadri SM, Bissinger R, Solh Z, Oldenborg PA. Eryptosis in health and disease: A paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes. Blood Rev 2017; 31:349-361. [PMID: 28669393 DOI: 10.1016/j.blre.2017.06.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/05/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022]
Abstract
During the course of their natural ageing and upon injury, anucleate erythrocytes can undergo an unconventional apoptosis-like cell death, termed eryptosis. Eryptotic erythrocytes display a plethora of morphological alterations including volume reduction, membrane blebbing and breakdown of the membrane phospholipid asymmetry resulting in phosphatidylserine externalization which, in turn, mediates their phagocytic recognition and clearance from the circulation. Overall, the eryptosis machinery is tightly orchestrated by a wide array of endogenous mediators, ion channels, membrane receptors, and a host of intracellular signaling proteins. Enhanced eryptosis shortens the lifespan of circulating erythrocytes and confers a procoagulant phenotype; this phenomenon has been tangibly implicated in the pathogenesis of anemia, deranged microcirculation, and increased prothrombotic risk associated with a multitude of clinical conditions. Herein, we reviewed the molecular mechanisms dictating eryptosis and erythrophagocytosis and critically analyzed the current evidence leading to the pathophysiological ramifications of eryptotic cell death in the context of human disease.
Collapse
Affiliation(s)
- Syed M Qadri
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.
| | - Rosi Bissinger
- Department of Internal Medicine, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Ziad Solh
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Medical Services and Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Per-Arne Oldenborg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|