1
|
Bard NW, Davies TJ, Cronk QCB. Teknonaturalist: A Snakemake Pipeline for Assessing Fungal Diversity From Plant Genome Bycatch. Mol Ecol Resour 2025; 25:e14056. [PMID: 39739202 PMCID: PMC11887601 DOI: 10.1111/1755-0998.14056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
Relatively little is known of the host associations and compatibility of fungal plant pathogens and endophytes. Publicly available plant genomic DNA can be mined to detect incidental fungal DNA, but taxonomic assignment can be challenging due to short lengths and variable discriminative power among different genomic regions and taxa. Here, we introduce a computationally lightweight and accessible Snakemake pipeline for rapid detection and classification (identification and assignment to taxonomic rank) of pathogenic and endophytic fungi (and other fungi associated with plants) that targets the internal transcribed spacer (ITS) region, a fungal barcode standard. We include methods for maximising query sequence length, which gives higher support for ITS1 and ITS2 taxonomic classifications by extending to other fragments of the ITS region and providing taxon-specific local cut-off and confidence scores. We demonstrate our pipeline with a case study using public genomic sequence data for six diverse plant species, including four species within Betula, an ecologically and economically important broadleaved forest tree genus, a shrub and a grass. Our pipeline classified fungi within minutes to a few hours per host individual, with 204 different fungal genera identified at high confidence (≥ 70%). Our pipeline detected and classified pathogenic and endophytic genera known to associate with Betula, and many others with no prior record of association. Our pipeline, leveraging existing sequence data, has several potential applications, including detecting cryptic fungal pathogens and helping characterise the endophytic fungal microbiome, bioprospecting commercially useful fungal species, and determining the plant host range of fungi.
Collapse
Affiliation(s)
- Nicholas W. Bard
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - T. Jonathan Davies
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Forest & Conservation SciencesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Quentin C. B. Cronk
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Beaty Biodiversity MuseumUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
2
|
Meger J, Ulaszewski B, Pałucka M, Kozioł C, Burczyk J. Genomic prediction of resistance to Hymenoscyphus fraxineus in common ash ( Fraxinus excelsior L.) populations. Evol Appl 2024; 17:e13694. [PMID: 38707993 PMCID: PMC11069026 DOI: 10.1111/eva.13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
The increase in introduced insect pests and pathogens due to anthropogenic environmental changes has become a major concern for tree species worldwide. Common ash (Fraxinus excelsior L.) is one of such species facing a significant threat from the invasive fungal pathogen Hymenoscyphus fraxineus. Some studies have indicated that the susceptibility of ash to the pathogen is genetically determined, providing some hope for accelerated breeding programs that are aimed at increasing the resistance of ash populations. To address this challenge, we used a genomic selection strategy to identify potential genetic markers that are associated with resistance to the pathogen causing ash dieback. Through genome-wide association studies (GWAS) of 300 common ash individuals from 30 populations across Poland (ddRAD, dataset A), we identified six significant SNP loci with a p-value ≤1 × 10-4 associated with health status. To further evaluate the effectiveness of GWAS markers in predicting health status, we considered two genomic prediction scenarios. Firstly, we conducted cross-validation on dataset A. Secondly, we trained markers on dataset A and tested them on dataset B, which involved whole-genome sequencing of 20 individuals from two populations. Genomic prediction analysis revealed that the top SNPs identified via GWAS exhibited notably higher prediction accuracies compared to randomly selected SNPs, particularly with a larger number of SNPs. Cross-validation analyses using dataset A showcased high genomic prediction accuracy, predicting tree health status with over 90% accuracy across the top SNP sets ranging from 500 to 10,000 SNPs from the GWAS datasets. However, no significant results emerged for health status when the model trained on dataset A was tested on dataset B. Our findings illuminate potential genetic markers associated with resistance to ash dieback, offering support for future breeding programs in Poland aimed at combating ash dieback and bolstering conservation efforts for this invaluable tree species.
Collapse
Affiliation(s)
- Joanna Meger
- Department of Genetics, Faculty of Biological SciencesKazimierz Wielki UniversityBydgoszczPoland
| | - Bartosz Ulaszewski
- Department of Genetics, Faculty of Biological SciencesKazimierz Wielki UniversityBydgoszczPoland
| | | | | | - Jarosław Burczyk
- Department of Genetics, Faculty of Biological SciencesKazimierz Wielki UniversityBydgoszczPoland
| |
Collapse
|
3
|
Touchette L, Godbout J, Lamothe M, Porth I, Isabel N. A cryptic syngameon within Betula shrubs revealed: Implications for conservation in changing subarctic environments. Evol Appl 2024; 17:e13689. [PMID: 38633131 PMCID: PMC11022622 DOI: 10.1111/eva.13689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/06/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Arctic and subarctic ecosystems are rapidly transforming due to global warming, emphasizing the need to understand the genetic diversity and adaptive strategies of northern plant species for effective conservation. This study focuses on Betula glandulosa, a native North American tundra shrub known as dwarf birch, which demonstrates an apparent capacity to adapt to changing climate conditions. To address the taxonomic challenges associated with shrub birches and logistical complexities of sampling in the northernmost areas where species' ranges overlap, we adopted a multicriteria approach. Incorporating molecular data, ploidy level assessment and leaf morphology, we aimed to distinguish B. glandulosa individuals from other shrub birch species sampled. Our results revealed three distinct species and their hybrids within the 537 collected samples, suggesting the existence of a shrub birch syngameon, a reproductive network of interconnected species. Additionally, we identified two discrete genetic clusters within the core species, B. glandulosa, that likely correspond to two different glacial lineages. A comparison between the nuclear and chloroplast SNP data emphasizes a long history of gene exchange between different birch species and genetic clusters. Furthermore, our results highlight the significance of incorporating interfertile congeneric species in conservation strategies and underscores the need for a holistic approach to conservation in the context of climate change, considering the complex dynamics of species interactions. While further research will be needed to describe this shrub birches syngameon and its constituents, this study is a first step in recognizing its existence and disseminating awareness among ecologists and conservation practitioners. This biological phenomenon, which offers evolutionary flexibility and resilience beyond what its constituent species can achieve individually, may have significant ecological implications.
Collapse
Affiliation(s)
- Lyne Touchette
- Department of Wood and Forest SciencesUniversité LavalQuebecQuebecCanada
- Natural Resources Canada, Canadian Forest ServiceLaurentian Forestry CentreQuebecQuebecCanada
- Centre for Forest ResearchUniversité LavalQuebecQuebecCanada
| | - Julie Godbout
- Ministère des Ressources naturelles et des Forêts, Direction de la recherche forestièreQuébecQuébecCanada
| | - Manuel Lamothe
- Natural Resources Canada, Canadian Forest ServiceLaurentian Forestry CentreQuebecQuebecCanada
| | - Ilga Porth
- Department of Wood and Forest SciencesUniversité LavalQuebecQuebecCanada
- Centre for Forest ResearchUniversité LavalQuebecQuebecCanada
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest ServiceLaurentian Forestry CentreQuebecQuebecCanada
- Centre for Forest ResearchUniversité LavalQuebecQuebecCanada
| |
Collapse
|
4
|
Zhang H, Ding J, Holstein N, Wang N. Betula mcallisteri sp. nov. (sect. Acuminatae, Betulaceae), a new diploid species overlooked in the wild and in cultivation, and its relation to the widespread B. luminifera. FRONTIERS IN PLANT SCIENCE 2023; 14:1113274. [PMID: 37324661 PMCID: PMC10268003 DOI: 10.3389/fpls.2023.1113274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/19/2023] [Indexed: 06/17/2023]
Abstract
Taxa are traditionally identified using morphological proxies for groups of evolutionarily isolated populations. These proxies are common characters deemed by taxonomists as significant. However, there is no general rule on which character or sets of characters are appropriate to circumscribe taxa, leading to discussions and uncertainty. Birch species are notoriously hard to identify due to strong morphological variability and factors such as hybridization and the existence of several ploidy levels. Here, we present evidence for an evolutionarily isolated line of birches from China that are not distinguishable by traditionally assumed taxon recognition proxies, such as fruit or leaf characters. We have discovered that some wild material in China and some cultivated in the Royal Botanic Gardens Edinburgh, formerly recognized as Betula luminifera, differ from other individuals by having a peeling bark and a lack of cambial fragrance. We use restriction site-associated DNA sequencing and flow cytometry to study the evolutionary status of the unidentified Betula samples to assess the extent of hybridization between the unidentified Betula samples and typical B. luminifera in natural populations. Molecular analyses show the unidentified Betula samples as a distinct lineage and reveal very little genetic admixture between the unidentified samples and B. luminifera. This may also be facilitated by the finding that B. luminifera is tetraploid, while the unidentified samples turned out to be diploid. We therefore conclude that the samples represent a yet unrecognized species, which is here described as Betula mcallisteri.
Collapse
Affiliation(s)
- Huayu Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of The Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
| | - Junyi Ding
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of The Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
| | - Norbert Holstein
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
| | - Nian Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of The Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
5
|
Nocchi G, Wang J, Yang L, Ding J, Gao Y, Buggs RJA, Wang N. Genomic signals of local adaptation and hybridization in Asian white birch. Mol Ecol 2023; 32:595-612. [PMID: 36394364 DOI: 10.1111/mec.16788] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Disentangling the numerous processes that affect patterns of genome-wide diversity in widespread tree species has important implications for taxonomy, conservation, and forestry. Here, we investigate the population genomic structure of Asian white birch (Betula platyphylla) in China and seek to explain it in terms of hybridization, demography and adaptation. We generate whole genome sequence data from 83 individuals across the species range in China. Combining this with an existing data set for 79 European and Russian white birches, we show a clear distinction between B. pendula and B. platyphylla, which have sometimes been lumped taxonomically. Genomic diversity of B. platyphylla in north-western China and Central Russia is affected greatly by hybridization with B. pendula. Excluding these hybridized populations, B. platyphylla in China has a linear distribution from north-eastern to south-western China, along the edge of the inland mountainous region. Within this distribution, three genetic clusters are found, which we model as long diverged with subsequent episodes of gene flow. Patterns of covariation between allele frequencies and environmental variables in B. platyphylla suggest the role of natural selection in the distribution of diversity at 7609 SNPs of which 3767 were significantly differentiated among the genetic clusters. The putative adaptive SNPs are distributed throughout the genome and span 1633 genic regions. Of these genic regions, 87 were previously identified as candidates for selective sweeps in Eurasian B. pendula. We use the 7609 environmentally associated SNPs to estimate the risk of nonadaptedness for each sequenced B. platyphylla individual under a scenario of future climate change, highlighting areas where populations may be under future threat from rising temperatures.
Collapse
Affiliation(s)
- Gabriele Nocchi
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.,Royal Botanic Gardens Kew, Richmond, Surrey, UK
| | - Jing Wang
- Key Laboratory for Bio-resources and Eco-environment, College of Life Science, Sichuan University, Chengdu, China
| | - Long Yang
- Agricultural Big-Data Research Centre and College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Junyi Ding
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China.,Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai'an, China
| | - Ying Gao
- Agricultural Big-Data Research Centre and College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Richard J A Buggs
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.,Royal Botanic Gardens Kew, Richmond, Surrey, UK
| | - Nian Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China.,Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai'an, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
6
|
Christita M, Sipilä TP, Auzane A, Overmyer K. Distinct Taphrina strains from the phyllosphere of birch exhibiting a range of witches' broom disease symptoms. Environ Microbiol 2022; 24:3549-3564. [PMID: 35579036 PMCID: PMC9545635 DOI: 10.1111/1462-2920.16037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/26/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
Abstract
The phyllosphere is an important microbial habitat and reservoir of organisms that modify plant health. Taphrina betulina is the causal agent of birch witches' broom disease. Taphrina species are dimorphic, infecting hosts in the filamentous form and residing in the host phyllosphere as non-infectious yeast. As such, they are expected to be found as resident yeasts on their hosts, even on healthy tissues; however, there is little experimental data supporting this supposition. With the aim of exploring the local infection ecology of T. betulina, we isolated yeasts from the phyllosphere of birch leaves, using three sample classes; infected leaves inside symptom-bearing branches, healthy leaves from symptom-free branches on symptom-bearing trees and leaves from symptom-free branches on symptom-free trees. Isolations yielded 224 yeast strains, representing 11 taxa, including T. betulina, which was the most common isolate and was found in all sample classes, including symptom-free samples. Genotyping revealed genetic diversity among these T. betulina isolates, with seven distinct genotypes differentiated by the markers used. Twenty-two representative T. betulina strains were selected for further study, revealing further phenotypic differences. These findings support that T. betulina is ubiquitous on birch and that individual trees host a diversity of T. betulina strains.
Collapse
Affiliation(s)
- Margaretta Christita
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
- Environment and Forestry Research and Development Institute of Manado, Jalan Adipura, MapangetManadoNorth SulawesiIndonesia
| | - Timo P. Sipilä
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| | - Agate Auzane
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| | - Kirk Overmyer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
7
|
Palmieri L, Lourdes Chamorro M, Sharma PP. Phylogenetic assessment of the Metamasius hemipterus species complex (Coleoptera, Curculionidae, Dryophthorinae). Mol Phylogenet Evol 2022; 175:107589. [PMID: 35843571 DOI: 10.1016/j.ympev.2022.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
Abstract
Metamasius is a large genus of dryophthorine weevils, with nearly 85 species. Among the economically important pests in the genus, M. hemipterus is currently separated in three subspecies, based largely on color patterns of the elytra, pronotum, and sternum. The tenuous limits of M. hemipterus subspecies were created over fifty years ago and never tested under a phylogenetic framework. Here, for the first time, we address the M. hemipterus species boundaries applying a molecular approach. We constructed a reduced genome representation of a few species using restriction site-associated DNA sequencing (RADseq). Phylogenetic analysis using either a complete supermatrix or only SNPs revealed a clear separation of Metamasius species. We suggest that M. h. carbonarius syn. nov. and M. h. sericeus be treated as the same species, M. sericeus (Oliver) stat. n., and elevate M. h. hemipterus as a separate species M. hemipterus (Linnaeus). We updated Vaurie's identification key to reflect the new species status. This systematic reassessment reflects a more natural classification for these remarkable and economically significant weevils.
Collapse
Affiliation(s)
- Luciano Palmieri
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, 53706 WI, USA.
| | - Maria Lourdes Chamorro
- Systematic Entomology Laboratory, ARS, USDA, c/o National Museum of Natural History, 10th and Constitution, NW, Washington, DC 20560, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, 53706 WI, USA
| |
Collapse
|
8
|
Mu XY, Wu YM, Shen XL, Tong L, Lei FW, Xia XF, Ning Y. Genomic Data Reveals Profound Genetic Structure and Multiple Glacial Refugia in Lonicera oblata (Caprifoliaceae), a Threatened Montane Shrub Endemic to North China. FRONTIERS IN PLANT SCIENCE 2022; 13:832559. [PMID: 35615142 PMCID: PMC9125190 DOI: 10.3389/fpls.2022.832559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/21/2022] [Indexed: 05/28/2023]
Abstract
Characterizing genetic diversity and structure and identifying conservation units are both crucial for the conservation and management of threatened species. The development of high-throughput sequencing technology provides exciting opportunities for conservation genetics. Here, we employed the powerful SuperGBS method to identify 33, 758 high-quality single-nucleotide polymorphisms (SNP) from 134 individuals of a critically endangered montane shrub endemic to North China, Lonicera oblata. A low level of genetic diversity and a high degree of genetic differentiation among populations were observed based on the SNP data. Both principal component and phylogenetic analyses detected seven clusters, which correspond exactly to the seven geographic populations. Under the optimal K = 7, Admixture suggested the combination of the two small and geographically neighboring populations in the Taihang Mountains, Dongling Mountains, and Lijiazhuang, while the division of the big population of Jiankou Great Wall in the Yan Mountains into two clusters. High population genetic diversity and a large number of private alleles were detected in the four large populations, while low diversity and non-private alleles were observed for the remaining three small populations, implying the importance of these large populations as conservation units in priority. Demographic history inference suggested two drastic contractions of population size events that occurred after the Middle Pleistocene Transition and the Last Glacial Maximum, respectively. Combining our previous ecological niche modeling results with the present genomic data, there was a possible presence of glacial refugia in the Taihang and Yan Mountains, North China. This study provides valuable data for the conservation and management of L. oblata and broadens the understanding of the high biodiversity in the Taihang and Yan Mountains.
Collapse
Affiliation(s)
- Xian-Yun Mu
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yuan-Mi Wu
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xue-Li Shen
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Ling Tong
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Feng-Wei Lei
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xiao-Fei Xia
- Beijing Museum of Natural History, Beijing, China
| | - Yu Ning
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
9
|
Hussain S, Habib M, Ahmed Z, Sadia B, Bernardo A, Amand PS, Bai G, Ghori N, Khan AI, Awan FS, Maqbool R. Genotyping-by-Sequencing Based Molecular Genetic Diversity of Pakistani Bread Wheat ( Triticum aestivum L.) Accessions. Front Genet 2022; 13:772517. [PMID: 35464861 PMCID: PMC9019749 DOI: 10.3389/fgene.2022.772517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/07/2022] [Indexed: 11/29/2022] Open
Abstract
Spring wheat (Triticum aestivum L.) is one of the most imperative staple food crops, with an annual production of 765 million tons globally to feed ∼40% world population. Genetic diversity in available germplasm is crucial for sustainable wheat improvement to ensure global food security. A diversity panel of 184 Pakistani wheat accessions was genotyped using 123,596 high-quality single nucleotide polymorphism (SNP) markers generated by genotyping-by-sequencing with 42% of the SNPs mapped on B, 36% on A, and 22% on D sub-genomes of wheat. Chromosome 2B contains the most SNPs (9,126), whereas 4D has the least (2,660) markers. The mean polymorphic information content, genetic diversity, and major allele frequency of the population were 0.157, 0.1844, and 0.87, respectively. Analysis of molecular variance revealed a higher genetic diversity (80%) within the sub-population than among the sub-populations (20%). The genome-wide linkage disequilibrium was 0.34 Mbp for the whole wheat genome. Among the three subgenomes, A has the highest LD decay value (0.29 Mbp), followed by B (0.2 Mbp) and D (0.07 Mbp) genomes, respectively. The results of population structure, principal coordinate analysis, phylogenetic tree, and kinship analysis also divided the whole population into three clusters comprising 31, 33, and 120 accessions in group 1, group 2, and group 3, respectively. All groups were dominated by the local wheat accessions. Estimation of genetic diversity will be a baseline for the selection of breeding parents for mutations and the genome-wide association and marker-assisted selection studies.
Collapse
Affiliation(s)
- Shabbir Hussain
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Madiha Habib
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Zaheer Ahmed
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Bushra Sadia
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Amy Bernardo
- USDA, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, United States
| | - Paul St Amand
- USDA, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, United States
| | - Guihua Bai
- USDA, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, United States
| | - Nida Ghori
- USDA, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, United States
| | - Azeem I Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Faisal S Awan
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Rizwana Maqbool
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
10
|
Wang L, Ding J, Borrell JS, Cheek M, McAllister HA, Wang F, Liu L, Zhang H, Zhang Q, Wang Y, Wang N. Molecular and morphological analyses clarify species delimitation in section Costatae and reveal Betula buggsii sp. nov. (sect. Costatae, Betulaceae) in China. ANNALS OF BOTANY 2022; 129:415-428. [PMID: 35018419 PMCID: PMC8944703 DOI: 10.1093/aob/mcac001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Delineating closely related and morphologically similar species is difficult. Here, we integrate morphology, genetics, ploidy and geography to resolve species and subspecies boundaries in four trees of section Costatae (genus Betula): Betula ashburneri, B. costata, B. ermanii and B. utilis, as well as multiple subspecies and polyploid races. METHODS We genotyped 371 individuals (20-133 per species) from 51 populations at 15 microsatellite markers, as well as a subset of individuals, using restriction-site associated DNA sequencing and nuclear internal transcribed spacers. We determined the ploidy level of eight individuals using flow cytometry and characterized leaf variation for a subset of 109 individuals by morphometric analysis. KEY RESULTS Integration of multiple lines of evidence suggested a series of revisions to the taxonomy of section Costatae. Betula costata and B. ermanii were found to be valid. Molecular and leaf morphology analyses revealed little differentiation between diploid B. albosinensis and some samples of B. utilis ssp. utilis. By contrast, other B. utilis ssp. utilis samples and ssp. albosinensis formed a morphological continuum but differed based on genetics. Specifically, B. utilis ssp. albosinensis was divided into two groups with group I genetically similar to B. utilis ssp. utilis and group II, a distinct cluster, proposed as the new diploid species Betula buggsii sp. nov. Phylogenomic analysis based on 2285 620 single nucleotide polymorphisms identified a well-supported monophyletic clade of B. buggsii. Morphologically, B. buggsii is characterized by elongated lenticels and a distinct pattern of bark peeling and may be geographically restricted to the Qinling-Daba Mountains. CONCLUSIONS Our integrated approach identifies six taxa within section Costatae: B. ashburneri, B. buggsii, B. costata, B. utilis ssp. utilis, B. utilis ssp. albosinensis and B. ermanii. Our research demonstrates the value of an integrative approach using morphological, geographical, genetic and ploidy-level data for species delineation.
Collapse
Affiliation(s)
| | | | | | | | - Hugh A McAllister
- School of Life Sciences, Biosciences Building, University of Liverpool, Crown Street, Liverpool, UK
| | - Feifei Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Lu Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Huayu Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Qiufeng Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Yiming Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, China
| | | |
Collapse
|
11
|
Insights into opium poppy (Papaver spp.) genetic diversity from genotyping-by-sequencing analysis. Sci Rep 2022; 12:111. [PMID: 34997061 PMCID: PMC8741915 DOI: 10.1038/s41598-021-04056-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/14/2021] [Indexed: 12/02/2022] Open
Abstract
Opium poppy (Papaver somniferum) is one of the world’s oldest medicinal plants and a versatile model system to study secondary metabolism. However, our knowledge of its genetic diversity is limited, restricting utilization of the available germplasm for research and crop improvement. We used genotyping-by-sequencing to investigate the extent of genetic diversity and population structure in a collection of poppy germplasm consisting of 91 accessions originating in 30 countries of Europe, North Africa, America, and Asia. We identified five genetically distinct subpopulations using discriminate analysis of principal components and STRUCTURE analysis. Most accessions obtained from the same country were grouped together within subpopulations, likely a consequence of the restriction on movement of poppy germplasm. Alkaloid profiles of accessions were highly diverse, with morphine being dominant. Phylogenetic analysis identified genetic groups that were largely consistent with the subpopulations detected and that could be differentiated broadly based on traits such as number of branches and seed weight. These accessions and the associated genotypic data are valuable resources for further genetic diversity analysis, which could include definition of poppy core sets to facilitate genebank management and use of the diversity for genetic improvement of this valuable crop.
Collapse
|
12
|
Ulaszewski B, Jankowska-Wróblewska S, Świło K, Burczyk J. Phylogeny of Maleae (Rosaceae) Based on Complete Chloroplast Genomes Supports the Distinction of Aria, Chamaemespilus and Torminalis as Separate Genera, Different from Sorbus sp. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112534. [PMID: 34834899 PMCID: PMC8618278 DOI: 10.3390/plants10112534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Several genera formerly contained within the genus Sorbus L. sensu lato have been proposed as separate taxa, including Aria, Chamaemespilus and Torminalis. However, molecular evidence for such distinctions are rather scarce. We assembled the complete chloroplast genome of Sorbus aucuparia, another representative of Sorbus s.s., and performed detailed comparisons with the available genomes of Aria edulis, Chamaemespilus alpina and Torminalis glaberrima. Additionally, using 110 complete chloroplast genomes of the Maleae representatives, we constructed the phylogenetic tree of the tribe using Maximum Likelihood methods. The chloroplast genome of S. aucuparia was found to be similar to other species within Maleae. The phylogenetic tree of the Maleae tribe indicated that A. edulis, C. alpina and T. glaberrima formed a concise group belonging to a different clade (related to Malus) than the one including Sorbus s.s. (related to Pyrus). However, Aria and Chamaemespilus appeared to be more closely related to each other than to Torminalis. Our results provide additional support for considering Aria, Chamaemespilus and Torminalis as separate genera different from Sorbus s.s.
Collapse
|
13
|
Rossi F, Crnjar A, Comitani F, Feliciano R, Jahn L, Malim G, Southgate L, Kay E, Oakey R, Buggs R, Moir A, Kistler L, Rodriguez Mateos A, Molteni C, Schulz R. Extraction and high-throughput sequencing of oak heartwood DNA: Assessing the feasibility of genome-wide DNA methylation profiling. PLoS One 2021; 16:e0254971. [PMID: 34793449 PMCID: PMC8601515 DOI: 10.1371/journal.pone.0254971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/27/2021] [Indexed: 11/19/2022] Open
Abstract
Tree ring features are affected by environmental factors and therefore are the basis for dendrochronological studies to reconstruct past environmental conditions. Oak wood often provides the data for these studies because of the durability of oak heartwood and hence the availability of samples spanning long time periods of the distant past. Wood formation is regulated in part by epigenetic mechanisms such as DNA methylation. Studies of the methylation state of DNA preserved in oak heartwood thus could identify epigenetic tree ring features informing on past environmental conditions. In this study, we aimed to establish protocols for the extraction of DNA, the high-throughput sequencing of whole-genome DNA libraries (WGS) and the profiling of DNA methylation by whole-genome bisulfite sequencing (WGBS) for oak (Quercus robur) heartwood drill cores taken from the trunks of living standing trees spanning the AD 1776-2014 time period. Heartwood contains little DNA, and large amounts of phenolic compounds known to hinder the preparation of high-throughput sequencing libraries. Whole-genome and DNA methylome library preparation and sequencing consistently failed for oak heartwood samples more than 100 and 50 years of age, respectively. DNA fragmentation increased with sample age and was exacerbated by the additional bisulfite treatment step during methylome library preparation. Relative coverage of the non-repetitive portion of the oak genome was sparse. These results suggest that quantitative methylome studies of oak hardwood will likely be limited to relatively recent samples and will require a high sequencing depth to achieve sufficient genome coverage.
Collapse
Affiliation(s)
- Federico Rossi
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Alessandro Crnjar
- Department of Physics, King’s College London, London, United Kingdom
| | - Federico Comitani
- Department of Chemistry, University College London, London, United Kingdom
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rodrigo Feliciano
- Department of Nutrition, King’s College London, London, United Kingdom
- Division of Cardiology, Pulmonology and Vascular Medicine, University of Dusseldorf, Dusseldorf, Germany
| | - Leonie Jahn
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - George Malim
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Laura Southgate
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Emily Kay
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
- CRUK Beatson Institute, Glasgow, United Kingdom
| | - Rebecca Oakey
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Richard Buggs
- Department of Natural Capital and Plant Health, Royal Botanical Gardens, Richmond, United Kingdom
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Andy Moir
- Tree-Ring Services Limited, Mitcheldean, United Kingdom
| | - Logan Kistler
- Department of Anthropology, National Museum Of Natural History, Smithsonian Institution, Washington, DC, United States of America
| | | | - Carla Molteni
- Department of Physics, King’s College London, London, United Kingdom
| | - Reiner Schulz
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| |
Collapse
|
14
|
Feng Y, Xiang X, Akhter D, Pan R, Fu Z, Jin X. Mitochondrial Phylogenomics of Fagales Provides Insights Into Plant Mitogenome Mosaic Evolution. FRONTIERS IN PLANT SCIENCE 2021; 12:762195. [PMID: 34733309 PMCID: PMC8558628 DOI: 10.3389/fpls.2021.762195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/17/2021] [Indexed: 05/13/2023]
Abstract
Fagales are an order of woody plants and comprise more than 1,100 species, most of which produce economically important timbers, nuts, and fruits. Their nuclear and plastid genomes are well-sequenced and provided valuable resources to study their phylogeny, breeding, resistance, etc. However, little is known about the mitochondrial genomes (mitogenomes), which hinder a full understanding of their genome evolution. In this study, we assembled complete mitogenomes of 23 species, covering five of the seven families of Fagales. These mitogenomes had similar gene sets but varied 2.4 times in size. The mitochondrial genes were highly conserved, and their capacity in phylogeny was challenging. The mitogenomic structure was extremely dynamic, and synteny among species was poor. Further analyses of the Fagales mitogenomes revealed extremely mosaic characteristics, with horizontal transfer (HGT)-like sequences from almost all seed plant taxa and even mitoviruses. The largest mitogenome, Carpinus cordata, did not have large amounts of specific sequences but instead contained a high proportion of sequences homologous to other Fagales. Independent and unequal transfers of third-party DNA, including nuclear genome and other resources, may partially account for the HGT-like fragments and unbalanced size expansions observed in Fagales mitogenomes. Supporting this, a mitochondrial plasmid-like of nuclear origin was found in Carpinus. Overall, we deciphered the last genetic materials of Fagales, and our large-scale analyses provide new insights into plant mitogenome evolution and size variation.
Collapse
Affiliation(s)
- Yanlei Feng
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- College of Agriculture and Biotechnology, Institute of Crop Science, Zhejiang University, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaoguo Xiang
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Delara Akhter
- College of Agriculture and Biotechnology, Institute of Crop Science, Zhejiang University, Hangzhou, China
- Department of Genetics and Plant Breeding, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Ronghui Pan
- College of Agriculture and Biotechnology, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Zhixi Fu
- College of Life Science, Sichuan Normal University, Chengdu, China
- Sustainable Development Research Center of Resources and Environment of Western Sichuan, Sichuan Normal University, Chengdu, China
| | - Xiaohua Jin
- Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Robbins C, Cruz Corella J, Aletti C, Seiler R, Mateus ID, Lee S, Masclaux FG, Sanders IR. Generation of unequal nuclear genotype proportions in Rhizophagus irregularis progeny causes allelic imbalance in gene transcription. THE NEW PHYTOLOGIST 2021; 231:1984-2001. [PMID: 34085297 PMCID: PMC8457141 DOI: 10.1111/nph.17530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/25/2021] [Indexed: 05/05/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) form mutualisms with most plant species. The model AMF Rhizophagus irregularis is common in many ecosystems and naturally forms homokaryons and dikaryons. Quantitative variation in allele frequencies in clonally dikaryon offspring suggests they disproportionately inherit two distinct nuclear genotypes from their parent. This is interesting, because such progeny strongly and differentially affect plant growth. Neither the frequency and magnitude of this occurrence nor its effect on gene transcription are known. Using reduced representation genome sequencing, transcriptomics, and quantitative analysis tools, we show that progeny of homokaryons and dikaryons are qualitatively genetically identical to the parent. However, dikaryon progeny differ quantitatively due to unequal inheritance of nuclear genotypes. Allele frequencies of actively transcribed biallelic genes resembled the frequencies of the two nuclear genotypes. More biallelic genes showed transcription of both alleles than monoallelic transcription, but biallelic transcription was less likely with greater allelic divergence. Monoallelic transcription levels of biallelic genes were reduced compared with biallelic gene transcription, a finding consistent with genomic conflict. Given that genetic variation in R. irregularis is associated with plant growth, our results establish quantitative genetic variation as a future consideration when selecting AMF lines to improve plant production.
Collapse
Affiliation(s)
- Chanz Robbins
- Department of Ecology and EvolutionUniversity of LausanneBiophore BuildingLausanne1015Switzerland
| | - Joaquim Cruz Corella
- Department of Ecology and EvolutionUniversity of LausanneBiophore BuildingLausanne1015Switzerland
| | - Consolée Aletti
- Department of Ecology and EvolutionUniversity of LausanneBiophore BuildingLausanne1015Switzerland
| | - Réjane Seiler
- Department of Ecology and EvolutionUniversity of LausanneBiophore BuildingLausanne1015Switzerland
| | - Ivan D. Mateus
- Department of Ecology and EvolutionUniversity of LausanneBiophore BuildingLausanne1015Switzerland
| | - Soon‐Jae Lee
- Department of Ecology and EvolutionUniversity of LausanneBiophore BuildingLausanne1015Switzerland
| | - Frédéric G. Masclaux
- Group of Genetic MedicineGeneva University HospitalBuilding DGeneva1205Switzerland
| | - Ian R. Sanders
- Department of Ecology and EvolutionUniversity of LausanneBiophore BuildingLausanne1015Switzerland
| |
Collapse
|
16
|
Oztolan-Erol N, Helmstetter AJ, İnan A, Buggs RJA, Lucas SJ. Unraveling Genetic Diversity Amongst European Hazelnut ( Corylus avellana L.) Varieties in Turkey. FRONTIERS IN PLANT SCIENCE 2021; 12:661274. [PMID: 34276724 PMCID: PMC8282208 DOI: 10.3389/fpls.2021.661274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
European hazelnut (Corylus avellana) is a diploid (2n = 22), monecious and wind-pollinated species, extensively cultivated for its nuts. Turkey is the world-leading producer of hazelnut, supplying 70-80% of the world's export capacity. Hazelnut is mostly grown in the Black Sea Region, and maintained largely through clonal propagation. Understanding the genetic variation between hazelnut varieties, and defining variety-specific and disease resistance-associated alleles, would facilitate hazelnut breeding in Turkey. Widely grown varieties 'Karafındık' (2), 'Sarıfındık' (5), and 'Yomra' (2) were collected from Akçakoca in the west, while 'Tombul' (8), 'Çakıldak' (3), 'Mincane' (2), 'Allahverdi' (2), 'Sivri' (4), and 'Palaz' (5) were collected from Ordu and Giresun provinces in the east (numbers in parentheses indicate sample sizes for each variety). Powdery mildew resistant and susceptible hazelnut genotypes were collected from the field gene bank and heavily infected orchards in Giresun. Every individual was subjected to double digest restriction enzyme-associated DNA sequencing (ddRAD-seq) and a RADtag library was created. RADtags were aligned to the 'Tombul' reference genome, and Stacks software used to identify polymorphisms. 101 private and six common alleles from nine hazelnut varieties, four private from resistants and only one from susceptible were identified for diagnosis of either a certain hazelnut variety or powdery mildew resistance. Phylogenetic analysis and population structure calculations indicated that 'Mincane', 'Sarıfındık', 'Tombul', 'Çakıldak', and 'Palaz' were genetically close to each other; however, individuals within every varietal group were found in different sub-populations. Our findings indicated that years of clonal propagation of some preferred varieties across the Black Sea Region has resulted in admixed sub-populations and great genetic diversity within each variety. This impedes the development of a true breeding variety. For example, 'Tombul' is the most favored Turkish variety because of its high quality nuts, but an elite 'Tombul' line does not yet exist. This situation continues due to the lack of a breed protection program for commercially valuable hazelnut varieties. This study provides molecular markers suitable for establishing such a program.
Collapse
Affiliation(s)
- Nihal Oztolan-Erol
- Sabancı University Nanotechnology Research and Application Center, İstanbul, Turkey
| | | | - Asuman İnan
- Sabancı University Nanotechnology Research and Application Center, İstanbul, Turkey
| | - Richard J. A. Buggs
- Jodrell Laboratory, Royal Botanic Gardens, Kew, United Kingdom
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Stuart J. Lucas
- Sabancı University Nanotechnology Research and Application Center, İstanbul, Turkey
| |
Collapse
|
17
|
Tarieiev AS, Gailing O, Krutovsky KV. ITS secondary structure reconstruction to resolve taxonomy and phylogeny of the Betula L. genus. PeerJ 2021; 9:e10889. [PMID: 33828907 PMCID: PMC7996101 DOI: 10.7717/peerj.10889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/12/2021] [Indexed: 01/31/2023] Open
Abstract
The taxonomy and phylogeny of the Betula L. genus remain unresolved and are very difficult to assess due to several factors, especially because of frequent hybridization among different species. In the current study, we used nucleotide sequences of two internal transcribed spacer regions (ITS1 and ITS2), which are commonly used as phylogenetic markers. In addition to their nucleotide variation we reconstructed their secondary structure and used it to resolve phylogenetic relationships of some birch species. We explored whether consideration of secondary structure in phylogenetic analyses based on neighbor-joining, maximum parsimony, maximum likelihood, and Bayesian inference methods would help us obtain more solid support of the reconstructed phylogenetic trees. The results were not unambiguous. There were only a few clades with higher support when secondary structure was included into analysis. The phylogenetic trees generated using different methods were mostly in agreement with each other. However, the resolving power of these markers is still insufficient to reliably discriminate some closely related species. To achieve this aim more reliably there is a need for application of modern genomic approaches in combination with traditional ones.
Collapse
Affiliation(s)
- Andrii S. Tarieiev
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Göttingen, Germany
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August University of Göttingen, Göttingen, Germany
| | - Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August University of Göttingen, Göttingen, Germany
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Laboratory of Population Genetics, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
18
|
Lucas SJ, Kahraman K, Avşar B, Buggs RJA, Bilge I. A chromosome-scale genome assembly of European hazel (Corylus avellana L.) reveals targets for crop improvement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1413-1430. [PMID: 33249676 DOI: 10.1111/tpj.15099] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/09/2020] [Indexed: 05/20/2023]
Abstract
The European hazelnut (Corylus avellana L.) is a tree crop of economic importance worldwide, but especially for northern Turkey, where the majority of production takes place. Hazelnut production is currently challenged by environmental stresses, such as a recent outbreak of severe powdery mildew disease; furthermore, allergy to hazelnuts is an increasing health concern in some regions. In order to provide a foundation for using the available hazelnut genetic resources for crop improvement, we produced a fully assembled genome sequence and annotation for a hazelnut species, from C. avellana cv. 'Tombul', one of the most important Turkish varieties. A hybrid sequencing strategy, combining short reads, long reads and proximity ligation methods, enabled us to resolve heterozygous regions and produce a high-quality 370-Mb assembly that agrees closely with cytogenetic studies and genetic maps of the 11 C. avellana chromosomes, and covers 97.8% of the estimated genome size. The genome includes 27 270 high-confidence protein-coding genes, over 20 000 of which were functionally annotated based on homology with known plant proteins. We focused particularly on gene families encoding hazelnut allergens, and the Mildew resistance Locus O (MLO) proteins that are an important susceptibility factor for powdery mildew. The complete assembly enabled us to differentiate between members of these families and to identify homologues that may be important in mildew disease and hazelnut allergy. These findings provide examples of how the genome can be used to guide research and to develop effective strategies for crop improvement in C. avellana.
Collapse
Affiliation(s)
- Stuart J Lucas
- Sabanci University SUNUM Nanotechnology Research and Application Centre, Istanbul, Turkey
| | - Kadriye Kahraman
- Sabanci University SUNUM Nanotechnology Research and Application Centre, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Bihter Avşar
- Sabanci University SUNUM Nanotechnology Research and Application Centre, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Richard J A Buggs
- Jodrell Laboratory, Royal Botanic Gardens, Kew, London, UK
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Ipek Bilge
- Sabanci University SUNUM Nanotechnology Research and Application Centre, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| |
Collapse
|
19
|
Wang N, Kelly LJ, McAllister HA, Zohren J, Buggs RJA. Resolving phylogeny and polyploid parentage using genus-wide genome-wide sequence data from birch trees. Mol Phylogenet Evol 2021; 160:107126. [PMID: 33647400 DOI: 10.1016/j.ympev.2021.107126] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
Numerous plant genera have a history including frequent hybridisation and polyploidisation (allopolyploidisation), which means that their phylogeny is a network of reticulate evolution that cannot be accurately depicted as a bifurcating tree with a single tip per species. The genus Betula, which contains many ecologically important tree species, is a case in point. We generated genome-wide sequence reads for 27 diploid and 36 polyploid Betula species or subspecies using restriction site associated DNA (RAD) sequences. These reads were assembled into contigs with a mean length of 675 bp. We reconstructed the evolutionary relationships among diploid Betula species using both supermatrix (concatenation) and species tree methods. We identified the closest diploid relatives of the polyploids according to the relative rates at which reads from polyploids mapped to contigs from different diploid species within a concatenated reference sequence. By mapping reads from allopolyploids to their different putative diploid relatives we assembled contigs from the putative sub-genomes of allopolyploid taxa. We used these to build new phylogenies that included allopolyploid sub-genomes as separate tips. This approach yielded a highly evidenced phylogenetic hypothesis for the genus Betula, including the complex reticulate origins of the majority of its polyploid taxa. Our phylogeny divides the genus into two well supported clades, which, interestingly, differ in their seed-wing morphology. We therefore propose to split Betula into two subgenera.
Collapse
Affiliation(s)
- Nian Wang
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Laura J Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AB, UK
| | - Hugh A McAllister
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Jasmin Zohren
- Sex Chromosome Biology Lab, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Richard J A Buggs
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AB, UK.
| |
Collapse
|
20
|
Singewar K, Moschner CR, Hartung E, Fladung M. Identification and analysis of key genes involved in methyl salicylate biosynthesis in different birch species. PLoS One 2020; 15:e0240246. [PMID: 33031447 PMCID: PMC7544025 DOI: 10.1371/journal.pone.0240246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023] Open
Abstract
Species of the perennial woody plant genus Betula dominate subalpine forests and play a significant role in preserving biological diversity. In addition to their conventional benefits, birches synthesize a wide range of secondary metabolites having pharmacological significance. Methyl salicylate (MeSA) is one of these naturally occurring compounds constitutively produced by different birch species. MeSA is therapeutically important in human medicine for muscle injuries and joint pain. However, MeSA is now mainly produced synthetically due to a lack of information relating to MeSA biosynthesis and regulation. In this study, we performed a comprehensive bioinformatics analysis of two candidate genes mediating MeSA biosynthesis, SALICYLIC ACID METHYLTRANSFERASE (SAMT) and SALICYLIC ACID-BINDING PROTEIN 2 (SABP2), of high (B. lenta, B. alleghaniensis, B. medwediewii, and B. grossa) and low (B. pendula, B. utilis, B. alnoides, and B. nana) MeSA-producing birch species. Phylogenetic analyses of SAMT and SABP2 genes and homologous genes from other plant species confirmed their evolutionary relationships. Multiple sequence alignments of the amino acid revealed the occurrence of important residues for substrate specificity in SAMT and SABP2. The analysis of cis elements in different birches indicated a functional multiplicity of SAMT and SABP2 and provided insights into the regulation of both genes. We successfully developed six prominent single nucleotide substitution markers that were validated with 38 additional birch individuals to differentiate high and low MeSA-producing birch species. Relative tissue-specific expression analysis of SAMT in leaf and bark tissue of two high and two low MeSA-synthesizing birches revealed a high expression in the bark of both high MeSA-synthesizing birches. In contrast, SABP2 expression in tissues revealed indifferent levels of expression between species belonging to the two groups. The comparative expression and bioinformatics analyses provided vital information that could be used to apply plant genetic engineering technology in the mass production of organic MeSA.
Collapse
Affiliation(s)
- Kiran Singewar
- Institute of Agricultural Process Engineering, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
- Thünen Institute of Forest Genetics, Grosshansdorf, Schleswig-Holstein, Germany
| | - Christian R. Moschner
- Institute of Agricultural Process Engineering, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Eberhard Hartung
- Institute of Agricultural Process Engineering, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, Grosshansdorf, Schleswig-Holstein, Germany
| |
Collapse
|
21
|
Rowe CA, Lichvar RW, Wolf PG. How Many Tree Species of Birch Are in Alaska? Implications for Wetland Designations. FRONTIERS IN PLANT SCIENCE 2020; 11:750. [PMID: 32595670 PMCID: PMC7300271 DOI: 10.3389/fpls.2020.00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Wetland areas are critical habitats, especially in northern regions of North America. Wetland classifications are based on several factors, including the presence of certain plant species and assemblages of species, of which trees play a significant role. Here we examined wetland species of birch (Betula) in North America, with a focus on Alaska, and the use of birche tree species in wetland delineation. We sampled over 200 trees from sites, including Alaska, Alberta, Minnesota, and New Hampshire. We used genetic data from over 3000 loci detected by restriction site associated DNA analysis. We used an indirect estimate of ploidy based on allelic ratios and we also examined population genetic structure. We find that inferred ploidy is strongly associated with genetic groupings. We find two main distinct groups; one found throughout most of Alaska, extending into Alberta. This group is probably attributable to Betula kenaica, Betula neoalaskana, or both. This group has a diploid genetic pattern although this could easily be a function of allopolyploidy. The second major genetic group appears to extend from Eastern North America into parts of southeastern Alaska. This group represents Betula papyrifera, and is not diploid based on allelic ratios. Published chromosome counts indicate pentaploidy. Because B. papyrifera is the only one of the above species that is distinctly associated with wetland habitats, our findings indicate that tree species of birch found in most parts of Alaska are not reliable indicators of wetland habitats. These results help to support stronger wetland ratings assigned to the tree species of birch for delineation purposes.
Collapse
Affiliation(s)
- Carol A. Rowe
- Department of Biology, Utah State University, Logan, UT, United States
| | - Robert W. Lichvar
- United States Army Corps of Engineers, Cold Region Research and Engineering Laboratory, Hanover, NH, United States
| | - Paul G. Wolf
- Department of Biology, Utah State University, Logan, UT, United States
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, United States
| |
Collapse
|
22
|
Multilocus data reveal deep phylogenetic relationships and intercontinental biogeography of the Eurasian-North American genus Corylus (Betulaceae). Mol Phylogenet Evol 2020; 142:106658. [DOI: 10.1016/j.ympev.2019.106658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/22/2022]
|
23
|
Borrell JS, Zohren J, Nichols RA, Buggs RJA. Genomic assessment of local adaptation in dwarf birch to inform assisted gene flow. Evol Appl 2020; 13:161-175. [PMID: 31892950 PMCID: PMC6935589 DOI: 10.1111/eva.12883] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
When populations of a rare species are small, isolated and declining under climate change, some populations may become locally maladapted. Detecting this maladaptation may allow effective rapid conservation interventions, even if based on incomplete knowledge. Population maladaptation may be estimated by finding genome-environment associations (GEA) between allele frequencies and environmental variables across a local species range, and identifying populations whose allele frequencies do not fit with these trends. We can then design assisted gene flow strategies for maladapted populations, to adjust their allele frequencies, entailing lower levels of intervention than with undirected conservation action. Here, we investigate this strategy in Scottish populations of the montane plant dwarf birch (Betula nana). In genome-wide restriction site-associated single nucleotide polymorphism (SNP) data, we found 267 significant associations between SNP loci and environmental variables. We ranked populations by maladaptation estimated using allele frequency deviation from the general trends at these loci; this gave a different prioritization for conservation action than the Shapely Index, which seeks to preserve rare neutral variation. Populations estimated to be maladapted in their allele frequencies at loci associated with annual mean temperature were found to have reduced catkin production. Using an environmental niche modelling (ENM) approach, we found annual mean temperature (35%), and mean diurnal range (15%), to be important predictors of the dwarf birch distribution. Intriguingly, there was a significant correlation between the number of loci associated with each environmental variable in the GEA and the importance of that variable in the ENM. Together, these results suggest that the same environmental variables determine both adaptive genetic variation and species range in Scottish dwarf birch. We suggest an assisted gene flow strategy that aims to maximize the local adaptation of dwarf birch populations under climate change by matching allele frequencies to current and future environments.
Collapse
Affiliation(s)
| | - Jasmin Zohren
- Sex Chromosome Biology LabThe Francis Crick InstituteLondonUK
| | - Richard A. Nichols
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| | - Richard J. A. Buggs
- Jodrell LaboratoryRoyal Botanic Gardens, KewSurreyUK
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| |
Collapse
|
24
|
Kahraman K, Lucas SJ. Comparison of different annotation tools for characterization of the complete chloroplast genome of Corylus avellana cv Tombul. BMC Genomics 2019; 20:874. [PMID: 31747873 PMCID: PMC6865063 DOI: 10.1186/s12864-019-6253-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/31/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several bioinformatics tools have been designed for assembly and annotation of chloroplast (cp) genomes, making it difficult to decide which is most useful and applicable to a specific case. The increasing number of plant genomes provide an opportunity to accurately obtain cp genomes from whole genome shotgun (WGS) sequences. Due to the limited genetic information available for European hazelnut (Corylus avellana L.) and as part of a genome sequencing project, we analyzed the complete chloroplast genome of the cultivar 'Tombul' with multiple annotation tools. RESULTS Three different annotation strategies were tested, and the complete cp genome of C. avellana cv Tombul was constructed, which was 161,667 bp in length, and had a typical quadripartite structure. A large single copy (LSC) region of 90,198 bp and a small single copy (SSC) region of 18,733 bp were separated by a pair of inverted repeat (IR) regions of 26,368 bp. In total, 125 predicted functional genes were annotated, including 76 protein-coding, 25 tRNA, and 4 rRNA unique genes. Comparative genomics indicated that the cp genome sequences were relatively highly conserved in species belonging to the same order. However, there were still some variations, especially in intergenic regions, that could be used as molecular markers for analyses of phylogeny and plant identification. Simple sequence repeat (SSR) analysis showed that there were 83 SSRs in the cp genome of cv Tombul. Phylogenetic analysis suggested that C. avellana cv Tombul had a close affinity to the sister group of C. fargesii and C. chinensis, and then a closer evolutionary relationship with Betulaceae family than other species of Fagales. CONCLUSION In this study, the complete cp genome of Corylus avellana cv Tombul, the most widely cultivated variety in Turkey, was obtained and annotated, and additionally phylogenetic relationships were predicted among Fagales species. Our results suggest a very accurate assembly of chloroplast genome from next generation whole genome shotgun (WGS) sequences. Enhancement of taxon sampling in Corylus species provide genomic insights into phylogenetic analyses. The nucleotide sequences of cv Tombul cp genomes can provide comprehensive genetic insight into the evolution of genus Corylus.
Collapse
Affiliation(s)
- Kadriye Kahraman
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, 34956, Istanbul, Turkey
| | - Stuart James Lucas
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, 34956, Istanbul, Turkey.
| |
Collapse
|
25
|
Clugston JAR, Kenicer GJ, Milne R, Overcast I, Wilson TC, Nagalingum NS. RADseq as a valuable tool for plants with large genomes—A case study in cycads. Mol Ecol Resour 2019; 19:1610-1622. [DOI: 10.1111/1755-0998.13085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 11/26/2022]
Affiliation(s)
- James A. R. Clugston
- School of Biological Sciences The University of Edinburgh Edinburgh UK
- Royal Botanic Garden Edinburgh Edinburgh UK
| | | | - Richard Milne
- School of Biological Sciences The University of Edinburgh Edinburgh UK
| | - Isaac Overcast
- The Graduate Center of the City University of New York New York NY USA
| | | | | |
Collapse
|
26
|
Weitemier K, Straub SC, Fishbein M, Bailey CD, Cronn RC, Liston A. A draft genome and transcriptome of common milkweed ( Asclepias syriaca) as resources for evolutionary, ecological, and molecular studies in milkweeds and Apocynaceae. PeerJ 2019; 7:e7649. [PMID: 31579586 PMCID: PMC6756140 DOI: 10.7717/peerj.7649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Milkweeds (Asclepias) are used in wide-ranging studies including floral development, pollination biology, plant-insect interactions and co-evolution, secondary metabolite chemistry, and rapid diversification. We present a transcriptome and draft nuclear genome assembly of the common milkweed, Asclepias syriaca. This reconstruction of the nuclear genome is augmented by linkage group information, adding to existing chloroplast and mitochondrial genomic resources for this member of the Apocynaceae subfamily Asclepiadoideae. The genome was sequenced to 80.4× depth and the draft assembly contains 54,266 scaffolds ≥1 kbp, with N50 = 3,415 bp, representing 37% (156.6 Mbp) of the estimated 420 Mbp genome. A total of 14,474 protein-coding genes were identified based on transcript evidence, closely related proteins, and ab initio models, and 95% of genes were annotated. A large proportion of gene space is represented in the assembly, with 96.7% of Asclepias transcripts, 88.4% of transcripts from the related genus Calotropis, and 90.6% of proteins from Coffea mapping to the assembly. Scaffolds covering 75 Mbp of the Asclepias assembly formed 11 linkage groups. Comparisons of these groups with pseudochromosomes in Coffea found that six chromosomes show consistent stability in gene content, while one may have a long history of fragmentation and rearrangement. The progesterone 5β-reductase gene family, a key component of cardenolide production, is likely reduced in Asclepias relative to other Apocynaceae. The genome and transcriptome of common milkweed provide a rich resource for future studies of the ecology and evolution of a charismatic plant family.
Collapse
Affiliation(s)
- Kevin Weitemier
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | | | - Mark Fishbein
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, USA
| | - C. Donovan Bailey
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Richard C. Cronn
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR, USA
| | - Aaron Liston
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
27
|
Hu YN, Zhao L, Buggs RJA, Zhang XM, Li J, Wang N. Population structure of Betula albosinensis and Betula platyphylla: evidence for hybridization and a cryptic lineage. ANNALS OF BOTANY 2019; 123:1179-1189. [PMID: 30916314 PMCID: PMC6612935 DOI: 10.1093/aob/mcz024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/15/2019] [Accepted: 02/05/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Differences in local abundance and ploidy level are predicted to impact the direction of introgression between species. Here, we tested these hypotheses on populations of Betula albosinensis (red birch) and Betula platyphylla (white birch) which were thought to differ in ploidy level, the former being tetraploid and the latter diploid. METHODS We sampled 391 birch individuals from nine localities in China, and classified them into species based on leaf morphology. Twelve nuclear microsatellite markers were genotyped in each sample, and analysed using principal coordinates analysis and STRUCTURE software. We compared the effects of two different methods of scoring polyploid genotypes on population genetic analyses. We analysed the effect of ploidy, local species abundance and latitude on levels of introgression between the species. KEY RESULTS Leaf morphology divided our samples into red and white birch, but genetic analyses unexpectedly revealed two groups within red birch, one of which was tetraploid, as expected, but the other of which appeared to have diploid microsatellite genotypes. Five individuals were identified as early-generation hybrids or backcrosses between white birch and red birch and five were identified between red birch and 'diploid' red birch. Cline analysis showed that levels of admixture were not significantly correlated with latitude. Estimated genetic differentiation among species was not significantly different between determined tetraploid and undetermined tetraploid genotypes. CONCLUSIONS Limited hybridization and gene flow have occurred between red birch and white birch. Relative species abundance and ploidy level do not impact the direction of introgression between them, as genetic admixture is roughly symmetrical. We unexpectedly found populations of apparently diploid red birch and this taxon may be a progenitor of allotetraploid red birch populations. Incomplete lineage sorting may explain patterns of genetic admixture between apparently diploid and allotetraploid red birch.
Collapse
Affiliation(s)
- Ya-Nan Hu
- College of Forestry, Shandong Agricultural University, Tai’an city, Shandong province, China
| | - Lei Zhao
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Richard J A Buggs
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Xue-Min Zhang
- Mulan-Weichang National Forestry Administration, Chengde, China
| | - Jun Li
- Mulan-Weichang National Forestry Administration, Chengde, China
| | - Nian Wang
- College of Forestry, Shandong Agricultural University, Tai’an city, Shandong province, China
| |
Collapse
|
28
|
Varanda CMR, Materatski P, Landum M, Campos MD, Félix MDR. Fungal Communities Associated with Peacock and Cercospora Leaf Spots in Olive. PLANTS 2019; 8:plants8060169. [PMID: 31212781 PMCID: PMC6630884 DOI: 10.3390/plants8060169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 11/16/2022]
Abstract
Venturia oleaginea and Pseudocercospora cladosporioides are two of the most important olive fungal pathogens causing leaf spots: peacock spot, and cercosporiosis, respectively. In the present study, fungal communities associated with the presence of these pathogens were investigated. Overall, 300 symptomatic and asymptomatic trees from different cultivars were sampled from Alentejo, Portugal. A total of 788 fungal isolates were obtained and classified into 21 OTUs; Ascomycota was clearly the predominant phylum (96.6%). Trees from cultivar 'Galega vulgar' showed a significant higher fungal richness when compared to 'Cobrançosa', which in turn showed significant higher values than 'Picual'. Concerning plant health status, symptomatic plants showed significant higher fungal richness, mainly due to the high number of isolates of the pathogens V. oleaginea and P. cladosporioides. In terms of fungal diversity, there were two major groups: ca. 90% of the isolates found in symptomatic plants belonged to V. oleaginea, P. cladosporioides, Chalara sp., and Foliophoma sp. while ca. 90% of the isolates found in asymptomatic plants, belonged to Alternaria sp. and Epicoccum sp. This study highlights the existence of different fungal communities in olive trees, including potential antagonistic organisms that can have a significant impact on diseases and consequently on olive production.
Collapse
Affiliation(s)
- Carla M R Varanda
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal.
| | - Patrick Materatski
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal.
| | - Miguel Landum
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Maria Doroteia Campos
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal.
| | - Maria do Rosário Félix
- Departamento de Fitotecnia, ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Escola de Ciências e Tecnologia, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal.
| |
Collapse
|
29
|
Jia H, Jia H, Cai Q, Wang Y, Zhao H, Yang W, Wang G, Li Y, Zhan D, Shen Y, Niu Q, Chang L, Qiu J, Zhao L, Xie H, Fu W, Jin J, Li X, Jiao Y, Zhou C, Tu T, Chai C, Gao J, Fan L, van de Weg E, Wang J, Gao Z. The red bayberry genome and genetic basis of sex determination. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:397-409. [PMID: 29992702 PMCID: PMC6335074 DOI: 10.1111/pbi.12985] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/01/2018] [Accepted: 07/04/2018] [Indexed: 05/12/2023]
Abstract
Morella rubra, red bayberry, is an economically important fruit tree in south China. Here, we assembled the first high-quality genome for both a female and a male individual of red bayberry. The genome size was 313-Mb, and 90% sequences were assembled into eight pseudo chromosome molecules, with 32 493 predicted genes. By whole-genome comparison between the female and male and association analysis with sequences of bulked and individual DNA samples from female and male, a 59-Kb region determining female was identified and located on distal end of pseudochromosome 8, which contains abundant transposable element and seven putative genes, four of them are related to sex floral development. This 59-Kb female-specific region was likely to be derived from duplication and rearrangement of paralogous genes and retained non-recombinant in the female-specific region. Sex-specific molecular markers developed from candidate genes co-segregated with sex in a genetically diverse female and male germplasm. We propose sex determination follow the ZW model of female heterogamety. The genome sequence of red bayberry provides a valuable resource for plant sex chromosome evolution and also provides important insights for molecular biology, genetics and modern breeding in Myricaceae family.
Collapse
Affiliation(s)
- Hui‐Min Jia
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Hui‐Juan Jia
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | | | - Yan Wang
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Hai‐Bo Zhao
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Wei‐Fei Yang
- Hangzhou 1 Gene LtdHangzhouChina
- Forestry Technology Extension CenterYuyaoNingboChina
- Present address:
Annoroad Gene Tech. Co., LtdBeijingChina
| | - Guo‐Yun Wang
- Forestry Technology Extension CenterYuyaoNingboChina
| | - Ying‐Hui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | | | - Yu‐Tong Shen
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Qing‐Feng Niu
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Shanghai Center for Plant Stress Biology, and National Key Laboratory of Plant Molecular GeneticsCenter of Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Le Chang
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Jie Qiu
- Institute of Crop Science & Institute of BioinformaticsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Lan Zhao
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Han‐Bing Xie
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Wan‐Yi Fu
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Jing Jin
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Xiong‐Wei Li
- Forest & Fruit Tree InstituteShanghai Academy of Agricultural SciencesShanghaiChina
| | - Yun Jiao
- Institute of ForestryNingbo Academy of Agricultural ScienceNingboChina
| | | | - Ting Tu
- Shunmei Breeding and Propagation Centre for Chinese BayberryYuyaoChina
| | | | | | - Long‐Jiang Fan
- Institute of Crop Science & Institute of BioinformaticsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Eric van de Weg
- Plant Breeding‐Wageningen University and ResearchWageningenThe Netherlands
| | | | - Zhong‐Shan Gao
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
30
|
Tuskan GA, Groover AT, Schmutz J, DiFazio SP, Myburg A, Grattapaglia D, Smart LB, Yin T, Aury JM, Kremer A, Leroy T, Le Provost G, Plomion C, Carlson JE, Randall J, Westbrook J, Grimwood J, Muchero W, Jacobson D, Michener JK. Hardwood Tree Genomics: Unlocking Woody Plant Biology. FRONTIERS IN PLANT SCIENCE 2018; 9:1799. [PMID: 30619389 PMCID: PMC6304363 DOI: 10.3389/fpls.2018.01799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/19/2018] [Indexed: 05/07/2023]
Abstract
Woody perennial angiosperms (i.e., hardwood trees) are polyphyletic in origin and occur in most angiosperm orders. Despite their independent origins, hardwoods have shared physiological, anatomical, and life history traits distinct from their herbaceous relatives. New high-throughput DNA sequencing platforms have provided access to numerous woody plant genomes beyond the early reference genomes of Populus and Eucalyptus, references that now include willow and oak, with pecan and chestnut soon to follow. Genomic studies within these diverse and undomesticated species have successfully linked genes to ecological, physiological, and developmental traits directly. Moreover, comparative genomic approaches are providing insights into speciation events while large-scale DNA resequencing of native collections is identifying population-level genetic diversity responsible for variation in key woody plant biology across and within species. Current research is focused on developing genomic prediction models for breeding, defining speciation and local adaptation, detecting and characterizing somatic mutations, revealing the mechanisms of gender determination and flowering, and application of systems biology approaches to model complex regulatory networks underlying quantitative traits. Emerging technologies such as single-molecule, long-read sequencing is being employed as additional woody plant species, and genotypes within species, are sequenced, thus enabling a comparative ("evo-devo") approach to understanding the unique biology of large woody plants. Resource availability, current genomic and genetic applications, new discoveries and predicted future developments are illustrated and discussed for poplar, eucalyptus, willow, oak, chestnut, and pecan.
Collapse
Affiliation(s)
- Gerald A. Tuskan
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory (DOE), Oak Ridge, TN, United States
| | - Andrew T. Groover
- Pacific Southwest Research Station, USDA Forest Service, Davis, CA, United States
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
- Joint Genome Institute, Walnut Creek, CA, United States
| | | | - Alexander Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Dario Grattapaglia
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Universidade Católica de Brasília, Brasília, Brazil
| | - Lawrence B. Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY, United States
| | - Tongming Yin
- The Key Laboratory for Poplar Improvement of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Jean-Marc Aury
- Commissariat à l’Energie Atomique, Genoscope, Institut de Biologie François-Jacob, Evry, France
| | | | - Thibault Leroy
- BIOGECO, INRA, Université de Bordeaux, Cestas, France
- ISEM, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| | | | | | - John E. Carlson
- Schatz Center for Tree Molecular Genetics, Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, United States
| | - Jennifer Randall
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - Jared Westbrook
- The American Chestnut Foundation, Asheville, NC, United States
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Wellington Muchero
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory (DOE), Oak Ridge, TN, United States
| | - Daniel Jacobson
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory (DOE), Oak Ridge, TN, United States
| | - Joshua K. Michener
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory (DOE), Oak Ridge, TN, United States
| |
Collapse
|
31
|
Materatski P, Varanda C, Carvalho T, Dias AB, Campos MD, Rei F, Félix MDR. Spatial and temporal variation of fungal endophytic richness and diversity associated to the phyllosphere of olive cultivars. Fungal Biol 2018; 123:66-76. [PMID: 30654959 DOI: 10.1016/j.funbio.2018.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 11/15/2022]
Abstract
Fungal endophytes are micro-organisms that colonize healthy plant tissues without causing disease symptoms. They are described as plant growth and disease resistance promoters and have shown antimicrobial activity. The spatial-temporal distribution of endophytic communities in olive cultivars has been poorly explored. This study aims to investigate the richness and diversity of endophytic fungi in different seasons and sites, within the Alentejo region, Portugal. Additionally, and because the impact of some pathogenic fungi (e.g. Colletotrichum spp.) varies according to olive cultivars; three cultivars, Galega vulgar, Cobrançosa and Azeiteira, were sampled. 1868 fungal isolates were identified as belonging to 26 OTUs; 13 OTUs were identified to the genera level and 13 to species level. Cultivar Galega vulgar and season autumn showed significant higher values in terms of endophytic richness and diversity. At site level, Elvas showed the lowest fungal richness and diversity of fungal endophytes. This study reinforces the importance of exploring the combined spatio-temporal distribution of the endophytic biodiversity in different olive cultivars. Knowledge about endophytic communities may help to better understand their functions in plants hosts, such as their ecological dynamics with pathogenic fungi, which can be explored for their use as biocontrol agents.
Collapse
Affiliation(s)
- Patrick Materatski
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal.
| | - Carla Varanda
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Teresa Carvalho
- INIAV - Instituto Nacional de Investigação Agrária e Veterinária, I. P. Estrada de Gil Vaz, Apartado 6, 7351-901 Elvas, Portugal
| | - António Bento Dias
- Departamento de Engenharia Rural, ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Escola de Ciências e Tecnologia, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - M Doroteia Campos
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Fernando Rei
- Departamento de Fitotecnia, ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Escola de Ciências e Tecnologia, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Maria do Rosário Félix
- Departamento de Fitotecnia, ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Escola de Ciências e Tecnologia, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
32
|
Characterization of chloroplast genomes of Alnus rubra and Betula cordifolia, and their use in phylogenetic analyses in Betulaceae. Genes Genomics 2018; 41:305-316. [PMID: 30456523 DOI: 10.1007/s13258-018-0762-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/04/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Betulaceae is a relatively small birch family that comprises about 160 deciduous trees and shrubs. Chloroplast (cp) genome sequencing of Alnus rubra and Betula cordifolia was carried out to elucidate their molecular features and phylogenetic relationship among species in Betulaceae family. METHODS Chloroplast genome sequencing was carried out using next generation sequencing method. Molecular and genomic features of the two cp genomes were characterized with other cp genomes in Betulaceae. Also, molecular phylogenetic analysis was performed using the whole cp genome sequences. RESULTS The average cp genome length was 160,136 bp among the Betulaceae species. Base compositions of the cp genomes were skewed toward a high AT ratio, with an average of 63.4%. We identified 117 different genes 83 with protein coding, 4 with ribosomal RNA, and 30 with tRNA. Eighteen genes contained introns which were conserved among the cp genomes of all Betulaceae. We mined 82 SSRs from the cp genomes of A. rubra, A. cordifolia, and A. nana. The SSRs were variable in motif repeat numbers and presence/absence among the cp genomes. CONCLUSION Chloroplast genome-wide sequence comparison from 11 Betulaceae species and one cp genome of evergreen oak revealed that the patterns of sequence variations were congruent with two subfamily classification Betuloideae (Alnus and Betula) and Corylaceae (Corylus, Ostrya, and Carpinus). Subsequent phylogenetic analysis also supports the sub-classifications of these species.
Collapse
|
33
|
Dodsworth S, Guignard MS, Christenhusz MJM, Cowan RS, Knapp S, Maurin O, Struebig M, Leitch AR, Chase MW, Forest F. Potential of Herbariomics for Studying Repetitive DNA in Angiosperms. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Yang Z, Zhao TT, Ma QH, Liang LS, Wang GX. Resolving the Speciation Patterns and Evolutionary History of the Intercontinental Disjunct Genus Corylus (Betulaceae) Using Genome-Wide SNPs. FRONTIERS IN PLANT SCIENCE 2018; 9:1386. [PMID: 30410496 PMCID: PMC6209643 DOI: 10.3389/fpls.2018.01386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 08/31/2018] [Indexed: 05/25/2023]
Abstract
Understanding the underlying mechanisms of species origin, divergence, and distribution patterns of the intercontinental disjunct taxa has long fascinated botanists. Based on 4,894 genome-wide single-nucleotide polymorphism dataset, we present a molecular phylogenetic reconstruction of genus Corylus (Betulaceae), which have a disjunct distribution between Eurasia and North America (NA). The aim is to explore the speciation patterns and evolutionary relationships of Corylus species by establishing a general phylogenetic framework with extensive sampling. Both the molecular phylogeny inferred from recombination-free dataset and structure analysis support the division of Corylus into four major clades (A-D). Recombination tests and hybridization detection reveal extensive recombination and hybridization events among different clades, which have potentially influenced the speciation process of Corylus. Divergence time estimation indicates that recent common ancestor (MRCA) of Corylus occurred in late Eocene (∼36.38 Ma) and subsequent rapid diversification began during Miocene. Ancestral area reconstruction shows that Corylus originated from southwest China. The arrival of two clades (Clades B and C) to NA was well supported by the long distance dispersal crossing the Bering land bridge. The Himalayas, European-Mediterranean area, and other distribution regions are primarily the recipients of dispersal taxa. Vicariance after dispersal plays an important role in speciation.
Collapse
Affiliation(s)
| | | | | | | | - Gui-Xi Wang
- *Correspondence: Tian-Tian Zhao, Gui-Xi Wang,
| |
Collapse
|
35
|
Borrell JS, Wang N, Nichols RA, Buggs RJA. Genetic diversity maintained among fragmented populations of a tree undergoing range contraction. Heredity (Edinb) 2018; 121:304-318. [PMID: 30111882 PMCID: PMC6134035 DOI: 10.1038/s41437-018-0132-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 11/09/2022] Open
Abstract
Dwarf birch (Betula nana) has a widespread boreal distribution but has declined significantly in Britain where populations are now highly fragmented. We analyzed the genetic diversity of these fragmented populations using markers that differ in mutation rate: conventional microsatellites markers (PCR-SSRs), RADseq generated transition and transversion SNPs (RAD-SNPs), and microsatellite markers mined from RADseq reads (RAD-SSRs). We estimated the current population sizes by census and indirectly, from the linkage-disequilibrium found in the genetic surveys. The two types of estimate were highly correlated. Overall, we found genetic diversity to be only slightly lower in Britain than across a comparable area in Scandinavia where populations are large and continuous. While the ensemble of British fragments maintain diversity levels close to Scandinavian populations, individually they have drifted apart and lost diversity; particularly the smaller populations. An ABC analysis, based on coalescent models, favors demographic scenarios in which Britain maintained high levels of genetic diversity through post-glacial re-colonization. This diversity has subsequently been partitioned into population fragments that have recently lost diversity at a rate corresponding to the current population-size estimates. We conclude that the British population fragments retain sufficient genetic resources to be the basis of conservation and re-planting programmes. Use of markers with different mutation rates gives us greater confidence and insight than one marker set could have alone, and we suggest that RAD-SSRs are particularly useful as high mutation-rate marker set with a well-specified ascertainment bias, which are widely available yet often neglected in existing RAD datasets.
Collapse
Affiliation(s)
- James S Borrell
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - Nian Wang
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
- College of Forestry, Shandong Agricultural University, Tai'an city, 271018, Shandong Province, China
| | - Richard A Nichols
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Richard J A Buggs
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK.
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
36
|
Wagner ND, Gramlich S, Hörandl E. RAD sequencing resolved phylogenetic relationships in European shrub willows ( Salix L. subg. Chamaetia and subg. Vetrix) and revealed multiple evolution of dwarf shrubs. Ecol Evol 2018; 8:8243-8255. [PMID: 30250699 PMCID: PMC6145212 DOI: 10.1002/ece3.4360] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 01/03/2023] Open
Abstract
The large and diverse genus Salix L. is of particular interest for decades of biological research. However, despite the morphological plasticity, the reconstruction of phylogenetic relationships was so far hampered by the lack of informative molecular markers. Infrageneric classification based on morphology separates dwarf shrubs (subg. Chamaetia) and taller shrubs (subg. Vetrix), while previous phylogenetic studies placed species of these two subgenera just in one largely unresolved clade. Here we want to test the utility of genomic RAD sequencing markers for resolving relationships at different levels of divergence in Salix. Based on a sampling of 15 European species representing 13 sections of the two subgenera, we used five different RAD sequencing datasets generated by ipyrad to conduct phylogenetic analyses. Additionally we reconstructed the evolution of growth form and analyzed the genetic composition of the whole clade. The results showed fully resolved trees in both ML and BI analysis with high statistical support. The two subgenera Chamaetia and Vetrix were recognized as nonmonophyletic, which suggests that they should be merged. Within the Vetrix/Chamaetia clade, a division into three major subclades could be observed. All species were confirmed to be monophyletic. Based on our data, arctic-alpine dwarf shrubs evolved four times independently. The structure analysis showed five mainly uniform genetic clusters which are congruent in sister relationships observed in the phylogenies. Our study confirmed RAD sequencing as a useful genomic tool for the reconstruction of relationships on different taxonomic levels in the genus Salix.
Collapse
Affiliation(s)
- Natascha Dorothea Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)University of GoettingenGöttingenGermany
| | - Susanne Gramlich
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)University of GoettingenGöttingenGermany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)University of GoettingenGöttingenGermany
| |
Collapse
|
37
|
Retrotransposons in Betula nana, and interspecific relationships in the Betuloideae, based on inter-retrotransposon amplified polymorphism (IRAP) markers. Genes Genomics 2018; 40:511-519. [PMID: 29892962 DOI: 10.1007/s13258-018-0655-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/09/2018] [Indexed: 01/13/2023]
Abstract
The Betulaceae family comprises two subfamilies, Betuloideae and Corylaceae. The subfamily Betuloideae contains two genera, Alnus Mill. and Betula L. Twenty putative long terminal repeat (LTR) retrotransposons were mined from 171 scaffolds containing 5,208,995 bp of dwarf birch (Betula nana) genome sequences. Five retrotransposons were finally selected after filtering the retrotransposon canonical features and nucleotide similarities between left and right LTR sequences. Of the five retroelements, three elements were found to be Ty1/Copia retrotransposons; identity of the other two elements could not be ascertained due to sequence undetermined 'N' bases in the sequence database. Inter-retrotranposon amplified polymorphism (IRAP) analysis, based on the LTR sequences of the mined LTR-retrotransposons, produced 179 discernible IRAP bands among the Alnus and Betula genera. Sequence analysis revealed no size homoplasy among the homologous IRAP bands. Phylogenetic and principle coordinate analysis, based on the band sharing among the taxa, showed the species in two different genera were clearly separated. The subgenera in each genus of Alnus and Betula were also distinguishable from the IRAP profiles. In the genus Betula, the species in subgenus Betula showed mixed clustering between species. This is incongruent with the phylogeographical distribution of the species.
Collapse
|
38
|
Tsai CJ, Harding SA, Cooke JEK. Branching out: a new era of investigating physiological processes in forest trees using genomic tools. TREE PHYSIOLOGY 2018; 38:303-310. [PMID: 29506180 DOI: 10.1093/treephys/tpy026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, Department of Genetics and Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Scott A Harding
- Warnell School of Forestry and Natural Resources, Department of Genetics and Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| |
Collapse
|
39
|
Rumbou A, Candresse T, Marais A, Theil S, Langer J, Jalkanen R, Büttner C. A novel badnavirus discovered from Betula sp. affected by birch leaf-roll disease. PLoS One 2018; 13:e0193888. [PMID: 29494687 PMCID: PMC5833271 DOI: 10.1371/journal.pone.0193888] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/20/2018] [Indexed: 01/26/2023] Open
Abstract
In declining birches (Betula sp.) from different European stands affected by the “birch leaf-roll disease” (BLRD) a novel virus is identified by means of RNA-Seq virome analysis. The virus represents a new member in the genus Badnavirus, family Caulimoviridae, tentatively named Birch leaf roll-associated virus (BLRaV) and it is the first badnavirus found to infect birch. Complete genome sequences (7,862–7,864 nucleotides) of three viral isolates of Finnish and German origin have been determined. The virus sequences show a typical badnavirus organization with three major open reading frames (ORFs) and a fourth potential ORF overlapping with the end of ORF3. ORFs 1-2-3 show low level of amino acid identity to the corresponding proteins encoded by other badnaviruses, reaching a maximum of 44% identity (ORF3). Grapevine vein-clearing virus appears as the closest badnavirus when considering the polymerase region. So far, we can exclude evidence for presence of endogenous BLRaV elements in the birch genome, while evidence for the episomal activity of BLRaV is provided. The viral population holds significant haplotype diversity, while co-infection by different BLRaV variants are observed in single hosts. BLRaV presence is associated with the BLRD in both silver (B. pendula) and downy birch (B. pubescens). These results challenge the earlier hypothesis of a causal role of Cherry leaf roll virus in BLRD. Further work is now needed to finally prove that BLRaV is the causal agent for the BLRD.
Collapse
Affiliation(s)
- Artemis Rumbou
- Division Phytomedicine, Albrecht Daniel Thaer-Institute, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- * E-mail:
| | - Thierry Candresse
- Equipe Virologie, UMR 1332 BFP, French National Institute for Agricultural Research (INRA), Villenave d'Ornon Cedex, France
| | - Armelle Marais
- Equipe Virologie, UMR 1332 BFP, French National Institute for Agricultural Research (INRA), Villenave d'Ornon Cedex, France
| | - Sebastien Theil
- Equipe Virologie, UMR 1332 BFP, French National Institute for Agricultural Research (INRA), Villenave d'Ornon Cedex, France
| | - Juliane Langer
- Division Phytomedicine, Albrecht Daniel Thaer-Institute, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Risto Jalkanen
- Rovaniemi Unit, Finnish Forest Research Institute (Metla), Natural Resources Institute, Luke, Rovaniemi, Finland
| | - Carmen Büttner
- Division Phytomedicine, Albrecht Daniel Thaer-Institute, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
40
|
McKinney GJ, Waples RK, Pascal CE, Seeb LW, Seeb JE. Resolving allele dosage in duplicated loci using genotyping-by-sequencing data: A path forward for population genetic analysis. Mol Ecol Resour 2018; 18:570-579. [DOI: 10.1111/1755-0998.12763] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Garrett J. McKinney
- School of Aquatic and Fishery Sciences; University of Washington; Seattle WA USA
| | - Ryan K. Waples
- School of Aquatic and Fishery Sciences; University of Washington; Seattle WA USA
| | - Carita E. Pascal
- School of Aquatic and Fishery Sciences; University of Washington; Seattle WA USA
| | - Lisa W. Seeb
- School of Aquatic and Fishery Sciences; University of Washington; Seattle WA USA
| | - James E. Seeb
- School of Aquatic and Fishery Sciences; University of Washington; Seattle WA USA
| |
Collapse
|
41
|
SNP genotyping and parameter estimation in polyploids using low-coverage sequencing data. Bioinformatics 2017; 34:407-415. [DOI: 10.1093/bioinformatics/btx587] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/15/2017] [Indexed: 12/30/2022] Open
|
42
|
The complete chloroplast genome sequence of wild service tree Sorbus torminalis (L.) Crantz. CONSERV GENET RESOUR 2017. [DOI: 10.1007/s12686-017-0701-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Alipour H, Bihamta MR, Mohammadi V, Peyghambari SA, Bai G, Zhang G. Genotyping-by-Sequencing (GBS) Revealed Molecular Genetic Diversity of Iranian Wheat Landraces and Cultivars. FRONTIERS IN PLANT SCIENCE 2017; 8:1293. [PMID: 28912785 PMCID: PMC5583605 DOI: 10.3389/fpls.2017.01293] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/07/2017] [Indexed: 05/22/2023]
Abstract
Background: Genetic diversity is an essential resource for breeders to improve new cultivars with desirable characteristics. Recently, genotyping-by-sequencing (GBS), a next-generation sequencing (NGS) technology that can simplify complex genomes, has now be used as a high-throughput and cost-effective molecular tool for routine breeding and screening in many crop species, including the species with a large genome. Results: We genotyped a diversity panel of 369 Iranian hexaploid wheat accessions including 270 landraces collected between 1931 and 1968 in different climate zones and 99 cultivars released between 1942 to 2014 using 16,506 GBS-based single nucleotide polymorphism (GBS-SNP) markers. The B genome had the highest number of mapped SNPs while the D genome had the lowest on both the Chinese Spring and W7984 references. Structure and cluster analyses divided the panel into three groups with two landrace groups and one cultivar group, suggesting a high differentiation between landraces and cultivars and between landraces. The cultivar group can be further divided into four subgroups with one subgroup was mostly derived from Iranian ancestor(s). Similarly, landrace groups can be further divided based on years of collection and climate zones where the accessions were collected. Molecular analysis of variance indicated that the genetic variation was larger between groups than within group. Conclusion: Obvious genetic diversity in Iranian wheat was revealed by analysis of GBS-SNPs and thus breeders can select genetically distant parents for crossing in breeding. The diverse Iranian landraces provide rich genetic sources of tolerance to biotic and abiotic stresses, and they can be useful resources for the improvement of wheat production in Iran and other countries.
Collapse
Affiliation(s)
- Hadi Alipour
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia UniversityUrmia, Iran
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of TehranKaraj, Iran
- Agronomy Department, Kansas State University, ManhattanKS, United States
| | - Mohammad R. Bihamta
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of TehranKaraj, Iran
| | - Valiollah Mohammadi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of TehranKaraj, Iran
| | - Seyed A. Peyghambari
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of TehranKaraj, Iran
| | - Guihua Bai
- Hard Winter Wheat Genetics Research Unit, United States Department of Agriculture – Agricultural Research Service, ManhattanKS, United States
| | - Guorong Zhang
- Agronomy Department, Kansas State University, ManhattanKS, United States
| |
Collapse
|
44
|
Konar A, Choudhury O, Bullis R, Fiedler L, Kruser JM, Stephens MT, Gailing O, Schlarbaum S, Coggeshall MV, Staton ME, Carlson JE, Emrich S, Romero-Severson J. High-quality genetic mapping with ddRADseq in the non-model tree Quercus rubra. BMC Genomics 2017; 18:417. [PMID: 28558688 PMCID: PMC5450186 DOI: 10.1186/s12864-017-3765-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 05/04/2017] [Indexed: 11/10/2022] Open
Abstract
Background Restriction site associated DNA sequencing (RADseq) has the potential to be a broadly applicable, low-cost approach for high-quality genetic linkage mapping in forest trees lacking a reference genome. The statistical inference of linear order must be as accurate as possible for the correct ordering of sequence scaffolds and contigs to chromosomal locations. Accurate maps also facilitate the discovery of chromosome segments containing allelic variants conferring resistance to the biotic and abiotic stresses that threaten forest trees worldwide. We used ddRADseq for genetic mapping in the tree Quercus rubra, with an approach optimized to produce a high-quality map. Our study design also enabled us to model the results we would have obtained with less depth of coverage. Results Our sequencing design produced a high sequencing depth in the parents (248×) and a moderate sequencing depth (15×) in the progeny. The digital normalization method of generating a de novo reference and the SAMtools SNP variant caller yielded the most SNP calls (78,725). The major drivers of map inflation were multiple SNPs located within the same sequence (77% of SNPs called). The highest quality map was generated with a low level of missing data (5%) and a genome-wide threshold of 0.025 for deviation from Mendelian expectation. The final map included 849 SNP markers (1.8% of the 78,725 SNPs called). Downsampling the individual FASTQ files to model lower depth of coverage revealed that sequencing the progeny using 96 samples per lane would have yielded too few SNP markers to generate a map, even if we had sequenced the parents at depth 248×. Conclusions The ddRADseq technology produced enough high-quality SNP markers to make a moderately dense, high-quality map. The success of this project was due to high depth of coverage of the parents, moderate depth of coverage of the progeny, a good framework map, an optimized bioinformatics pipeline, and rigorous premapping filters. The ddRADseq approach is useful for the construction of high-quality genetic maps in organisms lacking a reference genome if the parents and progeny are sequenced at sufficient depth. Technical improvements in reduced representation sequencing (RRS) approaches are needed to reduce the amount of missing data. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3765-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arpita Konar
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Olivia Choudhury
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Rebecca Bullis
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Lauren Fiedler
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | | | - Melissa T Stephens
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Oliver Gailing
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Scott Schlarbaum
- Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, 37996, USA
| | - Mark V Coggeshall
- School of Natural Resources, University of Missouri-Columbia, Columbia, MO, 65211, USA.,Hardwood Tree Improvement and Regeneration Center, USDA Forest Service Northern Research Station, West Lafayette, IN, 47907, USA
| | - Margaret E Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | - John E Carlson
- Department of Ecosystem Science and Management, Penn State, University Park, State College, PA, 16802, USA
| | - Scott Emrich
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jeanne Romero-Severson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
45
|
Neale DB, Martínez-García PJ, De La Torre AR, Montanari S, Wei XX. Novel Insights into Tree Biology and Genome Evolution as Revealed Through Genomics. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:457-483. [PMID: 28226237 DOI: 10.1146/annurev-arplant-042916-041049] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Reference genome sequences are the key to the discovery of genes and gene families that determine traits of interest. Recent progress in sequencing technologies has enabled a rapid increase in genome sequencing of tree species, allowing the dissection of complex characters of economic importance, such as fruit and wood quality and resistance to biotic and abiotic stresses. Although the number of reference genome sequences for trees lags behind those for other plant species, it is not too early to gain insight into the unique features that distinguish trees from nontree plants. Our review of the published data suggests that, although many gene families are conserved among herbaceous and tree species, some gene families, such as those involved in resistance to biotic and abiotic stresses and in the synthesis and transport of sugars, are often expanded in tree genomes. As the genomes of more tree species are sequenced, comparative genomics will further elucidate the complexity of tree genomes and how this relates to traits unique to trees.
Collapse
Affiliation(s)
- David B Neale
- Department of Plant Sciences, University of California, Davis, California 95616;
| | | | - Amanda R De La Torre
- Department of Plant Sciences, University of California, Davis, California 95616;
| | - Sara Montanari
- Department of Plant Sciences, University of California, Davis, California 95616;
| | - Xiao-Xin Wei
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
46
|
Dodsworth S, Jang TS, Struebig M, Chase MW, Weiss-Schneeweiss H, Leitch AR. Genome-wide repeat dynamics reflect phylogenetic distance in closely related allotetraploid Nicotiana (Solanaceae). PLANT SYSTEMATICS AND EVOLUTION = ENTWICKLUNGSGESCHICHTE UND SYSTEMATIK DER PFLANZEN 2017; 303:1013-1020. [PMID: 32009724 PMCID: PMC6961477 DOI: 10.1007/s00606-016-1356-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/23/2016] [Indexed: 05/02/2023]
Abstract
Nicotiana sect. Repandae is a group of four allotetraploid species originating from a single allopolyploidisation event approximately 5 million years ago. Previous phylogenetic analyses support the hypothesis of N. nudicaulis as sister to the other three species. This is concordant with changes in genome size, separating those with genome downsizing (N. nudicaulis) from those with genome upsizing (N. repanda, N. nesophila, N. stocktonii). However, a recent analysis reflecting genome dynamics of different transposable element families reconstructed greater similarity between N. nudicaulis and the Revillagigedo Island taxa (N. nesophila and N. stocktonii), thereby placing N. repanda as sister to the rest of the group. This could reflect a different phylogenetic hypothesis or the unique evolutionary history of these particular elements. Here we re-examine relationships in this group and investigate genome-wide patterns in repetitive DNA, utilising high-throughput sequencing and a genome skimming approach. Repetitive DNA clusters provide support for N. nudicaulis as sister to the rest of the section, with N. repanda sister to the two Revillagigedo Island species. Clade-specific patterns in the occurrence and abundance of particular repeats confirm the original (N. nudicaulis (N. repanda (N. nesophila + N. stocktonii))) hypothesis. Furthermore, overall repeat dynamics in the island species N. nesophila and N. stocktonii confirm their similarity to N. repanda and the distinctive patterns between these three species and N. nudicaulis. Together these results suggest that broad-scale repeat dynamics do in fact reflect evolutionary history and could be predicted based on phylogenetic distance.
Collapse
Affiliation(s)
- Steven Dodsworth
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS UK
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS UK
| | - Tae-Soo Jang
- Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Monika Struebig
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS UK
| | - Mark W. Chase
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS UK
- School of Plant Biology, University of Western Australia, Crawley, WA 6009 Australia
| | - Hanna Weiss-Schneeweiss
- Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Andrew R. Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS UK
| |
Collapse
|
47
|
Badenes ML, Fernández I Martí A, Ríos G, Rubio-Cabetas MJ. Application of Genomic Technologies to the Breeding of Trees. Front Genet 2016; 7:198. [PMID: 27895664 PMCID: PMC5109026 DOI: 10.3389/fgene.2016.00198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/31/2016] [Indexed: 12/22/2022] Open
Abstract
The recent introduction of next generation sequencing (NGS) technologies represents a major revolution in providing new tools for identifying the genes and/or genomic intervals controlling important traits for selection in breeding programs. In perennial fruit trees with long generation times and large sizes of adult plants, the impact of these techniques is even more important. High-throughput DNA sequencing technologies have provided complete annotated sequences in many important tree species. Most of the high-throughput genotyping platforms described are being used for studies of genetic diversity and population structure. Dissection of complex traits became possible through the availability of genome sequences along with phenotypic variation data, which allow to elucidate the causative genetic differences that give rise to observed phenotypic variation. Association mapping facilitates the association between genetic markers and phenotype in unstructured and complex populations, identifying molecular markers for assisted selection and breeding. Also, genomic data provide in silico identification and characterization of genes and gene families related to important traits, enabling new tools for molecular marker assisted selection in tree breeding. Deep sequencing of transcriptomes is also a powerful tool for the analysis of precise expression levels of each gene in a sample. It consists in quantifying short cDNA reads, obtained by NGS technologies, in order to compare the entire transcriptomes between genotypes and environmental conditions. The miRNAs are non-coding short RNAs involved in the regulation of different physiological processes, which can be identified by high-throughput sequencing of RNA libraries obtained by reverse transcription of purified short RNAs, and by in silico comparison with known miRNAs from other species. All together, NGS techniques and their applications have increased the resources for plant breeding in tree species, closing the former gap of genetic tools between trees and annual species.
Collapse
Affiliation(s)
- Maria L Badenes
- Instituto Valenciano de Investigaciones Agrarias Valencia, Spain
| | - Angel Fernández I Martí
- Hortofruticulture Department, Agrifood Research and Technology Centre of AragonZaragoza, Spain; Genome Center, University of California, Davis, Davis, CAUSA
| | - Gabino Ríos
- Instituto Valenciano de Investigaciones Agrarias Valencia, Spain
| | - María J Rubio-Cabetas
- Hortofruticulture Department, Agrifood Research and Technology Centre of Aragon Zaragoza, Spain
| |
Collapse
|
48
|
Evidence of prokaryote like protein associated with nickel resistance in higher plants: horizontal transfer of TonB-dependent receptor/protein in Betula genus or de novo mechanisms? Heredity (Edinb) 2016; 118:358-365. [PMID: 27804963 DOI: 10.1038/hdy.2016.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 11/08/2022] Open
Abstract
Mechanisms of metal resistance have been reported in many plants but knowledge in woody species is scarce. The TonB-dependent receptors family (TBDTs) is a large group of proteins that facilitate the transport of molecules across the membrane of Gram-negative bacteria. Some evidence exists that TBDTs are involved in metal stress. The existence of a TonB-like mechanism in non-prokaryotes has not been established. The recent development of the Betula papyrifera (white birch) transcriptome has allowed the discovery of genes involved in plant adaptation to stress. The main objective of the present study was to identify novel genes associated with nickel resistance in B. papyrifera. Our results from next generation sequencing and RT-qPCR analyses show that genes involved in transport activities are upregulated in nickel-resistant genotypes compared with susceptible forms. Detailed analysis of gene expression and genome analysis shows for the first time the existence of a TonB-dependent receptor and TonB-like family protein in non-prokaryotes. In addition, we have found that these proteins are associated with nickel resistance in B. papyrifera. Our experiments suggest that the TonB-dependent receptor may be exclusive to the Betula genus, suggesting that Betula species may have acquired the gene via horizontal gene transfer from prokaryotes or fungi.
Collapse
|
49
|
Ingvarsson PK, Hvidsten TR, Street NR. Towards integration of population and comparative genomics in forest trees. THE NEW PHYTOLOGIST 2016; 212:338-44. [PMID: 27575589 DOI: 10.1111/nph.14153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/27/2016] [Indexed: 05/08/2023]
Abstract
Contents 338 I. 338 II. 339 III. 340 IV. 342 343 References 343 SUMMARY: The past decade saw the initiation of an ongoing revolution in sequencing technologies that is transforming all fields of biology. This has been driven by the advent and widespread availability of high-throughput, massively parallel short-read sequencing (MPS) platforms. These technologies have enabled previously unimaginable studies, including draft assemblies of the massive genomes of coniferous species and population-scale resequencing. Transcriptomics studies have likewise been transformed, with RNA-sequencing enabling studies in nonmodel organisms, the discovery of previously unannotated genes (novel transcripts), entirely new classes of RNAs and previously unknown regulatory mechanisms. Here we touch upon current developments in the areas of genome assembly, comparative regulomics and population genetics as they relate to studies of forest tree species.
Collapse
Affiliation(s)
- Pär K Ingvarsson
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, 901 87, Umeå, Sweden
| | - Torgeir R Hvidsten
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87, Umeå, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
50
|
Wyss T, Masclaux FG, Rosikiewicz P, Pagni M, Sanders IR. Population genomics reveals that within-fungus polymorphism is common and maintained in populations of the mycorrhizal fungus Rhizophagus irregularis. THE ISME JOURNAL 2016; 10:2514-26. [PMID: 26953600 PMCID: PMC5030683 DOI: 10.1038/ismej.2016.29] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/15/2022]
Abstract
Arbuscular mycorrhizal (AM) fungi are symbionts of most plants, increasing plant growth and diversity. The model AM fungus Rhizophagus irregularis (isolate DAOM 197198) exhibits low within-fungus polymorphism. In contrast, another study reported high within-fungus variability. Experiments with other R. irregularis isolates suggest that within-fungus genetic variation can affect the fungal phenotype and plant growth, highlighting the biological importance of such variation. We investigated whether there is evidence of differing levels of within-fungus polymorphism in an R. irregularis population. We genotyped 20 isolates using restriction site-associated DNA sequencing and developed novel approaches for characterizing polymorphism among haploid nuclei. All isolates exhibited higher within-isolate poly-allelic single-nucleotide polymorphism (SNP) densities than DAOM 197198 in repeated and non-repeated sites mapped to the reference genome. Poly-allelic SNPs were independently confirmed. Allele frequencies within isolates deviated from diploids or tetraploids, or that expected for a strict dikaryote. Phylogeny based on poly-allelic sites was robust and mirrored the standard phylogeny. This indicates that within-fungus genetic variation is maintained in AM fungal populations. Our results predict a heterokaryotic state in the population, considerable differences in copy number variation among isolates and divergence among the copies, or aneuploidy in some isolates. The variation may be a combination of all of these hypotheses. Within-isolate genetic variation in R. irregularis leads to large differences in plant growth. Therefore, characterizing genomic variation within AM fungal populations is of major ecological importance.
Collapse
Affiliation(s)
- Tania Wyss
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Frédéric G Masclaux
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Vital-IT, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pawel Rosikiewicz
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ian R Sanders
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|