1
|
Jin Y, Wang S, Tang K, Zhan P, Liu X. Recent advances in screening methods enabling the discovery of novel anti-hepatitis B virus drug candidates. Eur J Med Chem 2025; 282:117093. [PMID: 39612566 DOI: 10.1016/j.ejmech.2024.117093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
The global population affected by Hepatitis B virus (HBV) is approximately 296 million, but few drugs have been able to completely eradicate HBV and the range of effective treatments remains limited. Recent advancements in molecular biology and artificial intelligence, as well as a comprehensive understanding of the molecular structure of HBV, have greatly aided the rational development of anti-HBV agents. Such advancements have facilitated an increasing array of candidate drugs transitioning into clinical trials, however, no novel target-based compounds have been approved for clinical application. To expedite the progression of anti-HBV drug development, establishing a reliable and robust in vitro HBV infection system is of great importance. However, owing to the host and tissue specificity of HBV, identifying a stable and dependable cell culture system for screening all anti-HBV agents poses significant challenges. In this review, we summarize recent advances in screening methods for small-molecule inhibitors that target key stages of the HBV replication cycle from a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Yu Jin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Kai Tang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
2
|
Lu L, Cong D, Lv T, Wang H, Wang X. Novel NTCP ligand dimeric bile acid conjugated with ASO reduce hepatitis B virus surface antigen in vivo. Eur J Med Chem 2024; 280:116955. [PMID: 39426128 DOI: 10.1016/j.ejmech.2024.116955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Hepatitis B virus (HBV) specifically infects hepatocytes and causes severe liver diseases. However, functional cure is rarely attainable by current treatment modalities. Anti-sense oligonucleotide (ASO), which targets pregenomic RNAs to reduce hepatitis B virus (HBV) antigen production and viral replication, has been studied as a novel treatment strategy for HBV cure and can be conjugated with N-acetylgalactosamine (GalNAc), thereby enhancing hepatocyte uptake via the asialoglycoprotein receptor (ASGPR). In comparison to GalNAc-ASO conjugation, clinical research indicates that unconjugated ASO is more effective in reducing hepatitis B virus surface antigen level. Recent studies have revealed that human sodium taurocholate co-transporting polypeptide (NTCP) is a functional cellular receptor for hepatitis B virus (HBV), and the bivalent bile acid structure may interact with multiple binding sites on NTCP, yielding much stronger interaction and substantially improved binding affinity. In this study, we synthesized NTCP ligand-antisense oligonucleotide (ASO) conjugation and evaluated the potential of antiviral therapy specifically reduction of HBV antigenemia in mice in vivo.
Collapse
Affiliation(s)
- Lei Lu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 S. Tianshui Rd., Lanzhou, 730000, PR China
| | - Dezi Cong
- SicaGene Biotechnology Co., Ltd, Buiding 16, No. 9 Yongteng North Road, Haidian District, Beijing, 100144, PR China
| | - Tinghong Lv
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 S. Tianshui Rd., Lanzhou, 730000, PR China
| | - Haisheng Wang
- SicaGene Biotechnology Co., Ltd, Buiding 16, No. 9 Yongteng North Road, Haidian District, Beijing, 100144, PR China
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 S. Tianshui Rd., Lanzhou, 730000, PR China; SicaGene Biotechnology Co., Ltd, Buiding 16, No. 9 Yongteng North Road, Haidian District, Beijing, 100144, PR China.
| |
Collapse
|
3
|
Li HB, Bai SQ, Shu TY, Wang Q, Chen H, Su LH, Xu M. Lappanolides A-N, fourteen undescribed sesquiterpenoids from Saussurea costus (Syn. Saussurea lappa) and their anti HBV activity. PHYTOCHEMISTRY 2024; 226:114207. [PMID: 38972443 DOI: 10.1016/j.phytochem.2024.114207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Lappanolides A-N (1-14), 14 undescribed sesquiterpenoids, along with 23 known ones (15-37), were isolated from the roots of Saussurea costus, which were primarily categorized into eudesmane, guaiane, and germacrane types. Lappanolide A (1) possessed an unprecedented pseudo-disesquiterpenoids. Their structures and absolute configurations were established using physical data analyses (HRESIMS, IR, 1D and 2D NMR) and ECD calculations. All isolated compounds were tested for anti-hepatitis B virus (anti-HBV) activity. Ten compounds (1, 9, 11, 12, 19, 22, 28, 29, 31, and 36) exhibited activities against HBsAg secretions as determined by ELISA assay, with IC50 values ranging from 5.2 to 45.7 μM. In particular, compounds 28 and 29 showed inhibition of HBsAg secretion with IC50 values of 5.28 and 5.30 μM, and CC50 values of 9.85 and 6.37 μM, respectively, though they all exhibited low selectivity. Several compounds displayed cytotoxicity in the MTT assay. Among them, compound 28 was the most notable and was chosen for further study using flow cytometry. The result showed that it significantly induced HepG2 cell arrest in the S phase and induced apoptosis.
Collapse
Affiliation(s)
- Hong-Bo Li
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China
| | - Shi-Qun Bai
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China
| | - Teng-Yun Shu
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China
| | - Qiong Wang
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China
| | - Hao Chen
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China
| | - Li-Hua Su
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China.
| | - Min Xu
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China.
| |
Collapse
|
4
|
Jiang Q, Zhang Y, Duan D, Retout S, Upmanyu R, Glavini K, Triyatni M, Zhu Y, Grippo JF, Jin Y. Using exploratory pharmacokinetic and pharmacodynamic analyses to predict the probability of flu-like symptoms in healthy volunteers and patients with chronic hepatitis B treated with the toll-like receptor 7 agonist ruzotolimod. Clin Transl Sci 2024; 17:e13896. [PMID: 39119977 PMCID: PMC11310849 DOI: 10.1111/cts.13896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Ruzotolimod (Toll-like receptor 7 (TLR7) agonist, RG7854) is an oral, small molecule immuno-modulator activating the TLR 7 and is being evaluated in patients with CHB. As with other TLR7 agonists, the study drug-related adverse events of flu-like symptoms have been reported in some participants during phase I studies with ruzotolimod. An exploratory analysis of the relationship between pharmacokinetic (PK)/pharmacodynamic (PD) and flu-like symptoms was performed in participants from two phase I studies including both healthy volunteers and NUC-suppressed CHB patients who received either single or multiple ascending doses of orally administered ruzotolimod. Linear and logistic regression were used to explore potential relationships between dose, flu-like symptoms, PK, and PD. Generalized linear regression was performed to predict the probability of flu-like symptoms of all intensities at different RO7011785 (the active metabolite of the double prodrug ruzotolimod) PK exposure. This analysis showed that single or multiple doses of ruzotolimod at ⩾100 mg, the immune PD (IFN-α, neopterin, IP-10, and the transcriptional expression of ISG15, OAS-1, MX1, and TLR7) responses increase with the RO7011785 PK exposure, which increases linearly with the doses from 3 mg to 170 mg of ruzotolimod. The analysis also showed that the probability of flu-like symptoms occurrence increases with PD responses (IFN-α and IP-10). Dose reduction of ruzotolimod can be an effective way to reduce the magnitude of PD response, thus reducing the probability of study drug-related flu-like symptoms occurrence at all intensity in the participants who are highly sensitive to PD activation and intolerant to flu-like symptoms.
Collapse
Affiliation(s)
| | | | - Dan Duan
- Roche Innovation CenterShanghaiChina
| | | | | | | | | | | | | | - Yuyan Jin
- Roche Innovation CenterShanghaiChina
| |
Collapse
|
5
|
Liu L, Wang H, Liu L, Cheng F, Aisa HA, Li C, Meng S. Rupestonic Acid Derivative YZH-106 Promotes Lysosomal Degradation of HBV L- and M-HBsAg via Direct Interaction with PreS2 Domain. Viruses 2024; 16:1151. [PMID: 39066313 PMCID: PMC11281537 DOI: 10.3390/v16071151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatitis B surface antigen (HBsAg) is not only the biomarker of hepatitis B virus (HBV) infection and expression activity in hepatocytes, but it also contributes to viral specific T cell exhaustion and HBV persistent infection. Therefore, anti-HBV therapies targeting HBsAg to achieve HBsAg loss are key approaches for an HBV functional cure. In this study, we found that YZH-106, a rupestonic acid derivative, inhibited HBsAg secretion and viral replication. Further investigation demonstrated that YZH-106 promoted the lysosomal degradation of viral L- and M-HBs proteins. A mechanistic study using Biacore and docking analysis revealed that YZH-106 bound directly to the PreS2 domain of L- and M-HBsAg, thereby blocking their entry into the endoplasmic reticulum (ER) and promoting their degradation in cytoplasm. Our work thereby provides the basis for the design of a novel compound therapy to target HBsAg against HBV infection.
Collapse
Affiliation(s)
- Lanlan Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
| | - Haoyu Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Lulu Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
| | - Fang Cheng
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Changfei Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
| | - Songdong Meng
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
- University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Li N, Feng X, An C, Liu G, Liu C. Metabolites from traditional Chinese botanical drugs with anti-hepatitis B virus activity - a review. Front Pharmacol 2024; 15:1331967. [PMID: 39070799 PMCID: PMC11272473 DOI: 10.3389/fphar.2024.1331967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/13/2024] [Indexed: 07/30/2024] Open
Abstract
Hepatitis B virus (HBV)-related liver disease poses a major threat to human health worldwide. Although interferon and nucleoside analogues are commonly administered for treating chronic HBV infection, their use is limited by considerable side effects, drug resistance and incapacity for HBV elimination. Hence, novel HBV therapeutics are urgently required. For numerous years, traditional Chinese botanical drugs have been widely used to treat HBV-related diseases. The natural metabolites derived from these traditional drugs exhibit significant anti-HBV effects and serve as potential novel drugs for treating HBV. For overall understanding the therapeutic potential of these metabolites, the anti-HBV effects and mechanisms of action of 107 natural metabolites are summarized in this article. Mechanistically, these natural metabolites exert their anti-HBV effects by influencing the expression and function of host and/or viral genes, which differs from the mechanism of action of nucleoside analogues. Indeed, combining natural metabolites with nucleoside analogues can exert synergistic effects. Accordingly, natural metabolites or their chemically modified derivatives represent potential novel drugs and adjuvants for anti-HBV treatment.
Collapse
Affiliation(s)
| | | | - Cheng An
- Clinical Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guijian Liu
- Clinical Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chao Liu
- Clinical Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Fan Z, Pavlova A, Jenkins MC, Bassit L, Salman M, Lynch DL, Patel D, Korablyov M, Finn MG, Schinazi RF, Gumbart JC. Biophysics-Guided Lead Discovery of HBV Capsid Assembly Modifiers. ACS Infect Dis 2024; 10:1162-1173. [PMID: 38564659 PMCID: PMC11019538 DOI: 10.1021/acsinfecdis.3c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Hepatitis B virus (HBV) is the leading cause of chronic liver pathologies worldwide. HBV nucleocapsid, a key structural component, is formed through the self-assembly of the capsid protein units. Therefore, interfering with the self-assembly process is a promising approach for the development of novel antiviral agents. Applied to HBV, this approach has led to several classes of capsid assembly modulators (CAMs). Here, we report structurally novel CAMs with moderate activity and low toxicity, discovered through a biophysics-guided approach combining docking, molecular dynamics simulations, and a series of assays with a particular emphasis on biophysical experiments. Several of the identified compounds induce the formation of aberrant capsids and inhibit HBV DNA replication in vitro, suggesting that they possess modest capsid assembly modulation effects. The synergistic computational and experimental approaches provided key insights that facilitated the identification of compounds with promising activities. The discovery of preclinical CAMs presents opportunities for subsequent optimization efforts, thereby opening new avenues for HBV inhibition.
Collapse
Affiliation(s)
- Zixing Fan
- Interdisciplinary
Bioengineering Graduate Program, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anna Pavlova
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Matthew C. Jenkins
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Leda Bassit
- Center
for ViroScience and Cure, Laboratory of Biochemical Pharmacology,
Department of Pediatrics, Emory University
School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Mohammad Salman
- Center
for ViroScience and Cure, Laboratory of Biochemical Pharmacology,
Department of Pediatrics, Emory University
School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Diane L. Lynch
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Dharmeshkumar Patel
- Center
for ViroScience and Cure, Laboratory of Biochemical Pharmacology,
Department of Pediatrics, Emory University
School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Maksym Korablyov
- MIT
Media Lab, Massachusetts Institute of Technology, Boston, Massachusetts 02139, United States
| | - M. G. Finn
- School
of Chemistry & Biochemistry and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Raymond F. Schinazi
- Center
for ViroScience and Cure, Laboratory of Biochemical Pharmacology,
Department of Pediatrics, Emory University
School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - James C. Gumbart
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Yang L, Gong Y, Liu F, Chen W, Wang X, Long G, Li H, Xiao F, Lu M, Hu Y, Tong X, Zuo J. A novel phthalazinone derivative as a capsid assembly modulator inhibits hepatitis B virus expression. Antiviral Res 2024; 221:105763. [PMID: 38008192 DOI: 10.1016/j.antiviral.2023.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Development of new anti-hepatitis B virus (HBV) drugs that target viral capsid assembly is a very active research field. We identify a novel phthalazinone derivative, compound 5832, as a potent HBV inhibitor. In this study, we intend to elaborate the antiviral effect and mechanism of 5832 against HBV in vitro and in vivo. Compound 5832 treatment induces the formation of genome-free empty capsid by interfering with the core protein assembly domain, which significantly decreases the extracellular and intracellular HBV DNA. In the AAV-HBV transduced mouse model, 5832 suppresses serum HBV DNA after 4-week treatment, and decreases HBsAg and HBeAg levels. 5832 treatment also reduces intrahepatic HBV RNA, DNA and HBcAg levels. During the follow-up period after treatment withdrawal, serum antigen levels demonstrated no increase. We demonstrate 5832 treatment could active apoptotic signaling by elevating the expression of death receptor 5 (DR5), which participated in corresponding HBcAg-positive hepatocyte eradication. Phthalazinone derivative 5832 may serve as a promising anti-HBV drug candidate to improve the treatment options for chronic HBV infection.
Collapse
Affiliation(s)
- Li Yang
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200000,China
| | - Ying Gong
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Feifei Liu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China
| | - Wuhong Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China
| | - Xinran Wang
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No.138 Xianlin Road, Nanjing, 210023, China
| | - Guozhang Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China
| | - Heng Li
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Fuling Xiao
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - MengJi Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany
| | - Youhong Hu
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Xiankun Tong
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Jianping Zuo
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No.138 Xianlin Road, Nanjing, 210023, China.
| |
Collapse
|
9
|
Asselah T. What is the Path Forward to Treat Hepatitis Delta Virus?: Old Treatments and New Options. Clin Liver Dis 2023; 27:985-995. [PMID: 37778781 DOI: 10.1016/j.cld.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
HDV use the cell enzymes for its own replication, and the HBsAg as an envelope. There is an urgent need to develop new drugs for chronic hepatitis D (CHD). Pegylated interferon alpha (PEG-IFNα) (direct-antiviral and immune modulator) has been used and recommended by scientific guidelines, although not approved, with moderate efficacy and poor tolerability. There are several drugs in development which target the host: bulevirtide (BLV), lonafarnib (LNF), nucleic acid polymer, and others.
Collapse
Affiliation(s)
- Tarik Asselah
- University of Paris-Cité, Hôpital Beaujon, Service d'hépatologie AP-HP & INSERM UMR1149, Clichy, France.
| |
Collapse
|
10
|
Liang Z, Tan Y, Huang Y, Liang T, Wei W, Wang M, Shi K. Design and Synthesis of (3-Phenylisoxazol-5-yl)methanimine Derivatives as Hepatitis B Virus Inhibitors. Chem Biodivers 2023; 20:e202201247. [PMID: 36811262 DOI: 10.1002/cbdv.202201247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
Series of (3-phenylisoxazol-5-yl)methanimine derivatives were synthesized, and evaluated for anti-hepatitis B virus (HBV) activity in vitro. Half of them more effectively inhibited HBsAg than 3TC, and more favor to inhibit secretion of HBeAg than to HBsAg. Part of the compounds with significant inhibition on HBeAg were also effectively inhibit replication of HBV DNA. Compound (E)-3-(4-fluorophenyl)-5-((2-phenylhydrazineylidene)methyl)isoxazole inhibited excellently HBeAg with IC50 in 0.65 μM (3TC(Lamivudine) in 189.90 μM), inhibited HBV DNA in 20.52 μM (3TC in 26.23 μM). Structures of compounds were determined by NMR and HRMS methods, and chlorination on phenyl ring of phenylisoxazol-5-yl was confirmed by X-ray diffraction analysis, and the structure-activity relationships (SARs) of the derivatives was discussed. This work provided a new class of potent non-nucleoside anti-HBV agents.
Collapse
Affiliation(s)
- Zhengcheng Liang
- College of Chemistry and Chemical Engineering, Guangxi University, 530004, Nanning, China
| | - Yongqing Tan
- College of Chemistry and Chemical Engineering, Guangxi University, 530004, Nanning, China
| | - Yunhou Huang
- College of Chemistry and Chemical Engineering, Guangxi University, 530004, Nanning, China
| | - Taoyuan Liang
- College of Chemistry and Chemical Engineering, Guangxi University, 530004, Nanning, China
| | - Wanxing Wei
- College of Chemistry and Chemical Engineering, Guangxi University, 530004, Nanning, China
| | - Mian Wang
- College of Life Sciences, Guangxi University, 530004, Nanning, China
| | - Kaichuang Shi
- Guangxi Center for Animal Disease Control and Prevention, 530001, Nanning, China
| |
Collapse
|
11
|
Wang ZL, Zheng JR, Yang RF, Huang LX, Chen HS, Feng B. An Ideal Hallmark Closest to Complete Cure of Chronic Hepatitis B Patients: High-sensitivity Quantitative HBsAg Loss. J Clin Transl Hepatol 2023; 11:197-206. [PMID: 36406318 PMCID: PMC9647097 DOI: 10.14218/jcth.2022.00289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 12/04/2022] Open
Abstract
In the era of antiviral therapy, the main goal of treatment has shifted from the persistent inhibition of hepatitis B virus (HBV) replication to the pursuit of serological clearance of HBs surface antigen (HBsAg). Based on the life cycle of HBV, HBsAg originates from covalently closed circular DNA (cccDNA) and integrated HBV DNA, thus reflecting their transcriptional activity. Complete HBsAg loss may mean elimination or persistent inactivity of the HBV genome including cccDNA and integrated HBV DNA. HBsAg loss improves the recovery of abnormal immune function, which in turn, may further promote the clearance of residual viruses. Combined with functional cure and the great improvement of clinical outcomes, the continuous seroclearance of high-sensitivity quantitative HBsAg may represent the complete cure of chronic hepatitis B (CHB). For many other risk factors besides HBV itself, patients with HBsAg loss still need regular monitoring. In this review, we summarized the evolution of CHB treatment, the origin of serum HBsAg, the pattern of HBsAg seroclearance, and the effect of HBsAg loss on immune function and disease outcomes. In addition, we discuss the significance of high-sensitivity HBsAg detection and its possibility as a surrogate of complete cure.
Collapse
Affiliation(s)
| | | | - Rui-Feng Yang
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Lin-Xiang Huang
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Hong-Song Chen
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Bo Feng
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| |
Collapse
|
12
|
Molecular elucidation of drug-induced abnormal assemblies of the hepatitis B virus capsid protein by solid-state NMR. Nat Commun 2023; 14:471. [PMID: 36709212 PMCID: PMC9884277 DOI: 10.1038/s41467-023-36219-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/18/2023] [Indexed: 01/29/2023] Open
Abstract
Hepatitis B virus (HBV) capsid assembly modulators (CAMs) represent a recent class of anti-HBV antivirals. CAMs disturb proper nucleocapsid assembly, by inducing formation of either aberrant assemblies (CAM-A) or of apparently normal but genome-less empty capsids (CAM-E). Classical structural approaches have revealed the CAM binding sites on the capsid protein (Cp), but conformational information on the CAM-induced off-path aberrant assemblies is lacking. Here we show that solid-state NMR can provide such information, including for wild-type full-length Cp183, and we find that in these assemblies, the asymmetric unit comprises a single Cp molecule rather than the four quasi-equivalent conformers typical for the icosahedral T = 4 symmetry of the normal HBV capsids. Furthermore, while in contrast to truncated Cp149, full-length Cp183 assemblies appear, on the mesoscopic level, unaffected by CAM-A, NMR reveals that on the molecular level, Cp183 assemblies are equally aberrant. Finally, we use a eukaryotic cell-free system to reveal how CAMs modulate capsid-RNA interactions and capsid phosphorylation. Our results establish a structural view on assembly modulation of the HBV capsid, and they provide a rationale for recently observed differences between in-cell versus in vitro capsid assembly modulation.
Collapse
|
13
|
Khalfi P, Kennedy PT, Majzoub K, Asselah T. Hepatitis D virus: Improving virological knowledge to develop new treatments. Antiviral Res 2023; 209:105461. [PMID: 36396025 DOI: 10.1016/j.antiviral.2022.105461] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
Hepatitis delta virus (HDV), a satellite of hepatitis B virus (HBV), possesses the smallest viral genome known to infect animals. HDV needs HBV surface protein for secretion and entry into target liver cells. However, HBV is dispensable for HDV genome amplification, as it relies almost exclusively on cellular host factors for replication. HBV/HDV co-infections affect over 12 million people worldwide and constitute the most severe form of viral hepatitis. Co-infected individuals are at higher risk of developing liver cirrhosis and hepatocellular carcinoma compared to HBV mono-infected patients. Bulevirtide, an entry inhibitor, was conditionally approved in July 2020 in the European Union for adult patients with chronic hepatitis delta (CHD) and compensated liver disease. There are several drugs in development, including lonafarnib and interferon lambda, with different modes of action. In this review, we detail our current fundamental knowledge of HDV lifecycle and review antiviral treatments under development against this virus, outlining their respective mechanisms-of-action. Finally, we describe the antiviral effect these compounds are showing in ongoing clinical trials, discussing their promise and potential pitfalls for managing HDV infected patients.
Collapse
Affiliation(s)
- Pierre Khalfi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier 34293 cedex 5, France
| | - Patrick T Kennedy
- The Blizard Institute, Queen Mary University of London, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Karim Majzoub
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier 34293 cedex 5, France.
| | - Tarik Asselah
- Université de Paris, Cité CRI, INSERM UMR 1149, Department of Hepatology, AP-HP Hôpital Beaujon, Clichy, France.
| |
Collapse
|
14
|
Tripathi S, Khatri P, Fatima Z, Pandey RP, Hameed S. A Landscape of CRISPR/Cas Technique for Emerging Viral Disease Diagnostics and Therapeutics: Progress and Prospects. Pathogens 2022; 12:56. [PMID: 36678404 PMCID: PMC9863163 DOI: 10.3390/pathogens12010056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Viral diseases have emerged as a serious threat to humanity and as a leading cause of morbidity worldwide. Many viral diagnostic methods and antiviral therapies have been developed over time, but we are still a long way from treating certain infections caused by viruses. Acquired immunodeficiency syndrome (AIDS) is one of the challenges where current medical science advancements fall short. As a result, new diagnostic and treatment options are desperately needed. The CRISPR/Cas9 system has recently been proposed as a potential therapeutic approach for viral disease treatment. CRISPR/Cas9 is a specialised, effective, and adaptive gene-editing technique that can be used to modify, delete, or correct specific DNA sequences. It has evolved into an advanced, configurable nuclease-based single or multiple gene-editing tool with a wide range of applications. It is widely preferred simply because its operational procedures are simple, inexpensive, and extremely efficient. Exploration of infectious virus genomes is required for a comprehensive study of infectious viruses. Herein, we have discussed the historical timeline-based advancement of CRISPR, CRISPR/Cas9 as a gene-editing technology, the structure of CRISPR, and CRISPR as a diagnostic tool for studying emerging viral infections. Additionally, utilizing CRISPR/Cas9 technology to fight viral infections in plants, CRISPR-based diagnostics of viruses, pros, and cons, and bioethical issues of CRISPR/Cas9-based genomic modification are discussed.
Collapse
Affiliation(s)
- Shyam Tripathi
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
| | - Purnima Khatri
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
- Department of Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
| | - Zeeshan Fatima
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
- Department of Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| |
Collapse
|
15
|
Asselah T. Beyond bulevirtide: Alternative therapeutic options for the management of hepatitis delta virus. J Viral Hepat 2022; 30 Suppl 1:33-38. [PMID: 36529713 DOI: 10.1111/jvh.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
Hepatitis delta virus (HDV) is a small RNA virus which needs Hepatitis B Surface Antigen for its envelope, for entry into hepatocytes and secretion. HDV chronic infection affects around 12 million people worldwide. HDV infection is believed to be the most severe form of viral hepatitis, with a high risk of developing cirrhosis and hepatocellular carcinoma. Pegylated interferons has been used and recommended by guidelines, although not approved, with low efficacy and poor tolerability. Bulevirtide (entry inhibitor) has been recently conditionally approved by the European Medicines Agency. These treatments have many advantages, but they have also limitations since there are non-responders to these previous therapies. There is an urgent need to develop new drugs. In this article, we review antiviral treatments under development for HDV chronic infection (except bulevirtide reviewed in a specific article), including those in the HBV cure programme, outlining their respective mechanisms-of-action.
Collapse
Affiliation(s)
- Tarik Asselah
- Université de Paris-Cité, Department of Hepatology, Hôpital Beaujon, AP-HP, CRI, INSERM UMR 1149, Clichy, France
| |
Collapse
|
16
|
Unsal Tan O, Moncol J, Durantel D. Design, Synthesis and Evaluation of Novel 4‐(4‐Chlorobenzyl)‐6‐methylpyridazin‐3(2
H
)‐one Derivatives as Hepatitis B Virus Inhibitors. ChemistrySelect 2022. [DOI: 10.1002/slct.202203164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Oya Unsal Tan
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Hacettepe University Ankara Turkey
| | - Jan Moncol
- Department of Inorganic Chemistry Faculty of Chemical and Food Technology Slovak University of Technology Bratislava Slovakia
| | - David Durantel
- INSERM U1052 Cancer Research Center of Lyon (CRCL) University of Lyon (UCBL1) CNRS UMR 5286, Centre Léon Bérard 69008 Lyon France
- INSERM U1111 International Center for Infectiology Research (CIRI) CNRS UMR_5308 University of Lyon (UCBL1) Lyon France
| |
Collapse
|
17
|
Gorsuch CL, Nemec P, Yu M, Xu S, Han D, Smith J, Lape J, van Buuren N, Ramirez R, Muench RC, Holdorf MM, Feierbach B, Falls G, Holt J, Shoop W, Sevigny E, Karriker F, Brown RV, Joshi A, Goodwin T, Tam YK, Lin PJC, Semple SC, Leatherbury N, Delaney Iv WE, Jantz D, Rhoden Smith A. Targeting the hepatitis B cccDNA with a sequence-specific ARCUS nuclease to eliminate hepatitis B virus in vivo. Mol Ther 2022; 30:2909-2922. [PMID: 35581938 PMCID: PMC9481990 DOI: 10.1016/j.ymthe.2022.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
Persistence of chronic hepatitis B (CHB) is attributed to maintenance of the intrahepatic pool of the viral covalently closed circular DNA (cccDNA), which serves as the transcriptional template for all viral gene products required for replication. Current nucleos(t)ide therapies for CHB prevent virus production and spread but have no direct impact on cccDNA or expression of viral genes. We describe a potential curative approach using a highly specific engineered ARCUS nuclease (ARCUS-POL) targeting the hepatitis B virus (HBV) genome. Transient ARCUS-POL expression in HBV-infected primary human hepatocytes produced substantial reductions in both cccDNA and hepatitis B surface antigen (HBsAg). To evaluate ARCUS-POL in vivo, we developed episomal adeno-associated virus (AAV) mouse and non-human primate (NHP) models containing a portion of the HBV genome serving as a surrogate for cccDNA. Clinically relevant delivery was achieved through systemic administration of lipid nanoparticles containing ARCUS-POL mRNA. In both mouse and NHP, we observed a significant decrease in total AAV copy number and high on-target indel frequency. In the case of the mouse model, which supports HBsAg expression, circulating surface antigen was durably reduced by 96%. Together, these data support a gene-editing approach for elimination of cccDNA toward an HBV cure.
Collapse
Affiliation(s)
| | - Paige Nemec
- Precision BioSciences Inc, Durham, NC 27701, USA
| | - Mei Yu
- Gilead Sciences, Inc, Foster City, CA 94404, USA
| | - Simin Xu
- Gilead Sciences, Inc, Foster City, CA 94404, USA
| | - Dong Han
- Gilead Sciences, Inc, Foster City, CA 94404, USA
| | - Jeff Smith
- Precision BioSciences Inc, Durham, NC 27701, USA
| | - Janel Lape
- Precision BioSciences Inc, Durham, NC 27701, USA
| | | | | | | | | | | | - Greg Falls
- Precision BioSciences Inc, Durham, NC 27701, USA
| | - Jason Holt
- Precision BioSciences Inc, Durham, NC 27701, USA
| | - Wendy Shoop
- Precision BioSciences Inc, Durham, NC 27701, USA
| | - Emma Sevigny
- Precision BioSciences Inc, Durham, NC 27701, USA
| | | | | | - Amod Joshi
- Precision BioSciences Inc, Durham, NC 27701, USA
| | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | - Derek Jantz
- Precision BioSciences Inc, Durham, NC 27701, USA.
| | | |
Collapse
|
18
|
Spunde K, Vigante B, Dubova UN, Sipola A, Timofejeva I, Zajakina A, Jansons J, Plotniece A, Pajuste K, Sobolev A, Muhamadejev R, Jaudzems K, Duburs G, Kozlovska T. Design and Synthesis of Hepatitis B Virus (HBV) Capsid Assembly Modulators and Evaluation of Their Activity in Mammalian Cell Model. Pharmaceuticals (Basel) 2022; 15:ph15070773. [PMID: 35890072 PMCID: PMC9317397 DOI: 10.3390/ph15070773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022] Open
Abstract
Capsid assembly modulators (CAMs) have emerged as a promising class of antiviral agents. We studied the effects of twenty-one newly designed and synthesized CAMs including heteroaryldihydropyrimidine compounds (HAPs), their analogs and standard compounds on hepatitis B virus (HBV) capsid assembly. Cytoplasmic expression of the HBV core (HBc) gene driven by the exogenously delivered recombinant alphavirus RNA replicon was used for high level production of the full-length HBc protein in mammalian cells. HBV capsid assembly was assessed by native agarose gel immunoblot analysis, electron microscopy and inhibition of virion secretion in HepG2.2.15 HBV producing cell line. Induced fit docking simulation was applied for modelling the structural relationships of the synthesized compounds and HBc. The most efficient were the HAP class compounds—dihydropyrimidine 5-carboxylic acid n-alkoxyalkyl esters, which induced the formation of incorrectly assembled capsid products and their accumulation within the cells. HBc product accumulation in the cells was not detected with the reference HAP compound Bay 41-4109, suggesting different modes of action. A significant antiviral effect and substantially reduced toxicity were revealed for two of the synthesized compounds. Two new HAP compounds revealed a significant antiviral effect and a favorable toxicity profile that allows these compounds to be considered promising leads and drug candidates for the treatment of HBV infection. The established alphavirus based HBc expression approach allows for the specific selection of capsid assembly modulators directly in the natural cell environment.
Collapse
Affiliation(s)
- Karina Spunde
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (U.N.D.); (I.T.); (A.Z.); (J.J.); (T.K.)
- Correspondence: (K.S.); (B.V.)
| | - Brigita Vigante
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.S.); (A.P.); (K.P.); (A.S.); (R.M.); (K.J.); (G.D.)
- Correspondence: (K.S.); (B.V.)
| | - Unda Nelda Dubova
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (U.N.D.); (I.T.); (A.Z.); (J.J.); (T.K.)
| | - Anda Sipola
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.S.); (A.P.); (K.P.); (A.S.); (R.M.); (K.J.); (G.D.)
| | - Irena Timofejeva
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (U.N.D.); (I.T.); (A.Z.); (J.J.); (T.K.)
| | - Anna Zajakina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (U.N.D.); (I.T.); (A.Z.); (J.J.); (T.K.)
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (U.N.D.); (I.T.); (A.Z.); (J.J.); (T.K.)
| | - Aiva Plotniece
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.S.); (A.P.); (K.P.); (A.S.); (R.M.); (K.J.); (G.D.)
| | - Karlis Pajuste
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.S.); (A.P.); (K.P.); (A.S.); (R.M.); (K.J.); (G.D.)
| | - Arkadij Sobolev
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.S.); (A.P.); (K.P.); (A.S.); (R.M.); (K.J.); (G.D.)
| | - Ruslan Muhamadejev
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.S.); (A.P.); (K.P.); (A.S.); (R.M.); (K.J.); (G.D.)
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.S.); (A.P.); (K.P.); (A.S.); (R.M.); (K.J.); (G.D.)
| | - Gunars Duburs
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.S.); (A.P.); (K.P.); (A.S.); (R.M.); (K.J.); (G.D.)
| | - Tatjana Kozlovska
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (U.N.D.); (I.T.); (A.Z.); (J.J.); (T.K.)
| |
Collapse
|
19
|
Screening of hepatitis B virus DNA in the serum sample by a new sensitive electrochemical genosensor-based Pd-Al LDH substrate. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Safety, Tolerability, and Pharmacokinetics of the Novel Hepatitis B Virus Expression Inhibitor GST-HG131 in Healthy Chinese Subjects: a First-in-Human Single- and Multiple-Dose Escalation Trial. Antimicrob Agents Chemother 2022; 66:e0009422. [PMID: 35404074 DOI: 10.1128/aac.00094-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
GST-HG131, a novel dihydroquinolizinone (DHQ) compound, has been shown to reduce circulating levels of HBsAg in animals. This first-in-human trial evaluated the safety, tolerability, and pharmacokinetic profile of GST-HG131 in healthy Chinese subjects. This was a double-blind, randomized, placebo-controlled phase Ia clinical trial that was conducted in two parts. Part A was a single-ascending-dose (SAD; GST-HG131 10 30, 60, 100, 150, 200, 250 or 300 mg or placebo) study, which also assessed the food effect of GST-HG131 100 mg. Part B was a multiple-ascending-dose (MAD; GST-HG131 30, 60 or 100 mg or placebo BID) study. Tolerability assessments included adverse events, vital signs, 12-lead electrocardiogram, physical examination, and clinical laboratory tests. PK analyses were conducted in blood, urine, and fecal samples. Single doses of GST-HG131 ≤ 300 mg and multiple doses of GST-HG131 ≤ 60 mg were generally safe and well tolerated; however, multiple dosing was stopped at GST-HG131 100 mg, as pre-defined stopping rules specified in the protocol were met (Grade II drug related AEs of nausea and dizziness in >50% of subjects). In the SAD study, median tmax of GST-HG131 was 1-6 h, and t1/2 ranged from 3.88 h to 14.3 h. PK parameters were proportional to dose. Exposure was reduced after food intake. In the MAD study, steady-state was attained on day 4, and there was no apparent plasma accumulation of GST-HG131 on day 7 (Racc < 1.5). In conclusion, GST-HG131 exhibited an acceptable safety profile in healthy subjects at single doses ranging from 10-300 mg and multiple doses (BID) ranging from 30-60 mg, and the MAD doses (30 mg and 60 mg BID) that potentially meet the therapeutic AUC requirements. These findings imply GST-HG131 has potential as a therapeutic option for CHB infection. (This study has been registered at ClinicalTrials.gov under identifier NCT04499443.).
Collapse
|
21
|
Pavlova A, Bassit L, Cox BD, Korablyov M, Chipot C, Patel D, Lynch DL, Amblard F, Schinazi RF, Gumbart JC. The Mechanism of Action of Hepatitis B Virus Capsid Assembly Modulators Can Be Predicted from Binding to Early Assembly Intermediates. J Med Chem 2022; 65:4854-4864. [PMID: 35290049 PMCID: PMC9026740 DOI: 10.1021/acs.jmedchem.1c02040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Interfering with the self-assembly of virus nucleocapsids is a promising approach for the development of novel antiviral agents. Applied to hepatitis B virus (HBV), this approach has led to several classes of capsid assembly modulators (CAMs) that target the virus by either accelerating nucleocapsid assembly or misdirecting it into noncapsid-like particles, thereby inhibiting the HBV replication cycle. Here, we have assessed the structures of early nucleocapsid assembly intermediates, bound with and without CAMs, using molecular dynamics simulations. We find that distinct conformations of the intermediates are induced depending on whether the bound CAM accelerates or misdirects assembly. Specifically, the assembly intermediates with bound misdirecting CAMs appear to be flattened relative to those with bound accelerators. Finally, the potency of CAMs within the same class was studied. We find that an increased number of contacts with the capsid protein and favorable binding energies inferred from free energy perturbation calculations are indicative of increased potency.
Collapse
Affiliation(s)
- Anna Pavlova
- School of Physics and School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Leda Bassit
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Bryan D Cox
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Maksym Korablyov
- MIT Media Lab, Massachusetts Institute of Technology, Boston, Massachusetts 02139, United States
| | - Christophe Chipot
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Laboratoire international associé CNRS-UIUC, UMR 7019, Université de Lorraine, B.P. 70239, 54506 Vandæuvre-lès-Nancy, France
| | - Dharmeshkumar Patel
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Diane L Lynch
- School of Physics and School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - James C Gumbart
- School of Physics and School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
22
|
Huang Y, Zheng S, Guo Z, de Mollerat du Jeu X, Liang XJ, Yang Z, Zhang HY, Gao S, Liang Z. Ionizable liposomal siRNA therapeutics enables potent and persistent treatment of Hepatitis B. Signal Transduct Target Ther 2022; 7:38. [PMID: 35145057 PMCID: PMC8831581 DOI: 10.1038/s41392-021-00859-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Small interfering RNA (siRNA) constitutes a promising therapeutic modality supporting the potential functional cure of hepatitis B. A novel ionizable lipidoid nanoparticle (RBP131) and a state-of-the-art lyophilization technology were developed in this study, enabling to deliver siRNA targeting apolipoprotein B (APOB) into the hepatocytes with an ED50 of 0.05 mg/kg after intravenous injection. In addition, according to the requirements of Investigational New Drug (IND) application, a potent siRNA targeting hepatitis B virus (HBV) was selected and encapsulated with RBP131 to fabricate a therapeutic formulation termed RB-HBV008. Efficacy investigations in transient and transgenic mouse models revealed that the expressions of viral RNAs and antigens (HBsAg and HBeAg), as well as viral DNA, were repressed, dose-dependently and time-dependently at multilog decreasing amplitude, in both circulation and liver tissue. In contrast, entecavir (ETV), the first-line clinically-employed nucleoside analog drug, barely recused the antigen expression, although it triggered as high as 3.50 log reduction of viral DNA, in line with clinical observations. Moreover, the toxicity profiles suggested satisfactory safety outcomes with ten times the therapeutic window. Therefore, this study provides an effective nucleic acid delivery system and a promising RNAi agent for the treatment of hepatitis B.
Collapse
Affiliation(s)
- Yuanyu Huang
- Suzhou Ribo Life Science Co. Ltd., Jiangsu, 215300, China.
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Shuquan Zheng
- Suzhou Ribo Life Science Co. Ltd., Jiangsu, 215300, China
| | - Zhaoxu Guo
- Suzhou Ribo Life Science Co. Ltd., Jiangsu, 215300, China
| | | | - Xing-Jie Liang
- Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhiwei Yang
- Suzhou Ribo Life Science Co. Ltd., Jiangsu, 215300, China
| | - Hong-Yan Zhang
- Suzhou Ribo Life Science Co. Ltd., Jiangsu, 215300, China
| | - Shan Gao
- Suzhou Ribo Life Science Co. Ltd., Jiangsu, 215300, China
| | - Zicai Liang
- Suzhou Ribo Life Science Co. Ltd., Jiangsu, 215300, China.
| |
Collapse
|
23
|
Hepatitis B Virus Infection and Extra-Hepatic Manifestations: A Systemic Disease. Am J Gastroenterol 2022; 117:253-263. [PMID: 34913875 DOI: 10.14309/ajg.0000000000001575] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022]
Abstract
People living with hepatitis B virus (HBV) chronic infection are exposed to high rates of liver complications including end-stage liver disease and hepatocellular carcinoma. Extrahepatic manifestations of HBV infection have long been underestimated. Several of these extrahepatic syndromes have been well described, including systemic vasculitides, glomerulonephritis, and cutaneous manifestations. Other manifestations have been more recently described such as hematological malignancies and neurological diseases. These extrahepatic manifestations are associated with significant morbidity and mortality. Although not completely understood, underlying mechanisms include HBV-induced local and systemic inflammation. Suppression of HBV replication usually improves extrahepatic manifestations. This review will discuss how HBV induces inflammation and the extrahepatic manifestations of HBV infection to guide clinical management.
Collapse
|
24
|
Miao J, Gao P, Li Q, He K, Zhang L, Wang J, Huang L. Advances in Nanoparticle Drug Delivery Systems for Anti-Hepatitis B Virus Therapy: A Narrative Review. Int J Mol Sci 2021; 22:ijms222011227. [PMID: 34681886 PMCID: PMC8538950 DOI: 10.3390/ijms222011227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/26/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic hepatitis B (CHB) is an infectious viral disease that is prevalent worldwide. Traditional nucleoside analogues, as well as the novel drug targets against hepatitis B virus (HBV), are associated with certain critical factors that influence the curative effect, such as biological stability and safety, effective drug delivery, and controlled release. Nanoparticle drug delivery systems have significant advantages and have provided a basis for the development of anti-HBV strategies. In this review, we aim to review the advances in nanoparticle drug delivery systems for anti-hepatitis B virus therapy by summarizing the relevant literature. First, we focus on the characteristics of nanoparticle drug delivery systems for anti-HBV therapy. Second, we discuss the nanoparticle delivery systems for anti-HBV nucleoside drugs, gene-based drugs, and vaccines. Lastly, we provide an overview of the prospects for nanoparticle-based anti-HBV agents.
Collapse
Affiliation(s)
- Jing Miao
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (P.G.); (K.H.); (L.Z.)
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Peng Gao
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (P.G.); (K.H.); (L.Z.)
| | - Qian Li
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
| | - Kaifeng He
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (P.G.); (K.H.); (L.Z.)
| | - Liwen Zhang
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (P.G.); (K.H.); (L.Z.)
| | - Junyan Wang
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (P.G.); (K.H.); (L.Z.)
- Correspondence: (J.W.); (L.H.)
| | - Lingfei Huang
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (P.G.); (K.H.); (L.Z.)
- Correspondence: (J.W.); (L.H.)
| |
Collapse
|
25
|
Athamneh RY, Arıkan A, Sayan M, Mahafzah A, Sallam M. Variable Proportions of Phylogenetic Clustering and Low Levels of Antiviral Drug Resistance among the Major HBV Sub-Genotypes in the Middle East and North Africa. Pathogens 2021; 10:1333. [PMID: 34684283 PMCID: PMC8540944 DOI: 10.3390/pathogens10101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022] Open
Abstract
Hepatitis B virus (HBV) infection remains a major public health threat in the Middle East and North Africa (MENA). Phylogenetic analysis of HBV can be helpful to study the putative transmission links and patterns of inter-country spread of the virus. The objectives of the current study were to analyze the HBV genotype/sub-genotype (SGT) distribution, reverse transcriptase (RT), and surface (S) gene mutations and to investigate the domestic transmission of HBV in the MENA. All HBV molecular sequences collected in the MENA were retrieved from GenBank as of 30 April 2021. Determination of genotypes/SGT, RT, and S mutations were based on the Geno2pheno (hbv) 2.0 online tool. For the most prevalent HBV SGTs, maximum likelihood phylogenetic analysis was conducted to identify the putative phylogenetic clusters, with approximate Shimodaira-Hasegawa-like likelihood ratio test values ≥ 0.90, and genetic distance cut-off values ≤ 0.025 substitutions/site as implemented in Cluster Picker. The total number of HBV sequences used for genotype/SGT determination was 4352 that represented a total of 20 MENA countries, with a majority from Iran (n = 2103, 48.3%), Saudi Arabia (n = 503, 11.6%), Tunisia (n = 395, 9.1%), and Turkey (n = 267, 6.1%). Genotype D dominated infections in the MENA (86.6%), followed by genotype A (4.1%), with SGT D1 as the most common in 14 MENA countries and SGT D7 dominance in the Maghreb. The highest prevalence of antiviral drug resistance was observed against lamivudine (4.5%) and telbivudine (4.3%). The proportion of domestic phylogenetic clustering was the highest for SGT D7 (61.9%), followed by SGT D2 (28.2%) and genotype E (25.7%). The largest fraction of domestic clusters with evidence of inter-country spread within the MENA was seen in SGT D7 (81.3%). Small networks (containing 3-14 sequences) dominated among domestic phylogenetic clusters. Specific patterns of HBV genetic diversity were seen in the MENA with SGT D1 dominance in the Levant, Iran, and Turkey; SGT D7 dominance in the Maghreb; and extensive diversity in Saudi Arabia and Egypt. A low prevalence of lamivudine, telbivudine, and entecavir drug resistance was observed in the region, with almost an absence of resistance to tenofovir and adefovir. Variable proportions of phylogenetic clustering indicated prominent domestic transmission of SGT D7 (particularly in the Maghreb) and relatively high levels of virus mobility in SGT D1.
Collapse
Affiliation(s)
- Rabaa Y. Athamneh
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia 99138, Cyprus; (R.Y.A.); (A.A.)
| | - Ayşe Arıkan
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia 99138, Cyprus; (R.Y.A.); (A.A.)
- DESAM, Near East University, Nicosia 99138, Cyprus;
| | - Murat Sayan
- DESAM, Near East University, Nicosia 99138, Cyprus;
- Clinical Laboratory, PCR Unit, Faculty of Medicine, Kocaeli University, İzmit 41380, Turkey
| | - Azmi Mahafzah
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, the University of Jordan, Amman 11942, Jordan;
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman 11942, Jordan
| | - Malik Sallam
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, the University of Jordan, Amman 11942, Jordan;
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman 11942, Jordan
- Department of Translational Medicine, Faculty of Medicine, Lund University, 22184 Malmö, Sweden
| |
Collapse
|
26
|
Philips CA, Ahamed R, Abduljaleel JK, Rajesh S, Augustine P. Critical Updates on Chronic Hepatitis B Virus Infection in 2021. Cureus 2021; 13:e19152. [PMID: 34733599 PMCID: PMC8557099 DOI: 10.7759/cureus.19152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a global healthcare burden in the form of chronic liver disease, cirrhosis, liver failure and liver cancer. There is no definite cure for the virus and even though extensive vaccination programs have reduced the burden of liver disease in the future population, treatment options to eradicate the virus from the host are still lacking. In this review, we discuss in detail current updates on the structure and applied biology of the virus in the host, examine updates to current treatment and explore novel and state-of-the-art therapeutics in the pipeline for management of chronic HBV. Furthermore, we also specifically review clinical updates on HBV-related acute on chronic liver failure (ACLF). Current treatments for chronic HBV infection have seen important updates in the form of considerations for treating patients in the immune tolerant phase and some clarity on end points for treatment and decisions on finite therapy with nucleos(t)ide inhibitors. Ongoing cutting-edge research on HBV biology has helped us identify novel target areas in the life cycle of the virus for application of new therapeutics. Due to improvements in the area of genomics, the hope for therapeutic vaccines, vector-based treatments and focused management aimed at targeting host integration of the virus and thereby a total cure could become a reality in the near future. Newer clinical prognostic tools have improved our understanding of timing of specific treatment options for the catastrophic syndrome of ACLF secondary to reactivation of HBV. In this review, we discuss in detail pertinent updates regarding virus biology and novel therapeutic targets with special focus on the appraisal of prognostic scores and treatment options in HBV-related ACLF.
Collapse
Affiliation(s)
- Cyriac A Philips
- Clinical and Translational Hepatology, The Liver Institute, Rajagiri Hospital, Aluva, IND
| | - Rizwan Ahamed
- Gastroenterology and Advanced Gastrointestinal Endoscopy, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, IND
| | - Jinsha K Abduljaleel
- Gastroenterology and Advanced Gastrointestinal Endoscopy, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, IND
| | - Sasidharan Rajesh
- Diagnostic and Interventional Radiology, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, IND
| | - Philip Augustine
- Gastroenterology and Advanced Gastrointestinal Endoscopy, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, IND
| |
Collapse
|
27
|
Lin H, Li G, Peng X, Deng A, Ye L, Shi L, Wang T, He J. The Use of CRISPR/Cas9 as a Tool to Study Human Infectious Viruses. Front Cell Infect Microbiol 2021; 11:590989. [PMID: 34513721 PMCID: PMC8430244 DOI: 10.3389/fcimb.2021.590989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) systems are a set of versatile gene-editing toolkit that perform diverse revolutionary functions in various fields of application such as agricultural practices, food industry, biotechnology, biomedicine, and clinical research. Specially, as a novel antiviral method of choice, CRISPR/Cas9 system has been extensively and effectively exploited to fight against human infectious viruses. Infectious diseases including human immunodeficiency virus (HIV), hepatitis B virus (HBV), human papillomavirus (HPV), and other viruses are still global threats with persistent potential to probably cause pandemics. To facilitate virus removals, the CRISPR/Cas9 system has already been customized to confer new antiviral capabilities into host animals either by modifying host genome or by directly targeting viral inherent factors in the form of DNA. Although several limitations and difficulties still need to be conquered, this technology holds great promises in the treatment of human viral infectious diseases. In this review, we will first present a brief biological feature of CRISPR/Cas9 systems, which includes a description of CRISPR/Cas9 structure and composition; thereafter, we will focus on the investigations and applications that employ CRISPR/Cas9 system to combat several human infectious viruses and discuss challenges and future perspectives of using this new platform in the preclinical and clinical settings as an antiviral strategy.
Collapse
Affiliation(s)
- Huafeng Lin
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, Changsha, China.,Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Gang Li
- Institute of Biomedicine and Department of Cell Biology, Jinan University, Guangzhou, China
| | - Xiangwen Peng
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, Changsha, China
| | - Aimin Deng
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, Changsha, China
| | - Lei Ye
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Tuanmei Wang
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, Changsha, China
| | - Jun He
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, Changsha, China
| |
Collapse
|
28
|
Thangamani L, Balasubramanian B, Easwaran M, Natarajan J, Pushparaj K, Meyyazhagan A, Piramanayagam S. GalNAc-siRNA conjugates: Prospective tools on the frontier of anti-viral therapeutics. Pharmacol Res 2021; 173:105864. [PMID: 34474100 PMCID: PMC8405237 DOI: 10.1016/j.phrs.2021.105864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022]
Abstract
The growing use of short-interfering RNA (siRNA)-based therapeutics for viral diseases reflects the most recent innovations in anti-viral vaccines and drugs. These drugs play crucial roles in the fight against many hitherto incurable diseases, the causes, pathophysiologies, and molecular processes of which remain unknown. Targeted liver drug delivery systems are in clinical trials. The receptor-mediated endocytosis approach involving the abundant asialoglycoprotein receptors (ASGPRs) on the surfaces of liver cells show great promise. We here review N-acetylgalactosamine (GalNAc)-siRNA conjugates that treat viral diseases such as hepatitis B infection, but we also mention that novel, native conjugate-based, targeted siRNA anti-viral drugs may also cure several life-threatening diseases such as hemorrhagic cystitis, multifocal leukoencephalopathy, and severe acute respiratory syndrome caused by coronaviruses and human herpes virus.
Collapse
Affiliation(s)
- Lokesh Thangamani
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | | | - Murugesh Easwaran
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Arun Meyyazhagan
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, Karnataka, India.
| | - Shanmughavel Piramanayagam
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| |
Collapse
|
29
|
Loureiro D, Castelnau C, Tout I, Boyer N, Narguet S, Menasria Benazzouz S, Louis Z, Pons-Kerjean N, Giuly N, Marcellin P, Mansouri A, Asselah T. New therapies for hepatitis delta virus infection. Liver Int 2021; 41 Suppl 1:30-37. [PMID: 34155804 DOI: 10.1111/liv.14838] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
Hepatitis delta virus (HDV) infection is a defective virus requiring hepatitis B virus (HBV) for its complete replication cycle. HDV is a small hepatotropic RNA virus and around 15 to 25 million people worldwide are living with chronic hepatitis delta (CHD) infection. However, the prevalence of HDV may be underestimated, and screening is frequently insufficient. HDV infection remains endemic in several regions including Central and West Africa, the Mediterranean basin, the Middle East, Eastern Europe, Northern Asia, certain areas of Southeast Asia and the Amazon basin of South America. The best preventive strategy to decrease HDV infection is to improve coverage of the prophylactic HBV vaccine. HDV infection may occur by HBV-HDV co-infection or superinfection, and the latter is usually more severe. CHD is associated with a higher risk of cirrhosis and hepatocellular carcinoma (HCC) compared to HBV mono-infection. Pegylated interferon alpha (PEG-IFNα) therapy is limited by moderate effectiveness (around 20%) and its adverse effects. The entry inhibitor, bulevirtide (BLV, Hepcludex® ), which was recently approved in Europe at a dose of 2 mg in sub-cutaneous injection per day, is indicated for the treatment of CHD in adult patients with compensated liver disease and positive HDV viremia. BLV can be administrated in monotherapy or in combination with PEG-IFNα. Nucleos(t)ide analogues can be used in combination for underlying HBV infection. The optimal treatment duration has not yet been determined and treatment should be continued if a clinical benefit is observed. There are other promising therapies such as IFN lambda (IFNλ) (immunomodulator), lonafarnib (prenylation inhibitor) and nucleic acid polymers (Inhibitors of HBsAg release). In this review, we will present an update on CHD and future promising treatments.
Collapse
Affiliation(s)
- Dimitri Loureiro
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, CNRS, Paris, France.,Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| | - Corinne Castelnau
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, CNRS, Paris, France.,Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| | - Issam Tout
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, CNRS, Paris, France.,Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| | - Nathalie Boyer
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, CNRS, Paris, France.,Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| | - Stéphanie Narguet
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, CNRS, Paris, France.,Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| | - Sabrina Menasria Benazzouz
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, CNRS, Paris, France.,Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| | - Zeina Louis
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, CNRS, Paris, France.,Service de Pharmacie, AP-HP, Hôpital Beaujon, Clichy, France
| | - Nathalie Pons-Kerjean
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, CNRS, Paris, France.,Service de Pharmacie, AP-HP, Hôpital Beaujon, Clichy, France
| | - Nathalie Giuly
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, CNRS, Paris, France.,Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| | - Patrick Marcellin
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, CNRS, Paris, France.,Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| | - Abdellah Mansouri
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, CNRS, Paris, France.,Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| | - Tarik Asselah
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, CNRS, Paris, France.,Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| |
Collapse
|
30
|
Prifti GM, Moianos D, Giannakopoulou E, Pardali V, Tavis JE, Zoidis G. Recent Advances in Hepatitis B Treatment. Pharmaceuticals (Basel) 2021; 14:417. [PMID: 34062711 PMCID: PMC8147224 DOI: 10.3390/ph14050417] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023] Open
Abstract
Hepatitis B virus infection affects over 250 million chronic carriers, causing more than 800,000 deaths annually, although a safe and effective vaccine is available. Currently used antiviral agents, pegylated interferon and nucleos(t)ide analogues, have major drawbacks and fail to completely eradicate the virus from infected cells. Thus, achieving a "functional cure" of the infection remains a real challenge. Recent findings concerning the viral replication cycle have led to development of novel therapeutic approaches including viral entry inhibitors, epigenetic control of cccDNA, immune modulators, RNA interference techniques, ribonuclease H inhibitors, and capsid assembly modulators. Promising preclinical results have been obtained, and the leading molecules under development have entered clinical evaluation. This review summarizes the key steps of the HBV life cycle, examines the currently approved anti-HBV drugs, and analyzes novel HBV treatment regimens.
Collapse
Affiliation(s)
- Georgia-Myrto Prifti
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - Dimitrios Moianos
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - Erofili Giannakopoulou
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - Vasiliki Pardali
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - John E. Tavis
- Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, MO 63104, USA;
| | - Grigoris Zoidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| |
Collapse
|
31
|
Senaweera S, Du H, Zhang H, Kirby KA, Tedbury PR, Xie J, Sarafianos SG, Wang Z. Discovery of New Small Molecule Hits as Hepatitis B Virus Capsid Assembly Modulators: Structure and Pharmacophore-Based Approaches. Viruses 2021; 13:770. [PMID: 33925540 PMCID: PMC8146408 DOI: 10.3390/v13050770] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B virus (HBV) capsid assembly modulators (CpAMs) have shown promise as potent anti-HBV agents in both preclinical and clinical studies. Herein, we report our efforts in identifying novel CpAM hits via a structure-based virtual screening against a small molecule protein-protein interaction (PPI) library, and pharmacophore-guided compound design and synthesis. Curated compounds were first assessed in a thermal shift assay (TSA), and the TSA hits were further evaluated in an antiviral assay. These efforts led to the discovery of two structurally distinct scaffolds, ZW-1841 and ZW-1847, as novel HBV CpAM hits, both inhibiting HBV in single-digit µM concentrations without cytotoxicity at 100 µM. In ADME assays, both hits displayed extraordinary plasma and microsomal stability. Molecular modeling suggests that these hits bind to the Cp dimer interfaces in a mode well aligned with known CpAMs.
Collapse
Affiliation(s)
- Sameera Senaweera
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (J.X.)
| | - Haijuan Du
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (H.D.); (H.Z.); (K.A.K.); (P.R.T.); (S.G.S.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Huanchun Zhang
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (H.D.); (H.Z.); (K.A.K.); (P.R.T.); (S.G.S.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Karen A. Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (H.D.); (H.Z.); (K.A.K.); (P.R.T.); (S.G.S.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Philip R. Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (H.D.); (H.Z.); (K.A.K.); (P.R.T.); (S.G.S.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (J.X.)
| | - Stefan G. Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (H.D.); (H.Z.); (K.A.K.); (P.R.T.); (S.G.S.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (J.X.)
| |
Collapse
|
32
|
Escalona‐Noguero C, López‐Valls M, Sot B. CRISPR/Cas technology as a promising weapon to combat viral infections. Bioessays 2021; 43:e2000315. [PMID: 33569817 PMCID: PMC7995209 DOI: 10.1002/bies.202000315] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
The versatile clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system has emerged as a promising technology for therapy and molecular diagnosis. It is especially suited for overcoming viral infections outbreaks, since their effective control relies on an efficient treatment, but also on a fast diagnosis to prevent disease dissemination. The CRISPR toolbox offers DNA- and RNA-targeting nucleases that constitute dual weapons against viruses. They allow both the manipulation of viral and host genomes for therapeutic purposes and the detection of viral nucleic acids in "Point of Care" sensor devices. Here, we thoroughly review recent advances in the use of the CRISPR/Cas system for the treatment and diagnosis of viral deleterious infections such as HIV or SARS-CoV-2, examining their strengths and limitations. We describe the main points to consider when designing CRISPR antiviral strategies and the scientific efforts to develop more sensitive CRISPR-based viral detectors. Finally, we discuss future prospects to improve both applications. Also see the video abstract here: https://www.youtube.com/watch?v=C0z1dLpJWl4.
Collapse
Affiliation(s)
| | | | - Begoña Sot
- Fundación IMDEA‐NanocienciaMadridSpain
- Nanobiotecnología (IMDEA‐Nanociencia)Unidad Asociada al Centro Nacional de Biotecnología (CSIC)MadridSpain
| |
Collapse
|
33
|
Monty MA, Islam MA, Nan X, Tan J, Tuhin IJ, Tang X, Miao M, Wu D, Yu L. Emerging role of RNA interference in immune cells engineering and its therapeutic synergism in immunotherapy. Br J Pharmacol 2021; 178:1741-1755. [PMID: 33608889 DOI: 10.1111/bph.15414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
RNAi effectors (e.g. siRNA, shRNA and miRNA) can trigger the silencing of specific genes causing alteration of genomic functions becoming a new therapeutic area for the treatment of infectious diseases, neurodegenerative disorders and cancer. In cancer treatment, RNAi effectors showed potential immunomodulatory actions by down-regulating immuno-suppressive proteins, such as PD-1 and CTLA-4, which restrict immune cell function and present challenges in cancer immunotherapy. Therefore, compared with extracellular targeting by antibodies, RNAi-mediated cell-intrinsic disruption of inhibitory pathways in immune cells could promote an increased anti-tumour immune response. Along with non-viral vectors, DNA-based RNAi strategies might be a more promising method for immunomodulation to silence multiple inhibitory pathways in T cells than immune checkpoint blockade antibodies. Thus, in this review, we discuss diverse RNAi implementation strategies, with recent viral and non-viral mediated RNAi synergism to immunotherapy that augments the anti-tumour immunity. Finally, we provide the current progress of RNAi in clinical pipeline.
Collapse
Affiliation(s)
- Masuma Akter Monty
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Md Ariful Islam
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Nan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jingwen Tan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Israth Jahan Tuhin
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiaowen Tang
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Miao Miao
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lei Yu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
34
|
Rao S, Hossain T, Mahmoudi T. 3D human liver organoids: An in vitro platform to investigate HBV infection, replication and liver tumorigenesis. Cancer Lett 2021; 506:35-44. [PMID: 33675983 DOI: 10.1016/j.canlet.2021.02.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Hepatitis B Virus (HBV) infection is a leading cause of chronic liver cirrhosis and hepatocellular carcinoma (HCC) with an estimated 400 million people infected worldwide. The precise molecular mechanisms underlying HBV replication and tumorigenesis have remained largely uncharacterized due to the lack of a primary cell model to study HBV, a virus that exhibits stringent host species and cell-type specificity. Organoid technology has recently emerged as a powerful tool to investigate human diseases in a primary 3D cell-culture system that maintains the organisation and functionality of the tissue of origin. In this review, we describe the utilisation of human liver organoid platforms to study HBV. We first present the different categories of liver organoids and their demonstrated ability to support the complete HBV replication cycle. We then discuss the potential applications of liver organoids in investigating HBV infection and replication, related tumorigenesis and novel HBV-directed therapies. Liver organoids can be genetically modified, patient-derived, expanded and biobanked, thereby serving as a clinically-relevant, human, primary cell-derived platform to investigate HBV. Finally, we provide insights into the future applications of this powerful technology in the context of HBV-infection and HCC.
Collapse
Affiliation(s)
- Shringar Rao
- Department of Biochemistry, Erasmus University Medical Centre, PO Box 2040, 3000, CA, 9 Rotterdam, the Netherlands
| | - Tanvir Hossain
- Department of Biochemistry, Erasmus University Medical Centre, PO Box 2040, 3000, CA, 9 Rotterdam, the Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Centre, PO Box 2040, 3000, CA, 9 Rotterdam, the Netherlands; Department of Pathology, Erasmus University Medical Centre, PO Box 2040, 3000, CA, Rotterdam, the Netherlands; Department of Urology, Erasmus University Medical Centre, PO Box 2040, 3000, CA, Rotterdam, the Netherlands.
| |
Collapse
|
35
|
Mehrotra A, D'Angelo JA, Romney-Vanterpool A, Chu T, Bertoletti A, Janssen HLA, Gehring AJ. IFN-α Suppresses Myeloid Cytokine Production, Impairing IL-12 Production and the Ability to Support T-Cell Proliferation. J Infect Dis 2021; 222:148-157. [PMID: 32049318 DOI: 10.1093/infdis/jiaa064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Interferon-α (IFN-α) can suppress production of T-cell polarizing cytokines or induce inhibitory antigen-presenting cells that suppress T-cell activation. Previous studies showed that IFN-α therapy fails to boost virus-specific T-cell immunity in patients with chronic hepatitis B virus infection. Our aim was to determine whether IFN-α exposure alters human antigen-presenting cell function in vivo. METHODS We investigated the immunomodulatory effects using peripheral blood mononuclear cells from healthy donors exposed to IFN-α and chronic hepatitis B (CHB) patients starting IFN-α therapy. RESULTS IFN-α increased HLA-DR, CD80, CD86, and PD-L1 expression on healthy donor monocytes. In contrast to the activated phenotype, IFN-α inhibited Toll-like receptor-induced cytokine production and monocyte-induced T-cell proliferation. In CHB patients, peg-IFN treatment induced an interferon-stimulated gene signature in monocytes and increased HLA-DR, CD80, CD86, and PD-L1 expression. As early as 3 days after CHB patients started treatment, IFN-α inhibited monocyte cytokine production and T-cell stimulation ex vivo. IFN-α-mediated inhibition of IL-12 production, rather than inhibitory receptor expression, was responsible for inhibition of T-cell proliferation. Addition of IL-12 restored T-cell proliferation to baseline levels. CONCLUSIONS Understanding how professional antigen-presenting cells respond to immunomodulation is important for both new innate and adaptive-targeted immunotherapies. CLINICAL TRIALS REGISTRATION NCT00962871.
Collapse
Affiliation(s)
- Aman Mehrotra
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - June Ann D'Angelo
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Amanda Romney-Vanterpool
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Tom Chu
- Safety Science, Genentech, San Francisco, California, USA
| | - Antonio Bertoletti
- Program of Emerging Viral Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
| | - Harry L A Janssen
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Adam J Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
36
|
Ma Y, Frutos-Beltrán E, Kang D, Pannecouque C, De Clercq E, Menéndez-Arias L, Liu X, Zhan P. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses. Chem Soc Rev 2021; 50:4514-4540. [PMID: 33595031 DOI: 10.1039/d0cs01084g] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the last forty years we have witnessed impressive advances in the field of antiviral drug discovery culminating with the introduction of therapies able to stop human immunodeficiency virus (HIV) replication, or cure hepatitis C virus infections in people suffering from liver disease. However, there are important viral diseases without effective treatments, and the emergence of drug resistance threatens the efficacy of successful therapies used today. In this review, we discuss strategies to discover antiviral compounds specifically designed to combat drug resistance. Currently, efforts in this field are focused on targeted proteins (e.g. multi-target drug design strategies), but also on drug conformation (either improving drug positioning in the binding pocket or introducing conformational constraints), in the introduction or exploitation of new binding sites, or in strengthening interaction forces through the introduction of multiple hydrogen bonds, covalent binding, halogen bonds, additional van der Waals forces or multivalent binding. Among the new developments, proteolysis targeting chimeras (PROTACs) have emerged as a valid approach taking advantage of intracellular mechanisms involving protein degradation by the ubiquitin-proteasome system. Finally, several molecules targeting host factors (e.g. human dihydroorotate dehydrogenase and DEAD-box polypeptide 3) have been identified as broad-spectrum antiviral compounds. Implementation of herein described medicinal chemistry strategies are expected to contribute to the discovery of new drugs effective against current and future threats due to emerging and re-emerging viral pandemics.
Collapse
Affiliation(s)
- Yue Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Bassit L, Ono SK, Schinazi RF. Moving Fast Toward Hepatitis B Virus Elimination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:115-138. [PMID: 34258739 DOI: 10.1007/978-981-16-0267-2_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Currently, there are two safe and effective therapeutic strategies for chronic hepatitis B treatment, namely, nucleoside analogs and interferon alpha (pegylated or non-pegylated). These treatments can control viral replication and improve survival; however, they do not eliminate the virus and therefore require long-term continued therapy. In addition, there are significant concerns about virus rebound on discontinuation of therapy and the development of fibrosis and hepatocellular carcinoma despite therapy. Therefore, the search for new, more effective, and safer antiviral agents that can cure hepatitis B virus (HBV) continues. Anti-HBV drug discovery and development is fundamentally impacted by our current understanding of HBV replication, disease physiopathology, and persistence of HBV covalently closed circular DNA (cccDNA). Several HBV replication targets are the basis for novel anti-HBV drug development strategies. Many of them are already in clinical trial phase 1 or 2, while others with promising results are still in preclinical stages. As research intensifies, potential HBV curative therapies and modalities in the pipeline are now on the horizon.
Collapse
Affiliation(s)
- Leda Bassit
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Suzane Kioko Ono
- Department of Gastroenterology, University of Sao Paulo School of Medicine, Sao Paulo, SP, Brazil
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
38
|
Loureiro D, Tout I, Narguet S, Benazzouz SM, Mansouri A, Asselah T. miRNAs as Potential Biomarkers for Viral Hepatitis B and C. Viruses 2020; 12:E1440. [PMID: 33327640 PMCID: PMC7765125 DOI: 10.3390/v12121440] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Around 257 million people are living with hepatitis B virus (HBV) chronic infection and 71 million with hepatitis C virus (HCV) chronic infection. Both HBV and HCV infections can lead to liver complications such as cirrhosis and hepatocellular carcinoma (HCC). To take care of these chronically infected patients, one strategy is to diagnose the early stage of fibrosis in order to treat them as soon as possible to decrease the risk of HCC development. microRNAs (or miRNAs) are small non-coding RNAs which regulate many cellular processes in metazoans. Their expressions were frequently modulated by up- or down-regulation during fibrosis progression. In the serum of patients with HBV chronic infection (CHB), miR-122 and miR-185 expressions are increased, while miR-29, -143, -21 and miR-223 expressions are decreased during fibrosis progression. In the serum of patients with HCV chronic infection (CHC), miR-143 and miR-223 expressions are increased, while miR-122 expression is decreased during fibrosis progression. This review aims to summarize current knowledge of principal miRNAs modulation involved in fibrosis progression during chronic hepatitis B/C infections. Furthermore, we also discuss the potential use of miRNAs as non-invasive biomarkers to diagnose fibrosis with the intention of prioritizing patients with advanced fibrosis for treatment and surveillance.
Collapse
Affiliation(s)
| | | | | | | | | | - Tarik Asselah
- Department of Hepatology, Université de Paris, CRI, INSERM UMR 1149, AP-HP Hôpital Beaujon, 92110 Clichy, France; (D.L.); (I.T.); (S.N.); (S.M.B.); (A.M.)
| |
Collapse
|
39
|
Rybicka M, Bielawski KP. Recent Advances in Understanding, Diagnosing, and Treating Hepatitis B Virus Infection. Microorganisms 2020; 8:E1416. [PMID: 32942584 PMCID: PMC7565763 DOI: 10.3390/microorganisms8091416] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection affects 292 million people worldwide and is associated with a broad range of clinical manifestations including cirrhosis, liver failure, and hepatocellular carcinoma (HCC). Despite the availability of an effective vaccine HBV still causes nearly 900,000 deaths every year. Current treatment options keep HBV under control, but they do not offer a cure as they cannot completely clear HBV from infected hepatocytes. The recent development of reliable cell culture systems allowed for a better understanding of the host and viral mechanisms affecting HBV replication and persistence. Recent advances into the understanding of HBV biology, new potential diagnostic markers of hepatitis B infection, as well as novel antivirals targeting different steps in the HBV replication cycle are summarized in this review article.
Collapse
Affiliation(s)
- Magda Rybicka
- Department of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland;
| | | |
Collapse
|
40
|
Ligat G, Goto K, Verrier E, Baumert TF. Targeting Viral cccDNA for Cure of Chronic Hepatitis B. CURRENT HEPATOLOGY REPORTS 2020; 19:235-244. [PMID: 36034467 PMCID: PMC7613435 DOI: 10.1007/s11901-020-00534-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purpose of Review Chronic hepatitis B (CHB), caused by hepatitis B virus (HBV), is a major cause of advanced liver disease and hepatocellular carcinoma (HCC) worldwide. HBV replication is characterized by the synthesis of covalently closed circular (ccc) DNA which is not targeted by antiviral nucleos(t)ide analogues (NUCs) the key modality of standard of care. While HBV replication is successfully suppressed in treated patients, they remain at risk for developing HCC. While functional cure, characterized by loss of HBsAg, is the first goal of novel antiviral therapies, curative treatments eliminating cccDNA remain the ultimate goal. This review summarizes recent advances in the discovery and development of novel therapeutic strategies and their impact on cccDNA biology. Recent Findings Within the last decade, substantial progress has been made in the understanding of cccDNA biology including the discovery of host dependency factors, epigenetic regulation of cccDNA transcription and immune-mediated degradation. Several approaches targeting cccDNA either in a direct or indirect manner are currently at the stage of discovery, preclinical or early clinical development. Examples include genome-editing approaches, strategies targeting host dependency factors or epigenetic gene regulation, nucleocapsid modulators and immune-mediated degradation. Summary While direct-targeting cccDNA strategies are still largely at the preclinical stage of development, capsid assembly modulators and immune-based approaches have reached the clinical phase. Clinical trials are ongoing to assess their efficacy and safety in patients including their impact on viral cccDNA. Combination therapies provide additional opportunities to overcome current limitations of individual approaches.
Collapse
Affiliation(s)
- Gaëtan Ligat
- Université de Strasbourg, 67000 Strasbourg, France
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm U1110, 3 Rue Koeberlé, 67000 Strasbourg, France
| | - Kaku Goto
- Université de Strasbourg, 67000 Strasbourg, France
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm U1110, 3 Rue Koeberlé, 67000 Strasbourg, France
| | - Eloi Verrier
- Université de Strasbourg, 67000 Strasbourg, France
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm U1110, 3 Rue Koeberlé, 67000 Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, 67000 Strasbourg, France
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm U1110, 3 Rue Koeberlé, 67000 Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France
| |
Collapse
|
41
|
Goto K, Nishitsuji H, Sugiyama M, Nishida N, Mizokami M, Shimotohno K. Orchestration of Intracellular Circuits by G Protein-Coupled Receptor 39 for Hepatitis B Virus Proliferation. Int J Mol Sci 2020; 21:ijms21165661. [PMID: 32784555 PMCID: PMC7460832 DOI: 10.3390/ijms21165661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV), a highly persistent pathogen causing hepatocellular carcinoma (HCC), takes full advantage of host machinery, presenting therapeutic targets. Here we aimed to identify novel druggable host cellular factors using the reporter HBV we have recently generated. In an RNAi screen of G protein-coupled receptors (GPCRs), GPCR39 (GPR39) appeared as the top hit to facilitate HBV proliferation. Lentiviral overexpression of active GPR39 proteins and an agonist enhanced HBV replication and transcriptional activities of viral promoters, inducing the expression of CCAAT/enhancer binding protein (CEBP)-β (CEBPB). Meanwhile, GPR39 was uncovered to activate the heat shock response, upregulating the expression of proviral heat shock proteins (HSPs). In addition, glioma-associated oncogene homologue signaling, a recently reported target of GPR39, was suggested to inhibit HBV replication and eventually suppress expression of CEBPB and HSPs. Thus, GPR39 provirally governed intracellular circuits simultaneously affecting the carcinopathogenetic gene functions. GPR39 and the regulated signaling networks would serve as antiviral targets, and strategies with selective inhibitors of GPR39 functions can develop host-targeted antiviral therapies preventing HCC.
Collapse
Affiliation(s)
- Kaku Goto
- Correspondence: ; Tel.: +81-47-372-3501; Fax: +81-47-375-4766
| | | | | | | | | | | |
Collapse
|
42
|
Hepatitis B surface antigen seroclearance: Immune mechanisms, clinical impact, importance for drug development. J Hepatol 2020; 73:409-422. [PMID: 32333923 DOI: 10.1016/j.jhep.2020.04.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
Abstract
HBsAg seroclearance occurs rarely in the natural history of chronic hepatitis B (CHB) infection and is associated with improved clinical outcomes. Many factors are associated with HBsAg seroconversion, including immune and viral factors. However, the immune mechanisms associated with HBsAg seroclearance are still difficult to elucidate. HBsAg seroclearance is the ideal aim of HBV treatment. Unfortunately, this goal is rarely achieved with current treatments. Understanding the mechanisms of HBsAg loss appears to be important for the development of curative HBV treatments. While studies from animal models give insights into the potential immune mechanisms and interactions occurring between the immune system and HBsAg, they do not recapitulate all features of CHB in humans and are subject to variability due to their complexity. In this article, we review recent studies on these immune factors, focusing on their influence on CHB progression and HBsAg seroconversion. These data provide new insights for the development of therapeutic approaches to partially restore the anti-HBV immune response. Targeting HBsAg will ideally relieve the immunosuppressive effects on the immune system and help to restore anti-HBV immune responses.
Collapse
|
43
|
Phosphorylation of the Arginine-Rich C-Terminal Domains of the Hepatitis B Virus (HBV) Core Protein as a Fine Regulator of the Interaction between HBc and Nucleic Acid. Viruses 2020; 12:v12070738. [PMID: 32650547 PMCID: PMC7412469 DOI: 10.3390/v12070738] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 02/08/2023] Open
Abstract
The morphogenesis of Hepatitis B Virus (HBV) viral particles is nucleated by the oligomerization of HBc protein molecules, resulting in the formation of an icosahedral capsid shell containing the replication-competent nucleoprotein complex made of the viral polymerase and the pre-genomic RNA (pgRNA). HBc is a phospho-protein containing two distinct domains acting together throughout the viral replication cycle. The N-terminal domain, (residues 1–140), shown to self-assemble, is linked by a short flexible domain to the basic C-terminal domain (residues 150–183) that interacts with nucleic acids (NAs). In addition, the C-terminal domain contains a series of phospho-acceptor residues that undergo partial phosphorylation and de-phosphorylation during virus replication. This highly dynamic process governs the homeostatic charge that is essential for capsid stability, pgRNA packaging and to expose the C-terminal domain at the surface of the particles for cell trafficking. In this review, we discuss the roles of the N-terminal and C-terminal domains of HBc protein during HBV morphogenesis, focusing on how the C-terminal domain phosphorylation dynamics regulate its interaction with nucleic acids throughout the assembly and maturation of HBV particles.
Collapse
|
44
|
Gan CJ, Li WF, Li CN, Li LL, Zhou WY, Peng XM. EGF receptor inhibitors comprehensively suppress hepatitis B virus by downregulation of STAT3 phosphorylation. Biochem Biophys Rep 2020; 22:100763. [PMID: 32322693 PMCID: PMC7170955 DOI: 10.1016/j.bbrep.2020.100763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
Current antiviral therapy can not cure chronic hepatitis B virus (HBV) infection or eliminate the risk of hepatocellular carcinoma. The licensed epidermal growth factor receptor (EGFR) inhibitors have found to inhibit hepatitis C virus replication via downregulation of signal transducers and activators of transcription 3 (STAT3) phosphorylation. Since STAT3 is also involved in HBV replication, we further studied the anti-HBV efficacy of the EGFR inhibitors in this study. HBV-transfected HepG2.2.15 cells and HBV-infected HepG2-NTCP cells were used as cell models, and HBV replication, the syntheses of viral antigens and the magnitude of the covalently closed circular DNA (cccDNA) reservoir were used as indictors to test the anti-HBV effects of EGFR inhibitors erlotinib and gefitinib. Erlotinib inhibited HBV replication with a half-maximal inhibitory concentration of 1.05 μM. It also reduced the syntheses of viral antigens at concentrations of 2.5 μM or higher. The underlying mechanism was possibly correlated with its inhibition on STAT3 phosphorylation via up-regulation of suppressor of cytokine signaling 3. Gefitinib also inhibited HBV replication and antigen syntheses. Compared with the commonest antiviral drug entecavir, these EGFR inhibitors additionally reduced hepatitis B e antigen and erlotinib also marginally affected the cccDNA reservoir in HBV-infected HepG2-NTCP cells. Interestingly, these promising anti-HBV effects were significantly enhanced by extension of treatment duration. In conclusion, EGFR inhibitors demonstrated a comprehensive anti-HBV potential, highlighting a new strategy to cure HBV infection and suggesting animal model-related studies or clinical try in the future.
Collapse
Key Words
- Antiviral therapy
- Covalently closed circular DNA
- EGF, epidermal growth factor
- EGFR, epidermal growth factor inhibitor
- Epidermal growth factor receptor inhibitor
- GEq, genome equivalent
- HBV, hepatitis B virus
- HBeAg, hepatitis B e antigen
- HBsAg, hepatitis B surface antigen
- HCC, hepatocellular carcinoma
- HNF3, hepatocyte nuclear factor 3
- Hepatitis B virus
- IFN, interferon
- MTT, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide
- NAs, nucleotide/nucleoside analogues
- NTCP, sodium taurocholate cotransporting polypeptide
- PCR, polymerase chain reaction
- SOCS3, suppressor of cytokine signaling 3
- STAT3
- STAT3, signal transduction and activators of transcription 3
- cccDNA, covalently closed circular DNA
Collapse
Affiliation(s)
- Chong J. Gan
- Center of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Wen F. Li
- Center of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Chun N. Li
- Center of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Ling L. Li
- Central Laboratory, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Wen Y. Zhou
- Central Laboratory, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Xiao M. Peng
- Center of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| |
Collapse
|
45
|
Geng J, Bao H, Chen Y, Shi L, Geng J, Wang Q, Yu H. Nucleos(t)ide analogues for the treatment of chronic hepatitis B: a systematic review with network meta-analysis. Expert Rev Anti Infect Ther 2020; 18:823-834. [PMID: 32329638 DOI: 10.1080/14787210.2020.1760843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Chronic hepatitis B (CHB) is a major global health problem caused by hepatitis B virus (HBV) infection, and can put patients at high risk of death from cirrhosis and liver cancer. However, CHB can be treated with nucleos(t)ide analogues. We aimed to evaluate the effectiveness and safety of nucleos(t)ide analogues for the treatment of CHB patients. METHODS A systematic literature search was performed. Direct comparison meta-analyses and network meta-analysis (NMA) were carried out. RESULTS Thirty-six randomized controlled trials (RCTs) met inclusion criteria. Compared with placebo, the nucleos(t)ide analogues were all effective in HBeAg seroconversion, HBeAg loss, and achieving undetectable HBV DNA. Telbivudine was associated with higher HBeAg seroconversion compared with entecavir. For HBeAg loss rate and proportion of achieving undetectable HBV DNA, tenofovir ranked as the best. Entecavir might be the most potent in the normalization of alanine aminotransferase (ALT). The nucleos(t)ide analogues did not have higher serious adverse events rate as compared with placebo. CONCLUSION The nucleos(t)ide analogues are all effective for HBeAg seroconversion, HBeAg loss, undetectable HBV DNA, and most are effective for ALT normalization in adults with CHB. RCTs of multi-center, low risk of bias, and long-term follow-up are still needed.
Collapse
Affiliation(s)
- JinSong Geng
- Evidence-based Medicine Center, Medical School of Nantong University , Jiangsu, China
| | - HaiNi Bao
- Evidence-based Medicine Center, Medical School of Nantong University , Jiangsu, China
| | - YaLan Chen
- Evidence-based Medicine Center, Medical School of Nantong University , Jiangsu, China
| | - LiLi Shi
- Evidence-based Medicine Center, Medical School of Nantong University , Jiangsu, China
| | - Jing Geng
- Department of Gastroenterology, Lianyungang No 1 People's Hospital , Jiangsu, China
| | - Qing Wang
- Department of Infectious Disease, Ningxiang People's Hospital , Hunan, China
| | - Hao Yu
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston, MA, USA
| |
Collapse
|
46
|
Gane EJ, Charlton MR, Mohamed R, Sollano JD, Tun KS, Pham TTT, Payawal DA, Gani RA, Muljono DH, Acharya SK, Zhuang H, Shukla A, Madan K, Saraf N, Tyagi S, Singh KR, Cua IHY, Jargalsaikhan G, Duger D, Sukeepaisarnjaroen W, Purnomo HD, Hasan I, Lesmana LA, Lesmana CRA, Kyi KP, Naing W, Ravishankar AC, Hadigal S. Asian consensus recommendations on optimizing the diagnosis and initiation of treatment of hepatitis B virus infection in resource-limited settings. J Viral Hepat 2020; 27:466-475. [PMID: 31785182 DOI: 10.1111/jvh.13244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/11/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
Asia has an intermediate-to-high prevalence of and high morbidity and mortality from hepatitis B virus (HBV) infection. Optimization of diagnosis and initiation of treatment is one of the crucial strategies for lowering disease burden in this region. Therefore, a panel of 24 experts from 10 Asian countries convened, and reviewed the literature, to develop consensus guidance on diagnosis and initiation of treatment of HBV infection in resource-limited Asian settings. The panel proposed 11 recommendations related to diagnosis, pre-treatment assessment, and indications of therapy of HBV infection, and management of HBV-infected patients with co-infections. In resource-limited Asian settings, testing for hepatitis B surface antigen may be considered as the primary test for diagnosis of HBV infection. Pre-treatment assessments should include tests for complete blood count, liver and renal function, hepatitis B e-antigen (HBeAg), anti-HBe, HBV DNA, co-infection markers and assessment of severity of liver disease. Noninvasive tests such as AST-to-platelet ratio index, fibrosis score 4 or transient elastography may be used as alternatives to liver biopsy for assessing disease severity. Considering the high burden of HBV infection in Asia, the panel adopted an aggressive approach, and recommended initiation of antiviral therapy in all HBV-infected, compensated or decompensated cirrhotic individuals with detectable HBV DNA levels, regardless of HBeAg status or alanine transaminase levels. The panel also developed a simple algorithm for guiding the initiation of treatment in noncirrhotic, HBV-infected individuals. The recommendations proposed herein, may help guide clinicians, to optimize the diagnosis and improvise the treatment rates for HBV infection in Asia.
Collapse
Affiliation(s)
| | - Michael R Charlton
- Director Transplant Institute, Center for Liver Diseases, University of Chicago Biological Sciences, Chicago, IL, USA
| | - Rosmawati Mohamed
- Department of Medicine, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | | | - Kyaw Soe Tun
- Department of Gastroenterology and Hepatobiliary Medicine, Defense Services Medical Academy, Yangon, Myanmar
| | | | | | - Rino Alvani Gani
- Liver Transplantation Team, Ciptomangunkusumo Hospital, Jakarta, Indonesia
| | - David Handojo Muljono
- Hepatitis Department, Medicine Hepatitis Department, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Universitas Hasanuddin, Makassar, Indonesia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Subrat Kumar Acharya
- Odisha Department of Gastroenterology Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, India
| | - Hui Zhuang
- Infectious Disease Center, Peking University Health Science Center, Beijing, China
| | - Akash Shukla
- Department of Gastroenterology, LTM Medical College & Sion Hospital, Mumbai, India
| | - Kaushal Madan
- Gastroenterology & Hepatology, Max Smart Super Specialty Hospital, India
| | - Neeraj Saraf
- Clinical/Transplant Hepatology Institute of Digestive & Hepatobiliary Sciences, Medanta - The Medicity, Gurgaon, India
| | | | | | - Ian Homer Yee Cua
- Section of Hepatology Institute of Digestive and Liver Diseases, St. Luke's Medical Center, Quezon, Philippines
| | - Ganbolor Jargalsaikhan
- Department Liver Center, Department International Graduate Program in Medicine (IGPM) Institution, Ulaanbaatar, Mongolia
- College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Davadoorj Duger
- Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Wattana Sukeepaisarnjaroen
- Gastroenterology Unit, Department of Medicine Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Hery Djagat Purnomo
- Division Gastroentero Hepatology Internal Medicine, Dr Kariadi Hospital, Medical Faculty Diponegoro University, Semarang, Indonesia
| | - Irsan Hasan
- Hepatobiliary Division, Department of Internal Medicine, Cipto Mangunkusumo National General Hospital Jalan Diponegoro, Jakarta, Indonesia
| | | | - Cosmas Rinaldi Adithya Lesmana
- Department of Internal Medicine, Hepatobiliary Division, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Khin Pyone Kyi
- Myanmar Liver Foundation; Liver Foundation, Yangon, Myanmar
| | - Win Naing
- Department of Hepatology, Yangon General Hospital, University of Medicine, Yangon, Myanmar
| | | | - Sanjay Hadigal
- Medical Affairs, Mylan Pharmaceuticals Private Limited, Bangalore, India
| |
Collapse
|
47
|
Yu J, Jia H, Guo X, Desta S, Zhang S, Zhang J, Ding X, Liang X, Liu X, Zhan P. Design, synthesis, and evaluation of novel heteroaryldihydropyrimidine derivatives as non‐nucleoside hepatitis B virus inhibitors by exploring the solvent‐exposed region. Chem Biol Drug Des 2020; 95:567-583. [PMID: 30825248 DOI: 10.1111/cbdd.13512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/28/2018] [Accepted: 02/16/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Ji Yu
- Department of Medicinal Chemistry Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Shandong University Jinan China
| | - Haiyong Jia
- School of Pharmacy Weifang Medical University Weifang China
| | - Xiaowei Guo
- Department of Immunology Key Laboratory for Experimental, Teratology of Ministry of Education Shandong Provincial Key Laboratory of Infection and Immunology Shandong University School of Medicine Jinan China
| | - Samuel Desta
- Department of Medicinal Chemistry Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Shandong University Jinan China
| | - Shuo Zhang
- Department of Medicinal Chemistry Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Shandong University Jinan China
| | - Jian Zhang
- Department of Medicinal Chemistry Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Shandong University Jinan China
| | - Xiao Ding
- Department of Medicinal Chemistry Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Shandong University Jinan China
| | - Xiaohong Liang
- Department of Immunology Key Laboratory for Experimental, Teratology of Ministry of Education Shandong Provincial Key Laboratory of Infection and Immunology Shandong University School of Medicine Jinan China
| | - Xinyong Liu
- Department of Medicinal Chemistry Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Shandong University Jinan China
| | - Peng Zhan
- Department of Medicinal Chemistry Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Shandong University Jinan China
| |
Collapse
|
48
|
Dandri M. Epigenetic modulation in chronic hepatitis B virus infection. Semin Immunopathol 2020; 42:173-185. [PMID: 32185454 PMCID: PMC7174266 DOI: 10.1007/s00281-020-00780-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Abstract
The human hepatitis B virus (HBV) is a small-enveloped DNA virus causing acute and chronic hepatitis. Despite the existence of an effective prophylactic vaccine and the strong capacity of approved antiviral drugs to suppress viral replication, chronic HBV infection (CHB) continues to be a major health burden worldwide. Both the inability of the immune system to resolve CHB and the unique replication strategy employed by HBV, which forms a stable viral covalently closed circular DNA (cccDNA) minichromosome in the hepatocyte nucleus, enable infection persistence. Knowledge of the complex network of interactions that HBV engages with its host is still limited but accumulating evidence indicates that epigenetic modifications occurring both on the cccDNA and on the host genome in the course of infection are essential to modulate viral activity and likely contribute to pathogenesis and cancer development. Thus, a deeper understanding of epigenetic regulatory processes may open new venues to control and eventually cure CHB. This review summarizes major findings in HBV epigenetic research, focusing on the epigenetic mechanisms regulating cccDNA activity and the modifications determined in infected host cells and tumor liver tissues.
Collapse
Affiliation(s)
- Maura Dandri
- I. Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany.
| |
Collapse
|
49
|
Abstract
Currently, despite the use of a preventive vaccine for several decades as well as the use of effective and well-tolerated viral suppressive medications since 1998, approximately 250 million people remain infected with the virus that causes hepatitis B worldwide. Hepatitis C virus (HCV) and hepatitis B virus (HBV) are the leading causes of liver cancer and overall mortality globally, surpassing malaria and tuberculosis. Linkage to care is estimated to be very poor both in developing countries and in high-income countries, such as the United States, countries in Western Europe, and Japan. In the United States, by CDC estimates, only one-third of HBV-infected patients or less are aware of their infection. Some reasons for these low rates of surveillance, diagnosis, and treatment include the asymptomatic nature of chronic hepatitis B until the very late stages, a lack of curative therapy with a finite treatment duration, a complex natural history, and a lack of knowledge about the disease by both care providers and patients. In the last 5 years, more attention has been focused on the important topics of HBV screening, diagnosis of HBV infection, and appropriate linkage to care. There have also been rapid clinical developments toward a functional cure of HBV infection, with novel compounds currently being in various phases of progress. Despite this knowledge, many of the professional organizations provide guidelines focused only on specific questions related to the treatment of HBV infection. This focus leaves a gap for care providers on the other HBV-related issues, which include HBV's epidemiological profile, its natural history, how it interacts with other viral hepatitis diseases, treatments, and the areas that still need to be addressed in order to achieve HBV elimination by 2030. Thus, to fill these gaps and provide a more comprehensive and relevant document to regions worldwide, we have taken a global approach by using the findings of global experts on HBV as well as citing major guidelines and their various approaches to addressing HBV and its disease burden.
Collapse
|
50
|
Soriano V, Barreiro P, Cachay E, Kottilil S, Fernandez-Montero JV, de Mendoza C. Advances in hepatitis B therapeutics. Ther Adv Infect Dis 2020; 7:2049936120965027. [PMID: 33117536 PMCID: PMC7570774 DOI: 10.1177/2049936120965027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the availability of both effective preventive vaccines and oral antivirals, over 250 million people are chronically infected with the hepatitis B virus (HBV). Globally, chronic hepatitis B is the leading cause of hepatocellular carcinoma, which represents the third cause of cancer mortality, accounting for nearly 1 million annual deaths. Current oral nucleos(t)ide therapy with tenofovir or entecavir suppresses serum HBV-DNA in most treated patients, but rarely is accompanied by HBsAg loss. Thus, treatment has to be given lifelong to prevent viral rebound. A broad spectrum of antivirals that block the HBV life cycle at different steps are in clinical development, including entry inhibitors, cccDNA disrupters/silencers, translation inhibitors, capsid assembly modulators, polymerase inhibitors and secretion inhibitors. Some of them exhibit higher potency than current oral nucleos(t)ides. Drugs in more advanced stages of clinical development are bulevirtide, JNJ-6379, ABI-H0731, ARO-HBV and REP-2139. To date, only treatment with ARO-HBV and with REP-2139 have resulted in HBsAg loss in a significant proportion of patients. Combination therapies using distinct antivirals and/or immune modulators are expected to maximize treatment benefits. The current goal is to achieve a 'functional cure', with sustained serum HBsAg after drug discontinuation. Ultimately, the goal of HBV therapy will be virus eradication, an achievement that would require the elimination of the cccDNA reservoir within infected hepatocytes.
Collapse
Affiliation(s)
- Vicente Soriano
- UNIR Health Sciences School and Medical Center, 28040 Madrid, Porto Velho, Madrid 76801-059, Spain
| | - Pablo Barreiro
- Infectious Diseases Department, La Paz University Hospital, Madrid, Spain
| | - Edward Cachay
- Infectious Diseases Unit, Owen Clinic, University of California, San Diego, CA, USA
| | - Shyamasundaran Kottilil
- Infectious Diseases Department, Institute of Human Virology, University of Maryland, Baltimore, MD, USA
| | | | - Carmen de Mendoza
- Puerta de Hierro University Hospital and Research Institute, Majadahonda, Spain
| |
Collapse
|