1
|
Mimura M, Tang Z, Shigenobu S, Yamaguchi K, Yahara T. Genomic Introgression in the Hybrid zones at the Margins of the Species' Range Between Ecologically Distinct Rubus Species. Ecol Evol 2024; 14:e70476. [PMID: 39575144 PMCID: PMC11581777 DOI: 10.1002/ece3.70476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 11/24/2024] Open
Abstract
Populations in extreme environments at the margins of a species' range are often the most vulnerable to climate change, but they may also experience novel evolutionary processes, such as secondary contact and hybridization with their relatives. The range overlap resulting from secondary contact with related species that have adapted to different climatic zones may act as corridors for adaptive introgression. To test this hypothesis, we examined the hybrid zones along the altitude of two closely related Rubus species, one temperate and the other subtropical species, at their southern and northern limits on Yakushima Island, Japan. Genomic cline analysis revealed non-neutral introgression throughout the genome in both directions in the two species. Some of these genomic regions involve gene ontology terms related to the regulation of several biological processes. Our niche modeling suggests that, assuming niche conservatism, the temperate species are likely to lose their suitable habitat, and the backcrossed hybrids with the subtropical species are already expanding upslope on the island. Adaptive introgression through the hybrid zone may contribute to the persistence and expansion of the species in the southernmost and northernmost populations.
Collapse
Affiliation(s)
| | | | - Shuji Shigenobu
- Trans‐Omics FacilityNational Institute of Basic BiologyOkazakiJapan
| | | | | |
Collapse
|
2
|
Tóth EG, Cseke K, Benke A, Lados BB, Tomov VT, Zhelev P, Kámpel JD, Borovics A, Köbölkuti ZA. Key triggers of adaptive genetic variability of sessile oak [Q. petraea (Matt.) Liebl.] from the Balkan refugia: outlier detection and association of SNP loci from ddRAD-seq data. Heredity (Edinb) 2023:10.1038/s41437-023-00629-2. [PMID: 37316726 PMCID: PMC10382515 DOI: 10.1038/s41437-023-00629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023] Open
Abstract
Knowledge on the genetic composition of Quercus petraea in south-eastern Europe is limited despite the species' significant role in the re-colonisation of Europe during the Holocene, and the diverse climate and physical geography of the region. Therefore, it is imperative to conduct research on adaptation in sessile oak to better understand its ecological significance in the region. While large sets of SNPs have been developed for the species, there is a continued need for smaller sets of SNPs that are highly informative about the possible adaptation to this varied landscape. By using double digest restriction site associated DNA sequencing data from our previous study, we mapped RAD-seq loci to the Quercus robur reference genome and identified a set of SNPs putatively related to drought stress-response. A total of 179 individuals from eighteen natural populations at sites covering heterogeneous climatic conditions in the southeastern natural distribution range of Q. petraea were genotyped. The detected highly polymorphic variant sites revealed three genetic clusters with a generally low level of genetic differentiation and balanced diversity among them but showed a north-southeast gradient. Selection tests showed nine outlier SNPs positioned in different functional regions. Genotype-environment association analysis of these markers yielded a total of 53 significant associations, explaining 2.4-16.6% of the total genetic variation. Our work exemplifies that adaptation to drought may be under natural selection in the examined Q. petraea populations.
Collapse
Affiliation(s)
- Endre Gy Tóth
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary.
| | - Klára Cseke
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
| | - Attila Benke
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
| | - Botond B Lados
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
| | - Vladimir T Tomov
- Department of Landscape Architecture, Faculty of Ecology and Landscape Architecture, University of Forestry (UF), Kliment Ohridsky 10, Sofia, 1797, Bulgaria
| | - Petar Zhelev
- Department of Dendrology, Faculty of Forestry, University of Forestry (UF), Kliment Ohridsky 10, Sofia, 1797, Bulgaria
| | - József D Kámpel
- Ottó Herman Environmental and Agricultural Technical School, Vocational School and College (Agricultural Vocational Centre of the Kisalföld Region), Ernuszt Kelemen 1, Szombathely, 9700, Hungary
| | - Attila Borovics
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
| | - Zoltán A Köbölkuti
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
- Departement of Applied Forest Genetics Research, Bavarian Office for Forest Genetics (AWG), Forstamtsplatz 1, Teisendorf, 83317, Germany
| |
Collapse
|
3
|
Wu Y, Hipp AL, Fargo G, Stith N, Ricklefs RE. Improving species delimitation for effective conservation: a case study in the endemic maple-leaf oak (Quercus acerifolia). THE NEW PHYTOLOGIST 2023; 238:1278-1293. [PMID: 36707920 DOI: 10.1111/nph.18777] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Species delimitation is challenging in lineages that exhibit both high plasticity and introgression. This challenge can be compounded by collection biases, which may downweight specimens morphologically intermediate between traditional species. Additionally, mismatch between named species and observable phenotypes can compromise species conservation. We studied the species boundaries of Quercus acerifolia, a tree endemic to Arkansas, U.S. We performed morphometric analyses of leaves and acorns from 527 field and 138 herbarium samples of Q. acerifolia and its close relatives, Q. shumardii and Q. rubra. We employed two novel approaches: sampling ex situ collections to detect phenotypic plasticity caused by environmental variation and comparing random field samples with historical herbarium samples to identify collection biases that might undermine species delimitation. To provide genetic evidence, we also performed molecular analyses on genome-wide SNPs. Quercus acerifolia shows distinctive morphological, ecological, and genomic characteristics, rejecting the hypothesis that Q. acerifolia is a phenotypic variant of Q. shumardii. We found mismatches between traditional taxonomy and phenotypic clusters. We detected underrepresentation of morphological intermediates in herbarium collections, which may bias species discovery and recognition. Rare species conservation requires considering and addressing taxonomic problems related to phenotypic plasticity, mismatch between taxonomy and morphological clusters, and collection biases.
Collapse
Affiliation(s)
- Yingtong Wu
- Biology Department, University of Missouri - St Louis, St Louis, MO, 63121, USA
- Whitney R. Harris World Ecology Center, University of Missouri - St Louis, St Louis, MO, 63121, USA
| | - Andrew L Hipp
- The Morton Arboretum, 4100 Illinois Route 53, Lisle, IL, 60532, USA
- The Field Museum, Integrative Research Center, 1400S Lake Shore Dr., Chicago, IL, 60605, USA
| | - Gregory Fargo
- Biology Department, University of Missouri - St Louis, St Louis, MO, 63121, USA
| | - Nora Stith
- Biology Department, University of Missouri - St Louis, St Louis, MO, 63121, USA
| | - Robert E Ricklefs
- Biology Department, University of Missouri - St Louis, St Louis, MO, 63121, USA
| |
Collapse
|
4
|
Pfeilsticker TR, Jones RC, Steane DA, Vaillancourt RE, Potts BM. Molecular insights into the dynamics of species invasion by hybridisation in Tasmanian eucalypts. Mol Ecol 2023; 32:2913-2929. [PMID: 36807951 DOI: 10.1111/mec.16892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/26/2022] [Accepted: 01/26/2023] [Indexed: 02/22/2023]
Abstract
In plants where seed dispersal is limited compared with pollen dispersal, hybridisation may enhance gene exchange and species dispersal. We provide genetic evidence of hybridisation contributing to the expansion of the rare Eucalyptus risdonii into the range of the widespread Eucalyptus amygdalina. These closely related tree species are morphologically distinct, and observations suggest that natural hybrids occur along their distribution boundaries and as isolated trees or in small patches within the range of E. amygdalina. Hybrid phenotypes occur outside the range of normal dispersal for E. risdonii seed, yet in some hybrid patches small individuals resembling E. risdonii occur and are hypothesised to be a result of backcrossing. Using 3362 genome-wide SNPs assessed from 97 individuals of E. risdonii and E. amygdalina and 171 hybrid trees, we show that (i) isolated hybrids match the genotypes expected of F1 /F2 hybrids, (ii) there is a continuum in the genetic composition among the isolated hybrid patches from patches dominated by F1 /F2 -like genotypes to those dominated by E. risdonii-backcross genotypes, and (iii) the E. risdonii-like phenotypes in the isolated hybrid patches are most-closely related to proximal larger hybrids. These results suggest that the E. risdonii phenotype has been resurrected in isolated hybrid patches established from pollen dispersal, providing the first steps in its invasion of suitable habitat by long-distance pollen dispersal and complete introgressive displacement of E. amygdalina. Such expansion accords with the population demographics, common garden performance data, and climate modelling which favours E. risdonii and highlights a role of interspecific hybridisation in climate change adaptation and species expansion.
Collapse
Affiliation(s)
- Thais R Pfeilsticker
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Rebecca C Jones
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Dorothy A Steane
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - René E Vaillancourt
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Brad M Potts
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
5
|
Nocchi G, Wang J, Yang L, Ding J, Gao Y, Buggs RJA, Wang N. Genomic signals of local adaptation and hybridization in Asian white birch. Mol Ecol 2023; 32:595-612. [PMID: 36394364 DOI: 10.1111/mec.16788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Disentangling the numerous processes that affect patterns of genome-wide diversity in widespread tree species has important implications for taxonomy, conservation, and forestry. Here, we investigate the population genomic structure of Asian white birch (Betula platyphylla) in China and seek to explain it in terms of hybridization, demography and adaptation. We generate whole genome sequence data from 83 individuals across the species range in China. Combining this with an existing data set for 79 European and Russian white birches, we show a clear distinction between B. pendula and B. platyphylla, which have sometimes been lumped taxonomically. Genomic diversity of B. platyphylla in north-western China and Central Russia is affected greatly by hybridization with B. pendula. Excluding these hybridized populations, B. platyphylla in China has a linear distribution from north-eastern to south-western China, along the edge of the inland mountainous region. Within this distribution, three genetic clusters are found, which we model as long diverged with subsequent episodes of gene flow. Patterns of covariation between allele frequencies and environmental variables in B. platyphylla suggest the role of natural selection in the distribution of diversity at 7609 SNPs of which 3767 were significantly differentiated among the genetic clusters. The putative adaptive SNPs are distributed throughout the genome and span 1633 genic regions. Of these genic regions, 87 were previously identified as candidates for selective sweeps in Eurasian B. pendula. We use the 7609 environmentally associated SNPs to estimate the risk of nonadaptedness for each sequenced B. platyphylla individual under a scenario of future climate change, highlighting areas where populations may be under future threat from rising temperatures.
Collapse
Affiliation(s)
- Gabriele Nocchi
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.,Royal Botanic Gardens Kew, Richmond, Surrey, UK
| | - Jing Wang
- Key Laboratory for Bio-resources and Eco-environment, College of Life Science, Sichuan University, Chengdu, China
| | - Long Yang
- Agricultural Big-Data Research Centre and College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Junyi Ding
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China.,Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai'an, China
| | - Ying Gao
- Agricultural Big-Data Research Centre and College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Richard J A Buggs
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.,Royal Botanic Gardens Kew, Richmond, Surrey, UK
| | - Nian Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China.,Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai'an, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
6
|
Schroeder H, Kersten B. A Small Set of Nuclear Markers for Reliable Differentiation of the Two Closely Related Oak Species Quercus Robur and Q. Petraea. PLANTS (BASEL, SWITZERLAND) 2023; 12:566. [PMID: 36771649 PMCID: PMC9919172 DOI: 10.3390/plants12030566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Quercus robur and Q. petraea are, in addition to Fagus sylvatica, the main economically used deciduous tree species in Europe. Identification of these two species is crucial because they differ in their ecological demands. Because of a changing climate, foresters must know more than ever which species will perform better under given environmental conditions. The search for differentiating molecular markers between these two species has already lasted for decades. Until now, differentiation has only been possible in approaches with a combination of several molecular markers and a subsequent statistical analysis to calculate the probability of being one or the other species. Here, we used MiSeq Illumina data from pools of Q. robur and Q. petraea specimens and identified nuclear SNPs and small InDels versus the Q. robur reference genome. Selected sequence variants with 100% allele frequency difference between the two pools were further validated in an extended set of Q. robur and Q. petraea specimens, and then the number of markers was deliberately reduced to the smallest possible set for species differentiation. A combination of six markers from four nuclear regions is enough to identify Q. robur, Q. petraea or hybrids between these two species quite well and represents a marker set that is cost-efficient and useable in every laboratory.
Collapse
|
7
|
Cruzan MB, Thompson PG, Diaz NA, Hendrickson EC, Gerloff KR, Kline KA, Machiorlete HM, Persinger JM. Weak coupling among barrier loci and waves of neutral and adaptive introgression across an expanding hybrid zone. Evolution 2021; 75:3098-3114. [PMID: 34668193 PMCID: PMC9298192 DOI: 10.1111/evo.14381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 01/02/2023]
Abstract
Hybridization can serve as an evolutionary stimulus, but we have little understanding of introgression at early stages of hybrid zone formation. We analyze reproductive isolation and introgression between a range‐limited and a widespread species. Reproductive barriers are estimated based on differences in flowering time, ecogeographic distributions, and seed set from crosses. We find an asymmetrical mating barrier due to cytonuclear incompatibility that is consistent with observed clusters of coincident and concordant tension zone clines (barrier loci) for mtDNA haplotypes and nuclear SNPs. These groups of concordant clines are spread across the hybrid zone, resulting in weak coupling among barrier loci and extensive introgression. Neutral clines had nearly equal introgression into both species’ ranges, whereas putative cases of adaptive introgression had exceptionally wide clines with centers shifted toward one species. Analyses of cline shape indicate that secondary contact was initiated within the last 800 generations with the per‐generation dispersal between 200 and 400 m, and provide some of the first estimates of the strength of selection required to account for observed levels of adaptive introgression. The weak species boundary between these species appears to be in early stages of dissolution, and ultimately will precipitate genetic swamping of the range‐limited species.
Collapse
Affiliation(s)
- Mitchell B Cruzan
- Department of Biology, Portland State University, Portland, Oregon, 97201
| | - Pamela G Thompson
- Department of Biology, Portland State University, Portland, Oregon, 97201
| | - Nicolas A Diaz
- Department of Biology, Portland State University, Portland, Oregon, 97201
| | | | - Katie R Gerloff
- Department of Biology, Portland State University, Portland, Oregon, 97201
| | - Katie A Kline
- Department of Biology, Portland State University, Portland, Oregon, 97201
| | | | | |
Collapse
|
8
|
Impact of Gene Flow and Introgression on the Range Wide Genetic Structure of Quercus robur (L.) in Europe. FORESTS 2021. [DOI: 10.3390/f12101425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As for most other temperate broadleaved tree species, large-scale genetic inventories of pedunculate oak (Quercus robur L.) have focused on the plastidial genome, which showed the impact of post-glacial recolonization and manmade seed transfer. However, how have pollen mediated gene flow and introgression impacted the large-scale genetic structure? To answer these questions, we did a genetic inventory on 1970 pedunculate oak trees from 197 locations in 13 European countries. All samples were screened with a targeted sequencing approach on a set of 381 polymorphic loci (356 nuclear SNPs, 3 nuclear InDels, 17 chloroplast SNPs, and 5 mitochondrial SNPs). In a former analysis with additional 1763 putative Quercus petraea trees screened for the same gene markers we obtained estimates on the species admixture of all pedunculate oak trees. We identified 13 plastidial haplotypes, which showed a strong spatial pattern with a highly significant autocorrelation up to a range of 1250 km. Significant spatial genetic structure up to 1250 km was also observed at the nuclear loci. However, the differentiation at the nuclear gene markers was much lower compared to the organelle gene markers. The matrix of genetic distances among locations was partially correlated between nuclear and organelle genomes. Bayesian clustering analysis revealed the best fit to the data for a sub-division into two gene pools. One gene pool is dominating the west and the other is the most abundant in the east. The western gene pool was significantly influenced by introgression from Quercus petraea in the past. In Germany, we identified a contact zone of pedunculate oaks with different introgression intensity, likely resulting from different historical levels of introgression in glacial refugia or during postglacial recolonization. The main directions of postglacial recolonization were south to north and south to northwest in West and Central Europe, and for the eastern haplotypes also east to west in Central Europe. By contrast, the pollen mediated gene flow and introgression from Q. petraea modified the large-scale structure at the nuclear gene markers with significant west–east direction.
Collapse
|
9
|
Valdés-Correcher E, Bourdin A, González-Martínez SC, Moreira X, Galmán A, Castagneyrol B, Hampe A. Leaf chemical defences and insect herbivory in oak: accounting for canopy position unravels marked genetic relatedness effects. ANNALS OF BOTANY 2020; 126:865-872. [PMID: 32463869 PMCID: PMC7539359 DOI: 10.1093/aob/mcaa101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS Highly controlled experiments document that plant genetic diversity and relatedness can shape herbivore communities and patterns of herbivory. Evidence from the field is, however, scarce and inconsistent. We assessed whether a genetic signal underlying herbivory can be detected in oak woodlands when accounting for variation at smaller (within-tree) and larger (among-stand) scales. METHODS We tested relationships between tree genetic relatedness, leaf chemical defences and insect herbivory for different canopy layers in 240 trees from 15 pedunculate oak (Quercus robur) forest stands. We partitioned sources of variability in herbivory and defences among stands, individuals and branches. KEY RESULTS Leaf defences, insect herbivory and their relationship differed systematically between the upper and the lower tree canopy. When accounting for this canopy effect, the variation explained by tree genetic relatedness rose from 2.8 to 34.1 % for herbivory and from 7.1 to 13.8 % for leaf defences. The effect was driven by markedly stronger relationships in the upper canopy. CONCLUSIONS Our findings illustrate that considerable effects of the host plant genotype on levels of leaf chemical defences and associated insect herbivory can be detected in natural tree populations when within-individual variation is properly accounted for.
Collapse
Affiliation(s)
| | | | | | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - Andrea Galmán
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | | | - Arndt Hampe
- INRAE, Univ. Bordeaux, BIOGECO, Cestas, France
| |
Collapse
|
10
|
Du FK, Wang T, Wang Y, Ueno S, de Lafontaine G. Contrasted patterns of local adaptation to climate change across the range of an evergreen oak, Quercus aquifolioides. Evol Appl 2020; 13:2377-2391. [PMID: 33005228 PMCID: PMC7513717 DOI: 10.1111/eva.13030] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/02/2020] [Accepted: 05/09/2020] [Indexed: 12/27/2022] Open
Abstract
Long-lived tree species are genetically differentiated and locally adapted with respect to fitness-related traits, but the genetic basis of local adaptation remains largely unresolved. Recent advances in population genetics and landscape genomic analyses enable identification of putative adaptive loci and specific selective pressures acting on local adaptation. Here, we sampled 60 evergreen oak (Quercus aquifolioides) populations throughout the species' range and pool-sequenced 587 individuals at drought-stress candidate genes. We analyzed patterns of genetic diversity and differentiation for 381 single nucleotide polymorphisms (SNPs) from 65 candidate genes and eight microsatellites. Outlier loci were identified by genetic differentiation analysis and genome-environment associations. The response pattern of genetic variation to environmental gradient was assessed by linear isolation-by-distance/environment tests, redundancy analysis, and nonlinear methods. SNPs and microsatellites revealed two genetic lineages: Tibet and Hengduan Mountains-Western Sichuan Plateau (HDM-WSP), with reduced genetic diversity in Tibet lineage. More outlier loci were detected in HDM-WSP lineage than Tibet lineage. Among these, three SNPs in two genes responded to dry season precipitation in the HDM-WSP lineage but not in Tibet. By contrast, genetic variation in the Tibet lineage was related to geographic distance instead of the environment. Furthermore, risk of nonadaptedness (RONA) analyses suggested HDM-WSP lineage will have a better capacity to adapt in the predicted future climate compared with the Tibet lineage. We detected genetic imprints consistent with natural selection and molecular adaptation to drought on the Qinghai-Tibet Plateau (QTP) over a range of long-lived and widely distributed oak species in a changing environment. Our results suggest that different within-species adaptation processes occur in species occurring in heterogeneous environments.
Collapse
Affiliation(s)
- Fang K. Du
- School of Ecology and Nature ConservationBeijing Forestry UniversityBeijingChina
| | - Tianrui Wang
- School of Ecology and Nature ConservationBeijing Forestry UniversityBeijingChina
| | - Yuyao Wang
- School of Ecology and Nature ConservationBeijing Forestry UniversityBeijingChina
| | - Saneyoshi Ueno
- Department of Forest Molecular Genetics and BiotechnologyForestry and Forest Products Research InstituteForest Research and Management OrganizationTsukubaJapan
| | - Guillaume de Lafontaine
- Canada Research Chair in Integrative Biology of Northern FloraUniversité du Québec à RimouskiRimouskiQCCanada
| |
Collapse
|
11
|
Temunović M, Garnier-Géré P, Morić M, Franjić J, Ivanković M, Bogdan S, Hampe A. Candidate gene SNP variation in floodplain populations of pedunculate oak (Quercus robur L.) near the species' southern range margin: Weak differentiation yet distinct associations with water availability. Mol Ecol 2020; 29:2359-2378. [PMID: 32567080 DOI: 10.1111/mec.15492] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 05/03/2020] [Accepted: 05/18/2020] [Indexed: 01/03/2023]
Abstract
Populations residing near species' low-latitude range margins (LLMs) often occur in warmer and drier environments than those in the core range. Thus, their genetic composition could be shaped by climatic drivers that differ from those occurring at higher latitudes, resulting in potentially adaptive variants of conservation value. Such variants could facilitate the adaptation of populations from other portions of the geographical range to similar future conditions anticipated under ongoing climate change. However, very few studies have assessed standing genetic variation at potentially adaptive loci in natural LLM populations. We investigated standing genetic variation at single nucleotide polymorphisms (SNPs) located within 117 candidate genes and its links to putative climatic selection pressures across 19 pedunculate oak (Quercus robur L.) populations distributed along a regional climatic gradient near the species' southern range margin in southeastern Europe. These populations are restricted to floodplain forests along large lowland rivers, whose hydric regime is undergoing significant shifts under modern rapid climate change. The populations showed very weak geographical structure, suggesting extensive genetic connectivity and gene flow or shared ancestry. We identified eight (6.2%) positive FST -outlier loci, and genotype-environment association analyses revealed consistent associations between SNP allele frequencies and several climatic variables linked to water availability. A total of 61 associations involving 37 SNPs (28.5%) from 35 annotated genes provided important insights into putative functional mechanisms in our system. Our findings provide empirical support for the role of LLM populations as sources of potentially adaptive variation that could enhance species' resilience to climate change-related pressures.
Collapse
Affiliation(s)
- Martina Temunović
- Department of Forest Genetics, Dendrology and Botany, Faculty of Forestry, University of Zagreb, Zagreb, Croatia
| | | | - Maja Morić
- Department of Forest Genetics, Dendrology and Botany, Faculty of Forestry, University of Zagreb, Zagreb, Croatia
| | - Jozo Franjić
- Department of Forest Genetics, Dendrology and Botany, Faculty of Forestry, University of Zagreb, Zagreb, Croatia
| | | | - Saša Bogdan
- Department of Forest Genetics, Dendrology and Botany, Faculty of Forestry, University of Zagreb, Zagreb, Croatia
| | - Arndt Hampe
- INRAE, Univ. Bordeaux, BIOGECO, Cestas, France
| |
Collapse
|
12
|
Gammacurta M, Waffo-Teguo P, Winstel D, Dubourdieu D, Marchal A. Isolation of Taste-Active Triterpenoids from Quercus robur: Sensory Assessment and Identification in Wines and Spirit. JOURNAL OF NATURAL PRODUCTS 2020; 83:1611-1622. [PMID: 32343138 DOI: 10.1021/acs.jnatprod.0c00106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Six new triterpenoids (1-6), two known genins (7 and 8), and five known functionalized triterpenoids (9-13) were isolated from a Quercus robur heartwood extract. The purification protocol was guided by LC-HRMS by searching for structural analogues of bartogenic acid on the basis of their putative empirical formula. The structures of the new compounds were unequivocally elucidated using HRESIMS and 1D/2D NMR experiments. Sensory analyses were performed in water and in a non-oaked white wine on the pure compounds 1-13 at 5 mg/L. All molecules were perceived as bitter in water and wine, but they were mostly reported as modifying the wine taste balance. Using LC-HRMS, compounds 1-13 were observed in oaked red wine and cognac and were semiquantified in oak wood extracts. The influence of two cooperage parameters, oak species and toasting process, on compounds 1-13 content was studied. All compounds were found in quantities significantly higher in pedunculate than in sessile oak wood. Toasting is a key step in barrel manufacture and modulates the concentration of the discussed compounds. Significantly higher quantities were observed in untoasted wood compared to medium or highly toasted wood. These findings provide new insights into the molecular origin of taste changes due to oak aging.
Collapse
Affiliation(s)
- Marine Gammacurta
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, 33882 Villenave d'Ornon Cedex, France
| | - Pierre Waffo-Teguo
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, 33882 Villenave d'Ornon Cedex, France
| | - Delphine Winstel
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, 33882 Villenave d'Ornon Cedex, France
| | - Denis Dubourdieu
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, 33882 Villenave d'Ornon Cedex, France
| | - Axel Marchal
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, 33882 Villenave d'Ornon Cedex, France
| |
Collapse
|
13
|
Nagamitsu T, Uchiyama K, Izuno A, Shimizu H, Nakanishi A. Environment-dependent introgression from Quercus dentata to a coastal ecotype of Quercus mongolica var. crispula in northern Japan. THE NEW PHYTOLOGIST 2020; 226:1018-1028. [PMID: 31424559 PMCID: PMC7216917 DOI: 10.1111/nph.16131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/09/2019] [Indexed: 05/25/2023]
Abstract
Introgression from one species in a specific environment to another may facilitate colonization of the environment by the recipient species. However, such environment-dependent introgression has been clarified in limited plant taxa. In northern Japan, there are two interfertile oak species: Quercus dentata (Qd) in coastal areas and Q. mongolica var. crispula (Qc) in inland areas. However, at higher latitudes where Qd is rare, a coastal Qc ecotype with Qd-like traits is distributed in the coastal areas. We distinguished inland Qc, coastal Qc, and coastal Qd populations based on genome-wide genotypes and multitrait phenotypes and verified introgression from coastal Qd to coastal Qc using reduced library sequencing. Genotypes and phenotypes differed among the populations, and coastal Qc was intermediate between inland Qc and coastal Qd. The ABBA-BABA test showed introgression from coastal Qd to coastal Qc. In coastal Qc, we found various stages of introgression after the first generation of backcross but detected no genomic regions where introgression was enhanced. Overall, we show evidence for introgression from a coastal species to an ecotype of an inland species, which has colonized the coastal environment. It remains unclear whether introgressed alleles are selected in the coastal environment.
Collapse
Affiliation(s)
- Teruyoshi Nagamitsu
- Hokkaido Research Center, Forestry and Forest Products Research InstituteForest Research and Management OrganizationSapporo062‐8516Japan
| | - Kentaro Uchiyama
- Department of Forest Molecular Genetics and BiotechnologyForestry and Forest Products Research InstituteForest Research and Management OrganizationTsukuba305‐8687Japan
| | - Ayako Izuno
- Department of Forest Molecular Genetics and BiotechnologyForestry and Forest Products Research InstituteForest Research and Management OrganizationTsukuba305‐8687Japan
| | - Hajime Shimizu
- Greenery Research and Information CenterForestry Research InstituteHokkaido Research OrganizationBibai079‐0198Japan
| | - Atsushi Nakanishi
- Hokkaido Research Center, Forestry and Forest Products Research InstituteForest Research and Management OrganizationSapporo062‐8516Japan
| |
Collapse
|
14
|
Kremer A, Hipp AL. Oaks: an evolutionary success story. THE NEW PHYTOLOGIST 2020; 226:987-1011. [PMID: 31630400 PMCID: PMC7166131 DOI: 10.1111/nph.16274] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 09/13/2019] [Indexed: 05/10/2023]
Abstract
The genus Quercus is among the most widespread and species-rich tree genera in the northern hemisphere. The extraordinary species diversity in America and Asia together with the continuous continental distribution of a limited number of European species raise questions about how macro- and microevolutionary processes made the genus Quercus an evolutionary success. Synthesizing conclusions reached during the past three decades by complementary approaches in phylogenetics, phylogeography, genomics, ecology, paleobotany, population biology and quantitative genetics, this review aims to illuminate evolutionary processes leading to the radiation and expansion of oaks. From opposing scales of time and geography, we converge on four overarching explanations of evolutionary success in oaks: accumulation of large reservoirs of diversity within populations and species; ability for rapid migration contributing to ecological priority effects on lineage diversification; high rates of evolutionary divergence within clades combined with convergent solutions to ecological problems across clades; and propensity for hybridization, contributing to adaptive introgression and facilitating migration. Finally, we explore potential future research avenues, emphasizing the integration of microevolutionary and macroevolutionary perspectives.
Collapse
Affiliation(s)
- Antoine Kremer
- BIOGECO, INRA, Université de Bordeaux, 69 Route
d'Arcachon, 33612 Cestas, France
| | - Andrew L. Hipp
- The Morton Arboretum, Lisle IL 60532-1293, USA
- The Field Museum, Chicago IL 60605, USA
| |
Collapse
|
15
|
Leroy T, Louvet JM, Lalanne C, Le Provost G, Labadie K, Aury JM, Delzon S, Plomion C, Kremer A. Adaptive introgression as a driver of local adaptation to climate in European white oaks. THE NEW PHYTOLOGIST 2020; 226:1171-1182. [PMID: 31394003 PMCID: PMC7166132 DOI: 10.1111/nph.16095] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/31/2019] [Indexed: 05/10/2023]
Abstract
Latitudinal and elevational gradients provide valuable experimental settings for studies of the potential impact of global warming on forest tree species. The availability of long-term phenological surveys in common garden experiments for traits associated with climate, such as bud flushing for sessile oaks (Quercus petraea), provide an ideal opportunity to investigate this impact. We sequenced 18 sessile oak populations and used available sequencing data for three other closely related European white oak species (Quercus pyrenaica, Quercus pubescens, and Quercus robur) to explore the evolutionary processes responsible for shaping the genetic variation across latitudinal and elevational gradients in extant sessile oaks. We used phenotypic surveys in common garden experiments and climatic data for the population of origin to perform genome-wide scans for population differentiation and genotype-environment and genotype-phenotype associations. The inferred historical relationships between Q. petraea populations suggest that interspecific gene flow occurred between Q. robur and Q. petraea populations from cooler or wetter areas. A genome-wide scan of differentiation between Q. petraea populations identified single nucleotide polymorphisms (SNPs) displaying strong interspecific relative divergence between these two species. These SNPs followed genetic clines along climatic or phenotypic gradients, providing further support for the likely contribution of introgression to the adaptive divergence of Q. petraea populations. Overall, the results indicate that outliers and associated SNPs are Q. robur ancestry-informative. We discuss the results of this study in the framework of the postglacial colonization scenario, in which introgression and diversifying selection have been proposed as essential drivers of Q. petraea microevolution.
Collapse
Affiliation(s)
- Thibault Leroy
- BIOGECO, INRA, Université de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
- ISEM, Univ. Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier, France
| | - Jean-Marc Louvet
- BIOGECO, INRA, Université de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
| | - Céline Lalanne
- BIOGECO, INRA, Université de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
| | - Grégoire Le Provost
- BIOGECO, INRA, Université de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
| | - Karine Labadie
- Genoscope, Institut de biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Jean-Marc Aury
- Genoscope, Institut de biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Sylvain Delzon
- BIOGECO, INRA, Université de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
| | - Christophe Plomion
- BIOGECO, INRA, Université de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
| | - Antoine Kremer
- BIOGECO, INRA, Université de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
- Corresponding author : Antoine Kremer, Phone number: +33(0)5 57 12 38 32,
| |
Collapse
|
16
|
von Thaden A, Nowak C, Tiesmeyer A, Reiners TE, Alves PC, Lyons LA, Mattucci F, Randi E, Cragnolini M, Galián J, Hegyeli Z, Kitchener AC, Lambinet C, Lucas JM, Mölich T, Ramos L, Schockert V, Cocchiararo B. Applying genomic data in wildlife monitoring: Development guidelines for genotyping degraded samples with reduced single nucleotide polymorphism panels. Mol Ecol Resour 2020. [PMID: 31925943 DOI: 10.1111/1755-0998.13136.applying] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The genomic era has led to an unprecedented increase in the availability of genome-wide data for a broad range of taxa. Wildlife management strives to make use of these vast resources to enable refined genetic assessments that enhance biodiversity conservation. However, as new genomic platforms emerge, problems remain in adapting the usually complex approaches for genotyping of noninvasively collected wildlife samples. Here, we provide practical guidelines for the standardized development of reduced single nucleotide polymorphism (SNP) panels applicable for microfluidic genotyping of degraded DNA samples, such as faeces or hairs. We demonstrate how microfluidic SNP panels can be optimized to efficiently monitor European wildcat (Felis silvestris S.) populations. We show how panels can be set up in a modular fashion to accommodate informative markers for relevant population genetics questions, such as individual identification, hybridization assessment and the detection of population structure. We discuss various aspects regarding the implementation of reduced SNP panels and provide a framework that will allow both molecular ecologists and practitioners to help bridge the gap between genomics and applied wildlife conservation.
Collapse
Affiliation(s)
- Alina von Thaden
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Annika Tiesmeyer
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Tobias E Reiners
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Paulo C Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.,Wildlife Biology Program, University of Montana, Missoula, MT, USA
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Federica Mattucci
- Area per la Genetica della Conservazione, ISPRA, Ozzano dell'Emilia, Bologna, Italy
| | - Ettore Randi
- Department BIGEA, University of Bologna, Bologna, Italy.,Department 18/Section of Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Margherita Cragnolini
- Institut für Spezielle Zoologie und Evolutionsbiologie, Biologisch-Pharmazeutische Fakultät, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - José Galián
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Zsolt Hegyeli
- "Milvus Group" Bird and Nature Protection Association, Tîrgu Mureş, Romania
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK.,Institute of Geography, School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Clotilde Lambinet
- Department of Science and Environmental Management, University of Liège, Liège, Belgium
| | - José M Lucas
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Thomas Mölich
- Landesverband Thüringen e.V., BUND für Umwelt und Naturschutz Deutschland (BUND), Erfurt, Germany
| | - Luana Ramos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Vinciane Schockert
- Department of Science and Environmental Management, University of Liège, Liège, Belgium
| | - Berardino Cocchiararo
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| |
Collapse
|
17
|
Reutimann O, Gugerli F, Rellstab C. A species-discriminatory single-nucleotide polymorphism set reveals maintenance of species integrity in hybridizing European white oaks (Quercus spp.) despite high levels of admixture. ANNALS OF BOTANY 2020; 125:663-676. [PMID: 31912148 PMCID: PMC7102958 DOI: 10.1093/aob/mcaa001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS Hybridization and introgression play an important role in the evolution and diversification of plants. To assess the degree of past and current hybridization, the level of genetic admixture in populations needs to be investigated. Ongoing hybridization and blurred species separation have made it challenging to assign European white oak taxa based on leaf morphology and/or genetic markers and to assess the level of admixture. Therefore, there is a need for powerful markers that differentiate between taxa. Here, we established a condensed set of single-nucleotide polymorphism (SNP) markers to reliably differentiate between the three most common oak species in temperate European forests (Quercus robur, Q. petraea, Q. pubescens) and to assess the degree of admixture in a large set of selected Swiss populations. METHODS A training set of 194 presumably pure reference samples from Switzerland and Europe was used to assign 633 test individuals with two different approaches (population genetic-based/Bayesian vs. assumption-free/discriminative classifier) using 58 selected SNPs from coding regions. Admixture was calculated at the individual and population level with the Shannon diversity index based on individual assignment probabilities. KEY RESULTS Depending on the approach, 97.5-100 % of training individuals were assigned correctly, and additional analyses showed that the established SNP set could be further reduced while maintaining its discriminatory power. The two assignment approaches showed high overlap (99 %) in assigning training individuals and slightly less overlap in test individuals (84 %). Levels of admixture varied widely among populations. Mixed stands of Q. petraea and Q. pubescens revealed much higher degrees of admixture than mixed stands of the other two taxon pairs, accentuating high levels of gene flow between these two taxa in Switzerland. CONCLUSIONS Our set of SNPs warrants reliable taxon discrimination with great potential for further applications. We show that the three European white oak taxa have largely retained their species integrity in Switzerland despite high levels of admixture.
Collapse
Affiliation(s)
| | - Felix Gugerli
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | |
Collapse
|
18
|
von Thaden A, Nowak C, Tiesmeyer A, Reiners TE, Alves PC, Lyons LA, Mattucci F, Randi E, Cragnolini M, Galián J, Hegyeli Z, Kitchener AC, Lambinet C, Lucas JM, Mölich T, Ramos L, Schockert V, Cocchiararo B. Applying genomic data in wildlife monitoring: Development guidelines for genotyping degraded samples with reduced single nucleotide polymorphism panels. Mol Ecol Resour 2020; 20. [PMID: 31925943 DOI: 10.1111/1755-0998.13136] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/24/2019] [Accepted: 01/05/2020] [Indexed: 01/16/2023]
Abstract
The genomic era has led to an unprecedented increase in the availability of genome-wide data for a broad range of taxa. Wildlife management strives to make use of these vast resources to enable refined genetic assessments that enhance biodiversity conservation. However, as new genomic platforms emerge, problems remain in adapting the usually complex approaches for genotyping of noninvasively collected wildlife samples. Here, we provide practical guidelines for the standardized development of reduced single nucleotide polymorphism (SNP) panels applicable for microfluidic genotyping of degraded DNA samples, such as faeces or hairs. We demonstrate how microfluidic SNP panels can be optimized to efficiently monitor European wildcat (Felis silvestris S.) populations. We show how panels can be set up in a modular fashion to accommodate informative markers for relevant population genetics questions, such as individual identification, hybridization assessment and the detection of population structure. We discuss various aspects regarding the implementation of reduced SNP panels and provide a framework that will allow both molecular ecologists and practitioners to help bridge the gap between genomics and applied wildlife conservation.
Collapse
Affiliation(s)
- Alina von Thaden
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Annika Tiesmeyer
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Tobias E Reiners
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Paulo C Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.,Wildlife Biology Program, University of Montana, Missoula, MT, USA
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Federica Mattucci
- Area per la Genetica della Conservazione, ISPRA, Ozzano dell'Emilia, Bologna, Italy
| | - Ettore Randi
- Department BIGEA, University of Bologna, Bologna, Italy.,Department 18/Section of Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Margherita Cragnolini
- Institut für Spezielle Zoologie und Evolutionsbiologie, Biologisch-Pharmazeutische Fakultät, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - José Galián
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Zsolt Hegyeli
- "Milvus Group" Bird and Nature Protection Association, Tîrgu Mureş, Romania
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK.,Institute of Geography, School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Clotilde Lambinet
- Department of Science and Environmental Management, University of Liège, Liège, Belgium
| | - José M Lucas
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Thomas Mölich
- Landesverband Thüringen e.V., BUND für Umwelt und Naturschutz Deutschland (BUND), Erfurt, Germany
| | - Luana Ramos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Vinciane Schockert
- Department of Science and Environmental Management, University of Liège, Liège, Belgium
| | - Berardino Cocchiararo
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| |
Collapse
|
19
|
Gammacurta M, Waffo-Teguo P, Winstel D, Cretin BN, Sindt L, Dubourdieu D, Marchal A. Triterpenoids from Quercus petraea: Identification in Wines and Spirits and Sensory Assessment. JOURNAL OF NATURAL PRODUCTS 2019; 82:265-275. [PMID: 30689385 DOI: 10.1021/acs.jnatprod.8b00682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Eight new triterpenoids (1-8), the known genin (9), and two known functionalized triterpenoids (10 and 11) were isolated from a Quercus petraea heartwood extract. The structures of the new compounds were unequivocally elucidated using HRESIMS and 1D/2D NMR experiments. Sensory analyses were performed in a non-oaked wine on the pure compounds 1-11. Except compounds 1 and 11, all molecules exhibited a sweet taste at 5 mg/L that was particularly intense for compounds 3 and 9. Using LC-HRMS, compounds 1-11 were observed in an oak wood extract and in oaked red wine and cognac. They were also semiquantified in several samples of sessile ( Q. petraea) and pedunculate ( Q. robur) oak wood extract. All compounds were found in quantities significantly higher in sessile than in pedunculate oak wood. These results support the hypothesis of their contribution to the increase in sweetness during oak aging and show that they can be used as chemical markers to identify the species of oak used for cooperage.
Collapse
Affiliation(s)
- Marine Gammacurta
- Univ. Bordeaux , Unité de Recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, 33882 Villenave d'Ornon Cedex , France
| | - Pierre Waffo-Teguo
- Univ. Bordeaux , Unité de Recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, 33882 Villenave d'Ornon Cedex , France
| | - Delphine Winstel
- Univ. Bordeaux , Unité de Recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, 33882 Villenave d'Ornon Cedex , France
| | - Blandine N Cretin
- Univ. Bordeaux , Unité de Recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, 33882 Villenave d'Ornon Cedex , France
| | - Lauriane Sindt
- Univ. Bordeaux , Unité de Recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, 33882 Villenave d'Ornon Cedex , France
| | - Denis Dubourdieu
- Univ. Bordeaux , Unité de Recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, 33882 Villenave d'Ornon Cedex , France
| | - Axel Marchal
- Univ. Bordeaux , Unité de Recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, 33882 Villenave d'Ornon Cedex , France
| |
Collapse
|
20
|
Pina-Martins F, Baptista J, Pappas G, Paulo OS. New insights into adaptation and population structure of cork oak using genotyping by sequencing. GLOBAL CHANGE BIOLOGY 2019; 25:337-350. [PMID: 30358018 DOI: 10.1111/gcb.14497] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 05/25/2023]
Abstract
Species respond to global climatic changes in a local context. Understanding this process, including its speed and intensity, is paramount due to the pace at which such changes are currently occurring. Tree species are particularly interesting to study in this regard due to their long generation times, sedentarism, and ecological and economic importance. Quercus suber L. is an evergreen forest tree species of the Fagaceae family with an essentially Western Mediterranean distribution. Despite frequent assessments of the species' evolutionary history, large-scale genetic studies have mostly relied on plastidial markers, whereas nuclear markers have been used on studies with locally focused sampling strategies. In this work, "Genotyping by sequencing" is used to derive 1,996 single nucleotide polymorphism markers to assess the species' evolutionary history from a nuclear DNA perspective, gain insights into how local adaptation is shaping the species' genetic background, and to forecast how Q. suber may respond to global climatic changes from a genetic perspective. Results reveal (a) an essentially unstructured species, where (b) a balance between gene flow and local adaptation keeps the species' gene pool somewhat homogeneous across its distribution, but still allowing (c) variation clines for the individuals to cope with local conditions. "Risk of Non-Adaptedness" (RONA) analyses suggest that for the considered variables and most sampled locations, (d) the cork oak should not require large shifts in allele frequencies to survive the predicted climatic changes. Future directions include integrating these results with ecological niche modeling perspectives, improving the RONA methodology, and expanding its use to other species. With the implementation presented in this work, the RONA can now also be easily assessed for other organisms.
Collapse
Affiliation(s)
- Francisco Pina-Martins
- Computational Biology and Population Genomics Group, Departamento de Biologia Animal, Faculdade de Ciências, Centre for Ecology, Evolution and Environmental Changes, Universidade de Lisboa, Lisboa, Portugal
| | - João Baptista
- Department of Biology, CESAM, University of Aveiro, Aveiro, Portugal
| | - Georgios Pappas
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Octávio S Paulo
- Computational Biology and Population Genomics Group, Departamento de Biologia Animal, Faculdade de Ciências, Centre for Ecology, Evolution and Environmental Changes, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
21
|
Wachowiak W, Zaborowska J, Łabiszak B, Perry A, Zucca GM, González-Martínez SC, Cavers S. Molecular signatures of divergence and selection in closely related pine taxa. TREE GENETICS & GENOMES 2018; 14:83. [PMID: 30930708 PMCID: PMC6404648 DOI: 10.1007/s11295-018-1296-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 06/09/2023]
Abstract
Efforts to detect loci under selection in plants have mostly focussed on single species. However, assuming that intraspecific divergence may lead to speciation, comparisons of genetic variation within and among recently diverged taxa can help to locate such genes. In this study, coalescent and outlier detection methods were used to assess nucleotide polymorphism and divergence at 79 nuclear gene fragments (1212 SNPs) in 16 populations (153 individuals) of the closely related, but phenotypically and ecologically distinct, pine taxa Pinus mugo, P. uliginosa and P. uncinata across their European distributions. Simultaneously, mitochondrial DNA markers, which are maternally inherited in pines and distributed by seeds at short geographic distance, were used to assess genetic relationships of the focal populations and taxa. The majority of nuclear loci showed homogenous patterns of variation between the taxa due to a high number of shared SNPs and haplotypes, similar levels of polymorphism, and low net divergence. However, against this common genetic background and an overall low population structure within taxa at mitochondrial markers, we identified several genes showing signatures of selection, accompanied by significant intra- and interspecific divergence. Our results indicate that loci involved in species divergence may be involved in intraspecific local adaptation.
Collapse
Affiliation(s)
- Witold Wachowiak
- Centre for Ecology and Hydrology Edinburgh, Bush Estate, Penicuik, Midlothian, EH26 0QB UK
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Julia Zaborowska
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Bartosz Łabiszak
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Annika Perry
- Centre for Ecology and Hydrology Edinburgh, Bush Estate, Penicuik, Midlothian, EH26 0QB UK
| | - Giovanni M. Zucca
- Centre for Ecology and Hydrology Edinburgh, Bush Estate, Penicuik, Midlothian, EH26 0QB UK
| | | | - Stephen Cavers
- Centre for Ecology and Hydrology Edinburgh, Bush Estate, Penicuik, Midlothian, EH26 0QB UK
| |
Collapse
|
22
|
Kim BY, Wei X, Fitz-Gibbon S, Lohmueller KE, Ortego J, Gugger PF, Sork VL. RADseq data reveal ancient, but not pervasive, introgression between Californian tree and scrub oak species (Quercussect.Quercus: Fagaceae). Mol Ecol 2018; 27:4556-4571. [DOI: 10.1111/mec.14869] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 07/25/2018] [Accepted: 08/29/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Bernard Y. Kim
- Department of Ecology and Evolutionary Biology; University of California at Los Angeles; Los Angeles California
| | - Xinzeng Wei
- Department of Ecology and Evolutionary Biology; University of California at Los Angeles; Los Angeles California
- Key Laboratory of Aquatic Botany and Watershed Ecology; Wuhan Botanical Garden; Chinese Academy of Sciences; Wuhan Hubei China
| | - Sorel Fitz-Gibbon
- Department of Ecology and Evolutionary Biology; University of California at Los Angeles; Los Angeles California
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology; University of California at Los Angeles; Los Angeles California
- Department of Human Genetics; David Geffen School of Medicine; University of California; Los Angeles California
| | - Joaquín Ortego
- Department of Integrative Ecology; Estación Biológica de Doñana, EBD-CSIC; Seville Spain
| | - Paul F. Gugger
- Department of Ecology and Evolutionary Biology; University of California at Los Angeles; Los Angeles California
- Appalachian Laboratory; University of Maryland Center for Environmental Science; Frostburg Maryland
| | - Victoria L. Sork
- Department of Ecology and Evolutionary Biology; University of California at Los Angeles; Los Angeles California
- Institute of the Environment and Sustainability; University of California; Los Angeles California
| |
Collapse
|
23
|
Ortego J, Gugger PF, Sork VL. Genomic data reveal cryptic lineage diversification and introgression in Californian golden cup oaks (section Protobalanus). THE NEW PHYTOLOGIST 2018; 218:804-818. [PMID: 29274282 DOI: 10.1111/nph.14951] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/14/2017] [Indexed: 05/15/2023]
Abstract
Here we study hybridization, introgression and lineage diversification in the widely distributed canyon live oak (Quercus chrysolepis) and the relict island oak (Q. tomentella), two Californian golden cup oaks with an intriguing biogeographical history. We employed restriction-site-associated DNA sequencing and integrated phylogenomic and population genomic analyses to study hybridization and reconstruct the evolutionary past of these taxa. Our analyses revealed the presence of two cryptic lineages within Q. chrysolepis. One of these lineages shares its most recent common ancestor with Q. tomentella, supporting the paraphyly of Q. chrysolepis. The split of these lineages was estimated to take place during the late Pliocene or the early Pleistocene, a time corresponding well with the common presence of Q. tomentella in the fossil records of continental California. Analyses also revealed historical hybridization among lineages, high introgression from Q. tomentella into Q. chrysolepis in their current area of sympatry, and widespread admixture between the two lineages of Q. chrysolepis in contact zones. Our results support that the two lineages of Q. chrysolepis behave as a single functional species phenotypically and ecologically well differentiated from Q. tomentella, a situation that can be only accommodated considering hybridization and speciation as a continuum with diffuse limits.
Collapse
Affiliation(s)
- Joaquín Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana, EBD-CSIC, Avda. Américo Vespucio 26, Seville, E-41092, Spain
| | - Paul F Gugger
- Appalachian Laboratory, University of Maryland Center for Environmental Science, 301 Braddock Road, Frostburg, MD, 21532, USA
| | - Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California, Box 957239, Los Angeles, CA, 90095, USA
- Institute of the Environment and Sustainability, University of California, Box 951496, Los Angeles, CA, 90095-1496, USA
| |
Collapse
|
24
|
Lesur I, Alexandre H, Boury C, Chancerel E, Plomion C, Kremer A. Development of Target Sequence Capture and Estimation of Genomic Relatedness in a Mixed Oak Stand. FRONTIERS IN PLANT SCIENCE 2018; 9:996. [PMID: 30057586 PMCID: PMC6053538 DOI: 10.3389/fpls.2018.00996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/19/2018] [Indexed: 05/19/2023]
Abstract
Anticipating the evolutionary responses of long-lived organisms, such as trees, to environmental changes, requires the assessment of genetic variation of adaptive traits in natural populations. To this end, high-density markers are needed to calculate genomic relatedness between individuals allowing to estimate the genetic variance of traits in wild populations. We designed a targeted capture-based, next-generation sequencing assay based on the highly heterozygous pedunculate oak (Quercus robur) reference genome, for the sequencing of 3 Mb of genic and intergenic regions. Using a mixed stand of 293 Q. robur and Q. petraea genotypes we successfully captured over 97% of the target sequences, corresponding to 0.39% of the oak genome, with sufficient depth (97×) for the detection of about 190,000 SNPs evenly spread over the targeted regions. We validated the technique by evaluating its reproducibility, and comparing the genomic relatedness of trees with their known pedigree relationship. We explored the use of the technique on other related species and highlighted the advantages and limitations of this approach. We found that 92.07% of target sequences in Q. suber and 70.36% of sequences in Fagus sylvatica were captured. We used this SNP resource to estimate genetic relatedness in the mixed oak stand. Mean pairwise genetic relatedness was low within each species with a few values exceeding 0.25 (half-sibs) or 0.5 (full-sibs). Finally, we applied the technique to a long-standing issue in population genetics of trees regarding the relationship between inbreeding and components of fitness. We found very weak signals for inbreeding depression for reproductive success and no signal for growth within both species.
Collapse
Affiliation(s)
- Isabelle Lesur
- INRA, UMR 1202, Biodiversité Gènes et Communautés, Université Bordeaux, Pessac, France
- HelixVenture, Mérignac, France
- *Correspondence: Isabelle Lesur,
| | - Hermine Alexandre
- INRA, UMR 1202, Biodiversité Gènes et Communautés, Université Bordeaux, Pessac, France
| | - Christophe Boury
- INRA, UMR 1202, Biodiversité Gènes et Communautés, Université Bordeaux, Pessac, France
| | - Emilie Chancerel
- INRA, UMR 1202, Biodiversité Gènes et Communautés, Université Bordeaux, Pessac, France
| | - Christophe Plomion
- INRA, UMR 1202, Biodiversité Gènes et Communautés, Université Bordeaux, Pessac, France
| | - Antoine Kremer
- INRA, UMR 1202, Biodiversité Gènes et Communautés, Université Bordeaux, Pessac, France
| |
Collapse
|
25
|
Population genomics and comparisons of selective signatures in two invasions of melon fly, Bactrocera cucurbitae (Diptera: Tephritidae). Biol Invasions 2017. [DOI: 10.1007/s10530-017-1621-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Shahzad K, Jia Y, Chen FL, Zeb U, Li ZH. Effects of Mountain Uplift and Climatic Oscillations on Phylogeography and Species Divergence in Four Endangered Notopterygium Herbs. FRONTIERS IN PLANT SCIENCE 2017; 8:1929. [PMID: 29167679 PMCID: PMC5682393 DOI: 10.3389/fpls.2017.01929] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/25/2017] [Indexed: 05/26/2023]
Abstract
Mountain uplift and climatic fluctuations are important driving forces that have affected the geographic distribution and population dynamics history of organisms. However, it is unclear how geological and climatic events might have affected the phylogeographic history and species divergence in high-alpine herbal plants. In this study, we analyzed the population demographic history and species differentiation of four endangered Notopterygium herbs on the high-altitude Qinghai-Tibetan Plateau (QTP) and adjacent areas. We combined phylogeographic analysis with species distribution modeling to detect the genetic variations in four Notopterygium species (N. incisum, N. franchetii, N. oviforme, and N. forrestii). In total, 559 individuals from 74 populations of the four species were analyzed based on three maternally inherited chloroplast fragments (matK, rbcL, and trnS-trnG) and one nuclear DNA region (internal transcribed spacer, ITS). Fifty-five chloroplast DNA (cpDNA) and 48 ITS haplotypes were identified in the four species. All of the cpDNA and ITS haplotypes were species-specific, except N. franchetii and N. oviforme shared one cpDNA haplotype, H32. Phylogenetic analysis suggested that all four species formed a monophyletic clade with high bootstrap support, where N. franchetii and N. oviforme were sisters. In addition, each Notopterygium species generated an individual clade that corresponded to their respective species in the ITS tree. Population dynamics analyses and species distribution modeling showed that the two widely distributed herbs N. incisum and N. franchetii exhibited obvious demographic expansions during the Pleistocene ice ages. Molecular dating suggested that the divergence of the four Notopterygium species occurred approximately between 3.6 and 1.2 Mya, and it was significantly associated with recent extensive uplifts of the QTP. Our results support the hypothesis that mountain uplift and Quaternary climatic oscillations profoundly shaped the population genetic divergence and demographic dynamics of Notopterygium species. The findings of this and previous studies provide important insights into the effects of QTP uplifts and climatic changes on phylogeography and species differentiation in high altitude mountainous areas. Our results may also facilitate the conservation of endangered herbaceous medicinal plants in the genus Notopterygium.
Collapse
Affiliation(s)
| | | | | | | | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
27
|
Torroba-Balmori P, Budde KB, Heer K, González-Martínez SC, Olsson S, Scotti-Saintagne C, Casalis M, Sonké B, Dick CW, Heuertz M. Altitudinal gradients, biogeographic history and microhabitat adaptation affect fine-scale spatial genetic structure in African and Neotropical populations of an ancient tropical tree species. PLoS One 2017; 12:e0182515. [PMID: 28771629 PMCID: PMC5542443 DOI: 10.1371/journal.pone.0182515] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/08/2017] [Indexed: 01/08/2023] Open
Abstract
The analysis of fine-scale spatial genetic structure (FSGS) within populations can provide insights into eco-evolutionary processes. Restricted dispersal and locally occurring genetic drift are the primary causes for FSGS at equilibrium, as described in the isolation by distance (IBD) model. Beyond IBD expectations, spatial, environmental or historical factors can affect FSGS. We examined FSGS in seven African and Neotropical populations of the late-successional rain forest tree Symphonia globulifera L. f. (Clusiaceae) to discriminate the influence of drift-dispersal vs. landscape/ecological features and historical processes on FSGS. We used spatial principal component analysis and Bayesian clustering to assess spatial genetic heterogeneity at SSRs and examined its association with plastid DNA and habitat features. African populations (from Cameroon and São Tomé) displayed a stronger FSGS than Neotropical populations at both marker types (mean Sp = 0.025 vs. Sp = 0.008 at SSRs) and had a stronger spatial genetic heterogeneity. All three African populations occurred in pronounced altitudinal gradients, possibly restricting animal-mediated seed dispersal. Cyto-nuclear disequilibria in Cameroonian populations also suggested a legacy of biogeographic history to explain these genetic patterns. Conversely, Neotropical populations exhibited a weaker FSGS, which may reflect more efficient wide-ranging seed dispersal by Neotropical bats and other dispersers. The population from French Guiana displayed an association of plastid haplotypes with two morphotypes characterized by differential habitat preferences. Our results highlight the importance of the microenvironment for eco-evolutionary processes within persistent tropical tree populations.
Collapse
Affiliation(s)
- Paloma Torroba-Balmori
- Department of Forest Ecology and Genetics, INIA Forest Research Centre, Madrid, Spain
- Sustainable Forest Management Research Institute, University of Valladolid - INIA, Palencia, Spain
| | | | - Katrin Heer
- Institute of Experimental Ecology, University of Ulm, Ulm, Germany
- Conservation Biology and Ecology, University of Marburg, Marburg, Germany
| | - Santiago C. González-Martínez
- Department of Forest Ecology and Genetics, INIA Forest Research Centre, Madrid, Spain
- Sustainable Forest Management Research Institute, University of Valladolid - INIA, Palencia, Spain
- UMR BIOGECO, INRA, University of Bordeaux, Cestas, France
| | - Sanna Olsson
- Department of Forest Ecology and Genetics, INIA Forest Research Centre, Madrid, Spain
| | | | | | - Bonaventure Sonké
- Ecole Normale Supérieure, Université de Yaoundé I, Yaoundé, Cameroon
- Evolutionary Biology and Ecology, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Christopher W. Dick
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Smithsonian Tropical Research Institute, Republic of Panama
| | - Myriam Heuertz
- Department of Forest Ecology and Genetics, INIA Forest Research Centre, Madrid, Spain
- UMR BIOGECO, INRA, University of Bordeaux, Cestas, France
- Evolutionary Biology and Ecology, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium
- * E-mail:
| |
Collapse
|
28
|
Truffaut L, Chancerel E, Ducousso A, Dupouey JL, Badeau V, Ehrenmann F, Kremer A. Fine-scale species distribution changes in a mixed oak stand over two successive generations. THE NEW PHYTOLOGIST 2017; 215:126-139. [PMID: 28444962 PMCID: PMC5624485 DOI: 10.1111/nph.14561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 05/12/2023]
Abstract
Large-scale tree distribution changes have received considerable attention but underlying demo-genetic mechanisms are less well documented. We used a diachronic approach to track species shifts in a mixed oak stand (Quercus petraea-Quercus robur) at a fine spatiotemporal scale. Species assignment was made using single nucleotide polymorphism (SNP) fingerprints employing clustering and parentage analysis. Mating patterns and reproductive success were assessed by parentage analysis. Plot-based inventories of soil parameters and sapling densities provided ecological and demographic information, respectively. Sapling density and reproductive success was higher in Q. petraea than in Q. robur, and were correlated with a spatial expansion of Q. petraea (50% to 67% of the area). Admixed trees resulting from hybridization and backcrossing between the two species were more frequent under the Q. robur canopy. We suspect that species' differential responses to ongoing environmental changes and interspecific competition are the predominant factors accounting for the recruitment success of Q. petraea, while human interference, differential reproduction and hybridization (and backcrossings) are probably of more limited importance. We anticipate in mixed Q. petraea-Q. robur stands, under current ongoing environmental change, that these processes will be enhanced, at least in the western part of the distribution of the two species.
Collapse
Affiliation(s)
- Laura Truffaut
- INRA, UMR 1202 BIOGECO, F-33610 Cestas, France
- Université de Bordeaux, UMR 1202 BIOGECO, F-33615 Pessac,
France
| | - Emilie Chancerel
- INRA, UMR 1202 BIOGECO, F-33610 Cestas, France
- Université de Bordeaux, UMR 1202 BIOGECO, F-33615 Pessac,
France
| | - Alexis Ducousso
- INRA, UMR 1202 BIOGECO, F-33610 Cestas, France
- Université de Bordeaux, UMR 1202 BIOGECO, F-33615 Pessac,
France
| | - Jean Luc Dupouey
- INRA Université de Lorraine UMR 1137 ‘Ecologie et
Ecophysiologie Forestières’, route d’Amance, F-54280
Champenoux, France
| | - Vincent Badeau
- INRA Université de Lorraine UMR 1137 ‘Ecologie et
Ecophysiologie Forestières’, route d’Amance, F-54280
Champenoux, France
| | - François Ehrenmann
- INRA, UMR 1202 BIOGECO, F-33610 Cestas, France
- Université de Bordeaux, UMR 1202 BIOGECO, F-33615 Pessac,
France
| | - Antoine Kremer
- INRA, UMR 1202 BIOGECO, F-33610 Cestas, France
- Université de Bordeaux, UMR 1202 BIOGECO, F-33615 Pessac,
France
| |
Collapse
|
29
|
de Lafontaine G, Bousquet J. Asymmetry matters: A genomic assessment of directional biases in gene flow between hybridizing spruces. Ecol Evol 2017; 7:3883-3893. [PMID: 28616185 PMCID: PMC5468134 DOI: 10.1002/ece3.2682] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/16/2016] [Accepted: 11/20/2016] [Indexed: 01/08/2023] Open
Abstract
Assessing directional bias in interspecific gene flow might be important in determining the evolutionary trajectory of closely related species pairs. Using a set of 300 single nucleotide polymorphisms (SNPs) having variable propensity to cross species boundary, we evaluated the genomic extent and direction of interspecific gene flow in a progenitor‐derivative spruce species pair (black spruce and red spruce). A higher rate of gene flow was found from black spruce toward red spruce purebreds than vice versa. This asymmetry could reflect the historical gene flow between the two taxa at the time of species inception and during postglacial colonization. A clear asymmetry in introgression was depicted by a greater gene flow between red spruce and hybrids than between black spruce and hybrids. While backcrossing toward red spruce was invariably high across the genome, the actual species boundary is between hybrids and black spruce where gene flow is impeded at those genomic regions impermeable to introgression. Associations between hybrid index and climatic variables (total annual precipitation and mean annual temperature) were tested, as these might indicate a role for exogenous selection in maintaining the species boundary. While an apparent association was found between the hybrid index and precipitation, it collapsed when considered in light of the directional bias in interspecific gene flow. Hence, considering asymmetrical patterns of introgression allowed us to falsify an apparent role for exogenous selection. Although this was not formerly tested here, we suggest that this pattern could result from asymmetrical endogenous selection, a contention that deserves further investigations.
Collapse
Affiliation(s)
- Guillaume de Lafontaine
- Canada Research Chair in Forest Genomics Centre for Forest Research and Institute of Systems and Integrative Biology Université Laval Québec QC Canada.,Department of Plant Biology University of Illinois Urbana IL USA
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics Centre for Forest Research and Institute of Systems and Integrative Biology Université Laval Québec QC Canada
| |
Collapse
|
30
|
Bilska K, Szczecińska M. Comparison of the effectiveness of ISJ and SSR markers and detection of outlier loci in conservation genetics of Pulsatilla patens populations. PeerJ 2016; 4:e2504. [PMID: 27833793 PMCID: PMC5101595 DOI: 10.7717/peerj.2504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 08/30/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Research into the protection of rare and endangered plant species involves genetic analyses to determine their genetic variation and genetic structure. Various categories of genetic markers are used for this purpose. Microsatellites, also known as simple sequence repeats (SSR), are the most popular category of markers in population genetics research. In most cases, microsatellites account for a large part of the noncoding DNA and exert a neutral effect on the genome. Neutrality is a desirable feature in evaluations of genetic differences between populations, but it does not support analyses of a population's ability to adapt to a given environment or its evolutionary potential. Despite the numerous advantages of microsatellites, non-neutral markers may supply important information in conservation genetics research. They are used to evaluate adaptation to specific environmental conditions and a population's adaptive potential. The aim of this study was to compare the level of genetic variation in Pulsatilla patens populations revealed by neutral SSR markers and putatively adaptive ISJ markers (intron-exon splice junction). METHODS The experiment was conducted on 14 Polish populations of P. patens and three P. patens populations from the nearby region of Vitebsk in Belarus. A total of 345 individuals were examined. Analyses were performed with the use of eight SSR primers specific to P. patens and three ISJ primers. RESULTS SSR markers revealed a higher level of genetic variation than ISJ markers (He = 0.609, He = 0.145, respectively). An analysis of molecular variance (AMOVA) revealed that, the overall genetic diversity between the analyzed populations defined by parameters FST and Φ PT for SSR (20%) and Φ PT for ISJ (21%) markers was similar. Analysis conducted in the Structure program divided analyzed populations into two groups (SSR loci) and three groups (ISJ markers). Mantel test revealed correlations between the geographic distance and genetic diversity of Polish populations of P. patens for ISJ markers, but not for SSR markers. CONCLUSIONS The results of the present study suggest that ISJ markers can complement the analyses based on SSRs. However, neutral and adaptive markers should not be alternatively applied. Neutral microsatellite markers cannot depict the full range of genetic variation in a population because they do not enable to analyze functional variation. Although ISJ markers are less polymorphic, they can contribute to the reliability of analyses based on SSRs.
Collapse
Affiliation(s)
- Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Monika Szczecińska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
31
|
De Kort H, Mergeay J, Jacquemyn H, Honnay O. Transatlantic invasion routes and adaptive potential in North American populations of the invasive glossy buckthorn, Frangula alnus. ANNALS OF BOTANY 2016; 118:1089-1099. [PMID: 27539599 PMCID: PMC5091722 DOI: 10.1093/aob/mcw157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 05/02/2016] [Accepted: 06/17/2016] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Many invasive species severely threaten native biodiversity and ecosystem functioning. One of the most prominent questions in invasion genetics is how invasive populations can overcome genetic founder effects to establish stable populations after colonization of new habitats. High native genetic diversity and multiple introductions are expected to increase genetic diversity and adaptive potential in the invasive range. Our aim was to identify the European source populations of Frangula alnus (glossy buckthorn), an ornamental and highly invasive woody species that was deliberately introduced into North America at the end of the 18th century. A second aim of this study was to assess the adaptive potential as an explanation for the invasion success of this species. METHODS Using a set of annotated single-nucleotide polymorphisms (SNPs) that were assigned a putative function based on sequence comparison with model species, a total of 38 native European and 21 invasive North American populations were subjected to distance-based structure and assignment analyses combined with population genomic tools. Genetic diversity at SNPs with ecologically relevant functions was considered as a proxy for adaptive potential. KEY RESULTS Patterns of invasion coincided with early modern transatlantic trading routes. Multiple introductions through transatlantic trade from a limited number of European port regions to American urban areas led to the establishment of bridgehead populations with high allelic richness and expected heterozygosity, allowing continuous secondary migration to natural areas. CONCLUSIONS Targeted eradication of the urban populations, where the highest genetic diversity and adaptive potential were observed, offers a promising strategy to arrest further invasion of native American prairies and forests.
Collapse
Affiliation(s)
- Hanne De Kort
- Plant Conservation and Population Biology, Biology Department, University of Leuven, Kasteelpark Arenberg 31, B-3001 Heverlee, Belgium Station d'Ecologie Théorique et Expérimentale du CNRS, Centre National de la Recherche Scientifique, 2 Route du CNRS, FR-09200 Moulis, France
| | - Joachim Mergeay
- Research Institute for Nature and Forest, Gaverstraat 4, B-9500 Geraardsbergen, Belgium
| | - Hans Jacquemyn
- Plant Conservation and Population Biology, Biology Department, University of Leuven, Kasteelpark Arenberg 31, B-3001 Heverlee, Belgium
| | - Olivier Honnay
- Plant Conservation and Population Biology, Biology Department, University of Leuven, Kasteelpark Arenberg 31, B-3001 Heverlee, Belgium
| |
Collapse
|
32
|
Bodénès C, Chancerel E, Ehrenmann F, Kremer A, Plomion C. High-density linkage mapping and distribution of segregation distortion regions in the oak genome. DNA Res 2016; 23:115-24. [PMID: 27013549 PMCID: PMC4833419 DOI: 10.1093/dnares/dsw001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/05/2016] [Indexed: 11/14/2022] Open
Abstract
We developed the densest single-nucleotide polymorphism (SNP)-based linkage genetic map to date for the genus Quercus An 8k gene-based SNP array was used to genotype more than 1,000 full-sibs from two intraspecific and two interspecific full-sib families of Quercus petraea and Quercus robur A high degree of collinearity was observed between the eight parental maps of the two species. A composite map was then established with 4,261 SNP markers spanning 742 cM over the 12 linkage groups (LGs) of the oak genome. Nine genomic regions from six LGs displayed highly significant distortions of segregation. Two main hypotheses concerning the mechanisms underlying segregation distortion are discussed: genetic load vs. reproductive barriers. Our findings suggest a predominance of pre-zygotic to post-zygotic barriers.
Collapse
Affiliation(s)
- Catherine Bodénès
- INRA, UMR1202 BIOGECO, F-33610 Cestas, France Université de Bordeaux, UMR1202 BIOGECO, F-33610 Talence, France
| | - Emilie Chancerel
- INRA, UMR1202 BIOGECO, F-33610 Cestas, France Université de Bordeaux, UMR1202 BIOGECO, F-33610 Talence, France
| | - François Ehrenmann
- INRA, UMR1202 BIOGECO, F-33610 Cestas, France Université de Bordeaux, UMR1202 BIOGECO, F-33610 Talence, France
| | - Antoine Kremer
- INRA, UMR1202 BIOGECO, F-33610 Cestas, France Université de Bordeaux, UMR1202 BIOGECO, F-33610 Talence, France
| | - Christophe Plomion
- INRA, UMR1202 BIOGECO, F-33610 Cestas, France Université de Bordeaux, UMR1202 BIOGECO, F-33610 Talence, France
| |
Collapse
|
33
|
Marchal A, Prida A, Dubourdieu D. New Approach for Differentiating Sessile and Pedunculate Oak: Development of a LC-HRMS Method To Quantitate Triterpenoids in Wood. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:618-626. [PMID: 26719914 DOI: 10.1021/acs.jafc.5b05056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Oak aging is a crucial step in winemaking during which the organoleptic properties of wine are modified. Various parameters affect the chemical composition of oak wood including botanical origin, which has been previously shown to be a determinant factor. This study focused on the development of a LC-HRMS method to assay four recently discovered taste-active triterpenes (three sweet and one bitter). The method was applied to evaluate the effect of oak species (Quercus petraea and Quercus robur) on the concentration of these molecules in wood. The results showed that sessile oak was richer in sweet triterpenes and poorer in the bitter one than pedunculate oak, with high interindividual variations within species. Furthermore, a triterpenoid index was calculated to reveal the triterpenoid composition of oak wood. This index appears to be a promising tool for the unambiguous discrimination of oak species and could offer new insights into oak wood selection by coopers and the monitoring of oak aging by winemakers.
Collapse
Affiliation(s)
- Axel Marchal
- Université de Bordeaux , ISVV, EA 4577, Unité de recherche Oenologie, F-33882 Villenave d'Ornon, France
- INRA , ISVV, USC 1366 Oenologie, F-33882 Villenave d'Ornon, France
| | - Andréi Prida
- Seguin Moreau France , Z. I. Merpins, B.P. 94, F-16103 Cognac, France
| | - Denis Dubourdieu
- Université de Bordeaux , ISVV, EA 4577, Unité de recherche Oenologie, F-33882 Villenave d'Ornon, France
- INRA , ISVV, USC 1366 Oenologie, F-33882 Villenave d'Ornon, France
| |
Collapse
|
34
|
Feng L, Zheng QJ, Qian ZQ, Yang J, Zhang YP, Li ZH, Zhao GF. Genetic Structure and Evolutionary History of Three Alpine Sclerophyllous Oaks in East Himalaya-Hengduan Mountains and Adjacent Regions. FRONTIERS IN PLANT SCIENCE 2016. [PMID: 27891142 DOI: 10.3389/fgls.2016.01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The East Himalaya-Hengduan Mountains (EH-HM) region has a high biodiversity and harbors numerous endemic alpine plants. This is probably the result of combined orographic and climate oscillations occurring since late Tertiary. Here, we determined the genetic structure and evolutionary history of alpine oak species (including Quercus spinosa, Quercus aquifolioides, and Quercus rehderiana) using both cytoplasmic-nuclear markers and ecological niche models (ENMs), and elucidated the impacts of climate oscillations and environmental heterogeneity on their population demography. Our results indicate there were mixed genetic structure and asymmetric contemporary gene flow within them. The ENMs revealed a similar demographic history for the three species expanded their ranges from the last interglacial (LIG) to the last glacial maximum (LGM), which was consistent with effective population sizes changes. Effects of genetic drift and fragmentation of habitats were responsible for the high differentiation and the lack of phylogeographic structure. Our results support that geological and climatic factors since Miocene triggered the differentiation, evolutionary origin and range shifts of the three oak species in the studied area and also emphasize that a multidisciplinary approach combining molecular markers, ENMs and population genetics can yield deep insights into diversification and evolutionary dynamics of species.
Collapse
Affiliation(s)
- Li Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University Xi'an, China
| | - Qi-Jian Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University Xi'an, China
| | - Zeng-Qiang Qian
- College of Life Sciences, Shaanxi Normal University Xi'an, China
| | - Jia Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University Xi'an, China
| | - Yan-Ping Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University Xi'an, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University Xi'an, China
| | - Gui-Fang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University Xi'an, China
| |
Collapse
|
35
|
Feng L, Zheng QJ, Qian ZQ, Yang J, Zhang YP, Li ZH, Zhao GF. Genetic Structure and Evolutionary History of Three Alpine Sclerophyllous Oaks in East Himalaya-Hengduan Mountains and Adjacent Regions. FRONTIERS IN PLANT SCIENCE 2016; 7:1688. [PMID: 27891142 PMCID: PMC5104984 DOI: 10.3389/fpls.2016.01688] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/26/2016] [Indexed: 05/20/2023]
Abstract
The East Himalaya-Hengduan Mountains (EH-HM) region has a high biodiversity and harbors numerous endemic alpine plants. This is probably the result of combined orographic and climate oscillations occurring since late Tertiary. Here, we determined the genetic structure and evolutionary history of alpine oak species (including Quercus spinosa, Quercus aquifolioides, and Quercus rehderiana) using both cytoplasmic-nuclear markers and ecological niche models (ENMs), and elucidated the impacts of climate oscillations and environmental heterogeneity on their population demography. Our results indicate there were mixed genetic structure and asymmetric contemporary gene flow within them. The ENMs revealed a similar demographic history for the three species expanded their ranges from the last interglacial (LIG) to the last glacial maximum (LGM), which was consistent with effective population sizes changes. Effects of genetic drift and fragmentation of habitats were responsible for the high differentiation and the lack of phylogeographic structure. Our results support that geological and climatic factors since Miocene triggered the differentiation, evolutionary origin and range shifts of the three oak species in the studied area and also emphasize that a multidisciplinary approach combining molecular markers, ENMs and population genetics can yield deep insights into diversification and evolutionary dynamics of species.
Collapse
Affiliation(s)
- Li Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
| | - Qi-Jian Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
| | - Zeng-Qiang Qian
- College of Life Sciences, Shaanxi Normal UniversityXi'an, China
| | - Jia Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
| | - Yan-Ping Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
| | - Gui-Fang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
- *Correspondence: Gui-Fang Zhao
| |
Collapse
|
36
|
de Lafontaine G, Prunier J, Gérardi S, Bousquet J. Tracking the progression of speciation: variable patterns of introgression across the genome provide insights on the species delimitation between progenitor-derivative spruces (Picea mariana×P. rubens). Mol Ecol 2015; 24:5229-47. [DOI: 10.1111/mec.13377] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/05/2015] [Accepted: 09/01/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Guillaume de Lafontaine
- Canada Research Chair in Forest and Environmental Genomics; Centre for Forest Research and Institute of Systems and Integrative Biology; Université Laval; 1030 Avenue de la Médecine Québec QC G1V 0A6 Canada
| | - Julien Prunier
- Canada Research Chair in Forest and Environmental Genomics; Centre for Forest Research and Institute of Systems and Integrative Biology; Université Laval; 1030 Avenue de la Médecine Québec QC G1V 0A6 Canada
| | - Sébastien Gérardi
- Canada Research Chair in Forest and Environmental Genomics; Centre for Forest Research and Institute of Systems and Integrative Biology; Université Laval; 1030 Avenue de la Médecine Québec QC G1V 0A6 Canada
| | - Jean Bousquet
- Canada Research Chair in Forest and Environmental Genomics; Centre for Forest Research and Institute of Systems and Integrative Biology; Université Laval; 1030 Avenue de la Médecine Québec QC G1V 0A6 Canada
| |
Collapse
|
37
|
Gomes B, Wilding CS, Weetman D, Sousa CA, Novo MT, Savage HM, Almeida APG, Pinto J, Donnelly MJ. Limited genomic divergence between intraspecific forms of Culex pipiens under different ecological pressures. BMC Evol Biol 2015; 15:197. [PMID: 26377220 PMCID: PMC4573496 DOI: 10.1186/s12862-015-0477-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/03/2015] [Indexed: 01/01/2023] Open
Abstract
Background Divergent selection can be a major driver of ecological speciation. In insects of medical importance, understanding the speciation process is both of academic interest and public health importance. In the West Nile virus vector Culex pipiens, intraspecific pipiens and molestus forms vary in ecological and physiological traits. Populations of each form appear to share recent common ancestry but patterns of genetic differentiation across the genome remain unknown. Here, we undertook an AFLP genome scan on samples collected from both sympatric and allopatric populations from Europe and the USA to quantify the extent of genomic differentiation between the two forms. Results The forms were clearly differentiated but each exhibited major population sub-structuring between continents. Divergence between pipiens and molestus forms from USA was higher than in both inter- and intra-continental comparisons with European samples. The proportion of outlier loci between pipiens and molestus (≈3 %) was low but consistent in both continents, and similar to those observed between sibling species of other mosquito species which exhibit contemporary gene flow. Only two of the outlier loci were shared between inter-form comparisons made within Europe and USA. Conclusion This study supports the molestus and pipiens status as distinct evolutionary entities with low genomic divergence. The low number of shared divergent loci between continents suggests a relatively limited number of genomic regions determining key typological traits likely to be driving incipient speciation and/or adaptation of molestus to anthropogenic habitats. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0477-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bruno Gomes
- Global Health & Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisbon, Portugal. .,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Craig S Wilding
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK. .,School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Carla A Sousa
- Global Health & Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisbon, Portugal.
| | - Maria T Novo
- Global Health & Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisbon, Portugal.
| | - Harry M Savage
- Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO, 80521, USA.
| | - António P G Almeida
- Global Health & Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisbon, Portugal.
| | - João Pinto
- Global Health & Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisbon, Portugal.
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
38
|
Li T, Xu L, Deng Y, Liao L, Liang G. Isolation and characterization of thirteen microsatellite loci in four diploid species of Ranunculus cantonensis polyploid complex. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
De Kort H, Vandepitte K, Mergeay J, Mijnsbrugge KV, Honnay O. The population genomic signature of environmental selection in the widespread insect-pollinated tree species Frangula alnus at different geographical scales. Heredity (Edinb) 2015; 115:415-25. [PMID: 25944466 DOI: 10.1038/hdy.2015.41] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/20/2015] [Accepted: 03/20/2015] [Indexed: 01/17/2023] Open
Abstract
The evaluation of the molecular signatures of selection in species lacking an available closely related reference genome remains challenging, yet it may provide valuable fundamental insights into the capacity of populations to respond to environmental cues. We screened 25 native populations of the tree species Frangula alnus subsp. alnus (Rhamnaceae), covering three different geographical scales, for 183 annotated single-nucleotide polymorphisms (SNPs). Standard population genomic outlier screens were combined with individual-based and multivariate landscape genomic approaches to examine the strength of selection relative to neutral processes in shaping genomic variation, and to identify the main environmental agents driving selection. Our results demonstrate a more distinct signature of selection with increasing geographical distance, as indicated by the proportion of SNPs (i) showing exceptional patterns of genetic diversity and differentiation (outliers) and (ii) associated with climate. Both temperature and precipitation have an important role as selective agents in shaping adaptive genomic differentiation in F. alnus subsp. alnus, although their relative importance differed among spatial scales. At the 'intermediate' and 'regional' scales, where limited genetic clustering and high population diversity were observed, some indications of natural selection may suggest a major role for gene flow in safeguarding adaptability. High genetic diversity at loci under selection in particular, indicated considerable adaptive potential, which may nevertheless be compromised by the combined effects of climate change and habitat fragmentation.
Collapse
Affiliation(s)
- H De Kort
- Biology Department, University of Leuven, Plant Conservation and Population Biology, Kasteelpark Arenberg 31, Heverlee, Belgium
| | - K Vandepitte
- Biology Department, University of Leuven, Plant Conservation and Population Biology, Kasteelpark Arenberg 31, Heverlee, Belgium
| | - J Mergeay
- Department of Genetic Diversity, Research Institute for Nature and Forest, Gaverstraat 4, Geraardsbergen, Belgium
| | - K V Mijnsbrugge
- Department of Genetic Diversity, Research Institute for Nature and Forest, Gaverstraat 4, Geraardsbergen, Belgium.,Department of Nature Conservation, Agency for Nature and Forest, Koning Albert II laan 20, Brussels, Belgium
| | - O Honnay
- Biology Department, University of Leuven, Plant Conservation and Population Biology, Kasteelpark Arenberg 31, Heverlee, Belgium
| |
Collapse
|
40
|
Lepoittevin C, Bodénès C, Chancerel E, Villate L, Lang T, Lesur I, Boury C, Ehrenmann F, Zelenica D, Boland A, Besse C, Garnier-Géré P, Plomion C, Kremer A. Single-nucleotide polymorphism discovery and validation in high-density SNP array for genetic analysis in European white oaks. Mol Ecol Resour 2015; 15:1446-59. [DOI: 10.1111/1755-0998.12407] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/20/2015] [Accepted: 03/20/2015] [Indexed: 11/27/2022]
Affiliation(s)
- C. Lepoittevin
- UMR 1202 BIOGECO; INRA; Cestas F-33610 France
- UMR 1202 BIOGECO; University of Bordeaux; Pessac F-33600 France
| | - C. Bodénès
- UMR 1202 BIOGECO; INRA; Cestas F-33610 France
- UMR 1202 BIOGECO; University of Bordeaux; Pessac F-33600 France
| | - E. Chancerel
- UMR 1202 BIOGECO; INRA; Cestas F-33610 France
- UMR 1202 BIOGECO; University of Bordeaux; Pessac F-33600 France
| | - L. Villate
- UMR 1202 BIOGECO; INRA; Cestas F-33610 France
- UMR 1202 BIOGECO; University of Bordeaux; Pessac F-33600 France
| | - T. Lang
- UMR 1202 BIOGECO; INRA; Cestas F-33610 France
- UMR 1202 BIOGECO; University of Bordeaux; Pessac F-33600 France
- Key Laboratory of Tropical Forest Ecology; Xishuangbanna Tropical Botanical Garden; Chinese Academy of Sciences; Mengla Yunnan 666303 China
| | - I. Lesur
- UMR 1202 BIOGECO; INRA; Cestas F-33610 France
- UMR 1202 BIOGECO; University of Bordeaux; Pessac F-33600 France
- HelixVenture; Mérignac F-33700 France
| | - C. Boury
- UMR 1202 BIOGECO; INRA; Cestas F-33610 France
- UMR 1202 BIOGECO; University of Bordeaux; Pessac F-33600 France
| | - F. Ehrenmann
- UMR 1202 BIOGECO; INRA; Cestas F-33610 France
- UMR 1202 BIOGECO; University of Bordeaux; Pessac F-33600 France
| | - D. Zelenica
- CEA, Institut de Génomique, Centre National de Génotypage; 2 rue Gaston Crémieux, CP5721 Evry Cedex F-91057 France
| | - A. Boland
- CEA, Institut de Génomique, Centre National de Génotypage; 2 rue Gaston Crémieux, CP5721 Evry Cedex F-91057 France
| | - C. Besse
- CEA, Institut de Génomique, Centre National de Génotypage; 2 rue Gaston Crémieux, CP5721 Evry Cedex F-91057 France
| | - P. Garnier-Géré
- UMR 1202 BIOGECO; INRA; Cestas F-33610 France
- UMR 1202 BIOGECO; University of Bordeaux; Pessac F-33600 France
| | - C. Plomion
- UMR 1202 BIOGECO; INRA; Cestas F-33610 France
- UMR 1202 BIOGECO; University of Bordeaux; Pessac F-33600 France
| | - A. Kremer
- UMR 1202 BIOGECO; INRA; Cestas F-33610 France
- UMR 1202 BIOGECO; University of Bordeaux; Pessac F-33600 France
| |
Collapse
|
41
|
A linkage disequilibrium perspective on the genetic mosaic of speciation in two hybridizing Mediterranean white oaks. Heredity (Edinb) 2014; 114:373-86. [PMID: 25515016 DOI: 10.1038/hdy.2014.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 10/11/2014] [Accepted: 11/12/2014] [Indexed: 01/09/2023] Open
Abstract
We analyzed the genetic mosaic of speciation in two hybridizing Mediterranean white oaks from the Iberian Peninsula (Quercus faginea Lamb. and Quercus pyrenaica Willd.). The two species show ecological divergence in flowering phenology, leaf morphology and composition, and in their basic or acidic soil preferences. Ninety expressed sequence tag-simple sequence repeats (EST-SSRs) and eight nuclear SSRs were genotyped in 96 trees from each species. Genotyping was designed in two steps. First, we used 69 markers evenly distributed over the 12 linkage groups (LGs) of the oak linkage map to confirm the species genetic identity of the sampled genotypes, and searched for differentiation outliers. Then, we genotyped 29 additional markers from the chromosome bins containing the outliers and repeated the multilocus scans. We found one or two additional outliers within four saturated bins, thus confirming that outliers are organized into clusters. Linkage disequilibrium (LD) was extensive; even for loosely linked and for independent markers. Consequently, score tests for association between two-marker haplotypes and the 'species trait' showed a broad genomic divergence, although substantial variation across the genome and within LGs was also observed. We discuss the influence of several confounding effects on neutrality tests and review the evolutionary processes leading to extensive LD. Finally, we examine how LD analyses within regions that contain outlier clusters and quantitative trait loci can help to identify regions of divergence and/or genomic hitchhiking in the light of predictions from ecological speciation theory.
Collapse
|
42
|
Mimura M, Mishima M, Lascoux M, Yahara T. Range shift and introgression of the rear and leading populations in two ecologically distinct Rubus species. BMC Evol Biol 2014; 2014:209. [PMID: 25344198 PMCID: PMC4221717 DOI: 10.1186/s12862-014-0209-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/23/2014] [Indexed: 11/15/2022] Open
Abstract
Background The margins of a species’ range might be located at the margins of a species’ niche, and in such cases, can be highly vulnerable to climate changes. They, however, may also undergo significant evolutionary changes due to drastic population dynamics in response to climate changes, which may increase the chances of isolation and contact among species. Such species interactions induced by climate changes could then regulate or facilitate further responses to climatic changes. We hypothesized that climate changes lead to species contacts and subsequent genetic exchanges due to differences in population dynamics at the species boundaries. We sampled two closely related Rubus species, one temperate (Rubus palmatus) and the other subtropical (R. grayanus) near their joint species boundaries in southern Japan. Coalescent analysis, based on molecular data and ecological niche modelling during the Last Glacial Maximum (LGM), were used to infer past population dynamics. At the contact zones on Yakushima (Yaku Island), where the two species are parapatrically distributed, we tested hybridization along altitudinal gradients. Results Coalescent analysis suggested that the southernmost populations of R. palmatus predated the LGM (~20,000 ya). Conversely, populations at the current northern limit of R. grayanus diverged relatively recently and likely represent young outposts of a northbound range shift. These population dynamics were partly supported by the ensemble forecasting of six different species distribution models. Both past and ongoing hybridizations were detected near and on Yakushima. Backcrosses and advanced-generation hybrids likely generated the clinal hybrid zones along altitudinal gradients on the island where the two species are currently parapatrically distributed. Conclusions Climate oscillations during the Quaternary Period and the response of a species in range shifts likely led to repeated contacts with the gene pools of ecologically distinct relatives. Such species interactions, induced by climate changes, may bring new genetic material to the marginal populations where species tend to experience more extreme climatic conditions at the margins of the species distribution. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0209-9) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
De Kort H, Vandepitte K, Bruun HH, Closset-Kopp D, Honnay O, Mergeay J. Landscape genomics and a common garden trial reveal adaptive differentiation to temperature across Europe in the tree speciesAlnus glutinosa. Mol Ecol 2014; 23:4709-21. [DOI: 10.1111/mec.12813] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Hanne De Kort
- Plant Conservation and Population Biology; Department of Biology; University of Leuven; Kasteelpark Arenberg 31 Heverlee B-3001 Belgium
| | - Katrien Vandepitte
- Plant Conservation and Population Biology; Department of Biology; University of Leuven; Kasteelpark Arenberg 31 Heverlee B-3001 Belgium
| | - Hans Henrik Bruun
- Ecology and Evolution Section; Department of Biology; University of Copenhagen; Universitetsparken 15 København 2100 Denmark
| | - Déborah Closset-Kopp
- Research unit of “Ecologie et Dynamique des Systèmes Anthropisés”; Jules Vernes University of Picardy; 1 Rue des Louvels Amiens F-80037 France
| | - Olivier Honnay
- Plant Conservation and Population Biology; Department of Biology; University of Leuven; Kasteelpark Arenberg 31 Heverlee B-3001 Belgium
| | - Joachim Mergeay
- Research Institute for Nature and Forest; Gaverstraat 4 Geraardsbergen B-9500 Belgium
| |
Collapse
|
44
|
El Mujtar VA, Gallo LA, Lang T, Garnier-Géré P. Development of genomic resources forNothofagusspecies using next-generation sequencing data. Mol Ecol Resour 2014; 14:1281-95. [DOI: 10.1111/1755-0998.12276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/23/2014] [Accepted: 04/28/2014] [Indexed: 11/30/2022]
Affiliation(s)
- V. A. El Mujtar
- Unidad de Genética Ecológica y Mejoramiento Forestal; Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Bariloche; Modesta Victoria 4450 (8400) Bariloche Río Negro Argentina
- INRA; UMR 1202 Biodiversity Genes & Communities; F- 33610 Cestas France
- UMR1202 Biodiversity Genes & Communities; University of Bordeaux; Bordeaux F-33400 Talence France
| | - L. A. Gallo
- Unidad de Genética Ecológica y Mejoramiento Forestal; Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Bariloche; Modesta Victoria 4450 (8400) Bariloche Río Negro Argentina
| | - T. Lang
- Key Laboratory of Tropical Forest Ecology; Xishuangbanna Tropical Botanical Garden; Chinese Academy of Sciences; Mengla Yunnan 666303 China
| | - P. Garnier-Géré
- INRA; UMR 1202 Biodiversity Genes & Communities; F- 33610 Cestas France
- UMR1202 Biodiversity Genes & Communities; University of Bordeaux; Bordeaux F-33400 Talence France
| |
Collapse
|
45
|
Lagache L, Klein EK, Ducousso A, Petit RJ. Distinct male reproductive strategies in two closely related oak species. Mol Ecol 2014; 23:4331-43. [DOI: 10.1111/mec.12766] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/12/2014] [Accepted: 04/08/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Lélia Lagache
- INRA; UMR 1202 Biogeco; F-33610 Cestas France
- Univ. Bordeaux; UMR1202 Biogeco; F-33400 Talence France
| | - Etienne K. Klein
- Biostatistique et Processus Spatiaux (BioSP); INRA; UR546; F-84914 Avignon France
| | - Alexis Ducousso
- INRA; UMR 1202 Biogeco; F-33610 Cestas France
- Univ. Bordeaux; UMR1202 Biogeco; F-33400 Talence France
| | - Rémy J. Petit
- INRA; UMR 1202 Biogeco; F-33610 Cestas France
- Univ. Bordeaux; UMR1202 Biogeco; F-33400 Talence France
| |
Collapse
|
46
|
Lagache L, Leger JB, Daudin JJ, Petit RJ, Vacher C. Putting the biological species concept to the test: using mating networks to delimit species. PLoS One 2013; 8:e68267. [PMID: 23818990 PMCID: PMC3688613 DOI: 10.1371/journal.pone.0068267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/28/2013] [Indexed: 11/19/2022] Open
Abstract
Although interfertility is the key criterion upon which Mayr's biological species concept is based, it has never been applied directly to delimit species under natural conditions. Our study fills this gap. We used the interfertility criterion to delimit two closely related oak species in a forest stand by analyzing the network of natural mating events between individuals. The results reveal two groups of interfertile individuals connected by only few mating events. These two groups were largely congruent with those determined using other criteria (morphological similarity, genotypic similarity and individual relatedness). Our study, therefore, shows that the analysis of mating networks is an effective method to delimit species based on the interfertility criterion, provided that adequate network data can be assembled. Our study also shows that although species boundaries are highly congruent across methods of species delimitation, they are not exactly the same. Most of the differences stem from assignment of individuals to an intermediate category. The discrepancies between methods may reflect a biological reality. Indeed, the interfertility criterion is an environment-dependant criterion as species abundances typically affect rates of hybridization under natural conditions. Thus, the methods of species delimitation based on the interfertility criterion are expected to give results slightly different from those based on environment-independent criteria (such as the genotypic similarity criteria). However, whatever the criterion chosen, the challenge we face when delimiting species is to summarize continuous but non-uniform variations in biological diversity. The grade of membership model that we use in this study appears as an appropriate tool.
Collapse
Affiliation(s)
- Lélia Lagache
- INRA, UMR1202 BIOGECO, Cestas, France
- Univ. Bordeaux, BIOGECO, UMR 1202, Talence, France
| | - Jean-Benoist Leger
- INRA, UMR 518 MIA, Paris, France
- AgroParisTech, UMR 518 MIA, Paris, France
| | | | - Rémy J. Petit
- INRA, UMR1202 BIOGECO, Cestas, France
- Univ. Bordeaux, BIOGECO, UMR 1202, Talence, France
| | - Corinne Vacher
- INRA, UMR1202 BIOGECO, Cestas, France
- Univ. Bordeaux, BIOGECO, UMR 1202, Talence, France
| |
Collapse
|
47
|
Perrier C, Guyomard R, Bagliniere JL, Nikolic N, Evanno G. Changes in the genetic structure of Atlantic salmon populations over four decades reveal substantial impacts of stocking and potential resiliency. Ecol Evol 2013; 3:2334-49. [PMID: 23919174 PMCID: PMC3728969 DOI: 10.1002/ece3.629] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/28/2013] [Accepted: 05/06/2013] [Indexed: 01/08/2023] Open
Abstract
While the stocking of captive-bred fish has been occurring for decades and has had substantial immediate genetic and evolutionary impacts on wild populations, its long-term consequences have only been weakly investigated. Here, we conducted a spatiotemporal analysis of 1428 Atlantic salmon sampled from 1965 to 2006 in 25 populations throughout France to investigate the influence of stocking on the neutral genetic structure in wild Atlantic salmon (Salmo salar) populations. On the basis of the analysis of 11 microsatellite loci, we found that the overall genetic structure among populations dramatically decreased over the period studied. Admixture rates among populations were highly variable, ranging from a nearly undetectable contribution from donor stocks to total replacement of the native gene pool, suggesting extremely variable impacts of stocking. Depending on population, admixture rates either increased, remained stable, or decreased in samples collected between 1998 and 2006 compared to samples from 1965 to 1987, suggesting either rising, long-lasting or short-term impacts of stocking. We discuss the potential mechanisms contributing to this variability, including the reduced fitness of stocked fish and persistence of wild locally adapted individuals.
Collapse
Affiliation(s)
- Charles Perrier
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval Québec, Canada ; INRA, UMR 0985 Ecology and Health of Ecosystems 35042, Rennes, France ; Agrocampus Ouest 65 rue de Saint-Brieuc, 35042, Rennes, France ; INRA, UMR 1313 Génétique Animale et Biologie Intégrative F-78350, Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|