1
|
Kanda T, Sasaki-Tanaka R, Yokoo T, Hayashi K, Kamimura H, Tsuchiya A, Terai S. Cholestasis in hepatitis E virus infection. World J Hepatol 2025; 17:99899. [PMID: 40308815 PMCID: PMC12038413 DOI: 10.4254/wjh.v17.i4.99899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/21/2024] [Accepted: 10/09/2024] [Indexed: 04/25/2025] Open
Abstract
Hepatitis E virus (HEV) infection causes acute hepatitis, chronic hepatitis, particularly in compromised hosts, and various extrahepatic manifestations. HEV infection is reportedly associated with biliary-pancreatic diseases, such as gallstones, cholangitis, choledocholithiasis, and acute pancreatitis. Severe jaundice and prolonged cholestasis are also atypical manifestations of HEV infection. The mechanism and genes involved in cholestasis, namely sinusoidal uptake of blood, bile salt synthesis and secretion from hepatocytes to the canaliculus, have been elucidated. HEV infection triggers severe jaundice and prolonged cholestasis in patients with genetic variants in adenosine triphosphatase phospholipid transporting 8B1, adenosine triphosphate-binding cassette (ABC) protein B4, ABCB11, Myosin VB, and/or farnesoid X receptor (FXR/NR1H4). Although prolonged cholestasis associated with these gene mutations does not seem to be specific to HEV infection, these mutations may be risk factors related to the severity of HEV infection. The use of the pregnane X receptor agonist rifampicin and the peroxisome proliferator-activated receptor activator bezafibrate may be useful for the treatment of cholestasis. These studies provide new insights into understanding the mechanisms of severe jaundice and prolonged cholestasis caused by HEV infection.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minamiuonuma 949-7302, Niigata, Japan.
| | - Reina Sasaki-Tanaka
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8520, Japan
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8520, Japan
| | - Kazunao Hayashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8520, Japan
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8520, Japan
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8520, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8520, Japan
| |
Collapse
|
2
|
Wang C, Liu X, Zhao Y, Liao S, Zhang J, Huang Y, Shi Y, Li L, Pan Q, Wu J, Wang Y. AMPK activation by hepatitis E virus infection inhibits viral replication through attenuation of autophagosomes and promotion of innate immunity. Cell Mol Life Sci 2025; 82:111. [PMID: 40074929 PMCID: PMC11904043 DOI: 10.1007/s00018-025-05634-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/26/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
Hepatitis E virus (HEV) infection is generally asymptomatic or leads to acute and self-limiting hepatitis. The mechanisms orchestrating such an infection course remain to be elucidated. AMP-activated protein kinase (AMPK) is a pivotal cellular sensor for maintaining metabolic homeostasis. Here, we show that AMPK is activated in response to HEV infection and is associated with mitochondrial damage and ATP deficiency. AMPK activation, in turn, inhibits HEV replication. Mechanistic studies reveal that AMPK activation triggers the expression of interferon (IFN)-stimulated genes that possess antiviral properties. In parallel, AMPK inhibits autophagosome accumulation to exert antiviral effects. Interestingly, AMPK activation also suppresses the inflammatory response triggered by HEV infection. Consistently, AMPK activation simultaneously exerts anti-inflammatory and antiviral effects in a coculture system of HEV-infected liver cells with macrophages. These findings pave the way for the development of AMPK-targeted therapeutics to treat hepatitis E.
Collapse
Affiliation(s)
- Chunling Wang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Reproductive Health/NHC Key Laboratory of Birth Defects Prevention, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Xiaoman Liu
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yao Zhao
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shumin Liao
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiayue Zhang
- School of Pharmacy, Jiangsu Food & Pharmaceutical Science College, Huaian, Jiangsu, China
| | - Yanhong Huang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yue Shi
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liang Li
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, 3015CE, The Netherlands.
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nnjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Rd, Suzhou, Jiangsu, 215008, China.
| | - Yijin Wang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Kanda T, Li TC, Takahashi M, Nagashima S, Primadharsini PP, Kunita S, Sasaki-Tanaka R, Inoue J, Tsuchiya A, Nakamoto S, Abe R, Fujiwara K, Yokosuka O, Suzuki R, Ishii K, Yotsuyanagi H, Okamoto H. Recent advances in hepatitis E virus research and the Japanese clinical practice guidelines for hepatitis E virus infection. Hepatol Res 2024; 54:1-30. [PMID: 38874115 DOI: 10.1111/hepr.14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 06/15/2024]
Abstract
Acute hepatitis E was considered rare until reports emerged affirming the existence of hepatitis E virus (HEV) genotypes 3 and 4 infections in Japan in the early 2000s. Extensive studies by Japanese researchers have highlighted the pivotal role of pigs and wild animals, such as wild boars and deer, as reservoirs for HEV, linking them to zoonotic infections in Japan. Currently, when hepatitis occurs subsequent to the consumption of undercooked or grilled pork, wild boar meat, or offal (including pig liver and intestines), HEV infection should be considered. Following the approval of anti-HEV immunoglobulin A antibody as a diagnostic tool for hepatitis E by Japan's Health Insurance System in 2011, the annual number of diagnosed cases of HEV infection has surged. Notably, the occurrence of post-transfusion hepatitis E promoted nationwide screening of blood products for HEV using nucleic acid amplification tests since 2020. Furthermore, chronic hepatitis E has been observed in immunosuppressed individuals. Considering the significance of hepatitis E, heightened preventive measures are essential. The Japan Agency for Medical Research and Development Hepatitis A and E viruses (HAV and HEV) Study Group, which includes special virologists and hepatologists, held a virtual meeting on February 17, 2024. Discussions encompassed pathogenesis, transmission routes, diagnosis, complications, severity factors, and ongoing and prospective vaccination or treatments for hepatitis E. Rigorous assessment of referenced studies culminated in the formulation of recommendations, which are detailed within this review. This comprehensive review presents recent advancements in HEV research and Japanese clinical practice guidelines for HEV infection.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
- Division of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minamiuonuma, Japan
- Division of Gastroenterology and Hepatology, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | - Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Satoshi Kunita
- Center for Experimental Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Reina Sasaki-Tanaka
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
- Division of Gastroenterology and Hepatology, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | - Jun Inoue
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Ryuzo Abe
- Department of Emergency Medicine, Oita University, Oita, Japan
| | - Keiichi Fujiwara
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Osamu Yokosuka
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koji Ishii
- Department of Quality Assurance and Radiological Protection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Infectious Diseases and Applied Immunology, Hospital of the Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| |
Collapse
|
4
|
Favourable outcome of acute hepatitis E infection in patients with ANCA-associated vasculitis. Orphanet J Rare Dis 2022; 17:433. [PMID: 36514177 PMCID: PMC9746154 DOI: 10.1186/s13023-022-02586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) infection is a frequent cause of acute viral hepatitis. Immunocompromised patients are at increased risk for viral infection and chronic courses of hepatitis. Whether patients with autoimmune diseases are at risk of developing clinically relevant hepatitis or even chronic liver disease after HEV infection is discussed controversially. ANCA-associated vasculitis is a rare autoimmune disease with potentially life-threatening organ involvement, thus requiring intensive immunosuppression with glucocorticoids, cyclophosphamide, or rituximab. As there are no reports available on the infection with HEV in patients with ANCA-associated vasculitis, clinical decision making in such cases is based on experiences from other disease entities. Therefore, in this study we analyzed the course of liver disease and the therapeutic management of autoimmune vasculitis in a retrospective cohort of five patients with ANCA-associated vasculitis and acute hepatitis E. RESULTS Four patients were on immunosuppressive maintenance therapy and one patient was on remission induction therapy with cyclophosphamide and high dose glucocorticoids. All patients had at least one potentially hepatotoxic co-medication at the time of hepatitis. Hepatitis-associated clinical symptoms were recorded in four of five patients. The course of hepatitis was characterized by strongly elevated transaminases, a temporary liver failure was observed in one case. The management of hepatitis E included cessation of the immunosuppressants in all patients, whereas oral glucocorticoids were not discontinued. Under this regime, all patients cleared the virus without additional anti-viral treatment. Liver enzymes normalized one month after they peaked. In the follow-up period of at least 1.5 years (range 1.5-12 years), no chronic liver disease was observed, although one patient died of cholangiocarcinoma with liver metastases some years after HEV infection. Vasculitis was not active in our patient cohort at the time of HEV infection. However, inflammatory flares occured in three of five patients after discontinuation of the immunosuppressive therapy. Immunosuppressants were paused for a median time of 4 weeks and after their resumption vasculitic disease activity was controlled in all patients. CONCLUSIONS Acute HEV infection in patients with ANCA-associated vasculitis shows a favorable outcome of liver disease but bears the risk of inflammatory flares due to cessation of immunosuppression.
Collapse
|
5
|
Takakusagi S, Takagi H, Yamazaki Y, Kosone T, Nagashima S, Takahashi M, Murata K, Okamoto H. Chronic hepatitis E in an elderly immunocompetent patient who achieved a sustained virologic response with ribavirin treatment. Clin J Gastroenterol 2022; 16:206-215. [PMID: 36403172 DOI: 10.1007/s12328-022-01733-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022]
Abstract
A woman in her late 70 s was diagnosed with liver injury at a health examination. Despite treatment with ursodeoxycholic acid at a nearby hospital, her transaminase levels elevated in two peaks. She was transferred to our hospital 77 days after the health examination. She weighed 42 kg and had a low body mass index of 19.8 kg/m2. Viral markers, including immunoglobulin A (IgA) against hepatitis E virus (anti-HEV IgA), were negative. Drug-induced liver injury was negligible. We suspected autoimmune hepatitis because of the patient's female gender and positive antinuclear antibody. However, prednisolone and azathioprine failed to completely improve her hepatitis. On day 643, anti-HEV IgA was re-evaluated and found to be positive. She was diagnosed with autochthonous chronic hepatitis E because the virus strains in the preserved serum on day 77 and the serum on day 643 had identical nucleotide sequences (genotype 3a). Following prednisolone and azathioprine discontinuation, ribavirin (RBV) was administered for 3 months. HEV RNA disappeared and remained negative for more than 6 months after the cessation of RBV. The HEV RNA titer of 6.2 log10 copies/mL on day 77 was unusually high 2.5 months after the onset, suggesting that hepatitis E had already been chronic before immunosuppressive treatment for possible autoimmune hepatitis. After getting married at 23 years old, she had been a housewife and had no comorbidities that might deteriorate her immunity. Chronicity should be kept in mind when encountering HEV infection in elderly and underweight patients.
Collapse
Affiliation(s)
- Satoshi Takakusagi
- Department of Gastroenterology and Hepatology, Kusunoki Hospital, 607-22 Fujioka, Fujioka, Gunma, 375-0024, Japan
| | - Hitoshi Takagi
- Department of Gastroenterology and Hepatology, Kusunoki Hospital, 607-22 Fujioka, Fujioka, Gunma, 375-0024, Japan.
| | - Yuichi Yamazaki
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| | - Takashi Kosone
- Department of Gastroenterology and Hepatology, Kusunoki Hospital, 607-22 Fujioka, Fujioka, Gunma, 375-0024, Japan
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Kazumoto Murata
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
6
|
Ma Z, de Man RA, Kamar N, Pan Q. Chronic hepatitis E: Advancing research and patient care. J Hepatol 2022; 77:1109-1123. [PMID: 35605741 DOI: 10.1016/j.jhep.2022.05.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022]
Abstract
The hepatitis E virus (HEV) was initially thought to exclusively cause acute hepatitis. However, the first diagnosis of chronic hepatitis E in transplant recipients in 2008 profoundly changed our understanding of this pathogen. We have now begun to understand that specific HEV genotypes can cause chronic infection in certain immunocompromised populations. Over the past decade, dedicated clinical and experimental research has substantiated knowledge on the epidemiology, transmission routes, pathophysiological mechanisms, diagnosis, clinical features and treatment of chronic HEV infection. Nevertheless, many gaps and major challenges remain, particularly regarding the translation of knowledge into disease prevention and improvement of clinical outcomes. This article aims to highlight the latest developments in the understanding and management of chronic hepatitis E. More importantly, we attempt to identify major knowledge gaps and discuss strategies for further advancing both research and patient care.
Collapse
Affiliation(s)
- Zhongren Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Robert A de Man
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Nassim Kamar
- Department of Nephrology, Dialysis and Organ Transplantation, CHU Rangueil, INSERM UMR 1291, Toulouse Institute for Infectious and Inflammatory Disease (Infinity), University Paul Sabatier, Toulouse, France
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
7
|
Li P, Li Y, Wang Y, Liu J, Lavrijsen M, Li Y, Zhang R, Verstegen MMA, Wang Y, Li TC, Ma Z, Kainov DE, Bruno MJ, de Man RA, van der Laan LJW, Peppelenbosch MP, Pan Q. Recapitulating hepatitis E virus-host interactions and facilitating antiviral drug discovery in human liver-derived organoids. SCIENCE ADVANCES 2022; 8:eabj5908. [PMID: 35044825 PMCID: PMC8769558 DOI: 10.1126/sciadv.abj5908] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Hepatotropic viruses naturally have narrow host and tissue tropisms, challenging the development of robust experimental models. The advent of organoid technology provides a unique opportunity for moving the field forward. Here, we demonstrate that three-dimensional cultured organoids from fetal and adult human liver with cholangiocyte or hepatocyte phenotype support hepatitis E virus (HEV) replication. Inoculation with infectious HEV particles demonstrates that human liver–derived organoids support the full life cycle of HEV infection. By directing organoids toward polarized monolayers in a transwell system, we observed predominantly apical secretion of HEV particles. Genome-wide transcriptomic and tRNAome analyses revealed robust host responses triggered by viral replication. Drug screening in organoids identified brequinar and homoharringtonine as potent HEV inhibitors, which are also effective against the ribavirin resistance variant harboring G1634R mutation. Thus, successful recapitulation of HEV infection in liver-derived organoids shall facilitate the study of virus-host interactions and development of antiviral therapies.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Yunlong Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Yijin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Corresponding author. (Q.P.); (Y.W.)
| | - Jiaye Liu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Marla Lavrijsen
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Yang Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Ruyi Zhang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Monique M. A. Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Yining Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Zhongren Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, PR China
| | - Denis E. Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7028, Norway
- Institute of Technology, University of Tartu, Tartu 50090, Estonia
| | - Marco J. Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Robert A. de Man
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Luc J. W. van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
- Corresponding author. (Q.P.); (Y.W.)
| |
Collapse
|
8
|
Li Z, Kong D, Liu Y, Li M. Pharmacological perspectives and molecular mechanisms of coumarin derivatives against virus disease. Genes Dis 2022; 9:80-94. [PMID: 35005109 PMCID: PMC8720699 DOI: 10.1016/j.gendis.2021.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Infections caused by viruses are one of the foremost causes of morbidity and mortality in the world. Although a number of antiviral drugs are currently used for treatment of various kinds of viral infection diseases, there is still no available therapeutic agent for most of the viruses in clinical practice. Coumarin is a chemical compound which is found naturally in a variety of plants, it can also be synthetically produced possessing diverse biological effects. More recently, reports have highlighted the potential role of coumarin derivatives as antiviral agents. This review outlines the advances in coumarin-based compounds against various viruses including human immunodeficiency virus, hepatitis virus, herpes simplex virus, Chikungunya virus and Enterovirus 71, as well as the structure activity relationship and the possible mechanism of action of the most potent coumarin derivatives.
Collapse
Affiliation(s)
- Zhoupeng Li
- Department of Pharmacology & Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shanxi 710032, PR China
| | - Dehui Kong
- School of Nursing, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Yongsheng Liu
- Department of Pharmacology & Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shanxi 710032, PR China
| | - Mingkai Li
- Department of Pharmacology & Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shanxi 710032, PR China
- Precision Pharmacy & Drug Development Center, The Fourth Military Medical University, Xi'an, Shanxi 710032, PR China
- Corresponding author. Department of Pharmacology & Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shanxi Province 710032, PR China.
| |
Collapse
|
9
|
Gui H, Wang W, Li Q, Li Z, Lu J, Xie Q. Autoimmune liver disease-associated serologic profiling in Chinese patients with acute hepatitis E virus infection. Immunol Res 2021; 69:81-89. [PMID: 33507492 PMCID: PMC7921054 DOI: 10.1007/s12026-021-09178-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
The association between hepatitis E virus (HEV) and autoimmune liver diseases has been well-researched; however, the focus has been on autoimmune hepatitis (AIH) and not primary biliary cholangitis (PBC). Therefore, we aimed to investigate the prevalence and evolution of AIH- and PBC-related autoantibodies in Chinese patients with HEV infection. In this retrospective study, 164 patients with acute HEV were included, specifically those whose liver autoantibody results were available and who had no pre-existing liver disease at the time of HEV diagnosis. Positive liver autoimmune serology was present in 69 (42.1%) patients and 21 (12.8%) had at least two autoantibodies at diagnosis. Greater age and alkaline phosphatase levels were independent risk factors for autoantibody positivity. Follow-up serologic tests, which were available for 27 of the 69 autoantibody-positive patients, showed that although antinuclear antibodies disappeared in 11/20 (55.0%) and antimitochondrial antibodies disappeared in 4/5 (80%) patients, 16 still remained positive for autoantibodies and two of them even developed new PBC-related antibodies, as described below. One patient developed a rim-like ANA pattern, accompanied by an enhancement of anti-gp210 positivity; and the other was diagnosed as PBC, based on chronic elevation of cholestatic enzymes and presentation with de novo AMA-M2, 18 months after HEV clearance. In conclusion, AIH- and PBC-related autoantibodies are frequently present during acute HEV infection, indicating that HEV should be excluded before diagnosing AIH and/or PBC. Importantly, some cases maintained or developed autoantibodies after viral clearance, and one patient subsequently developed PBC, highlighting that these individuals warrant long-term follow-up.
Collapse
Affiliation(s)
- Honglian Gui
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weijing Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qing Li
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ziqiang Li
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
10
|
Lu J, Li Q, Jiang J, Li Z, Wang P, Sheng Z, Lai R, Zhou H, Cai W, Wang H, Guo Q, Gui H, Xie Q. Laboratory-based Surveillance and Clinical Profile of Sporadic HEV Infection in Shanghai, China. Virol Sin 2021; 36:644-654. [PMID: 33433848 DOI: 10.1007/s12250-020-00336-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022] Open
Abstract
The study aimed to describe the epidemiological, virological and clinical features of sporadic HEV infection in eastern China. A total of 6112 patient sera were tested for anti-HEV IgG or anti-HEV IgM during one consecutive year (between August 2018 and July 2019). HEV RNA presence was evaluated by RT-PCR and HEV sequences were phylogenetically analyzed. Clinical features of confirmed HEV-infected patients were delineated. The sero-positivity rate of anti-HEV IgG maintained stable around 40%, while an obvious winter spike of anti-HEV IgM prevalence was observed. A total of 111 patients were confirmed of HEV viremia by molecular diagnosis. Subtype 4d was predominant. Phylogenetic analyses suggest that certain strains circulate across species and around the country. Subjects with confirmed current HEV infection had a high median age (58 years) and males were predominant (62.2%). Most patients presented with jaundice (75.7%) and anorexia (68.0%). Significantly elevated levels of liver enzymes and bilirubin were observed. Remarkably, the baseline bilirubin level was positively correlated with illness severity. Pre-existing HBV carriage may deteriorate illness. The clinical burden caused by locally acquired HEV infection is increasing. Surveillance should be enforced especially during the transition period from winter to spring. Patients with higher level of bilirubin at disease onset had slower recovery from HEV infection.
Collapse
Affiliation(s)
- Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qing Li
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiayuan Jiang
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ziqiang Li
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Peiyun Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zike Sheng
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rongtao Lai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huijuan Zhou
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Cai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hui Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qing Guo
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Honglian Gui
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
11
|
The histologic presentation of hepatitis E reflects patients' immune status and pre-existing liver condition. Mod Pathol 2021; 34:233-248. [PMID: 32572157 PMCID: PMC7806507 DOI: 10.1038/s41379-020-0593-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
Abstract
Infection with the hepatitis E virus (HEV) is one of the main causes of acute hepatitis worldwide. Given that, the histopathology of hepatitis E is relatively poorly characterized, and it is unclear what exactly determines its remarkable variability. The aim of our study was a systematic analysis of hepatitis E histology, especially with regard to the clinical setting. Fifty-two liver samples (48 biopsies, 1 liver explant, 3 autopsy livers) from 41 patients with molecularly proven hepatitis E (28 HEV genotype (gt) 3, three gt 1, one gt 4 and 9 undetermined gt) were systematically evaluated for 33 histopathologic features. Following one approach, the biopsies were assigned to one of five generic histologic patterns. In another approach, they were subjected to hierarchical clustering. We found that 23/41 (56%) patients were immunocompromised, whereas 18 (44%) had no known immunosuppression. Five patients (12%) had pre-existing liver disease (LD). The histopathologic spectrum ranged from almost normal to acute, chronic, and steato-hepatitis to subtotal necrosis, and was thus distributed across all five generic patterns. Hierarchical clustering, however, identified three histopathologic clusters (C1-C3), which segregated along the immune status and pre-existing LD: C1 comprised mostly patients with pre-existing LD; histology mainly reflected the respective LD without pointing to the additional hepatitis E. C2 comprised mostly immunocompetent patients; histology mainly displayed florid hepatitis. C3 comprised mostly immunocompromised patients; histology mainly displayed smoldering hepatitis. Accordingly, C1-C3 differed markedly with respect to their clinical and histopathologic differential diagnoses. Hierarchical clustering suggests three groups with distinct histopathologies, indicating biologically different manifestations of hepatitis E. The association of histopathologic changes with the patient's immune status and pre-existing LD plausibly explains the diversity of hepatitis E histopathology, and suggests that these factors are the crucial underlying determinants. We expect our results to improve patient management by guiding the clinico-pathologic diagnosis of hepatitis E.
Collapse
|
12
|
|
13
|
Abstract
Infection with the hepatitis E virus (HEV) is one of the most common causes, if not the most common, of acute hepatitis worldwide. In the last decade, we have learned that, in addition to the endemically and epidemically occurring form of hepatitis E, which is predominantly transmitted by contaminated drinking water and constitutes a significant health problem in resource-poor countries, there is a globally existing form of hepatitis E, which is a zoonosis and as such is primarily transmitted by the consumption of contaminated meat products. Although in most cases hepatitis E is subclinical or mild and self-limiting, pregnant women and patients with liver cirrhosis may have severe, occasionally even fatal disease, and immunocompromised individuals may develop chronic hepatitis E. Considering the substantial global health burden caused by HEV infection, it is surprising how limited our knowledge of hepatitis E pathology still is. In this article, we describe localization studies on HEV infection and discuss their implications for everyday diagnostics. Furthermore, we outline and discuss the spectrum of histologic changes, which can be found in HEV infection in various clinical contexts.
Collapse
|