1
|
Wang YC, Kao IP, Chang CH. Dietary carotenoids enhance SWS1 expression in female western mosquitofish (Gambusia affinis) but do not impair their likelihood of pregnancy in the presence of male guppy. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025:10.1007/s00359-025-01741-w. [PMID: 40299003 DOI: 10.1007/s00359-025-01741-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/26/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025]
Abstract
The various cone opsin genes are responsible for distinct ecological tasks, with the altered expression profiles in teleost fishes representing an excellent paradigm for studying how fishes can quickly adapt to diverse habitats within their lifecycles. The molecular mechanisms underlying transcriptional switching among cone opsin genes are still being investigated, but factors such as light conditions, developmental stages, sex hormones, and diet are known to play a role in changing cone opsin expression profiles. Based on previous research on guppies, we hypothesized that a diet rich in carotenoids could enhance expression of the opsin gene LWS in western mosquitofish (Gambusia affinis) and potentially influence female mate choice. We raised female western mosquitofish under low-level or high-level carotenoid diets and then conducted female mating preference experiments, with or without the presence of male guppy (Poecilia reticulata). qPCR revealed that high carotenoid intake upregulates SWS1 rather than LWS transcription. This positive feedback loop may promote foraging efficiency and also protect the visual system from UV damage. The carotenoid diets had no effect on pregnancy likelihood, possibly because UV light is not a critical cue in western mosquitofish female mate choice and/or the light source we used did not encompass the UV spectrum. Presence of male guppies had no effect on pregnancy likelihood, though a previous study reported that it significantly reduced brood size. Therefore, interactions between male guppies and western mosquitofish likely reduces the number of copulations and/or disrupts parenting to reduce the number of offspring.
Collapse
Affiliation(s)
- Yu-Chun Wang
- Institution of Fisheries Science, National Taiwan University, Taipei City, Taiwan
- Technical Service Division, Fisheries Research Institute, Ministry of Agriculture, Keelung City, Taiwan
| | - I-Pei Kao
- Freshwater Aquaculture Research Center Chupei Station, Fisheries Research Institute, Ministry of Agriculture, Hsinchu County, Taiwan
| | - Chia-Hao Chang
- Department of Science Education, National Taipei University of Education, Taipei City, Taiwan.
| |
Collapse
|
2
|
Chang Y, Wu S, Li J, Bao H, Wu C. Identification of Candidate Genes for Red-Eyed (Albinism) Domestic Guppies Using Genomic and Transcriptomic Analyses. Int J Mol Sci 2024; 25:2175. [PMID: 38396851 PMCID: PMC10888696 DOI: 10.3390/ijms25042175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Guppies are small tropical fish with brightly colored bodies and variable tail shapes. There are two phenotypes of domestic guppy eye color: red and black. The wild type is black-eyed. The main object of this study was to identify candidate genes for the red-eyed phenotype in domestic guppies. We hope to provide molecular genetic information for the development of new domestic guppy strains. Additionally, the results also contribute to basic research concerning guppies. In this study, 121 domestic guppies were used for genomic analysis (GWAS), and 44 genes were identified. Furthermore, 21 domestic guppies were used for transcriptomic analysis, and 874 differentially expressed genes (DEGs) were identified, including 357 upregulated and 517 downregulated genes. Through GO and KEGG enrichment, we identified some important terms or pathways mainly related to melanin biosynthesis and ion transport. qRT-PCR was also performed to verify the differential expression levels of four important candidate genes (TYR, OCA2, SLC45A2, and SLC24A5) between red-eyed and black-eyed guppies. Based on the results of genomic and transcriptomic analyses, we propose that OCA2 is the most important candidate gene for the red-eyed phenotype in guppies.
Collapse
Affiliation(s)
| | | | | | - Haigang Bao
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (S.W.); (J.L.); (C.W.)
| | | |
Collapse
|
3
|
Carscadden KA, Batstone RT, Hauser FE. Origins and evolution of biological novelty. Biol Rev Camb Philos Soc 2023; 98:1472-1491. [PMID: 37056155 DOI: 10.1111/brv.12963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Understanding the origins and impacts of novel traits has been a perennial interest in many realms of ecology and evolutionary biology. Here, we build on previous evolutionary and philosophical treatments of this subject to encompass novelties across biological scales and eco-evolutionary perspectives. By defining novelties as new features at one biological scale that have emergent effects at other biological scales, we incorporate many forms of novelty that have previously been treated in isolation (such as novelty from genetic mutations, new developmental pathways, new morphological features, and new species). Our perspective is based on the fundamental idea that the emergence of a novelty, at any biological scale, depends on its environmental and genetic context. Through this lens, we outline a broad array of generative mechanisms underlying novelty and highlight how genomic tools are transforming our understanding of the origins of novelty. Lastly, we present several case studies to illustrate how novelties across biological scales and systems can be understood based on common mechanisms of change and their environmental and genetic contexts. Specifically, we highlight how gene duplication contributes to the evolution of new complex structures in visual systems; how genetic exchange in symbiosis alters functions of both host and symbiont, resulting in a novel organism; and how hybridisation between species can generate new species with new niches.
Collapse
Affiliation(s)
- Kelly A Carscadden
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant St, Boulder, CO, 80309, USA
| | - Rebecca T Batstone
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Frances E Hauser
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| |
Collapse
|
4
|
Stieb SM, Cortesi F, de Queiroz LJ, Carleton KL, Seehausen O, Marshall NJ. Long-wavelength-sensitive (lws) opsin gene expression, foraging and visual communication in coral reef fishes. Mol Ecol 2023; 32:1656-1672. [PMID: 36560895 PMCID: PMC10065935 DOI: 10.1111/mec.16831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 11/25/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Coral reef fishes are diverse in ecology and behaviour and show remarkable colour variability. Investigating the visual pigment gene (opsin) expression in these fishes makes it possible to associate their visual genotype and phenotype (spectral sensitivities) to visual tasks, such as feeding strategy or conspecific detection. By studying all major damselfish clades (Pomacentridae) and representatives from five other coral reef fish families, we show that the long-wavelength-sensitive (lws) opsin is highly expressed in algivorous and less or not expressed in zooplanktivorous species. Lws is also upregulated in species with orange/red colours (reflectance >520 nm) and expression is highest in orange/red-coloured algivores. Visual models from the perspective of a typical damselfish indicate that sensitivity to longer wavelengths does enhance the ability to detect the red to far-red component of algae and orange/red-coloured conspecifics, possibly enabling social signalling. Character state reconstructions indicate that in the early evolutionary history of damselfishes, there was no lws expression and no orange/red coloration. Omnivory was most often the dominant state. Although herbivory was sometimes dominant, zooplanktivory was never dominant. Sensitivity to long wavelength (increased lws expression) only emerged in association with algivory but never with zooplanktivory. Higher lws expression is also exploited by social signalling in orange/red, which emerged after the transition to algivory. Although the relative timing of traits may deviate by different reconstructions and alternative explanations are possible, our results are consistent with sensory bias whereby social signals evolve as a correlated response to natural selection on sensory system properties in other contexts.
Collapse
Affiliation(s)
- Sara M. Stieb
- Centre for Ecology, Evolution and Biogeochemistry (CEEB), EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Institute of Ecology and Evolution, University of Bern, Switzerland
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Luiz Jardim de Queiroz
- Centre for Ecology, Evolution and Biogeochemistry (CEEB), EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Institute of Ecology and Evolution, University of Bern, Switzerland
| | - Karen L. Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Ole Seehausen
- Centre for Ecology, Evolution and Biogeochemistry (CEEB), EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Institute of Ecology and Evolution, University of Bern, Switzerland
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
5
|
Herdegen-Radwan M. Can female guppies learn to like male colours? A test of the role of associative learning in originating sexual preferences. Proc Biol Sci 2022; 289:20220212. [PMID: 35382592 PMCID: PMC8984809 DOI: 10.1098/rspb.2022.0212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
How do female sexual preferences for male ornamental traits arise? The developmental origins of female preferences are still an understudied area, with most explanations pointing to genetic mechanisms. One intriguing, little-explored, alternative focuses on the role of associative learning in driving this process. According to this hypothesis, a preference learned in an ecological context can be transferred into a sexual context, resulting in changes in mating preferences as a by-product. I tested this hypothesis by first training female guppies to associate either orange or black colour with food delivery; I then presented videos of males with computer-manipulated coloured spots and measured female preference towards them. I also allowed females from both treatments to mate with males differing in their ratio of orange-to-black spots and measured the males' reproductive success. After training, female sexual preferences significantly diverged among treatments in the expected direction. In addition, orange males sired a greater proportion of offspring with females food-conditioned on orange compared to those conditioned on black. These results show that mating preferences can arise as a by-product of associative learning, which, via translation into variation in male fitness, can become associated with indirect genetic benefits, potentially leading to further evolution.
Collapse
Affiliation(s)
- Magdalena Herdegen-Radwan
- Department of Behavioural Ecology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| |
Collapse
|
6
|
Owens GL, Veen T, Moxley DR, Arias-Rodriguez L, Tobler M, Rennison DJ. Parallel shifts of visual sensitivity and body coloration in replicate populations of extremophile fish. Mol Ecol 2021; 31:946-958. [PMID: 34784095 DOI: 10.1111/mec.16279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022]
Abstract
Visual sensitivity and body pigmentation are often shaped by both natural selection from the environment and sexual selection from mate choice. One way of quantifying the impact of the environment is by measuring how traits have changed after colonization of a novel habitat. To do this, we studied Poecilia mexicana populations that have repeatedly adapted to extreme sulphidic (H2 S-containing) environments. We measured visual sensitivity using opsin gene expression, as well as body pigmentation, for populations in four independent drainages. Both visual sensitivity and body pigmentation showed significant parallel shifts towards greater medium-wavelength sensitivity and reflectance in sulphidic populations. Altogether we found that sulphidic habitats select for differences in visual sensitivity and pigmentation. Shifts between habitats may be due to both differences in the water's spectral properties and correlated ecological changes.
Collapse
Affiliation(s)
- Gregory L Owens
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Thor Veen
- Quest University, Squamish, British Columbia, Canada
| | - Dylan R Moxley
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Diana J Rennison
- Division of Biological Sciences, University of California San Diego, San Diego, California, USA
| |
Collapse
|
7
|
Toure MW, Reader SM. Colour biases in learned foraging preferences in Trinidadian guppies. Ethology 2021. [DOI: 10.1111/eth.13237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Wyatt Toure
- Department of Biology McGill University Montreal QC Canada
| | | |
Collapse
|
8
|
Almeida P, Sandkam BA, Morris J, Darolti I, Breden F, Mank JE. Divergence and Remarkable Diversity of the Y Chromosome in Guppies. Mol Biol Evol 2021; 38:619-633. [PMID: 33022040 PMCID: PMC7826173 DOI: 10.1093/molbev/msaa257] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The guppy sex chromosomes show an extraordinary diversity in divergence across populations and closely related species. In order to understand the dynamics of the guppy Y chromosome, we used linked-read sequencing to assess Y chromosome evolution and diversity across upstream and downstream population pairs that vary in predator and food abundance in three replicate watersheds. Based on our population-specific genome assemblies, we first confirmed and extended earlier reports of two strata on the guppy sex chromosomes. Stratum I shows significant accumulation of male-specific sequence, consistent with Y divergence, and predates the colonization of Trinidad. In contrast, Stratum II shows divergence from the X, but no Y-specific sequence, and this divergence is greater in three replicate upstream populations compared with their downstream pair. Despite longstanding assumptions that sex chromosome recombination suppression is achieved through inversions, we find no evidence of inversions associated with either Stratum I or Stratum II. Instead, we observe a remarkable diversity in Y chromosome haplotypes within each population, even in the ancestral Stratum I. This diversity is likely due to gradual mechanisms of recombination suppression, which, unlike an inversion, allow for the maintenance of multiple haplotypes. In addition, we show that this Y diversity is dominated by low-frequency haplotypes segregating in the population, suggesting a link between haplotype diversity and female preference for rare Y-linked color variation. Our results reveal the complex interplay between recombination suppression and Y chromosome divergence at the earliest stages of sex chromosome divergence.
Collapse
Affiliation(s)
- Pedro Almeida
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Benjamin A Sandkam
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Jake Morris
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Felix Breden
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Dobbs OL, Talavera JB, Rossi SM, Menjivar S, Gray DA. Signaler-receiver-eavesdropper: Risks and rewards of variation in the dominant frequency of male cricket calls. Ecol Evol 2020; 10:12364-12371. [PMID: 33209294 PMCID: PMC7663976 DOI: 10.1002/ece3.6866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 11/09/2022] Open
Abstract
Signals are important for communication and mating, and while they can benefit an individual, they can also be costly and dangerous. Male field crickets call in order to attract female crickets, but gravid females of a parasitoid fly species, Ormia ochracea, are also attracted to the call and use it to pinpoint male cricket hosts. Conspicuousness of the call can vary with frequency, amplitude, and temporal features. Previous work with this system has only considered temporal variation in cricket calls, both large scale, that is, amount of calling and at what time of evening, and small scale, that is, aspects of chirp rate, pulse rate, and numbers of pulses per chirp. Because auditory perception in both crickets and flies relies on the matching of the peak frequency of the call with the peripheral sensory system, peak frequency may be subject to selection both from female crickets and from female flies. Here, we used field playbacks of four different versions of the same male Gryllus lineaticeps calling song that only differed in peak frequency (3.3, 4.3, 5.3, and 6.3 kHz) to test the relative attractiveness of the calls to female crickets and female flies. Our results clearly show that lower frequency calls enhance male safety from fly parasitism, but that the enhanced safety would come at a cost of reduced attraction of female crickets as potential mates. The results imply that eavesdropper pressure can disrupt the matched coevolution of signalers and receivers such that the common concept of matched male-female signaler-receiver coevolution may actually be better described as male-female-predator signaler-receiver-eavesdropper coevolution.
Collapse
Affiliation(s)
- Olivia L. Dobbs
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | | | - Sarina M. Rossi
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | - Stephanie Menjivar
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | - David A. Gray
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| |
Collapse
|
10
|
Němcová L, Marková S, Kotlík P. Gene Expression Variation of Candidate Endogenous Control Genes Across Latitudinal Populations of the Bank Vole (Clethrionomys glareolus). Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.562065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Chang CH, Wang YC, Shao YT, Liu SH. Phylogenetic analysis and ontogenetic changes in the cone opsins of the western mosquitofish (Gambusia affinis). PLoS One 2020; 15:e0240313. [PMID: 33048954 PMCID: PMC7553354 DOI: 10.1371/journal.pone.0240313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/23/2020] [Indexed: 11/25/2022] Open
Abstract
To convert external light into internal neural signal, vertebrates rely on a special group of proteins, the visual opsins. Four of the five types of visual opsins—short-wavelength sensitive 1 (Sws1), short-wavelength sensitive 2 (Sws2), medium-wavelength sensitive (Rh2), and long-wavelength sensitive (Lws)—are expressed in cone cells for scotopic vision, with the fifth, rhodopsin (Rh1), being expressed in rod cells for photopic vision. Fish often display differing ontogenetic cone opsin expression profiles, which may be related to dietary and/or habitat ontogenetic shift. The western mosquitofish (Gambusia affinis) is an aggressive invader that has successfully colonized every continent except Antarctica. The strong invasiveness of this species may be linked to its visual acuity since it can inhabit turbid waters better than other fishes. By genome screening and transcriptome analysis, we identify seven cone opsin genes in the western mosquitofish, including one sws1, two sws2, one rh2, and three lws. The predicted maximal absorbance wavelength (λmax) values of the respective proteins are 353 nm for Sws1, 449 nm for Sws2a, 408 nm for Sws2b, 516 nm for Rh2-1, 571 nm for Lws-1, and 519 nm for Lws-3. Retention of an intron in the lws-r transcript likely renders this visual opsin gene non-functional. Our real-time quantitative PCR demonstrates that adult male and female western mosquitofish do not differ in their cone opsin expression profiles, but we do reveal an ontogenetic shift in cone opsin expression. Compared to adults, larvae express proportionally more sws1 and less lws-1, suggesting that the western mosquitofish is more sensitive to shorter wavelengths in the larval stage, but becomes more sensitive to longer wavelengths in adulthood.
Collapse
Affiliation(s)
- Chia-Hao Chang
- TIGP Biodiversity Program, Tunghai University, Taichung City, Taiwan
- Center for Ecology and Environment, Tunghai University, Taichung City, Taiwan
| | - Yu-Chun Wang
- Planning and Information Division, Fisheries Research Institute, Keelung City, Taiwan
| | - Yi Ta Shao
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Shih-Hui Liu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung City, Taiwan
- * E-mail: ,
| |
Collapse
|
12
|
Burmeister SS, Rodriguez Moncalvo VG, Pfennig KS. Differential encoding of signals and preferences by noradrenaline in the anuran brain. J Exp Biol 2020; 223:jeb214148. [PMID: 32647019 PMCID: PMC7522018 DOI: 10.1242/jeb.214148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 07/07/2020] [Indexed: 11/20/2022]
Abstract
Social preferences enable animals to selectively interact with some individuals over others. One influential idea for the evolution of social preferences is that preferred signals evolve because they elicit greater neural responses from sensory systems. However, in juvenile plains spadefoot toad (Spea bombifrons), a species with condition-dependent mating preferences, responses of the preoptic area, but not of the auditory midbrain, mirror adult social preferences. To examine whether this separation of signal representation from signal valuation generalizes to other anurans, we compared the relative contributions of noradrenergic signalling in the preoptic area and auditory midbrain of S. bombifrons and its close relative Spea multiplicata We manipulated body condition in juvenile toads by controlling diet and used high pressure liquid chromatography to compare call-induced levels of noradrenaline and its metabolite MHPG in the auditory midbrain and preoptic area of the two species. We found that calls from the two species induced different levels of noradrenaline and MHPG in the auditory system, with higher levels measured in both species for the more energetic S. bombifrons call. In contrast, noradrenaline levels in the preoptic area mirrored patterns of social preferences in both S. bombifrons and S. multiplicata That is, noradrenaline levels were higher in response to the preferred calls within each species and were modified by diet in S. bombifrons (with condition-dependent preferences) but not S. multiplicata (with condition-independent preferences). Our results are consistent with a potentially important role for preoptic noradrenaline in the development of social preferences and indicate that it could be a target of selection in the evolution of condition-dependent social preferences.
Collapse
Affiliation(s)
| | | | - Karin S Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Sandkam BA, Campello L, O’Brien C, Nandamuri SP, Gammerdinger WJ, Conte MA, Swaroop A, Carleton KL. Tbx2a Modulates Switching of RH2 and LWS Opsin Gene Expression. Mol Biol Evol 2020; 37:2002-2014. [PMID: 32191319 PMCID: PMC7849988 DOI: 10.1093/molbev/msaa062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sensory systems are tuned by selection to maximize organismal fitness in particular environments. This tuning has implications for intraspecies communication, the maintenance of species boundaries, and speciation. Tuning of color vision largely depends on the sequence of the expressed opsin proteins. To improve tuning of visual sensitivities to shifts in habitat or foraging ecology over the course of development, many organisms change which opsins are expressed. Changes in this developmental sequence (heterochronic shifts) can create differences in visual sensitivity among closely related species. The genetic mechanisms by which these developmental shifts occur are poorly understood. Here, we use quantitative trait locus analyses, genome sequencing, and gene expression studies in African cichlid fishes to identify a role for the transcription factor Tbx2a in driving a switch between long wavelength sensitive (LWS) and Rhodopsin-like (RH2) opsin expression. We identify binding sites for Tbx2a in the LWS promoter and the highly conserved locus control region of RH2 which concurrently promote LWS expression while repressing RH2 expression. We also present evidence that a single change in Tbx2a regulatory sequence has led to a species difference in visual tuning, providing the first mechanistic model for the evolution of rapid switches in sensory tuning. This difference in visual tuning likely has important roles in evolution as it corresponds to differences in diet, microhabitat choice, and male nuptial coloration.
Collapse
Affiliation(s)
| | - Laura Campello
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Conor O’Brien
- Department of Biology, University of Maryland, College Park, MD
| | | | | | - Matthew A Conte
- Department of Biology, University of Maryland, College Park, MD
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
14
|
Carleton KL, Escobar-Camacho D, Stieb SM, Cortesi F, Marshall NJ. Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. J Exp Biol 2020; 223:jeb193334. [PMID: 32327561 PMCID: PMC7188444 DOI: 10.1242/jeb.193334] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Among vertebrates, teleost eye diversity exceeds that found in all other groups. Their spectral sensitivities range from ultraviolet to red, and the number of visual pigments varies from 1 to over 40. This variation is correlated with the different ecologies and life histories of fish species, including their variable aquatic habitats: murky lakes, clear oceans, deep seas and turbulent rivers. These ecotopes often change with the season, but fish may also migrate between ecotopes diurnally, seasonally or ontogenetically. To survive in these variable light habitats, fish visual systems have evolved a suite of mechanisms that modulate spectral sensitivities on a range of timescales. These mechanisms include: (1) optical media that filter light, (2) variations in photoreceptor type and size to vary absorbance and sensitivity, and (3) changes in photoreceptor visual pigments to optimize peak sensitivity. The visual pigment changes can result from changes in chromophore or changes to the opsin. Opsin variation results from changes in opsin sequence, opsin expression or co-expression, and opsin gene duplications and losses. Here, we review visual diversity in a number of teleost groups where the structural and molecular mechanisms underlying their spectral sensitivities have been relatively well determined. Although we document considerable variability, this alone does not imply functional difference per se. We therefore highlight the need for more studies that examine species with known sensitivity differences, emphasizing behavioral experiments to test whether such differences actually matter in the execution of visual tasks that are relevant to the fish.
Collapse
Affiliation(s)
- Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - Sara M Stieb
- Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| | - N Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| |
Collapse
|
15
|
Dvořáková V, Horníková M, Němcová L, Marková S, Kotlík P. Regulatory Variation in Functionally Polymorphic Globin Genes of the Bank Vole: A Possible Role for Adaptation. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2019.00514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
16
|
A detailed investigation of the visual system and visual ecology of the Barrier Reef anemonefish, Amphiprion akindynos. Sci Rep 2019; 9:16459. [PMID: 31712572 PMCID: PMC6848076 DOI: 10.1038/s41598-019-52297-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/13/2019] [Indexed: 11/24/2022] Open
Abstract
Vision plays a major role in the life of most teleosts, and is assumingly well adapted to each species ecology and behaviour. Using a multidisciplinary approach, we scrutinised several aspects of the visual system and ecology of the Great Barrier Reef anemonefish, Amphiprion akindynos, including its orange with white patterning, retinal anatomy and molecular biology, its symbiosis with anemones and sequential hermaphroditism. Amphiprion akindynos possesses spectrally distinct visual pigments and opsins: one rod opsin, RH1 (498 nm), and five cone opsins, SWS1 (370 nm), SWS2B (408 nm), RH2B (498 nm), RH2A (520 nm), and LWS (554 nm). Cones were arranged in a regular mosaic with each single cone surrounded by four double cones. Double cones mainly expressed RH2B (53%) in one member and RH2A (46%) in the other, matching the prevailing light. Single cones expressed SWS1 (89%), which may serve to detect zooplankton, conspecifics and the host anemone. Moreover, a segregated small fraction of single cones coexpressed SWS1 with SWS2B (11%). This novel visual specialisation falls within the region of highest acuity and is suggested to increase the chromatic contrast of Amphiprion akindynos colour patterns, which might improve detection of conspecifics.
Collapse
|
17
|
Yourick MR, Sandkam BA, Gammerdinger WJ, Escobar-Camacho D, Nandamuri SP, Clark FE, Joyce B, Conte MA, Kocher TD, Carleton KL. Diurnal variation in opsin expression and common housekeeping genes necessitates comprehensive normalization methods for quantitative real-time PCR analyses. Mol Ecol Resour 2019; 19:1447-1460. [PMID: 31325910 DOI: 10.1111/1755-0998.13062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 01/03/2023]
Abstract
To determine the visual sensitivities of an organism of interest, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) is often used to quantify expression of the light-sensitive opsins in the retina. While qRT-PCR is an affordable, high-throughput method for measuring expression, it comes with inherent normalization issues that affect the interpretation of results, especially as opsin expression can vary greatly based on developmental stage, light environment or diurnal cycles. We tested for diurnal cycles of opsin expression over a period of 24 hr at 1-hr increments and examined how normalization affects a data set with fluctuating expression levels using qRT-PCR and transcriptome data from the retinae of the cichlid Pelmatolapia mariae. We compared five methods of normalizing opsin expression relative to (a) the average of three stably expressed housekeeping genes (Ube2z, EF1-α and β-actin), (b) total RNA concentration, (c) GNAT2, (the cone-specific subunit of transducin), (d) total opsin expression and (e) only opsins expressed in the same cone type. Normalizing by proportion of cone type produced the least variation and would be best for removing time-of-day variation. In contrast, normalizing by housekeeping genes produced the highest daily variation in expression and demonstrated that the peak of cone opsin expression was in the late afternoon. A weighted correlation network analysis showed that the expression of different cone opsins follows a very similar daily cycle. With the knowledge of how these normalization methods affect opsin expression data, we make recommendations for designing sampling approaches and quantification methods based upon the scientific question being examined.
Collapse
Affiliation(s)
- Miranda R Yourick
- Department of Biology, University of Maryland, College Park, Maryland
| | | | | | | | | | - Frances E Clark
- Department of Biology, University of Maryland, College Park, Maryland
| | - Brendan Joyce
- Department of Biology, University of Maryland, College Park, Maryland
| | - Matthew A Conte
- Department of Biology, University of Maryland, College Park, Maryland
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, Maryland
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, Maryland
| |
Collapse
|
18
|
Luehrmann M, Carleton KL, Cortesi F, Cheney KL, Marshall NJ. Cardinalfishes (Apogonidae) show visual system adaptations typical of nocturnally and diurnally active fish. Mol Ecol 2019; 28:3025-3041. [DOI: 10.1111/mec.15102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Martin Luehrmann
- Sensory Neurobiology Group, Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| | | | - Fabio Cortesi
- Sensory Neurobiology Group, Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| | - Karen L. Cheney
- Sensory Neurobiology Group, Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
- School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| | - N. Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
19
|
Sibeaux A, Keser ML, Cole GL, Kranz AM, Endler JA. How viewing objects with the dorsal or ventral retina affects colour-related behaviour in guppies (Poecilia reticulata). Vision Res 2019; 158:78-89. [DOI: 10.1016/j.visres.2019.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/15/2019] [Accepted: 02/24/2019] [Indexed: 10/27/2022]
|
20
|
Chang CH, Yan HY. Plasticity of opsin gene expression in the adult red shiner (Cyprinella lutrensis) in response to turbid habitats. PLoS One 2019; 14:e0215376. [PMID: 30978235 PMCID: PMC6461250 DOI: 10.1371/journal.pone.0215376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/01/2019] [Indexed: 11/30/2022] Open
Abstract
Vision is very important to fish as it is required for foraging food, fighting competitors, fleeing from predators, and finding potential mates. Vertebrates express opsin genes in photoreceptor cells to receive visual signals, and the variety of light levels in aquatic habits has driven fish to evolve multiple opsin genes with expression profiles that are highly plastic. In this study, red shiners (Cyprinella lutrensis) were exposed to four water turbidity treatments and their opsin genes were cloned to elucidate how opsin gene expression could be modulated by ambient light conditions. Opsin gene cloning revealed that these fish have single RH1, SWS1, SWS2 and LWS genes and two RH2 genes. Phylogenetic analysis also indicated that these two RH2 opsin genes-RH2A and RH2B -are in-paralogous. Using quantitative PCR, we found evidence that opsin expression is plastic in adults. Elevated proportional expression of LWS in the cone under ambient light and turbid treatment indicated that the red shiner's visual spectrum displays a red shift in response to increased turbidity.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Department of Life Science, Tunghai University, Taichung City, Taiwan
- Center for Ecology and Environment, Tunghai University, Taichung City, Taiwan
| | - Hong Young Yan
- National Museum of Marine Biology & Aquarium, Checheng, Pingtung, Taiwan
| |
Collapse
|
21
|
Cole GL, Lynn JCB, Kranz AM, Endler JA. Colour‐based foraging diverges after multiple generations under different light environments. Ethology 2019. [DOI: 10.1111/eth.12847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gemma L. Cole
- Centre for Integrative Ecology, School of Life and Environmental Science Deakin University Geelong Victoria Australia
| | - Jessica C. B. Lynn
- Centre for Integrative Ecology, School of Life and Environmental Science Deakin University Geelong Victoria Australia
| | - Alexandrea M. Kranz
- Centre for Integrative Ecology, School of Life and Environmental Science Deakin University Geelong Victoria Australia
| | - John A. Endler
- Centre for Integrative Ecology, School of Life and Environmental Science Deakin University Geelong Victoria Australia
| |
Collapse
|
22
|
Gotanda KM, Pack A, LeBlond C, Hendry AP. Do replicates of independent guppy lineages evolve similarly in a predator-free laboratory environment? Ecol Evol 2019; 9:36-51. [PMID: 30680094 PMCID: PMC6342246 DOI: 10.1002/ece3.4585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/02/2022] Open
Abstract
The Trinidadian guppy is emblematic of parallel and convergent evolution, with repeated demonstrations that predation regime is a driver of adaptive trait evolution. A classic and foundational experiment in this system was conducted by John Endler 40 years ago, where male guppies placed into low-predation environments in the laboratory evolved increased color in a few generations. However, Endler's experiment did not employ the now typical design for a parallel/convergent evolution study, which would employ replicates of different ancestral lineages. We therefore implemented an experiment that seeded replicate mesocosms with small founding populations of guppies originating from high-predation populations of two very different lineages. The different mesocosms were maintained identically, and male guppy color was quantified every four months. After one year, we tested whether male color had increased, whether replicates within a lineage had parallel phenotypic trajectories, and whether the different lineages converged on a common phenotype. Results showed that male guppy color generally increased through time, primarily due to changes in melanic color, whereas the other colors showed inconsistent and highly variable trajectories. Most of the nonparallelism in phenotypic trajectories was among mesocosms containing different lineages. In addition to this mixture of parallelism and nonparallelism, convergence was not evident in that the variance in color among the mesocosms actually increased through time. We suggest that our results reflect the potential importance of high variation in female preference and stochastic processes such as drift and founder effects, both of which could be important in nature.
Collapse
Affiliation(s)
- Kiyoko M. Gotanda
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
- Department of ZoologyUniversity of CambridgeCambridgeUK
| | - Amy Pack
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
- Global ProgramsHealth Standards OrganizationOttawaOntarioCanada
| | - Caroline LeBlond
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Andrew P. Hendry
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
23
|
Sandkam BA, Joy JB, Watson CT, Breden F. Genomic Environment Impacts Color Vision Evolution in a Family with Visually Based Sexual Selection. Genome Biol Evol 2018; 9:3100-3107. [PMID: 29121209 PMCID: PMC5714168 DOI: 10.1093/gbe/evx228] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2017] [Indexed: 12/14/2022] Open
Abstract
Many models of evolution by sexual selection predict a coevolution of sensory systems and mate preferences, but the genomic architecture (number and arrangement of contributing loci) underlying these characters could constrain this coevolution. Here, we examine how the genomic organization and evolution of the opsin genes (responsible for tuning color vision) can influence the evolutionary trajectory of sexually selected traits across 15 species in the family Poeciliidae, which includes classic systems for studies of color-mediated sexual selection such as guppies, swordtails, and mollies. Although male coloration patterns and the importance of this coloration in female mate choice vary widely within and among genera, sequencing revealed low variability at amino acid sites that tune Long Wavelength-Sensitive (LWS) opsins in this speciose family. Although most opsin genes in these species appear to have evolved along traditional mutation-selection dynamics, we identified high rates of gene conversion between two of the LWS loci (LWS-1 and LWS-3), likely due to the inverted tandem repeat nature of these genes. Yet members of the subgenus Lebistes appear to resist LWS gene conversion. The LWS opsins are responsible for detecting and discriminating red and orange coloration-a key sexually selected trait in members of the subgenus Lebistes. Taken together these results suggest selection is acting against the homogenizing effects of gene conversion to maintain LWS-1/LWS-3 differences within this subgenus.
Collapse
Affiliation(s)
- Benjamin A Sandkam
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.,Department of Biology, University of Maryland, Maryland, USA
| | - Jeffrey B Joy
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.,Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Corey T Watson
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.,Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Kentucky, USA
| | - Felix Breden
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
24
|
Genetic and plastic variation in opsin gene expression, light sensitivity, and female response to visual signals in the guppy. Proc Natl Acad Sci U S A 2018; 115:12247-12252. [PMID: 30420507 PMCID: PMC6275514 DOI: 10.1073/pnas.1706730115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High diversity in sexual color signaling in animals has attracted considerable and sustained interest from evolution researchers. It has been suggested that variations in visual properties in guppies result in diverse female preference for sexual color signals, leading to genetic variation based on male body colors. Here, we report that opsin expression varies because of allelic differences as well as the different rearing light environments. The variation in opsin expression influences the diversity in visual light sensitivity. Moreover, the expression of multiple opsin genes influences female responsiveness to the luminous orange colors. Consequently, genetic and environmental variation in opsin gene expression could affect female responsiveness and preference for male sexual colors, facilitating male color polymorphisms. According to the sensory drive model, variation in visual properties can lead to diverse female preferences, which in turn results in a range of male nuptial colors by way of sexual selection. However, the cause of variation in visual properties and the mechanism by which variation drives female response to visual signals remain unclear. Here, we demonstrate that both differences in the long-wavelength–sensitive 1 (LWS-1) opsin genotype and the light environment during rearing lead to variation in opsin gene expression. Opsin expression variation affects the visual sensitivity threshold to long wavelengths of light. Moreover, a behavioral assay using digitally modified video images showed that the expression of multiple opsin genes is positively correlated with the female responsiveness to images of males with luminous orange spots. The findings suggest that genetic polymorphisms and light environment in habitats induce variations in opsin gene expression levels. The variations may facilitate variations in visual sensitivity and female responsiveness to male body colors within and among populations.
Collapse
|
25
|
Bloch NI, Corral-López A, Buechel SD, Kotrschal A, Kolm N, Mank JE. Early neurogenomic response associated with variation in guppy female mate preference. Nat Ecol Evol 2018; 2:1772-1781. [PMID: 30297748 PMCID: PMC6349141 DOI: 10.1038/s41559-018-0682-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022]
Abstract
Understanding the evolution of mate choice requires dissecting the mechanisms of female preference, particularly how these differ among social contexts and preference phenotypes. Here we study the female neurogenomic response after only 10 minutes of mate exposure in both a sensory component (optic tectum) and a decision-making component (telencephalon) of the brain. By comparing the transcriptional response between females with and without preferences for colorful males, we identified unique neurogenomic elements associated with the female preference phenotype that are not present in females without preference. Network analysis revealed different properties for this response at the sensory-processing and the decision-making levels, and showed that this response is highly centralized in the telencephalon. Furthermore, we identified an additional set of genes that vary in expression across social contexts, beyond mate evaluation. We show that transcription factors among those loci are predicted to regulate the transcriptional response of the genes we found to be associated with female preference.
Collapse
Affiliation(s)
- Natasha I Bloch
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| | | | | | | | - Niclas Kolm
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
| | - Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, London, UK.,Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
|
27
|
Billones-Baaijens R, Úrbez-Torres JR, Liu M, Ayres M, Sosnowski M, Savocchia S. Molecular Methods to Detect and Quantify Botryosphaeriaceae Inocula Associated With Grapevine Dieback in Australia. PLANT DISEASE 2018; 102:1489-1499. [PMID: 30673411 DOI: 10.1094/pdis-11-17-1854-re] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Botryosphaeria dieback, caused by species of Botryosphaeriaceae, is an important grapevine trunk disease in Australia. Inocula produced by the pathogens are primarily dispersed by rain splash and wind and infect pruning wounds leading to cankers, dieback, and eventually death of vines. The objective of this study was to develop molecular tools to detect and quantify Botryosphaeriaceae inocula from the environment. These tools are essential for investigating spore dispersal patterns of Botryosphaeriaceae pathogens in Australian vineyards. DNA extraction protocols were evaluated and one modified protocol was found suitable for extracting Botryosphaeriaceae DNA from artificially and naturally inoculated Burkard volumetric spore sampler tapes. Multispecies primers and a hydrolysis probe for quantitative PCR (qPCR) were further developed to detect and quantify Botryosphaeriaceae inocula from environmental samples. Specificity tests showed that the multispecies primers were able to amplify the DNA of 10 Botryosphaeriaceae species (58 isolates) found in Australia while none of the 27 nontarget fungal species (90 isolates) tested were amplified. The qPCR assay was suitable for amplifying purified DNA, synthetic DNA fragments (gBlocks), and mixed DNA from spore trap tapes. The qPCR method developed in this study was shown to be rapid and sensitive in detecting Botryosphaeriaceae inocula from the environment using spore traps.
Collapse
Affiliation(s)
- Regina Billones-Baaijens
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - José Ramón Úrbez-Torres
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| | - Meifang Liu
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Matthew Ayres
- South Australian Research and Development Institute, Adelaide, SA, Australia
| | - Mark Sosnowski
- South Australian Research and Development Institute, Adelaide, SA, Australia; and School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Glen Osmond, SA, Australia
| | - Sandra Savocchia
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
28
|
Sandkam B, Dalton B, Breden F, Carleton K. Reviewing guppy color vision: integrating the molecular and physiological variation in visual tuning of a classic system for sensory drive. Curr Zool 2018; 64:535-545. [PMID: 30108634 PMCID: PMC6084590 DOI: 10.1093/cz/zoy047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/02/2018] [Indexed: 12/11/2022] Open
Abstract
Sensory drive predicts coevolution of mate choice signals with the sensory systems detecting those signals. Guppies are a classic model for sensory drive as mate preferences based on coloration differ across individuals and populations. A large body of work has identified variation in color vision, yet we lack a direct tie between how such variation in color vision influences variation in color preference. Here we bring together studies that have investigated guppy vision over the past 40 years to: (1) highlight our current understanding of where variation occurs in the guppy color vision pathway and (2) suggest future avenues of research into sources of visual system variation that could influence guppy color preference. This will allow researchers to design careful studies that couple measures of color preference with measures of visual system variation from the same individual or population. Such studies will finally provide important answers as to what sets the direction and speed of mate preference evolution via sensory drive.
Collapse
Affiliation(s)
- Benjamin Sandkam
- Department of Biology, University of Maryland, College Park, College Park, MD, USA
| | - Brian Dalton
- Department of Biology, University of Maryland, College Park, College Park, MD, USA
| | - Felix Breden
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Karen Carleton
- Department of Biology, University of Maryland, College Park, College Park, MD, USA
| | | |
Collapse
|
29
|
Brock CD, Rennison D, Veen T, Bolnick DI. Opsin expression predicts male nuptial color in threespine stickleback. Ecol Evol 2018; 8:7094-7102. [PMID: 30073070 PMCID: PMC6065272 DOI: 10.1002/ece3.4231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/18/2022] Open
Abstract
Theoretical models of sexual selection suggest that male courtship signals can evolve through the build-up of genetic correlations between the male signal and female preference. When preference is mediated via increased sensitivity of the signal characteristics, correlations between male signal and perception/sensitivity are expected. When signal expression is limited to males, we would expect to find signal-sensitivity correlations in males. Here, we document such a correlation within a breeding population of threespine stickleback mediated by differences in opsin expression. Males with redder nuptial coloration express more long-wavelength-sensitive (LWS) opsin, making them more sensitive to orange and red. This correlation is not an artifact of shared tuning to the optical microhabitat. Such correlations are an essential feature of many models of sexual selection, and our results highlight the potential importance of opsin expression variation as a substrate for signal-preference evolution. Finally, these results suggest a potential sensory mechanism that could drive negative frequency-dependent selection via male-male competition and thus maintain variation in male nuptial color.
Collapse
Affiliation(s)
- Chad D. Brock
- Department of Integrative BiologyUniversity of Texas at AustinTexas
- Biodiversity Institute & the Department of BotanyUniversity of WyomingLaramieWyoming
| | - Diana Rennison
- Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| | - Thor Veen
- Department of Integrative BiologyUniversity of Texas at AustinTexas
- Life SciencesQuest UniversitySquamishBCCanada
| | | |
Collapse
|
30
|
Kranz AM, Cole GL, Singh P, Endler JA. Colour pattern component phenotypic divergence can be predicted by the light environment. J Evol Biol 2018; 31:1459-1476. [PMID: 29947081 DOI: 10.1111/jeb.13342] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/14/2018] [Accepted: 06/22/2018] [Indexed: 11/29/2022]
Abstract
The sensory drive hypothesis predicts that across different light environments sexually selected colour patterns will change to increase an animal's visual communication efficiency within different habitats. This is because individuals with more efficient signal components are likely to have more successful matings and hence produce more offspring. However, how colour pattern signals change over multiple generations under different light environmental conditions has not been tested experimentally. Here, we manipulated colour pattern signal efficiency by providing different ambient light environments over multiple generations to examine whether male colour pattern components change within large replicated populations of guppies (Poecilia reticulata). We report that colour patches change within populations over time and are phenotypically different among our three different light environments. Visual modelling suggests that the majority of these changes can be understood by considering the chroma, hue and luminance of each colour patch as seen by female guppies under each light environment. Taken together, our results support the hypothesis that different environmental conditions during signal reception can directly or indirectly drive the phenotypic diversification of visual signals within species.
Collapse
Affiliation(s)
- Alexandrea M Kranz
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Vic, 3216, Australia
| | - Gemma L Cole
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Vic, 3216, Australia
| | - Priti Singh
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Vic, 3216, Australia
| | - John A Endler
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Vic, 3216, Australia
| |
Collapse
|
31
|
Kranz AM, Forgan LG, Cole GL, Endler JA. Light environment change induces differential expression of guppy opsins in a multi-generational evolution experiment. Evolution 2018; 72:1656-1676. [PMID: 29920667 DOI: 10.1111/evo.13519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 05/29/2018] [Accepted: 06/02/2018] [Indexed: 11/30/2022]
Abstract
Light environments critically impact species that rely on vision to survive and reproduce. Animal visual systems must accommodate changes in light that occur from minutes to years, yet the mechanistic basis of their response to spectral (color) changes is largely unknown. Here, we used a laboratory experiment where replicate guppy populations were kept under three different light environments for up to 8-12 generations to explore possible differences in the expression levels of nine guppy opsin genes. Previous evidence for opsin expression-light environment "tuning" has been either correlative or focused exclusively on the relationship between the light environment and opsin expression over one or two generations. In our multigeneration experiment, the relative expression levels of nine different guppy opsin genes responded differently to light environment changes: some did not respond, while others differed due to phenotypic plasticity. Moreover, for the LWS-1 opsin we found that, while we observed a wide range of plastic responses under different light conditions, common plastic responses (where the population replicates all followed the same trajectory) occurred only after multigenerational exposure to different light environments. Taken together this suggests that opsin expression plasticity plays an important role in light environment "tuning" in different light environments on different time scales, and, in turn, has important implications for both visual system function and evolution.
Collapse
Affiliation(s)
- Alexandrea M Kranz
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Australia
| | - Leonard G Forgan
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Gemma L Cole
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Australia
| | - John A Endler
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Australia
| |
Collapse
|
32
|
Cole GL, Endler JA. Change in male coloration associated with artificial selection on foraging colour preference. J Evol Biol 2018; 31:1227-1238. [PMID: 29808616 DOI: 10.1111/jeb.13300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/08/2018] [Accepted: 05/25/2018] [Indexed: 11/27/2022]
Abstract
Sensory drive proposes that natural selection on nonmating behaviours (e.g. foraging preferences) alters sensory system properties and results in a correlated effect on mating preferences and subsequently sexual traits. In colour-based systems, we can test this by selecting on nonmating colour preferences and testing for responses in colour-based female preferences and male sexual coloration. In guppies (Poecilia reticulata), individual functional links of sensory drive have been demonstrated providing an opportunity to test the process over more than one link. We measured male coloration and female preferences in populations previously artificially selected for colour-based foraging behaviour towards two colours, red and blue. We found associated changes in male coloration in the expected direction as well as weak changes in female preferences. Our results can be explained by a correlated response in female preferences due to artificial selection on foraging preferences that are mediated by a shared sensory system or by other mechanisms such as colour avoidance, pleiotropy or social experiences. This is the first experimental evidence that selection on a nonmating behaviour can affect male coloration and, more weakly, female preferences.
Collapse
Affiliation(s)
- Gemma L Cole
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Geelong, Vic., Australia
| | - John A Endler
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Geelong, Vic., Australia
| |
Collapse
|
33
|
Luehrmann M, Stieb SM, Carleton KL, Pietzker A, Cheney KL, Marshall NJ. Short term colour vision plasticity on the reef: Changes in opsin expression under varying light conditions differ between ecologically distinct reef fish species. J Exp Biol 2018; 221:jeb.175281. [DOI: 10.1242/jeb.175281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
Abstract
Vision mediates important behavioural tasks such as mate choice, escape from predators and foraging. In fish, photoreceptors are generally tuned to specific visual tasks and/or to their light environment according to depth or water colour to ensure optimal performance. Evolutionary mechanisms acting on opsin genes, the protein component of the photopigment, can influence the spectral sensitivity of photoreceptors. Opsin genes are known to respond to environmental conditions on a number of time scales including shorter time frames due to seasonal variation, or through longer term evolutionary tuning. There is also evidence for ‘on-the-fly’ adaptations in adult fish in response to rapidly changing environmental conditions, however, results are contradictory. Here we investigated the ability of three reef fish species that belong to two ecologically distinct families, Yellow-striped cardinalfish, Ostorhinchus cyanosoma, Ambon damselfish, Pomacentrus amboinensis, and Lemon damselfish, Pomacentrus moluccensis, to alter opsin-gene expression as an adaptation to short-term (weeks to months) changes of environmental light conditions, and attempted to characterize the underlying expression regulation principles. We report the ability for all species to alter opsin gene expression within months and even a few weeks, suggesting that opsin expression in adult reef fish is not static. Furthermore, we found that opsin expression changes in single cones generally occurred more rapidly than in double cones, and identified different responses of RH2 opsin gene expression between the ecologically distinct reef fish families. Quantum catch correlation analysis suggested different regulation mechanisms for opsin expression dependent on gene class.
Collapse
Affiliation(s)
- Martin Luehrmann
- Queensland Brain Institute, The University of Queensland, Sensory Neurobiology Group, 4072, Brisbane, QLD, Australia
| | - Sara M. Stieb
- Queensland Brain Institute, The University of Queensland, Sensory Neurobiology Group, 4072, Brisbane, QLD, Australia
| | - Karen L. Carleton
- Department of Biology, The University of Maryland, College Park, MD, 20742, USA
| | - Alisa Pietzker
- Queensland Brain Institute, The University of Queensland, Sensory Neurobiology Group, 4072, Brisbane, QLD, Australia
| | - Karen L. Cheney
- Queensland Brain Institute, The University of Queensland, Sensory Neurobiology Group, 4072, Brisbane, QLD, Australia
- School of Biological Sciences, The University of Queensland, 4072, Brisbane, QLD, Australia
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Sensory Neurobiology Group, 4072, Brisbane, QLD, Australia
| |
Collapse
|
34
|
Insights into visual pigment adaptation and diversity from model ecological and evolutionary systems. Curr Opin Genet Dev 2017; 47:110-120. [PMID: 29102895 DOI: 10.1016/j.gde.2017.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/18/2017] [Accepted: 09/29/2017] [Indexed: 01/07/2023]
Abstract
Sensory systems provide valuable insight into the evolution of molecular mechanisms underlying organismal anatomy, physiology, and behaviour. Visual pigments, which mediate the first step in visual transduction, offer a unique window into the relationship between molecular variation and visual performance, and enhance our understanding of how ecology, life history, and physiology may shape genetic variation across a variety of organisms. Here we review recent work investigating vertebrate visual pigments from a number of perspectives. Opsin gene duplication, loss, differential expression, structural variation, and the physiological context in which they operate, have profoundly shaped the visual capabilities of vertebrates adapting to novel environments. We note the importance of conceptual frameworks in investigating visual pigment diversity in vertebrates, highlighting key examples including evolutionary transitions between different photic environments, major shifts in life history evolution and ecology, evolutionary innovations in visual system anatomy and physiology, as well as shifts in visually mediated behaviours and behavioural ecology. We emphasize the utility of studying visual pigment evolution in the context of these different perspectives, and demonstrate how the integrative approaches discussed in this review contribute to a better understanding of the underlying molecular processes mediating adaptation in sensory systems, and the contexts in which they occur.
Collapse
|
35
|
Abstract
Colors often appear to differ in arbitrary ways among related species. However, a fraction of color diversity may be explained because some signals are more easily perceived in one environment rather than another. Models show that not only signals but also the perception of signals should regularly evolve in response to different environments, whether these primarily involve detection of conspecifics or detection of predators and prey. Thus, a deeper understanding of how perception of color correlates with environmental attributes should help generate more predictive models of color divergence. Here, I briefly review our understanding of color vision in vertebrates. Then I focus on opsin spectral tuning and opsin expression, two traits involved in color perception that have become amenable to study. I ask how opsin tuning is correlated with ecological differences, notably the light environment, and how this potentially affects perception of conspecific colors. Although opsin tuning appears to evolve slowly, opsin expression levels are more evolutionarily labile but have been difficult to connect to color perception. The challenge going forward will be to identify how physiological differences involved in color vision, such as opsin expression levels, translate into perceptual differences, the selection pressures that have driven those differences, and ultimately how this may drive evolution of conspecific colors.
Collapse
|
36
|
Friesen CN, Ramsey ME, Cummings ME. Differential sensitivity to estrogen-induced opsin expression in two poeciliid freshwater fish species. Gen Comp Endocrinol 2017; 246:200-210. [PMID: 28013033 DOI: 10.1016/j.ygcen.2016.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/29/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
The sensory system shapes an individual's perception of the world, including social interactions with conspecifics, habitat selection, predator detection, and foraging behavior. Sensory signaling can be modulated by steroid hormones, making these processes particularly vulnerable to environmental perturbations. Here we examine the influence of exogenous estrogen manipulation on the visual physiology of female western mosquitofish (Gambusia affinis) and sailfin mollies (Poecilia latipinna), two poeciliid species that inhabit freshwater environments across the southern United States. We conducted two experiments to address this aim. First, we exposed females from both species to a one-week dose response experiment with three treatments of waterborne β-estradiol. Next, we conducted a one-week estrogen manipulation experiment with a waterborne estrogen (β-Estradiol), a selective estrogen receptor modulator (tamoxifen), or combination estrogen and tamoxifen treatment. We used quantitative PCR (qPCR) to examine the expression of cone opsins (SWS1, SWS2b, SWS2a, Rh2, LWS), rhodopsin (Rh1), and steroid receptor genes (ARα, ARβ, ERα, ERβ2, GPER) in the eyes of individual females from each species. Results from the dose response experiment revealed estradiol-sensitivity in opsin (SWS2a, Rh2, Rh1) and androgen receptor (ARα, ARβ) gene expression in mosquitofish females, but not sailfins. Meanwhile, our estrogen receptor modulation experiments revealed estrogen sensitivity in LWS opsin expression in both species, along with sensitivity in SWS1, SWS2b, and Rh2 opsins in mosquitofish. Comparisons of control females across experiments reveal species-level differences in opsin expression, with mosquitofish retinas dominated by short-wavelength sensitive opsins (SWS2b) and sailfins retinas dominated by medium- and long-wavelength sensitive opsins (Rh2 and LWS). Our research suggests that variation in exogenous levels of sex hormones within freshwater environments can modify the visual physiology of fishes in a species-specific manner.
Collapse
Affiliation(s)
- Caitlin N Friesen
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA. https://www.researchgate.net/profile/Caitlin_Friesen
| | - Mary E Ramsey
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Molly E Cummings
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
37
|
Horner AA, Hoffman EA, Tye MR, Hether TD, Savage AE. Cryptic chytridiomycosis linked to climate and genetic variation in amphibian populations of the southeastern United States. PLoS One 2017; 12:e0175843. [PMID: 28448517 PMCID: PMC5407605 DOI: 10.1371/journal.pone.0175843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/31/2017] [Indexed: 11/19/2022] Open
Abstract
North American amphibians have recently been impacted by two major emerging pathogens, the fungus Batrachochytrium dendrobatidis (Bd) and iridoviruses in the genus Ranavirus (Rv). Environmental factors and host genetics may play important roles in disease dynamics, but few studies incorporate both of these components into their analyses. Here, we investigated the role of environmental and genetic factors in driving Bd and Rv infection prevalence and severity in a biodiversity hot spot, the southeastern United States. We used quantitative PCR to characterize Bd and Rv dynamics in natural populations of three amphibian species: Notophthalmus perstriatus, Hyla squirella and Pseudacris ornata. We combined pathogen data, genetic diversity metrics generated from neutral markers, and environmental variables into general linear models to evaluate how these factors impact infectious disease dynamics. Occurrence, prevalence and intensity of Bd and Rv varied across species and populations, but only one species, Pseudacris ornata, harbored high Bd intensities in the majority of sampled populations. Genetic diversity and climate variables both predicted Bd prevalence, whereas climatic variables alone predicted infection intensity. We conclude that Bd is more abundant in the southeastern United States than previously thought and that genetic and environmental factors are both important for predicting amphibian pathogen dynamics. Incorporating both genetic and environmental information into conservation plans for amphibians is necessary for the development of more effective management strategies to mitigate the impact of emerging infectious diseases.
Collapse
Affiliation(s)
- Ariel A. Horner
- Department of Biology, University of Central Florida, Orlando, Florida, United States of America
| | - Eric A. Hoffman
- Department of Biology, University of Central Florida, Orlando, Florida, United States of America
| | - Matthew R. Tye
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Tyler D. Hether
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Anna E. Savage
- Department of Biology, University of Central Florida, Orlando, Florida, United States of America
- * E-mail:
| |
Collapse
|
38
|
Torres-Dowdall J, Pierotti ME, Härer A, Karagic N, Woltering JM, Henning F, Elmer KR, Meyer A. Rapid and Parallel Adaptive Evolution of the Visual System of Neotropical Midas Cichlid Fishes. Mol Biol Evol 2017; 34:2469-2485. [DOI: 10.1093/molbev/msx143] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
39
|
Corral-López A, Bloch NI, Kotrschal A, van der Bijl W, Buechel SD, Mank JE, Kolm N. Female brain size affects the assessment of male attractiveness during mate choice. SCIENCE ADVANCES 2017; 3:e1601990. [PMID: 28345039 PMCID: PMC5362185 DOI: 10.1126/sciadv.1601990] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/09/2017] [Indexed: 05/23/2023]
Abstract
Mate choice decisions are central in sexual selection theory aimed to understand how sexual traits evolve and their role in evolutionary diversification. We test the hypothesis that brain size and cognitive ability are important for accurate assessment of partner quality and that variation in brain size and cognitive ability underlies variation in mate choice. We compared sexual preference in guppy female lines selected for divergence in relative brain size, which we have previously shown to have substantial differences in cognitive ability. In a dichotomous choice test, large-brained and wild-type females showed strong preference for males with color traits that predict attractiveness in this species. In contrast, small-brained females showed no preference for males with these traits. In-depth analysis of optomotor response to color cues and gene expression of key opsins in the eye revealed that the observed differences were not due to differences in visual perception of color, indicating that differences in the ability to process indicators of attractiveness are responsible. We thus provide the first experimental support that individual variation in brain size affects mate choice decisions and conclude that differences in cognitive ability may be an important underlying mechanism behind variation in female mate choice.
Collapse
Affiliation(s)
- Alberto Corral-López
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, SE-10691 Stockholm, Sweden
| | - Natasha I. Bloch
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, U.K
| | - Alexander Kotrschal
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, SE-10691 Stockholm, Sweden
| | - Wouter van der Bijl
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, SE-10691 Stockholm, Sweden
| | - Severine D. Buechel
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, SE-10691 Stockholm, Sweden
| | - Judith E. Mank
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, U.K
| | - Niclas Kolm
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, SE-10691 Stockholm, Sweden
| |
Collapse
|
40
|
Escobar-Camacho D, Ramos E, Martins C, Carleton KL. The opsin genes of amazonian cichlids. Mol Ecol 2017; 26:1343-1356. [PMID: 27997048 PMCID: PMC5342946 DOI: 10.1111/mec.13957] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/04/2016] [Accepted: 11/21/2016] [Indexed: 01/30/2023]
Abstract
Vision is a critical sense for organismal survival with visual sensitivities strongly shaped by the environment. Some freshwater fishes with a Gondwanan origin are distributed in both South American rivers including the Amazon and African rivers and lakes. These different habitats likely required adaptations to murky and clear environments. In this study, we compare the molecular basis of Amazonian and African cichlid fishes' visual systems. We used next-generation sequencing of genomes and retinal transcriptomes to examine three Amazonian cichlid species. Genome assemblies revealed six cone opsin classes (SWS1, SWS2B, SWS2A, RH2B, RH2A and LWS) and rod opsin (RH1). However, the functionality of these genes varies across species with different pseudogenes found in different species. Our results support evidence of an RH2A gene duplication event that is shared across both cichlid groups, but which was probably followed by gene conversion. Transcriptome analyses show that Amazonian species mainly express three opsin classes (SWS2A, RH2A and LWS), which likely are a good match to the long-wavelength-oriented light environment of the Amazon basin. Furthermore, analysis of amino acid sequences suggests that the short-wavelength-sensitive genes (SWS2B, SWS2A) may be under selective pressures to shift their spectral properties to a longer-wavelength visual palette. Our results agree with the 'sensitivity hypothesis' where the light environment causes visual adaptation. Amazonian cichlid visual systems are likely adapting through gene expression, gene loss and possibly spectral tuning of opsin sequences. Such mechanisms may be shared across the Amazonian fish fauna.
Collapse
Affiliation(s)
| | - Erica Ramos
- Department of Morphology, Biosciences Institute, São Paulo State University, 18618-689 Botucatu, Brazil
| | - Cesar Martins
- Department of Morphology, Biosciences Institute, São Paulo State University, 18618-689 Botucatu, Brazil
| | - Karen L. Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
41
|
Wright AE, Darolti I, Bloch NI, Oostra V, Sandkam B, Buechel SD, Kolm N, Breden F, Vicoso B, Mank JE. Convergent recombination suppression suggests role of sexual selection in guppy sex chromosome formation. Nat Commun 2017; 8:14251. [PMID: 28139647 PMCID: PMC5290318 DOI: 10.1038/ncomms14251] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/13/2016] [Indexed: 01/19/2023] Open
Abstract
Sex chromosomes evolve once recombination is halted between a homologous pair of chromosomes. The dominant model of sex chromosome evolution posits that recombination is suppressed between emerging X and Y chromosomes in order to resolve sexual conflict. Here we test this model using whole genome and transcriptome resequencing data in the guppy, a model for sexual selection with many Y-linked colour traits. We show that although the nascent Y chromosome encompasses nearly half of the linkage group, there has been no perceptible degradation of Y chromosome gene content or activity. Using replicate wild populations with differing levels of sexually antagonistic selection for colour, we also show that sexual selection leads to greater expansion of the non-recombining region and increased Y chromosome divergence. These results provide empirical support for longstanding models of sex chromosome catalysis, and suggest an important role for sexual selection and sexual conflict in genome evolution.
Collapse
Affiliation(s)
- Alison E. Wright
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Iulia Darolti
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Natasha I. Bloch
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Vicencio Oostra
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Ben Sandkam
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Severine D. Buechel
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm 106 91, Sweden
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm 106 91, Sweden
| | - Felix Breden
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Beatriz Vicoso
- Institute of Science and Technology, Am Campus 1A, Klosterneuburg 3400, Austria
| | - Judith E. Mank
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
42
|
Stieb SM, Cortesi F, Sueess L, Carleton KL, Salzburger W, Marshall NJ. Why UV vision and red vision are important for damselfish (Pomacentridae): structural and expression variation in opsin genes. Mol Ecol 2017; 26:1323-1342. [PMID: 27997050 DOI: 10.1111/mec.13968] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022]
Abstract
Coral reefs belong to the most diverse ecosystems on our planet. The diversity in coloration and lifestyles of coral reef fishes makes them a particularly promising system to study the role of visual communication and adaptation. Here, we investigated the evolution of visual pigment genes (opsins) in damselfish (Pomacentridae) and examined whether structural and expression variation of opsins can be linked to ecology. Using DNA sequence data of a phylogenetically representative set of 31 damselfish species, we show that all but one visual opsin are evolving under positive selection. In addition, selection on opsin tuning sites, including cases of divergent, parallel, convergent and reversed evolution, has been strong throughout the radiation of damselfish, emphasizing the importance of visual tuning for this group. The highest functional variation in opsin protein sequences was observed in the short- followed by the long-wavelength end of the visual spectrum. Comparative gene expression analyses of a subset of the same species revealed that with SWS1, RH2B and RH2A always being expressed, damselfish use an overall short-wavelength shifted expression profile. Interestingly, not only did all species express SWS1 - a UV-sensitive opsin - and possess UV-transmitting lenses, most species also feature UV-reflective body parts. This suggests that damsels might benefit from a close-range UV-based 'private' communication channel, which is likely to be hidden from 'UV-blind' predators. Finally, we found that LWS expression is highly correlated to feeding strategy in damsels with herbivorous feeders having an increased LWS expression, possibly enhancing the detection of benthic algae.
Collapse
Affiliation(s)
- Sara M Stieb
- Sensory Neurobiology Group, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.,Zoological Institute, University of Basel, Basel, 4051, Switzerland
| | - Fabio Cortesi
- Sensory Neurobiology Group, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.,Zoological Institute, University of Basel, Basel, 4051, Switzerland
| | - Lorenz Sueess
- Sensory Neurobiology Group, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Karen L Carleton
- Department of Biology, The University of Maryland, College Park, MD, 20742, USA
| | | | - N J Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
43
|
Künstner A, Hoffmann M, Fraser BA, Kottler VA, Sharma E, Weigel D, Dreyer C. The Genome of the Trinidadian Guppy, Poecilia reticulata, and Variation in the Guanapo Population. PLoS One 2016; 11:e0169087. [PMID: 28033408 PMCID: PMC5199103 DOI: 10.1371/journal.pone.0169087] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/12/2016] [Indexed: 11/18/2022] Open
Abstract
For over a century, the live bearing guppy, Poecilia reticulata, has been used to study sexual selection as well as local adaptation. Natural guppy populations differ in many traits that are of intuitively adaptive significance such as ornamentation, age at maturity, brood size and body shape. Water depth, light supply, food resources and predation regime shape these traits, and barrier waterfalls often separate contrasting environments in the same river. We have assembled and annotated the genome of an inbred single female from a high-predation site in the Guanapo drainage. The final assembly comprises 731.6 Mb with a scaffold N50 of 5.3 MB. Scaffolds were mapped to linkage groups, placing 95% of the genome assembly on the 22 autosomes and the X-chromosome. To investigate genetic variation in the population used for the genome assembly, we sequenced 10 wild caught male individuals. The identified 5 million SNPs correspond to an average nucleotide diversity (π) of 0.0025. The genome assembly and SNP map provide a rich resource for investigating adaptation to different predation regimes. In addition, comparisons with the genomes of other Poeciliid species, which differ greatly in mechanisms of sex determination and maternal resource allocation, as well as comparisons to other teleost genera can begin to reveal how live bearing evolved in teleost fish.
Collapse
Affiliation(s)
- Axel Künstner
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Guest Group Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- * E-mail:
| | - Margarete Hoffmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Bonnie A. Fraser
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Verena A. Kottler
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eshita Sharma
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christine Dreyer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
44
|
|
45
|
Kawamura S, Kasagi S, Kasai D, Tezuka A, Shoji A, Takahashi A, Imai H, Kawata M. Spectral sensitivity of guppy visual pigments reconstituted in vitro to resolve association of opsins with cone cell types. Vision Res 2016; 127:67-73. [DOI: 10.1016/j.visres.2016.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/21/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
|
46
|
Bloch NI. The evolution of opsins and color vision: connecting genotype to a complex phenotype. ACTA BIOLÓGICA COLOMBIANA 2016. [DOI: 10.15446/abc.v21n3.53907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Entender la base genética de los rasgos adaptativos es un paso crítico en el estudio de los procesos evolutivos. Para estudiar la conexión entre genotipo y fenotipo es importante definir el fenotipo a diferentes niveles: desde las proteínas que se construyen con base en un gen, hasta las características finales presentes en un organismo. Las opsinas y los fotopigmentos son elementos primordiales de la visión y entender cómo han evolucionado es fundamental en el estudio de la visión en los animales como un caracter derivado de selección natural o sexual. Este artículo se enfoca en este sistema, en el que se pueden conectar genotipo y fenotipo, como ejemplo de fenotipo complejo para ilustrar las dificultades de establecer una relación clara entre genotipo y fenotipo. Adicionalmente, este artículo tiene como objetivo discutir el funcionamiento del sistema de fotorrecepción, con énfasis particular en las aves, con el fin de enumerar varios factores que deben ser tenidos en cuenta para predecir cambios en la visión a partir del estudio de los fotopigmentos. Dado que los modelos basados en la visión de aves son cada vez más usados en diversas áreas de la biología evolutiva tales como: selección de pareja, depredación y camuflaje; se hace relevante entender los fundamentos y limitaciones de estos modelos. Por esta razón, en este artículo discuto los detalles y aspectos prácticos del uso de los modelos de visión existentes para aves, con el fin de facilitar su uso en futuras investigaciones en diversas áreas de evolución.
Collapse
|
47
|
Sandkam BA, Deere-Machemer KA, Johnson AM, Grether GF, Helen Rodd F, Fuller RC. Exploring visual plasticity: dietary carotenoids can change color vision in guppies (Poecilia reticulata). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:527-34. [DOI: 10.1007/s00359-016-1097-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/14/2016] [Accepted: 05/27/2016] [Indexed: 01/19/2023]
|
48
|
Sakai Y, Ohtsuki H, Kasagi S, Kawamura S, Kawata M. Effects of light environment during growth on the expression of cone opsin genes and behavioral spectral sensitivities in guppies (Poecilia reticulata). BMC Evol Biol 2016; 16:106. [PMID: 27193604 PMCID: PMC4870739 DOI: 10.1186/s12862-016-0679-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The visual system is important for animals for mate choice, food acquisition, and predator avoidance. Animals possessing a visual system can sense particular wavelengths of light emanating from objects and their surroundings and perceive their environments by processing information contained in these visual perceptions of light. Visual perception in individuals varies with the absorption spectra of visual pigments and the expression levels of opsin genes, which may be altered according to the light environments. However, which light environments and the mechanism by which they change opsin expression profiles and whether these changes in opsin gene expression can affect light sensitivities are largely unknown. This study determined whether the light environment during growth induced plastic changes in opsin gene expression and behavioral sensitivity to particular wavelengths of light in guppies (Poecilia reticulata). RESULTS Individuals grown under orange light exhibited a higher expression of long wavelength-sensitive (LWS) opsin genes and a higher sensitivity to 600-nm light than those grown under green light. In addition, we confirmed that variations in the expression levels of LWS opsin genes were related to the behavioral sensitivities to long wavelengths of light. CONCLUSIONS The light environment during the growth stage alters the expression levels of LWS opsin genes and behavioral sensitivities to long wavelengths of light in guppies. The plastically enhanced sensitivity to background light due to changes in opsin gene expression can enhance the detection and visibility of predators and foods, thereby affecting survival. Moreover, changes in sensitivities to orange light may lead to changes in the discrimination of orange/red colors of male guppies and might alter female preferences for male color patterns.
Collapse
Affiliation(s)
- Yusuke Sakai
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, 980-8578, Sendai, Japan
| | - Hajime Ohtsuki
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, 980-8578, Sendai, Japan
| | - Satoshi Kasagi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 277-8562, Kashiwa, Japan
| | - Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 277-8562, Kashiwa, Japan
| | - Masakado Kawata
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, 980-8578, Sendai, Japan.
| |
Collapse
|
49
|
|
50
|
Lindholm AK, Sandkam B, Pohl K, Breden F. Poecilia picta, a Close Relative to the Guppy, Exhibits Red Male Coloration Polymorphism: A System for Phylogenetic Comparisons. PLoS One 2015; 10:e0142089. [PMID: 26529081 PMCID: PMC4631359 DOI: 10.1371/journal.pone.0142089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/16/2015] [Indexed: 12/29/2022] Open
Abstract
Studies on the evolution of female preference and male color polymorphism frequently focus on single species since traits and preferences are thought to co-evolve. The guppy, Poecilia reticulata, has long been a premier model for such studies because female preferences and orange coloration are well known to covary, especially in upstream/downstream pairs of populations. However, focused single species studies lack the explanatory power of the comparative method, which requires detailed knowledge of multiple species with known evolutionary relationships. Here we describe a red color polymorphism in Poecilia picta, a close relative to guppies. We show that this polymorphism is restricted to males and is maintained in natural populations of mainland South America. Using tests of female preference we show female P. picta are not more attracted to red males, despite preferences for red/orange in closely related species, such as P. reticulata and P. parae. Male color patterns in these closely related species are different from P. picta in that they occur in discrete patches and are frequently Y chromosome-linked. P. reticulata have an almost infinite number of male patterns, while P. parae males occur in discrete morphs. We show the red male polymorphism in P. picta extends continuously throughout the body and is not a Y-linked trait despite the theoretical prediction that sexually-selected characters should often be linked to the heterogametic sex chromosome. The presence/absence of red male coloration of P. picta described here makes this an ideal system for phylogenetic comparisons that could reveal the evolutionary forces maintaining mate choice and color polymorphisms in this speciose group.
Collapse
Affiliation(s)
- Anna K. Lindholm
- Institute for Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- * E-mail:
| | - Ben Sandkam
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kristina Pohl
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Felix Breden
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|