1
|
Eustache KB, van Loon E, Rummer JL, Planes S, Smallegange I. Spatial and temporal analysis of juvenile blacktip reef shark (Carcharhinus melanopterus) demographies identifies critical habitats. JOURNAL OF FISH BIOLOGY 2024; 104:92-103. [PMID: 37726231 DOI: 10.1111/jfb.15569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/21/2023]
Abstract
Reef shark species have undergone sharp declines in recent decades, as they inhabit coastal areas, making them an easy target in fisheries (i.e., sharks are exploited globally for their fins, meat, and liver oil) and exposing them to other threats (e.g., being part of by-catch, pollution, and climate change). Reef sharks play a critical role in coral reef ecosystems, where they control populations of smaller predators and herbivorous fishes either directly via predation or indirectly via behavior, thus protecting biodiversity and preventing potential overgrazing of corals. The urgent need to conserve reef shark populations necessitates a multifaceted approach to policy at local, federal, and global levels. However, monitoring programmes to evaluate the efficiency of such policies are lacking due to the difficulty in repeatedly sampling free-ranging, wild shark populations. Over nine consecutive years, we monitored juveniles of the blacktip reef shark (Carcharhinus melanopterus) population around Moorea, French Polynesia, and within the largest shark sanctuary globally, to date. We investigated the roles of spatial (i.e., sampling sites) and temporal variables (i.e., sampling year, season, and month), water temperature, and interspecific competition on shark density across 10 coastal nursery areas. Juvenile C. melanopterus density was found to be stable over 9 years, which may highlight the effectiveness of local and likely federal policies. Two of the 10 nursery areas exhibited higher juvenile shark densities over time, which may have been related to changes in female reproductive behavior or changes in habitat type and resources. Water temperatures did not affect juvenile shark density over time as extreme temperatures proven lethal (i.e., 33°C) in juvenile C. melanopterus might have been tempered by daily variation. The proven efficiency of time-series datasets for reef sharks to identify critical habitats (having the highest juvenile shark densities over time) should be extended to other populations to significantly contribute to the conservation of reef shark species.
Collapse
Affiliation(s)
- Kim B Eustache
- PSL Research University, EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Emiel van Loon
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies and the College of Science and Engineering James Cook University, Townsville, Queensland, Australia
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
- Laboratoire d'Excellence "CORAIL," EPHE, PSL Research University, UPVD, CNRS, UAR 3278 CRIOBE, Papetoai, French Polynesia
| | - Isabel Smallegange
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
2
|
Eustache KB, Boissin É, Tardy C, Bouyoucos IA, Rummer JL, Planes S. Genetic evidence for plastic reproductive philopatry and matrotrophy in blacktip reef sharks (Carcharhinus melanopterus) of the Moorea Island (French Polynesia). Sci Rep 2023; 13:14913. [PMID: 37689802 PMCID: PMC10492826 DOI: 10.1038/s41598-023-40140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/05/2023] [Indexed: 09/11/2023] Open
Abstract
The exploitation of sharks and the degradation of their habitats elevate the urgency to understand the factors that influence offspring survival and ultimately shark reproductive success. We monitored and sampled blacktip reef sharks (Carcharhinus melanopterus) in nursery habitats of Moorea Island (French Polynesia), to improve knowledge on shark reproductive behavior and biology. We sampled fin clips and morphometrics from 230 young-of-the-year sharks and used microsatellite DNA markers to process parentage analysis to study the reproductive philopatric behavior in female sharks and the matrotrophy within litters. These traits are driving the success of the local replenishment influencing selection through birth site and maternal reserves transmitted to pups. Parentage analysis revealed that some female sharks changed their parturition areas (inter-seasonally) while other female sharks came back to the same site for parturition, providing evidence for a plastic philopatric behavior. Morphometrics showed that there was no significant relationship between body condition indices and nursery locations. However, similarities and differences in body condition were observed between individuals sharing the same mother, indicating that resource allocation within some shark litters might be unbalanced. Our findings further our understanding of the reproductive biology and behavior that shape shark populations with the aim to introduce these parameters into future conservation strategies.
Collapse
Affiliation(s)
- Kim B Eustache
- PSL Research University, EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860, Perpignan Cedex, France.
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| | - Émilie Boissin
- PSL Research University, EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860, Perpignan Cedex, France
- Laboratoire d'Excellence "CORAIL", Papetoai, Moorea, French Polynesia
| | - Céline Tardy
- PSL Research University, EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860, Perpignan Cedex, France
- WWF-France, 6 rue des Fabres, 13001, Marseille, France
| | - Ian A Bouyoucos
- PSL Research University, EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860, Perpignan Cedex, France
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Australian Research Council Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860, Perpignan Cedex, France
- Laboratoire d'Excellence "CORAIL", Papetoai, Moorea, French Polynesia
| |
Collapse
|
3
|
Kottillil S, Rao C, Bowen BW, Shanker K. Phylogeography of sharks and rays: a global review based on life history traits and biogeographic partitions. PeerJ 2023; 11:e15396. [PMID: 37283899 PMCID: PMC10239618 DOI: 10.7717/peerj.15396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 04/20/2023] [Indexed: 06/08/2023] Open
Abstract
Considerable research exists on the life history traits, evolutionary history, and environmental factors that shape the population genetic structure of marine organisms, including sharks and rays. Conservation concerns are particularly strong for this group as they are highly susceptible to anthropogenic stressors due to a combination of life history traits including late maturity and low fecundity. Here, we provide a review and synthesis of the global phylogeography of sharks and rays. We examined existing data for 40 species of sharks belonging to 17 genera and 19 species of rays belonging to 11 genera. Median joining haplotype networks were constructed for each species for the mtDNA cytochrome C oxidase subunit I (COI), and an Analysis of Molecular Variance (AMOVA) was conducted to understand patterns of genetic diversity and structure across the three major ocean basins-the Indian, Atlantic and Pacific Oceans. Haplotype networks showed very shallow coalescence in most species, a finding previously reported for marine teleosts. Star topologies were predominant among sharks while complex mutational topologies predominated among rays, a finding we attribute to extremely limited dispersal in the early life history of rays. Population structuring varied amongst species groups, apparently due to differences in life history traits including reproductive philopatry, site fidelity, pelagic habitat, migratory habits, and dispersal ability. In comparison to reef-associated and demersal species, pelagic and semi pelagic species showed lower levels of structure between and within ocean basins. As expected, there is variation between taxa and groups, but there are also some broad patterns that can guide management and conservation strategies.
Collapse
Affiliation(s)
- Sudha Kottillil
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
- Department of Energy and Environment, TERI School of Advanced Studies, New Delhi, India
| | - Chetan Rao
- Dakshin Foundation, Bengaluru, Karnataka, India
| | - Brian W. Bowen
- Hawai‘i Institute of Marine Biology, University of Hawaii, Kaneohe, Hawai‘i, United States of America
| | - Kartik Shanker
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
- Dakshin Foundation, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Characterization of 35 new microsatellite markers for the blacktip reef shark (Carcharhinus melanopterus) and cross-species amplification in eight other shark species. Mol Biol Rep 2023; 50:3205-3215. [PMID: 36707491 DOI: 10.1007/s11033-022-08209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/13/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Shark species are overfished at a global scale, as they are poached for the finning industry or are caught as bycatch. Efficient conservation measures require fine-scale spatial and temporal studies to characterize shark habitat use, infer migratory habits, analyze relatedness, and detect population genetic differentiation. Gathering these types of data is costly and time-consuming, especially when it requires collection of shark tissue samples. METHODS AND RESULTS Genetic tools, such as microsatellite markers, are the most economical sampling method for collecting genetic data, as they enable the estimation of genetic diversity, population structure and parentage relationships and are thus an efficient way to inform conservation strategies. Here, a set of 45 microsatellite loci was tested on three blacktip reef shark (Carcharhinus melanopterus) populations from three Polynesian islands: Moorea, Morane and Tenararo. The set was composed of 10 previously published microsatellite markers and 35 microsatellite markers that were developed specifically for C. melanopterus as part of the present study. The 35 novel and 10 existing loci were cross-amplified on eight additional shark species (Carcharhinus amblyrhynchos, C. longimanus, C. sorrah, Galeocerdo cuvier, Negaprion acutidens, Prionacea glauca, Rhincodon typus and Sphyrna lewini). These species had an average of 69% of successful amplification, considered if at least 50% of the individual samples being successfully amplified per species and per locus. CONCLUSIONS This novel microsatellite marker set will help address numerous knowledge gaps that remain, concerning genetic stock identification, shark behavior and reproduction via parentage analysis.
Collapse
|
5
|
Genomic insights into the historical and contemporary demographics of the grey reef shark. Heredity (Edinb) 2022; 128:225-235. [PMID: 35296830 PMCID: PMC8987070 DOI: 10.1038/s41437-022-00514-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 11/08/2022] Open
Abstract
Analyses of genetic diversity can shed light on both the origins of biodiversity hotspots, as well as the conservation status of species that are impacted by human activities. With these objectives, we assembled a genomic dataset of 14,935 single nucleotide polymorphisms from 513 grey reef sharks (Carcharhinus amblyrhynchos) sampled across 17 locations in the tropical Indo-Pacific. We analysed geographic variation in genetic diversity, estimated ancient and contemporary effective population size (Ne) across sampling locations (using coalescent and linkage disequilibrium methods) and modelled the history of gene flow between the Coral Triangle and the Coral Sea. Genetic diversity decreased with distance away from the Coral Triangle and north-western Australia, implying that C. amblyrhynchos may have originated in this region. Increases in Ne were detected across almost all sampling locations 40,000-90,000 generations ago (approximately 0.6-1.5 mya, given an estimated generation time of 16.4 years), suggesting a range expansion around this time. More recent, secondary increases in Ne were inferred for the Misool and North Great Barrier Reef sampling locations, but joint modelling did not clarify whether these were due to population growth, migration, or both. Despite the greater genetic diversity and ancient Ne observed at sites around Australia and the Coral Triangle, remote reefs around north-western New Caledonia had the highest contemporary Ne, demonstrating the importance of using multiple population size assessment methods. This study provides insight into both the past and present demographics of C. amblyrhynchos and contributes to our understanding of evolution in marine biodiversity hotspots.
Collapse
|
6
|
Abstract
Abstract
Genetic relatedness in animal societies is often a factor that drives the structure of social groups. In the marine world, most studies which have investigated this question have focused on marine mammals such as whales and dolphins. For sharks, recent studies have demonstrated preferential associations among individuals from which social communities emerge. Assortment patterns have been found according to phenotypic or behavioral traits, but the role of genetic relatedness in shaping the social structure of adult shark populations has, to the best of our knowledge, never been investigated. Here, we used a social network analysis crossed with DNA microsatellite genotyping to investigate the role of the genetic relatedness in the social structure of a blacktip reef shark (Carcharhinus melanopterus) population. Based on the data from 156 groups of sharks, we used generalized affiliation indices to isolate social preferences from nonsocial associations, controlling for the contribution of sex, size, gregariousness, spatial, and temporal overlap on social associations, to test for the influence of genetic relatedness on social structure. A double-permutation procedure was employed to confirm our results and account for issues arising from potentially elevated type I and type II error rates. Kinship was not a predictor of associations and affiliations among sharks at the dyad or community levels as individuals tended to associate independently of the genetic relatedness among them. The lack of parental care in this species may contribute to the breakdown of family links in the population early in life, thereby preventing the formation of kin-based social networks.
Collapse
Affiliation(s)
- Johann Mourier
- PSL Research University, EPHE-UPVD-CNRS, USR 3278, Université de Perpignan, Perpignan, France
- Laboratoire d’Excellence “CORAIL”, EPHE, PSL Research University, UPVD, CNRS, USR CRIOBE, Papetoai, Moorea, French Polynesia
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD Sète, France
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, USR 3278, Université de Perpignan, Perpignan, France
- Laboratoire d’Excellence “CORAIL”, EPHE, PSL Research University, UPVD, CNRS, USR CRIOBE, Papetoai, Moorea, French Polynesia
| |
Collapse
|
7
|
Klein JD, der Merwe AEBV, Dicken ML, Emami-Khoyi A, Mmonwa KL, Teske PR. A globally threatened shark, Carcharias taurus, shows no population decline in South Africa. Sci Rep 2020; 10:17959. [PMID: 33087802 PMCID: PMC7578018 DOI: 10.1038/s41598-020-75044-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/09/2020] [Indexed: 12/03/2022] Open
Abstract
Knowledge about the demographic histories of natural populations helps to evaluate their conservation status, and potential impacts of natural and anthropogenic pressures. In particular, estimates of effective population size obtained through molecular data can provide useful information to guide management decisions for vulnerable populations. The spotted ragged-tooth shark, Carcharias taurus (also known as the sandtiger or grey nurse shark), is widely distributed in warm-temperate and subtropical waters, but has suffered severe population declines across much of its range as a result of overexploitation. Here, we used multilocus genotype data to investigate the demographic history of the South African C. taurus population. Using approximate Bayesian computation and likelihood-based importance sampling, we found that the population underwent a historical range expansion that may have been linked to climatic changes during the late Pleistocene. There was no evidence for a recent anthropogenic decline. Together with census data suggesting a stable population, these results support the idea that fishing pressure and other threats have so far not been detrimental to the local C. taurus population. The results reported here indicate that South Africa could possibly harbour the last remaining, relatively pristine population of this widespread but vulnerable top predator.
Collapse
Affiliation(s)
- Juliana D Klein
- Molecular Breeding and Biodiversity Group, Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Aletta E Bester-van der Merwe
- Molecular Breeding and Biodiversity Group, Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Matthew L Dicken
- KwaZulu-Natal Sharks Board, Umhlanga Rocks, 4320, South Africa
- Department of Development Studies, School of Economics, Development and Tourism, Nelson Mandela University, Port Elizabeth, 6031, South Africa
| | - Arsalan Emami-Khoyi
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Kolobe L Mmonwa
- KwaZulu-Natal Sharks Board, Umhlanga Rocks, 4320, South Africa
| | - Peter R Teske
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa.
| |
Collapse
|
8
|
Genome-wide SNPs detect no evidence of genetic population structure for reef manta rays (Mobula alfredi) in southern Mozambique. Heredity (Edinb) 2020; 126:308-319. [PMID: 33005043 DOI: 10.1038/s41437-020-00373-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 11/08/2022] Open
Abstract
Little is known about the extent of genetic connectivity along continuous coastlines in manta rays, or whether site visitation is influenced by relatedness. Such information is pertinent to defining population boundaries and understanding localized dispersal patterns and behaviour. Here, we use 3057 genome-wide single-nucleotide polymorphisms (SNPs) to evaluate population genetic structure and assess the levels of relatedness at aggregation sites of reef manta rays (Mobula alfredi) in southern Mozambique (n = 114). Contrary to indications of limited dispersal along the southern Mozambican coastline inferred from photo-identification and telemetry studies, our results show no evidence of population structure (non-significant FST < 0.001) for M. alfredi along this coast. We also found no evidence that individuals sampled at the same site were more related than expected by chance for males, females or across both sexes, suggesting that kinship may not influence visitation patterns at these sites. We estimated the effective population size (Ne) of this population to be 375 (95% CI = 369-380). Comparison to a distant eastern Indian Ocean site (Western Australia, n = 15) revealed strong genetic differentiation between Mozambique and Western Australia (FST = 0.377), identifying the Indian Ocean basin as a barrier to dispersal. Our findings show that genetic connectivity in M. alfredi extends for several hundred kilometres along continuous coastlines. We therefore recommend that the population in Mozambique be considered a discrete management unit, and future conservation plans should prioritize integrated strategies along the entire southern coastline.
Collapse
|
9
|
Mourier J, Claudet J, Planes S. Human‐induced shifts in habitat use and behaviour of a marine predator: the effects of bait provisioning in the blacktip reef shark. Anim Conserv 2020. [DOI: 10.1111/acv.12630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- J. Mourier
- PSL Université ParisEPHE‐UPVD‐CNRSUSR 3278 CRIOBE Perpignan France
- Laboratoire d’Excellence “CORAIL” Perpignan France
- MARBECUniv MontpellierCNRSIFREMERIRD Sète France
| | - J. Claudet
- Laboratoire d’Excellence “CORAIL” Perpignan France
- National Center for Scientific ResearchPSL Université ParisEPHE‐UPVD‐CNRSUSR 3278 CRIOBE Paris France
| | - S. Planes
- PSL Université ParisEPHE‐UPVD‐CNRSUSR 3278 CRIOBE Perpignan France
- Laboratoire d’Excellence “CORAIL” Perpignan France
| |
Collapse
|
10
|
Pirog A, Ravigné V, Fontaine MC, Rieux A, Gilabert A, Cliff G, Clua E, Daly R, Heithaus MR, Kiszka JJ, Matich P, Nevill JEG, Smoothey AF, Temple AJ, Berggren P, Jaquemet S, Magalon H. Population structure, connectivity, and demographic history of an apex marine predator, the bull shark Carcharhinus leucas. Ecol Evol 2019; 9:12980-13000. [PMID: 31871624 PMCID: PMC6912899 DOI: 10.1002/ece3.5597] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/23/2019] [Accepted: 07/28/2019] [Indexed: 01/16/2023] Open
Abstract
Knowledge of population structure, connectivity, and effective population size remains limited for many marine apex predators, including the bull shark Carcharhinus leucas. This large-bodied coastal shark is distributed worldwide in warm temperate and tropical waters, and uses estuaries and rivers as nurseries. As an apex predator, the bull shark likely plays a vital ecological role within marine food webs, but is at risk due to inshore habitat degradation and various fishing pressures. We investigated the bull shark's global population structure and demographic history by analyzing the genetic diversity of 370 individuals from 11 different locations using 25 microsatellite loci and three mitochondrial genes (CR, nd4, and cytb). Both types of markers revealed clustering between sharks from the Western Atlantic and those from the Western Pacific and the Western Indian Ocean, with no contemporary gene flow. Microsatellite data suggested low differentiation between the Western Indian Ocean and the Western Pacific, but substantial differentiation was found using mitochondrial DNA. Integrating information from both types of markers and using Bayesian computation with a random forest procedure (ABC-RF), this discordance was found to be due to a complete lack of contemporary gene flow. High genetic connectivity was found both within the Western Indian Ocean and within the Western Pacific. In conclusion, these results suggest important structuring of bull shark populations globally with important gene flow occurring along coastlines, highlighting the need for management and conservation plans on regional scales rather than oceanic basin scale.
Collapse
Affiliation(s)
- Agathe Pirog
- UMR ENTROPIE (Université de La Réunion/IRD/CNRS)Université de La RéunionSaint DenisFrance
| | | | - Michaël C. Fontaine
- Laboratoire MIVEGEC (Université de Montpellier UMR CNRS 5290, IRD 229)Centre IRD de MontpellierMontpellierFrance
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| | | | | | - Geremy Cliff
- KwaZulu‐Natal Sharks BoardUmhlanga RocksSouth Africa
- School of Life SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Eric Clua
- EPHECNRS UPVDUSR 3278 CRIOBEPSL Research UniversityPerpignanFrance
- Laboratoire d'Excellence CORAILPerpignanFrance
| | - Ryan Daly
- Oceanographic Research InstituteDurbanSouth Africa
- South African Institute for Aquatic BiodiversityGrahamstownSouth Africa
| | - Michael R. Heithaus
- Department of Biological SciencesFlorida International UniversityNorth MiamiFLUSA
| | - Jeremy J. Kiszka
- Department of Biological SciencesFlorida International UniversityNorth MiamiFLUSA
| | - Philip Matich
- Department of Biological SciencesFlorida International UniversityNorth MiamiFLUSA
| | | | - Amy F. Smoothey
- NSW Department of Primary IndustriesSydney Institute of Marine ScienceMosmanNSWAustralia
| | - Andrew J. Temple
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Per Berggren
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Sébastien Jaquemet
- UMR ENTROPIE (Université de La Réunion/IRD/CNRS)Université de La RéunionSaint DenisFrance
| | - Hélène Magalon
- UMR ENTROPIE (Université de La Réunion/IRD/CNRS)Université de La RéunionSaint DenisFrance
- Laboratoire d'Excellence CORAILPerpignanFrance
| |
Collapse
|
11
|
Boissin E, Thorrold SR, Braun CD, Zhou Y, Clua EE, Planes S. Contrasting global, regional and local patterns of genetic structure in gray reef shark populations from the Indo-Pacific region. Sci Rep 2019; 9:15816. [PMID: 31676818 PMCID: PMC6825237 DOI: 10.1038/s41598-019-52221-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/10/2019] [Indexed: 11/21/2022] Open
Abstract
Human activities have resulted in the loss of over 90% of sharks in most ocean basins and one in four species of elasmobranch are now listed at risk of extinction by the IUCN. How this collapse will affect the ability of populations to recover in the face of continued exploitation and global climate change remains unknown. Indeed, important ecological and biological information are lacking for most shark species, particularly estimates of genetic diversity and population structure over a range of spatial scales. Using 15 microsatellite markers, we investigated genetic diversity and population structure in gray reef sharks over their Indo-Pacific range (407 specimens from 9 localities). Clear genetic differentiation was observed between the Indian and the Pacific Ocean specimens (FST = 0.145***). Further differentiation within the Pacific included a West and East cleavage as well as North-Central and South-Central Pacific clusters. No genetic differentiation was detected within archipelagos. These results highlight the legacy of past climate changes and the effects of large ocean expanses and circulation patterns on contrasting levels of connectivity at global, regional and local scales. Our results indicate a need for regional conservation units for gray reef sharks and pinpoint the isolation and vulnerability of their French Polynesian population.
Collapse
Affiliation(s)
- E Boissin
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France. .,Laboratoire d'Excellence CORAIL, Papetoai, French Polynesia.
| | - S R Thorrold
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - C D Braun
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.,Massachusetts Institute of Technology-Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge, MA, 02139, USA.,School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Y Zhou
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France.,Laboratoire d'Excellence CORAIL, Papetoai, French Polynesia
| | - E E Clua
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France.,Laboratoire d'Excellence CORAIL, Papetoai, French Polynesia
| | - S Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France.,Laboratoire d'Excellence CORAIL, Papetoai, French Polynesia
| |
Collapse
|
12
|
Same species, different prerequisites: investigating body condition and foraging success in young reef sharks between an atoll and an island system. Sci Rep 2019; 9:13447. [PMID: 31530846 PMCID: PMC6748967 DOI: 10.1038/s41598-019-49761-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/27/2019] [Indexed: 11/08/2022] Open
Abstract
Acquiring and storing energy is vital to sharks of all age-classes. Viviparous shark embryos receive endogenous maternal energy reserves to sustain the first weeks after birth. Then, in order to maintain body condition, sharks must start foraging. Our goal was to understand whether maternal energy investments vary between blacktip reef sharks (Carcharhinus melanopterus) from two populations and to what extent body condition and the initiation of foraging might be affected by presumably variable maternal investments. A total of 546 young sharks were captured at St. Joseph atoll (Seychelles) and Moorea (French Polynesia) between 2014 and 2018, and indices of body condition and percentage of stomachs containing prey were measured. Maternal investment was found to be site-specific, with significantly larger, heavier, and better conditioned individuals in Moorea. Despite these advantages, as time progressed, Moorea sharks exhibited significant decreases in body condition and were slower to initiate foraging. We suggest that the young sharks' foraging success is independent of the quality of maternal energy resources, and that other factors, such as prey availability, prey quality, and/or anthropogenic stressors are likely responsible for the observed differences across sites. Insights into intraspecific variations in early life-stages may further support site-specific management strategies for young sharks from nearshore habitats.
Collapse
|
13
|
Pogoreutz C, Gore MA, Perna G, Millar C, Nestler R, Ormond RF, Clarke CR, Voolstra CR. Similar bacterial communities on healthy and injured skin of black tip reef sharks. Anim Microbiome 2019; 1:9. [PMID: 33499949 PMCID: PMC7807711 DOI: 10.1186/s42523-019-0011-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
Background Sharks are in severe global decline due to human exploitation. The additional concern of emerging diseases for this ancient group of fish, however, remains poorly understood. While wild-caught and captive sharks may be susceptible to bacterial and transmissible diseases, recent reports suggest that shark skin may harbor properties that prevent infection, such as a specialized ultrastructure or innate immune properties, possibly related to associated microbial assemblages. To assess whether bacterial community composition differs between visibly healthy and insulted (injured) shark skin, we compared bacterial assemblages of skin covering the gills and the back from 44 wild-caught black-tip reef sharks (Carcharhinus melanopterus) from the Amirante Islands (Seychelles) via 16S rRNA gene amplicon sequencing. Results Shark skin-associated bacterial communities were diverse (5971 bacterial taxa from 375 families) and dominated by three families of the phylum Proteobacteria typical of marine organisms and environments (Rhodobacteraceae, Alteromonadaceae, Halomonadaceae). Significant differences in bacterial community composition of skin were observed for sharks collected from different sites, but not between healthy or injured skin samples or skin type (gills vs. back). The core microbiome (defined as bacterial taxa present in ≥50% of all samples) consisted of 12 bacterial taxa, which are commonly observed in marine organisms, some of which may be associated with animal host health. Conclusion The conserved bacterial community composition of healthy and injured shark skin samples suggests absence of severe bacterial infections or substantial pathogen propagation upon skin insult. While a mild bacterial infection may have gone undetected, the overall conserved bacterial community implies that bacterial function(s) may be maintained in injured skin. At present, the contribution of bacteria, besides intrinsic animal host factors, to counter skin infection and support rapid wound healing in sharks are unknown. This represents clear knowledge gaps that should be addressed in future work, e.g. by screening for antimicrobial properties of skin-associated bacterial isolates. Electronic supplementary material The online version of this article (10.1186/s42523-019-0011-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claudia Pogoreutz
- Red Sea Research Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Mauvis A Gore
- Marine Conservation International, South Queensferry, Edinburgh, Scotland, UK.,Centre for Marine Biodiversity & Biotechnology, Heriot-Watt University, Riccarton, Edinburgh, Scotland, UK
| | - Gabriela Perna
- Red Sea Research Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Catriona Millar
- Marine Conservation International, South Queensferry, Edinburgh, Scotland, UK.,Centre for Marine Biodiversity & Biotechnology, Heriot-Watt University, Riccarton, Edinburgh, Scotland, UK
| | - Robert Nestler
- Veterinär-Physiologisch-Chemisches Institut, University of Leipzig, 04107 Leipzig, Germany
| | - Rupert F Ormond
- Marine Conservation International, South Queensferry, Edinburgh, Scotland, UK. .,Centre for Marine Biodiversity & Biotechnology, Heriot-Watt University, Riccarton, Edinburgh, Scotland, UK. .,Faculty of Marine Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | | | - Christian R Voolstra
- Red Sea Research Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia. .,Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
14
|
Pirog A, Jaquemet S, Ravigné V, Cliff G, Clua E, Holmes BJ, Hussey NE, Nevill JEG, Temple AJ, Berggren P, Vigliola L, Magalon H. Genetic population structure and demography of an apex predator, the tiger shark Galeocerdo cuvier. Ecol Evol 2019; 9:5551-5571. [PMID: 31160982 PMCID: PMC6540675 DOI: 10.1002/ece3.5111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/20/2019] [Accepted: 02/26/2019] [Indexed: 12/16/2022] Open
Abstract
Population genetics has been increasingly applied to study large sharks over the last decade. Whilst large shark species are often difficult to study with direct methods, improved knowledge is needed for both population management and conservation, especially for species vulnerable to anthropogenic and climatic impacts. The tiger shark, Galeocerdo cuvier, is an apex predator known to play important direct and indirect roles in tropical and subtropical marine ecosystems. While the global and Indo-West Pacific population genetic structure of this species has recently been investigated, questions remain over population structure and demographic history within the western Indian (WIO) and within the western Pacific Oceans (WPO). To address the knowledge gap in tiger shark regional population structures, the genetic diversity of 286 individuals sampled in seven localities was investigated using 27 microsatellite loci and three mitochondrial genes (CR,COI, and cytb). A weak genetic differentiation was observed between the WIO and the WPO, suggesting high genetic connectivity. This result agrees with previous studies and highlights the importance of the pelagic behavior of this species to ensure gene flow. Using approximate Bayesian computation to couple information from both nuclear and mitochondrial markers, evidence of a recent bottleneck in the Holocene (2,000-3,000 years ago) was found, which is the most probable cause for the low genetic diversity observed. A contemporary effective population size as low as 111 [43,369] was estimated during the bottleneck. Together, these results indicate low genetic diversity that may reflect a vulnerable population sensitive to regional pressures. Conservation measures are thus needed to protect a species that is classified as Near Threatened.
Collapse
Affiliation(s)
- Agathe Pirog
- UMR ENTROPIE (Université de La Réunion/IRD/CNRS)Université de La RéunionSaint Denis, La RéunionFrance
| | - Sébastien Jaquemet
- UMR ENTROPIE (Université de La Réunion/IRD/CNRS)Université de La RéunionSaint Denis, La RéunionFrance
| | | | - Geremy Cliff
- KwaZulu‐Natal Sharks BoardUmhlanga RocksSouth Africa
- School of Life SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Eric Clua
- EPHE‐CNRS‐UPVDCNRS UPVDUSR 3278 CRIOBEPSL Research UniversityPerpignanFrance
- Laboratoire d'Excellence CORAILPerpignanFrance
| | - Bonnie J. Holmes
- School of Biological SciencesUniversity of Queensland, St LuciaBrisbaneQueenslandAustralia
| | - Nigel E. Hussey
- Biological SciencesUniversity of WindsorWindsorOntarioCanada
| | | | - Andrew J. Temple
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Per Berggren
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Laurent Vigliola
- Laboratoire d'Excellence CORAILPerpignanFrance
- UMR ENTROPIE (Université de La Réunion/IRD/CNRS)Institut de Recherche pour le DéveloppementNouméaNouvelle CalédonieFrance
| | - Hélène Magalon
- UMR ENTROPIE (Université de La Réunion/IRD/CNRS)Université de La RéunionSaint Denis, La RéunionFrance
- Laboratoire d'Excellence CORAILPerpignanFrance
| |
Collapse
|
15
|
Demographic inferences after a range expansion can be biased: the test case of the blacktip reef shark (Carcharhinus melanopterus). Heredity (Edinb) 2018; 122:759-769. [PMID: 30459340 DOI: 10.1038/s41437-018-0164-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
The evolutionary history of species is a dynamic process as they modify, expand, and contract their spatial distributions over time. Range expansions (REs) occur through a series of founder events that are followed by migration among neighboring demes. The process usually results in structured metapopulations and leaves a distinct signature in the genetic variability of species. Explicitly modeling the consequences of complex demographic events such as REs is computationally very intensive. Here we propose an an alternative approach that requires less computational effort than a comprehensive RE model, but that can recover the demography of species undergoing a RE, by combining spatially explicit modelling with simplified but realistic metapopulation models. We examine the demographic and colonization history of Carcharhinus melanopterus, an abundant reef-associated shark, as a test case. We first used a population genomics approach to statistically confirm the occurrence of a RE in C. melanopterus, and identify its origin in the Indo-Australian Archipelago. Spatial genetic modelling identified two waves of stepping-stone colonization: an eastward wave moving through the Pacific and a westward one moving through the Indian Ocean. We show that metapopulation models best describe the demographic history of this species and that not accounting for this may lead to incorrectly interpreting the observed genetic variation as signals of widespread population bottlenecks. Our study highlights insights that can be gained about demography by coupling metapopulation models with spatial modeling and underscores the need for cautious interpretation of population genetic data when advancing conservation priorities.
Collapse
|
16
|
Almojil D, Cliff G, Spaet JLY. Weak population structure of the Spot-tail shark Carcharhinus sorrah and the Blacktip shark C. limbatus along the coasts of the Arabian Peninsula, Pakistan, and South Africa. Ecol Evol 2018; 8:9536-9549. [PMID: 30377521 PMCID: PMC6194305 DOI: 10.1002/ece3.4468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 11/24/2022] Open
Abstract
The increase in demand for shark meat and fins has placed shark populations worldwide under high fishing pressure. In the Arabian region, the spot-tail shark Carcharhinus sorrah and the Blacktip shark Carcharhinus limbatus are among the most exploited species. In this study, we investigated the population genetic structure of C. sorrah (n = 327) along the coasts of the Arabian Peninsula and of C. limbatus (n = 525) along the Arabian coasts, Pakistan, and KwaZulu-Natal, South Africa, using microsatellite markers (15 and 11 loci, respectively). Our findings support weak population structure in both species. Carcharhinus sorrah exhibited a fine structure, subdividing the area into three groups. The first group comprises all samples from Bahrain, the second from the UAE and Yemen, and the third from Oman. Similarly, C. limbatus exhibited population subdivision into three groups. The first group, comprising samples from Bahrain and Kuwait, was highly differentiated from the second and third groups, comprising samples from Oman, Pakistan, the UAE, and Yemen; and South Africa and the Saudi Arabian Red Sea, respectively. Population divisions were supported by pairwise F ST values and discriminant analysis of principal components (DAPC), but not by STRUCTURE. We suggest that the mostly low but significant pairwise F ST values in our study are suggestive of fine population structure, which is possibly attributable to behavioral traits such as residency in C. sorrah and site fidelity and philopatry in C. limbatus. However, for all samples obtained from the northern parts of the Gulf (Bahrain and/or Kuwait) in both species, the higher but significant pairwise F ST values could possibly be a result of founder effects during the Tethys Sea closure. Based on DAPC and F ST results, we suggest each population to be treated as independent management unit, as conservation concerns emerge.
Collapse
Affiliation(s)
| | - Geremy Cliff
- KwaZulu‐Natal Shark BoardUmhlanga, South Africa and School of Life SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Julia L. Y. Spaet
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Red Sea Research CenterDivision of Biological and Environmental Science and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| |
Collapse
|
17
|
|
18
|
Duffy CAJ, Forrester ND, Gibson TK, Hathaway S. Occurrence of the whitetip reef shark Triaenodon obesus at the Kermadec Islands, Southwest Pacific Ocean. NEW ZEALAND JOURNAL OF ZOOLOGY 2017. [DOI: 10.1080/03014223.2017.1340312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- C. A. J. Duffy
- Department of Conservation, Private Bag 68908, Auckland 1141, New Zealand
| | - N. D. Forrester
- Department of Conservation, PO Box 842, Whangarei 0140, New Zealand
| | - T. K. Gibson
- Department of Conservation, PO Box 842, Whangarei 0140, New Zealand
| | - S. Hathaway
- 19 Kotuku Place, Snells Beach 0920, New Zealand
| |
Collapse
|
19
|
Momigliano P, Harcourt R, Robbins WD, Jaiteh V, Mahardika GN, Sembiring A, Stow A. Genetic structure and signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos). Heredity (Edinb) 2017; 119:142-153. [PMID: 28422134 DOI: 10.1038/hdy.2017.21] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/17/2017] [Accepted: 03/02/2017] [Indexed: 01/01/2023] Open
Abstract
With overfishing reducing the abundance of marine predators in multiple marine ecosystems, knowledge of genetic structure and local adaptation may provide valuable information to assist sustainable management. Despite recent technological advances, most studies on sharks have used small sets of neutral markers to describe their genetic structure. We used 5517 nuclear single-nucleotide polymorphisms (SNPs) and a mitochondrial DNA (mtDNA) gene to characterize patterns of genetic structure and detect signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos). Using samples from Australia, Indonesia and oceanic reefs in the Indian Ocean, we established that large oceanic distances represent barriers to gene flow, whereas genetic differentiation on continental shelves follows an isolation by distance model. In Australia and Indonesia differentiation at nuclear SNPs was weak, with coral reefs acting as stepping stones maintaining connectivity across large distances. Differentiation of mtDNA was stronger, and more pronounced in females, suggesting sex-biased dispersal. Four independent tests identified a set of loci putatively under selection, indicating that grey reef sharks in eastern Australia are likely under different selective pressures to those in western Australia and Indonesia. Genetic distances averaged across all loci were uncorrelated with genetic distances calculated from outlier loci, supporting the conclusion that different processes underpin genetic divergence in these two data sets. This pattern of heterogeneous genomic differentiation, suggestive of local adaptation, has implications for the conservation of grey reef sharks; furthermore, it highlights that marine species showing little genetic differentiation at neutral loci may exhibit patterns of cryptic genetic structure driven by local selection.
Collapse
Affiliation(s)
- P Momigliano
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia.,Sydney Institute of Marine Science, Mosman, New South Wales, Australia.,Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - R Harcourt
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - W D Robbins
- College of Marine and Environmental Science, James Cook University, Townsville, Queensland, Australia.,Wildlife Marine, Perth, Western Australia, Australia
| | - V Jaiteh
- Centre for Fish and Fisheries Research, Murdoch University, Murdoch, Western Australia, Australia
| | - G N Mahardika
- The Indonesian Biodiversity Research Centre, Udayana University, Denpasar, Bali, Indonesia
| | - A Sembiring
- The Indonesian Biodiversity Research Centre, Udayana University, Denpasar, Bali, Indonesia
| | - A Stow
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Lin W, Karczmarski L, Xia J, Zhang X, Yu X, Wu Y. Increased human occupation and agricultural development accelerates the population contraction of an estuarine delphinid. Sci Rep 2016; 6:35713. [PMID: 27759106 PMCID: PMC5069629 DOI: 10.1038/srep35713] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/30/2016] [Indexed: 11/17/2022] Open
Abstract
Over the past few thousand years, human development and population expansion in southern China have led to local extirpation and population contraction of many terrestrial animals. At what extent this early human-induced environmental change has also affected coastal marine species remains poorly known. We investigated the demographic history of the Indo-Pacific humpback dolphin (Sousa chinensis) in the Pearl River Delta (PRD); an obligatory inshore species known for its susceptibility to anthropogenic impacts in one of China’s most developed coastal regions. Although the deltaic evolution of PRD has been influenced by climate since the Holocene, ~74% reduction of the dolphin’s effective population size occurred within the last 2000 years, consistent with ~61% habitat contraction during this period. This considerable and recent population contraction may have been due to land use practices and deforestation in the upper/middle Pearl River region, all leading to increasing sedimentation rate in the estuarine area. As anthropogenic impacts within the drainage of Pearl River affected a vast area, coastal dolphins and large terrestrial mammals in southern China may share a similar demographic history, whilst the demographic and biogeographic history of the PRD humpback dolphins may be symptomatic of similar processes that this species may have undergone elsewhere in the region.
Collapse
Affiliation(s)
- Wenzhi Lin
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center; Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.,The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Cape d'Aguilar, Shek O, Hong Kong
| | - Leszek Karczmarski
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Cape d'Aguilar, Shek O, Hong Kong
| | - Jia Xia
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center; Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Xiyang Zhang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center; Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Xinjian Yu
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center; Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yuping Wu
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center; Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| |
Collapse
|
21
|
Resampling: An improvement of importance sampling in varying population size models. Theor Popul Biol 2016; 114:70-87. [PMID: 27712980 DOI: 10.1016/j.tpb.2016.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 11/21/2022]
Abstract
Sequential importance sampling algorithms have been defined to estimate likelihoods in models of ancestral population processes. However, these algorithms are based on features of the models with constant population size, and become inefficient when the population size varies in time, making likelihood-based inferences difficult in many demographic situations. In this work, we modify a previous sequential importance sampling algorithm to improve the efficiency of the likelihood estimation. Our procedure is still based on features of the model with constant size, but uses a resampling technique with a new resampling probability distribution depending on the pairwise composite likelihood. We tested our algorithm, called sequential importance sampling with resampling (SISR) on simulated data sets under different demographic cases. In most cases, we divided the computational cost by two for the same accuracy of inference, in some cases even by one hundred. This study provides the first assessment of the impact of such resampling techniques on parameter inference using sequential importance sampling, and extends the range of situations where likelihood inferences can be easily performed.
Collapse
|
22
|
Maisano Delser P, Corrigan S, Hale M, Li C, Veuille M, Planes S, Naylor G, Mona S. Population genomics of C. melanopterus using target gene capture data: demographic inferences and conservation perspectives. Sci Rep 2016; 6:33753. [PMID: 27651217 PMCID: PMC5030670 DOI: 10.1038/srep33753] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/19/2016] [Indexed: 01/23/2023] Open
Abstract
Population genetics studies on non-model organisms typically involve sampling few markers from multiple individuals. Next-generation sequencing approaches open up the possibility of sampling many more markers from fewer individuals to address the same questions. Here, we applied a target gene capture method to deep sequence ~1000 independent autosomal regions of a non-model organism, the blacktip reef shark (Carcharhinus melanopterus). We devised a sampling scheme based on the predictions of theoretical studies of metapopulations to show that sampling few individuals, but many loci, can be extremely informative to reconstruct the evolutionary history of species. We collected data from a single deme (SID) from Northern Australia and from a scattered sampling representing various locations throughout the Indian Ocean (SCD). We explored the genealogical signature of population dynamics detected from both sampling schemes using an ABC algorithm. We then contrasted these results with those obtained by fitting the data to a non-equilibrium finite island model. Both approaches supported an Nm value ~40, consistent with philopatry in this species. Finally, we demonstrate through simulation that metapopulations exhibit greater resilience to recent changes in effective size compared to unstructured populations. We propose an empirical approach to detect recent bottlenecks based on our sampling scheme.
Collapse
Affiliation(s)
- Pierpaolo Maisano Delser
- Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Ecole Pratique des Hautes Etudes, 16 rue Buffon, CP39, 75005, Paris, France
- EPHE, PSL Research University, Paris, France
| | - Shannon Corrigan
- Department of Biology, College of Charleston, Charleston 29412, SC, USA
| | - Matthew Hale
- Medical University of South Carolina, College of Graduate Studies, Charleston 29403, SC, USA
| | - Chenhong Li
- Department of Biology, College of Charleston, Charleston 29412, SC, USA
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Michel Veuille
- Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Ecole Pratique des Hautes Etudes, 16 rue Buffon, CP39, 75005, Paris, France
- EPHE, PSL Research University, Paris, France
| | - Serge Planes
- CRIOBE-USR 3278, CNRS-EPHE-UPVD, Laboratoire d’Excellence ‘CORAIL’, 58 Avenue Paul Alduy, 66860 Perpignan, France
| | - Gavin Naylor
- Department of Biology, College of Charleston, Charleston 29412, SC, USA
| | - Stefano Mona
- Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Ecole Pratique des Hautes Etudes, 16 rue Buffon, CP39, 75005, Paris, France
- EPHE, PSL Research University, Paris, France
| |
Collapse
|
23
|
Extreme Inverted Trophic Pyramid of Reef Sharks Supported by Spawning Groupers. Curr Biol 2016; 26:2011-2016. [PMID: 27476598 DOI: 10.1016/j.cub.2016.05.058] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/29/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022]
Abstract
The extent of the global human footprint [1] limits our understanding of what is natural in the marine environment. Remote, near-pristine areas provide some baseline expectations for biomass [2, 3] and suggest that predators dominate, producing an inverted biomass pyramid. The southern pass of Fakarava atoll-a biosphere reserve in French Polynesia-hosts an average of 600 reef sharks, two to three times the biomass per hectare documented for any other reef shark aggregations [4]. This huge biomass of predators makes the trophic pyramid inverted. Bioenergetics models indicate that the sharks require ∼90 tons of fish per year, whereas the total fish production in the pass is ∼17 tons per year. Energetic theory shows that such trophic structure is maintained through subsidies [5-9], and empirical evidence suggests that sharks must engage in wide-ranging foraging excursions to meet energy needs [9, 10]. We used underwater surveys and acoustic telemetry to assess shark residency in the pass and feeding behavior and used bioenergetics models to understand energy flow. Contrary to previous findings, our results highlight that sharks may overcome low local energy availability by feeding on fish spawning aggregations, which concentrate energy from other local trophic pyramids. Fish spawning aggregations are known to be targeted by sharks, but they were previously believed to play a minor role representing occasional opportunistic supplements. This research demonstrates that fish spawning aggregations can play a significant role in the maintenance of local inverted pyramids in pristine marine areas. Conservation of fish spawning aggregations can help conserve shark populations, especially if combined with shark fishing bans.
Collapse
|
24
|
Osgood GJ, Baum JK. Reef sharks: recent advances in ecological understanding to inform conservation. JOURNAL OF FISH BIOLOGY 2015; 87:1489-1523. [PMID: 26709218 DOI: 10.1111/jfb.12839] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/09/2015] [Indexed: 06/05/2023]
Abstract
Sharks are increasingly being recognized as important members of coral-reef communities, but their overall conservation status remains uncertain. Nine of the 29 reef-shark species are designated as data deficient in the IUCN Red List, and three-fourths of reef sharks had unknown population trends at the time of their assessment. Fortunately, reef-shark research is on the rise. This new body of research demonstrates reef sharks' high site restriction, fidelity and residency on coral reefs, their broad trophic roles connecting reef communities and their high population genetic structure, all information that should be useful for their management and conservation. Importantly, recent studies on the abundance and population trends of the three classic carcharhinid reef sharks (grey reef shark Carcharhinus amblyrhynchos, blacktip reef shark Carcharhinus melanopterus and whitetip reef shark Triaenodon obesus) may contribute to reassessments identifying them as more vulnerable than currently realized. Because over half of the research effort has focused on only these three reef sharks and the nurse shark Ginglymostoma cirratum in only a few locales, there remain large taxonomic and geographic gaps in reef-shark knowledge. As such, a large portion of reef-shark biodiversity remains uncharacterized despite needs for targeted research identified in their red list assessments. A research agenda for the future should integrate abundance, life history, trophic ecology, genetics, habitat use and movement studies, and expand the breadth of such research to understudied species and localities, in order to better understand the conservation requirements of these species and to motivate effective conservation solutions.
Collapse
Affiliation(s)
- G J Osgood
- Department of Biology, University of Victoria, P. O. Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada
| | - J K Baum
- Department of Biology, University of Victoria, P. O. Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
25
|
Momigliano P, Harcourt R, Robbins WD, Stow A. Connectivity in grey reef sharks (Carcharhinus amblyrhynchos) determined using empirical and simulated genetic data. Sci Rep 2015; 5:13229. [PMID: 26314287 PMCID: PMC4551972 DOI: 10.1038/srep13229] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/21/2015] [Indexed: 11/13/2022] Open
Abstract
Grey reef sharks (Carcharhinus amblyrhynchos) can be one of the numerically dominant high order predators on pristine coral reefs, yet their numbers have declined even in the highly regulated Australian Great Barrier Reef (GBR) Marine Park. Knowledge of both large scale and fine scale genetic connectivity of grey reef sharks is essential for their effective management, but no genetic data are yet available. We investigated grey reef shark genetic structure in the GBR across a 1200 km latitudinal gradient, comparing empirical data with models simulating different levels of migration. The empirical data did not reveal any genetic structuring along the entire latitudinal gradient sampled, suggesting regular widespread dispersal and gene flow of the species throughout most of the GBR. Our simulated datasets indicate that even with substantial migrations (up to 25% of individuals migrating between neighboring reefs) both large scale genetic structure and genotypic spatial autocorrelation at the reef scale were maintained. We suggest that present migration rates therefore exceed this level. These findings have important implications regarding the effectiveness of networks of spatially discontinuous Marine Protected Areas to protect reef sharks.
Collapse
Affiliation(s)
- Paolo Momigliano
- Department of Biological Sciences, Macquarie University, Sydney, 2109 New South Wales, Australia
- Sydney Institute of Marine Science, 19 Chowder Bay Road, Mosman, 2088 New South Wales, Australia
| | - Robert Harcourt
- Department of Biological Sciences, Macquarie University, Sydney, 2109 New South Wales, Australia
| | - William D. Robbins
- College of Marine and Environmental Science, James Cook University, Townsville, 4810 Queensland, Australia
- Wildlife Marine, Perth, 6020 Western Australia, Australia
| | - Adam Stow
- Department of Biological Sciences, Macquarie University, Sydney, 2109 New South Wales, Australia
| |
Collapse
|
26
|
Spaet JLY, Jabado RW, Henderson AC, Moore ABM, Berumen ML. Population genetics of four heavily exploited shark species around the Arabian Peninsula. Ecol Evol 2015; 5:2317-32. [PMID: 26120422 PMCID: PMC4475365 DOI: 10.1002/ece3.1515] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 01/31/2023] Open
Abstract
The northwestern Indian Ocean harbors a number of larger marine vertebrate taxa that warrant the investigation of genetic population structure given remarkable spatial heterogeneity in biological characteristics such as distribution, behavior, and morphology. Here, we investigate the genetic population structure of four commercially exploited shark species with different biological characteristics (Carcharhinus limbatus, Carcharhinus sorrah, Rhizoprionodon acutus, and Sphyrna lewini) between the Red Sea and all other water bodies surrounding the Arabian Peninsula. To assess intraspecific patterns of connectivity, we constructed statistical parsimony networks among haplotypes and estimated (1) population structure; and (2) time of most recent population expansion, based on mitochondrial control region DNA and a total of 20 microsatellites. Our analysis indicates that, even in smaller, less vagile shark species, there are no contemporary barriers to gene flow across the study region, while historical events, for example, Pleistocene glacial cycles, may have affected connectivity in C. sorrah and R. acutus. A parsimony network analysis provided evidence that Arabian S. lewini may represent a population segment that is distinct from other known stocks in the Indian Ocean, raising a new layer of conservation concern. Our results call for urgent regional cooperation to ensure the sustainable exploitation of sharks in the Arabian region.
Collapse
Affiliation(s)
- Julia L Y Spaet
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology23955-6900, Thuwal, Saudi Arabia
| | - Rima W Jabado
- Gulf Elasmo ProjectP.O. Box 29588, Dubai, United Arab Emirates
| | - Aaron C Henderson
- Department of Marine Science & Fisheries, College of Agricultural & Marine Sciences, Sultan Qaboos UniversityMuscat, Oman
| | - Alec B M Moore
- RSK Environment Ltd, Spring LodgeHelsby, Cheshire, WA6 0AR, UK
| | - Michael L Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology23955-6900, Thuwal, Saudi Arabia
| |
Collapse
|
27
|
Wang J. Does GST underestimate genetic differentiation from marker data? Mol Ecol 2015; 24:3546-58. [PMID: 25891752 DOI: 10.1111/mec.13204] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 01/13/2023]
Abstract
The widely applied genetic differentiation statistics F(ST) and G(ST) have recently been criticized for underestimating differentiation when applied to highly polymorphic markers such as microsatellites. New statistics claimed to be unaffected by marker polymorphisms have been proposed and advocated to replace the traditional F(ST) and G(ST). This study shows that G(ST) gives accurate estimates and underestimates of differentiation when demographic factors are more and less important than mutations, respectively. In the former case, all markers, regardless of diversity (H(S)), have the same G(ST) value in expectation and thus give replicated estimates of differentiation. In the latter case, markers of higher H(S) have lower G(ST) values, resulting in a negative, roughly linear correlation between G(ST) and H(S) across loci. I propose that the correlation coefficient between G(ST) and H(S) across loci, r(GH), can be used to distinguish the two cases and to detect mutational effects on G(ST). A highly negative and significant r(GH), when coupled with highly variable G(ST) values among loci, would reveal that marker G(ST) values are affected substantially by mutations and marker diversity, underestimate population differentiation, and are not comparable among studies, species and markers. Simulated and empirical data sets are used to check the power and statistical behaviour, and to demonstrate the usefulness of the correlation analysis.
Collapse
Affiliation(s)
- J Wang
- Institute of Zoology, Zoological Society of London, London, NW1 4RY, UK
| |
Collapse
|
28
|
Chin A, Mourier J, Rummer JL. Blacktip reef sharks (Carcharhinus melanopterus) show high capacity for wound healing and recovery following injury. CONSERVATION PHYSIOLOGY 2015; 3:cov062. [PMID: 27293741 PMCID: PMC4778477 DOI: 10.1093/conphys/cov062] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/13/2015] [Accepted: 11/15/2015] [Indexed: 05/19/2023]
Abstract
Wound healing is important for sharks from the earliest life stages, for example, as the 'umbilical scar' in viviparous species heals, and throughout adulthood, when sharks can incur a range of external injuries from natural and anthropogenic sources. Despite anecdotal accounts of rapid healing in elasmobranchs, data regarding recovery and survival of individuals from different wound or injury types has not been systematically collected. The present study documented: (i) 'umbilical scar' healing in wild-caught, neonatal blacktip reef sharks while being reared for 30 days in flow-through laboratory aquaria in French Polynesia; (ii) survival and recovery of free-swimming blacktip reef sharks in Australia and French Polynesia following a range of injuries; and (iii) long-term survival following suspected shark-finning activities. Laboratory monitoring, tag-recapture records, telemetry data and photo-identification records suggest that blacktip reef sharks have a high capacity to survive and recover from small or even large and severe wounds. Healing rates, recovery and survival are important factors to consider when assessing impacts of habitat degradation and fishing stress on shark populations. The present study suggests that individual survival may depend more on handling practices and physiological stress rather than the extent of physical injury. These observations also contribute to discussions regarding the ethics of tagging practices used in elasmobranch research and provide baseline healing rates that may increase the accuracy in estimating reproductive timing inferred from mating scars and birth dates for neonatal sharks based on umbilical scar healing status.
Collapse
Affiliation(s)
- Andrew Chin
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Johann Mourier
- Laboratoire d'Excellence 'CORAIL, USR 3278 CRIOBE CNRS-EPHE-UPVD, CRIOBE BP 1013 Moorea, 98729 Polynésie française
| | - Jodie L Rummer
- Laboratoire d'Excellence 'CORAIL, USR 3278 CRIOBE CNRS-EPHE-UPVD, CRIOBE BP 1013 Moorea, 98729 Polynésie française
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
- Corresponding author: ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia. Tel: +61 7 4781 5300.
| |
Collapse
|