1
|
Karimi A, Tahmourespour A, Hoodaji M. Cyanobacterial biocrust alters soil physical properties reducing soil erosion and aerosol production. Braz J Microbiol 2024; 55:2453-2461. [PMID: 38922531 PMCID: PMC11405739 DOI: 10.1007/s42770-024-01377-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/06/2024] [Indexed: 06/27/2024] Open
Abstract
Aerosol emission by wind erosion in the arid and semi-arid areas of the world, is of environmental and health significance. Different methods have been used to mitigate aerosol emission among which the biological methods may be the most efficient ones. Although previously investigated, more research is essential to determine how the use of exopolysaccharide (biocrust)-producing cyanobacteria may affect soil physical properties. The objective was to investigate the effects of the cyanobacteria, Microcoleus vaginatus ATHK43 (identified and registered by the NCBI accession number MW433686), on soil physical properties of a sandy soil 15, 30, 60, and 90 d after inoculation. The effects of cyanobacterial biocrust on soil properties including shear strength, soil resistance, aggregate stability (mean weight diameter (MWD) and geometric mean diameter (GMD)), and wind erosion were determined in trays using a wind tunnel. Cyanobacterial inoculation significantly increased MWD (0-1 cm depth, from 0.12 mm to 0.47 mm) and GMD (from 0.3 to 0.5 mm) after a period of 90 d. Biocrust production significantly decreased soil erosion from 55.7 kgm- 2 to 0.3 kgm- 2 (wind rate of 50 kmh- 1), and from 116.42 kgm- 2 to 0.6 kgm- 2 (wind rate of 90 kmh- 1) after 90 d. In conclusion, cyanobacterial biocrust can significantly improve soil physical properties in different parts of the world including the deserts, and reduce aerosol emission by mitigating the destructive effects of wind erosion on soil physical properties.
Collapse
Affiliation(s)
- Amir Karimi
- Department of Soil Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Arezoo Tahmourespour
- Department of Basic Medical Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Mehran Hoodaji
- Department of Soil Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| |
Collapse
|
2
|
Lai Z, Liu Z, Zhao Y, Qin S, Zhang W, Lang T, Zhu Z, Sun Y. Distinct microbial communities under different rock-associated microhabitats in the Qaidam Desert. ENVIRONMENTAL RESEARCH 2024; 250:118462. [PMID: 38367835 DOI: 10.1016/j.envres.2024.118462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
Hypolithic communities, which occupy highly specialised microhabitats beneath translucent rocks in desert and arid environments, have assembly mechanisms and ecosystem functions are not fully understood. Thus, in this study, we aimed to examine the microbial community structure, assembly, and function of light-accessible (under quartz, calcite, and hypolithic lichen-dominated biocrusts) and light-inaccessible microhabitats (under basalt and adjacent soil) in the Qaidam Desert, China. The results showed that hypolithic communities have different characteristics compared with microbial communities of light-inaccessible microhabitats. Notably, hypolithic bacterial communities were dominated by Cyanobacteria, whereas light-inaccessible microhabitats showed a predominance of Bacteroidetes and Proteobacteria. Although the class Dothideomycetes (phylum: Ascomycota) dominated the fungal communities between the two microhabitat types, Sordariomycetes were more prevalent in light-accessible microhabitats. Network and robustness analyses showed that hypolithic communities were less complex and more resilient than microbial communities in light-inaccessible microhabitats. Our results indicated that deterministic processes, specifically homogeneous selection, govern the establishment of bacterial and fungal communities in light-accessible and light-inaccessible microhabitats. The hypolithic community showed an increased frequency of phylotypes that exhibited increased tolerance to functional stress response pathways. In contrast to light-inaccessible microhabitats, light-accessible microhabitats showed a slight decrease and a notable increase in the prevalence of carbon fixation pathways in prokaryotes and carbon fixation in photosynthetic organisms, respectively. For fungi, light-accessible microhabitats enriched saprotrophic and ectomycorrhizal groups. These results highlight the importance of complex and diverse microhabitats in desert regions, which serve as vital shelters for microbes. Combining future research on interactions between hypolithic communities and environments may enhance our current understanding of their pivotal roles in sustaining desert ecosystems. This knowledge then be applied to design and implement informed conservation efforts to preserve these unique rock-associated microhabitats in desert ecosystems.
Collapse
Affiliation(s)
- Zongrui Lai
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Zhen Liu
- CAS Engineering Laboratory for Yellow River Delta Modern Agriculture, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanyuan Zhao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Shugao Qin
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wenqi Zhang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Tao Lang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-resource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China; College of Agricultural and Food Engineering, Baise University, Baise, Guangxi 533000, China.
| | - Zhengjie Zhu
- College of Agricultural and Food Engineering, Baise University, Baise, Guangxi 533000, China
| | - Yanfei Sun
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
3
|
Zhao Y, Wu F, Liu Y, Wu M, Wang S, Sun HJ, Liu G, Zhang Y, Cui X, Zhang W, Chen T, Zhang G. The Distribution and Influencing Factors of Hypolithic Microbial Communities in the Hexi Corridor. Microorganisms 2023; 11:1212. [PMID: 37317185 DOI: 10.3390/microorganisms11051212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
The Hexi Corridor is an arid region in northwestern China, where hypoliths are widely distributed, resulting from large amounts of translucent stone pavements. In this region, the water and heat distributions are uneven, with a descent gradient from east to west, which can affect the area's biological composition. The impact of environmental heterogeneity on the distribution of hypolithic microbial communities in this area is poorly understood, and this is an ideal location to investigate the factors that may influence the composition and structure of hypolithic microbial communities. An investigation of different sites with differences in precipitation between east and west revealed that the colonization rate decreased from 91.8% to 17.5% in the hypolithic community. Environmental heterogeneity influenced both the structure and function of the hypolithic community, especially total nitrogen (TN) and soil organic carbon (SOC). However, the effect on taxonomic composition was greater than that on ecological function. The dominant bacterial phyla in all sample sites were Cyanobacteria, Actinobacteria, Proteobacteria, and Deinococcus-Thermus, but the abundances varied significantly between the sampling sites. The eastern site had the highest relative abundance of Proteobacteria (18.43%) and Bacteroidetes (6.32%), while the western site had a higher relative abundance in the phyla Cyanobacteria (62%) and Firmicutes (1.45%); the middle site had a higher relative abundance of Chloroflexi (8.02%) and Gemmatimonadetes (1.87%). The dominant phylum in the fungal community is Ascomycota. Pearson correlation analysis showed that the soil's physicochemical properties were also associated with changes in community diversity at the sample sites. These results have important implications for better understanding the community assembly and ecological adaptations of hypolithic microorganisms.
Collapse
Affiliation(s)
- Yidan Zhao
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Fasi Wu
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Department of Conservation Research, Dunhuang Academy, Dunhuang 736200, China
| | - Yang Liu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Minghui Wu
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Shengjie Wang
- Faculty of Geographical Science, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Henry J Sun
- Desert Research Institute, Las Vegas, NV 89119, USA
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yiyang Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaowen Cui
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
4
|
Wu MH, Li T, Zhang GS, Wu FS, Chen T, Zhang BL, Wu XK, Liu GX, Zhang KC, Zhang W. Seasonal Variation of Hypolithic Microbiomes in the Gobi Desert : Seasonal Variation of Hypolithic Microbiomes in the Gobi Desert. MICROBIAL ECOLOGY 2023; 85:1382-1395. [PMID: 35583685 DOI: 10.1007/s00248-022-02043-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/12/2022] [Indexed: 05/10/2023]
Abstract
Understanding how microbial communities adapt to environmental stresses is critical for interpreting ecological patterns and microbial diversity. In the case of the Gobi Desert, little is known on the environmental factors that explain hypolithic colonization under quartz stones. By analyzing nine hypolithic communities across an arid gradient and the effects of the season of the year in the Hexi Corridor of this desert, we found a significant decrease in hypolithic colonization rates (from 47.24 to 15.73%) with the increasing drought gradient and found two distinct communities in Hot and Cold samples, which survived or proliferated after a hot or a cold period. While Cold communities showed a greater species diversity and a predominance of Cyanobacteria, Hot communities showed a predominance of members of the Proteobacteria and the Firmicutes. In comparison, Cold communities also possessed stronger functions in the photosynthesis and carbon metabolism. Based on the findings of this study, we proposed that the hypolithic communities of the Hexi Corridor of the Gobi Desert might follow a seasonal developmental cycle in which temperature play an important role. Thus after a critical thermal threshold is crossed, heterotrophic microorganisms predominate in the hot period, while Cyanobacteria predominate in the cold period.
Collapse
Affiliation(s)
- Ming-Hui Wu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Li
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, Yunnan, China
| | - Gao-Sen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Fa-Si Wu
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Department of Conservation Research, Dunhuang Academy, Dunhuang, Gansu, 736200, China
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Bing-Lin Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Xiu-Kun Wu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Guang-Xiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Ke-Cun Zhang
- Research Station of Gobi Desert Ecology and Environment in Dunhuang of Gansu Province, Dunhuang, Gansu, 736200, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
5
|
Palmer B, Lawson D, Lipson DA. Years After a Fire, Biocrust Microbial Communities are Similar to Unburned Communities in a Coastal Grassland. MICROBIAL ECOLOGY 2023; 85:1028-1044. [PMID: 36346444 PMCID: PMC10156770 DOI: 10.1007/s00248-022-02137-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 10/24/2022] [Indexed: 05/04/2023]
Abstract
Microbial communities are integral for ecosystem processes and their taxonomic composition and function may be altered by a disturbance such as fire. Biocrusts are composed of macroscopic and microscopic organisms and are important for a variety of ecosystem functions, such as nutrient cycling and erosion control. We sought to understand if biocrust community composition and function were altered 1 year after a prescribed fire and 6 years after a wildfire in a coastal California grassland on San Clemente Island. We used shotgun metagenomic sequencing and measurements of chlorophyll content, exopolysaccharide production related to soil stability, and nitrogen fixation. There were no differences in the community composition between unburned samples and the samples burned in the prescribed fire and wildfire. Chlorophyll content differed between the prescribed fire and the controls; however, there were no measured differences in exopolysaccharide production, and nitrogen fixation. However, the wildfire and their respective unburned samples had different functions based on the gene annotations. We compiled one Actinobacteria metagenome-assembled genome from the shotgun sequences which had genes for oxidative and heat stress tolerance. These results suggest that the biocrust community can reach a community composition and function similar to the unburned biocrusts within a year after a prescribed burn and 6 years after a wildfire. However, legacy effects of the wildfire may present themselves in the differences between functional gene sequences. Due to their ability to match the undisturbed community composition and function within years and without intervention, future restoration work should consider the biocrusts in their restoration plans as they may provide valuable ecosystem functions after a disturbance.
Collapse
Affiliation(s)
- Brianne Palmer
- Department of Biology, San Diego State University, San Diego, CA, USA.
- Department of Plant Science, University of California, Davis, Davis, CA, USA.
| | - Dawn Lawson
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - David A Lipson
- Department of Biology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
6
|
Bosch J, Bezuidenhout C, Coertze R, Molale-Tom L. Metal- and antibiotic-resistant heterotrophic plate count bacteria from a gold mine impacted river: the Mooi River system, South Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31605-31619. [PMID: 36449242 PMCID: PMC9995416 DOI: 10.1007/s11356-022-24015-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/01/2022] [Indexed: 04/16/2023]
Abstract
The Wonderfonteinspruit, South Africa, is highly impacted by a century of gold mining activities. The aim of this study was to investigate the physico-chemical properties of the Wonderfonteinspruit and the receiving Mooi River system, the levels of antimicrobial (metals and antibiotics) resistance characteristics and heterotrophic bacteria levels in these water systems. Various physico-chemical parameters were determined. R2A agar and R2A agar supplemented with antimicrobials were used to enumerate heterotrophic bacteria. Morphologically distinct antimicrobial-resistant isolates were purified and screened for antibiotic susceptibility by a disc diffusion method. Selected isolates were identified, and minimum inhibitory concentration ranges determined. Among the antimicrobial resistant isolates, 87% were resistant to at least one antibiotic. Of these, almost 50% were resistant to more than 3 antibiotic classes. A large proportion was resistant to all 7 antibiotics tested. Phyla detected were Proteobacteria, Firmicutes and Bacteriodetes. High MIC levels for metals and antibiotics were detected among all the genera. Results demonstrate potential impacts of physico-chemical properties on levels of antimicrobial-resistant bacteria. Metal-resistant bacteria were also resistant to multiple antibiotics, suggesting that metal pollution from mining may be responsible for co-selection and maintenance of antibiotic-resistant bacteria in this aquatic system.
Collapse
Affiliation(s)
- Janita Bosch
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Carlos Bezuidenhout
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Roelof Coertze
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Lesego Molale-Tom
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
7
|
Zhu M, Chen H, Si J, Wu L. Effect of cultivation mode on bacterial and fungal communities of Dendrobium catenatum. BMC Microbiol 2022; 22:221. [PMID: 36127644 PMCID: PMC9490927 DOI: 10.1186/s12866-022-02635-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background The orchid growth and development often associate with microbes. However, the interaction between plant performance and microbial communities within and surrounding plants is less understood. Dendrobium catenatum, which used to be an endangered orchid species, has become a billion dollar industry in China. Simulated natural cultivation modes, such as living tree epiphytic (LT) and cliff epiphytic (CE) cultivations, improve the production or quality of D. catenatum and contribute to the development of D. catenatum industry. In a previous study, morphological characteristics, anatomical structure, and main bioactive components (polysaccharides and ethanol-soluble extractives) of D. catenatum grown under LT and CE significantly differed from a facility cultivation mode, pot (PO) cultivation, were observed. Whether cultivation mode affects bacterial and fungal communities of D. catenatum, thereby affecting the chemical quality of this plant, need to be explored. Results Both three plant organs (leaf, stem, and root) and cultivating substrates obtained under three cultivation modes: living tree epiphytic (LT), cliff epiphytic (CE), and pot (PO) cultivation were examined by adopting high-throughput sequencing methods. Subsequently, bacterial and fungal correlations with D. catenatum main chemical components, stem polysaccharides and ethanol-soluble extractives and leaf phenols and flavonoids, were elucidated. The results showed that microbial communities of the plants and substrates are both influenced by the cultivation mode. However, the plants and their cultivating substrates exhibited different patterns of bacterial and fungal composition, with clearly distinguished dominant bacterial groups, but shared dominance among fungal groups. Bacteria and fungi differed in abundance, diversity, and community structure, depending on the cultivation environment and plant organ. Both bacterial and fungal communities were affected by cultivation mode and plant organ. In both plants and substrates, PO bacterial and fungal community structure differed significantly from those of LT and CE modes. Bacterial and fungal community structure differed significantly between roots and the other two plant organs examined (stems and leaves). Several bacteria and fungi were positively correlated with main chemical components in D. catenatum. Conclusions The findings indicate that microbial communities of the plants and substrates were both influenced by the cultivation mode and plant organ, and some of them were positively correlated with main chemical components in D. catenatum. The research would enhance our understanding of interactions between Dendrobium and the microbial environment, and to provide a theoretical basis for the development of improved D. catenatum cultivation methods. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02635-6.
Collapse
Affiliation(s)
- Mingmin Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, and Dendrobium catenatum Engineering and Technical Research Center of State Forestry Administration, Lin'an, 311300, People's Republic of China
| | - Huihui Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, and Dendrobium catenatum Engineering and Technical Research Center of State Forestry Administration, Lin'an, 311300, People's Republic of China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, and Dendrobium catenatum Engineering and Technical Research Center of State Forestry Administration, Lin'an, 311300, People's Republic of China
| | - Lingshang Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, and Dendrobium catenatum Engineering and Technical Research Center of State Forestry Administration, Lin'an, 311300, People's Republic of China.
| |
Collapse
|
8
|
Cotta SR, Pellegrinetti TA, Andreote APD, Costa JS, Sarmento H, Fiore MF. Disentangling the lifestyle of bacterial communities in tropical soda lakes. Sci Rep 2022; 12:7939. [PMID: 35562544 PMCID: PMC9106740 DOI: 10.1038/s41598-022-12046-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 11/09/2022] Open
Abstract
Microbial lifestyles may reveal niche-specific signatures and can contribute to detecting the effects of abiotic fluctuations on biogeochemical cycles. Microorganisms make a tradeoff between optimizing nutrient uptake, improving biomass yield, and overcoming environmental changes according to environmental hostility. Soda lakes are natural environments rich in carbonate and bicarbonate water, resulting in elevated pH and salinities that frequently approach saturation. We hypothesized that during the dry period (elevated pH and salinity), microorganisms try to overcome this harshness by allocating energy to the cellular maintenance process. As these environmental conditions improve during the wet period, microorganisms will begin to invest in nutrient uptake. To test this hypothesis, we evaluated four soda lakes in two different seasons by applying metagenomics combined with flow cytometry (estimate heterotrophic bacterial biomass). The natural occurrence of cyanobacterial blooms in some lakes is the main driver of carbon. These primary producers provide organic carbon that supports heterotrophic bacterial growth and, consequently, a high biomass yield. Under harsh conditions (dry season), cyanobacteria invest in nutrient uptake mechanisms, whereas heterotrophic bacteria allocate energy to survive at the expense of biomass yield. Lakes without cyanobacteria blooms invest in nutrient uptake independent of environmental hostility. This study clarifies the microbial tradeoffs in hostile environments and the impact of this choice on carbon and energy flux in tropical alkaline lakes.
Collapse
Affiliation(s)
- Simone R Cotta
- Center of Nuclear Energy in Agriculture (CENA/USP), University of São Paulo, Piracicaba, SP, CEP: 13416-903, Brazil
| | - Thierry A Pellegrinetti
- Center of Nuclear Energy in Agriculture (CENA/USP), University of São Paulo, Piracicaba, SP, CEP: 13416-903, Brazil
| | - Ana Paula D Andreote
- Center of Nuclear Energy in Agriculture (CENA/USP), University of São Paulo, Piracicaba, SP, CEP: 13416-903, Brazil
| | - Juliana S Costa
- Center of Nuclear Energy in Agriculture (CENA/USP), University of São Paulo, Piracicaba, SP, CEP: 13416-903, Brazil
| | - Hugo Sarmento
- Department of Hydrobiology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Marli F Fiore
- Center of Nuclear Energy in Agriculture (CENA/USP), University of São Paulo, Piracicaba, SP, CEP: 13416-903, Brazil.
| |
Collapse
|
9
|
de Los Ríos A, Garrido-Benavent I, Limón A, Cason ED, Maggs-Kölling G, Cowan D, Valverde A. Novel lichen-dominated hypolithic communities in the Namib Desert. MICROBIAL ECOLOGY 2022; 83:1036-1048. [PMID: 34312709 PMCID: PMC9015988 DOI: 10.1007/s00248-021-01812-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The ventral surfaces of translucent rocks from hot desert pavements often harbor hypolithic microbial communities, which are mostly dominated by cyanobacteria. The Namib Desert fog belt supports extensive hypolithic colonization of quartz rocks, which are also colonized by lichens on their dorsal surfaces. Here, we aim to evaluate whether lichens colonize the ventral surface of the rocks (i.e., show hypolithic lifestyle) and compare the bacterial composition of these coastal hypolithic communities with those found inland. Fungal DNA barcoding and fungal and bacterial Illumina metabarcoding were combined with electron microscopy to characterize the composition and spatial structure of hypolithic communities from two (coastal and inland) areas in the Namib Desert. We report, for the first time, the structure and composition of lichen-dominated hypolithic communities found in the coastal zone of the Namib Desert with extensive epilithic lichen cover. Lichen modified areoles with inverted morphology of the genus Stellarangia (three lineages) and Buellia (two lineages) were the main components of these hypolithic communities. Some of these lineages were also found in epilithic habitats. These lichen-dominated hypolithic communities differed in structural organization and bacterial community composition from those found in inland areas. The hypolithic lichen colonization characterized here seems not to be an extension of epilithic or biological soil crust lichen growths but the result of specific sublithic microenvironmental conditions. Moisture derived from fog and dew could be the main driver of this unique colonization.
Collapse
Affiliation(s)
- Asunción de Los Ríos
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales, CSIC, Serrano 115 dpdo, 28006, Madrid, Spain.
| | - Isaac Garrido-Benavent
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales, CSIC, Serrano 115 dpdo, 28006, Madrid, Spain
- Departament de Botànica i Geologia, Facultat de Ciències Biològiques, Universitat de València (UV), C. Doctor Moliner 50, 46100, Burjassot, València, Spain
| | - Alicia Limón
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales, CSIC, Serrano 115 dpdo, 28006, Madrid, Spain
| | - Errol D Cason
- Department of Animal Science, University of the Free State, Bloemfontein, South Africa
| | | | - Don Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Angel Valverde
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), C/ Cordel de Merinas 40-52, 37008, Salamanca, Spain
| |
Collapse
|
10
|
Application of Cmic/Corg in the Soil Fertility Evaluation of Typical Forests in the Yulin Sandy Area. LAND 2022. [DOI: 10.3390/land11040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The microbial quotient (Cmic/Corg) has been used extensively to evaluate agriculture soil fertility, but the microbial sensitivity should be considered during the forestry process. Therefore, the objective of this study was to examine a soil fertility evaluation method applied to four vegetation types in the Mu Us Sandland in northwestern China, using the relationship between the Cmic/Corg ratio and soil moisture, and soil temperature under the premise of microbial diversity. The final predictive value was C. microphylla (0.2198) > P. sylvestris (0.2175) > P. tabulaeformis (0.0872) > S.psammophila (0.0767). We verified the evaluation results using two traditional methods, the back-propagation (BP) artificial neural network model and principal component analysis, which are widely used to evaluate soil quality based on the soil nutrient concentration. The results were the same as the Cmic/Corg predictions. We conclude that when the soil microbes are used in soil quality evaluations, the changing pattern should be fully considered.
Collapse
|
11
|
Naidoo Y, Valverde A, Pierneef RE, Cowan DA. Differences in Precipitation Regime Shape Microbial Community Composition and Functional Potential in Namib Desert Soils. MICROBIAL ECOLOGY 2022; 83:689-701. [PMID: 34105010 DOI: 10.1007/s00248-021-01785-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Precipitation is one of the major constraints influencing the diversity, structure, and activity of soil microbial communities in desert ecosystems. However, the effect of changes in precipitation on soil microbial communities in arid soil microbiomes remains unresolved. In this study, using 16S rRNA gene high-throughput sequencing and shotgun metagenome sequencing, we explored changes in taxonomic composition and functional potential across two zones in the Namib Desert with contrasting precipitation regime. We found that precipitation regime had no effect on taxonomic and functional alpha-diversity, but that microbial community composition and functional potential (beta-diversity) changed with increased precipitation. For instance, Acidobacteriota and 'resistance to antibiotics and toxic compounds' related genes were relatively more abundant in the high-rainfall zone. These changes were largely due to a small set of microbial taxa, some of which were present in low abundance (i.e. members of the rare biosphere). Overall, these results indicate that key climatic factors (i.e. precipitation) shape the taxonomic and functional attributes of the arid soil microbiome. This research provides insight into how changes in precipitation patterns associated with global climate change may impact microbial community structure and function in desert soils.
Collapse
Affiliation(s)
- Yashini Naidoo
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.
| | - Angel Valverde
- IRNASA-CSIC, C/Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - Rian E Pierneef
- Biotechnology Platform, Agricultural Research Council, Soutpan Road, Onderstepoort Campus, Pretoria, 0110, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| |
Collapse
|
12
|
Thomson T, Fusi M, Bennett-Smith MF, Prinz N, Aylagas E, Carvalho S, Lovelock CE, Jones BH, Ellis JI. Contrasting Effects of Local Environmental and Biogeographic Factors on the Composition and Structure of Bacterial Communities in Arid Monospecific Mangrove Soils. Microbiol Spectr 2022; 10:e0090321. [PMID: 34985338 PMCID: PMC8729789 DOI: 10.1128/spectrum.00903-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/11/2021] [Indexed: 12/23/2022] Open
Abstract
Mangrove forests are important biotic sinks of atmospheric CO2 and play an integral role in nutrient-cycling and decontamination of coastal waters, thereby mitigating climatic and anthropogenic stressors. These services are primarily regulated by the activity of the soil microbiome. To understand how environmental changes may affect this vital part of the ecosystem, it is key to understand the patterns that drive microbial community assembly in mangrove forest soils. High-throughput amplicon sequencing (16S rRNA) was applied on samples from arid Avicennia marina forests across different spatial scales from local to regional. Alongside conventional analyses of community ecology, microbial co-occurrence networks were assessed to investigate differences in composition and structure of the bacterial community. The bacterial community composition varied more strongly along an intertidal gradient within each mangrove forest, than between forests in different geographic regions (Australia/Saudi Arabia). In contrast, co-occurrence networks differed primarily between geographic regions, illustrating that the structure of the bacterial community is not necessarily linked to its composition. The local diversity in mangrove forest soils may have important implications for the quantification of biogeochemical processes and is important to consider when planning restoration activities. IMPORTANCE Mangrove ecosystems are increasingly being recognized for their potential to sequester atmospheric carbon, thereby mitigating the effects of anthropogenically driven greenhouse gas emissions. The bacterial community in the soils plays an important role in the breakdown and recycling of carbon and other nutrients. To assess and predict changes in carbon storage, it is important to understand how the bacterial community is shaped by its environment. Here, we compared the bacterial communities of mangrove forests on different spatial scales, from local within-forest to biogeographic comparisons. The bacterial community composition differed more between distinct intertidal zones of the same forest than between forests in distant geographic regions. The calculated network structure of theoretically interacting bacteria, however, differed most between the geographic regions. Our findings highlight the importance of local environmental factors in shaping the microbial soil community in mangroves and highlight a disconnect between community composition and structure in microbial soil assemblages.
Collapse
Affiliation(s)
- T. Thomson
- University of Waikato, School of Science, Tauranga, New Zealand
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
| | - M. Fusi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - M. F. Bennett-Smith
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
| | - N. Prinz
- University of Waikato, School of Science, Tauranga, New Zealand
| | - E. Aylagas
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
| | - S. Carvalho
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
| | - C. E. Lovelock
- School of Biological Sciences, The University of Queensland, St Lucida, Australia
| | - B. H. Jones
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
| | - J. I. Ellis
- University of Waikato, School of Science, Tauranga, New Zealand
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
| |
Collapse
|
13
|
Bay SK, Waite DW, Dong X, Gillor O, Chown SL, Hugenholtz P, Greening C. Chemosynthetic and photosynthetic bacteria contribute differentially to primary production across a steep desert aridity gradient. THE ISME JOURNAL 2021; 15:3339-3356. [PMID: 34035443 PMCID: PMC8528921 DOI: 10.1038/s41396-021-01001-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 02/04/2023]
Abstract
Desert soils harbour diverse communities of aerobic bacteria despite lacking substantial organic carbon inputs from vegetation. A major question is therefore how these communities maintain their biodiversity and biomass in these resource-limiting ecosystems. Here, we investigated desert topsoils and biological soil crusts collected along an aridity gradient traversing four climatic regions (sub-humid, semi-arid, arid, and hyper-arid). Metagenomic analysis indicated these communities vary in their capacity to use sunlight, organic compounds, and inorganic compounds as energy sources. Thermoleophilia, Actinobacteria, and Acidimicrobiia were the most abundant and prevalent bacterial classes across the aridity gradient in both topsoils and biocrusts. Contrary to the classical view that these taxa are obligate organoheterotrophs, genome-resolved analysis suggested they are metabolically flexible, with the capacity to also use atmospheric H2 to support aerobic respiration and often carbon fixation. In contrast, Cyanobacteria were patchily distributed and only abundant in certain biocrusts. Activity measurements profiled how aerobic H2 oxidation, chemosynthetic CO2 fixation, and photosynthesis varied with aridity. Cell-specific rates of atmospheric H2 consumption increased 143-fold along the aridity gradient, correlating with increased abundance of high-affinity hydrogenases. Photosynthetic and chemosynthetic primary production co-occurred throughout the gradient, with photosynthesis dominant in biocrusts and chemosynthesis dominant in arid and hyper-arid soils. Altogether, these findings suggest that the major bacterial lineages inhabiting hot deserts use different strategies for energy and carbon acquisition depending on resource availability. Moreover, they highlight the previously overlooked roles of Actinobacteriota as abundant primary producers and trace gases as critical energy sources supporting productivity and resilience of desert ecosystems.
Collapse
Affiliation(s)
- Sean K Bay
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- School of Biological Sciences, Monash University, Clayton, VIC, Australia.
| | - David W Waite
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde Boker, Israel
| | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- School of Biological Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
14
|
Zhang W, Bahadur A, Sajjad W, Zhang G, Nasir F, Zhang B, Wu X, Liu G, Chen T. Bacterial Diversity and Community Composition Distribution in Cold-Desert Habitats of Qinghai-Tibet Plateau, China. Microorganisms 2021; 9:microorganisms9020262. [PMID: 33514038 PMCID: PMC7911287 DOI: 10.3390/microorganisms9020262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/21/2022] Open
Abstract
Bacterial communities in cold-desert habitats play an important ecological role. However, the variation in bacterial diversity and community composition of the cold-desert ecosystem in Qinghai–Tibet Plateau remains unknown. To fill this scientific gape, Illumina MiSeq sequencing was performed on 15 soil samples collected from different cold-desert habitats, including human-disturbed, vegetation coverage, desert land, and sand dune. The abundance-based coverage estimator, Shannon, and Chao indices showed that the bacterial diversity and abundance of the cold-desert were high. A significant variation reported in the bacterial diversity and community composition across the study area. Proteobacteria accounted for the largest proportion (12.4–55.7%) of all sequences, followed by Actinobacteria (9.2–39.7%), Bacteroidetes (1.8–21.5%), and Chloroflexi (2.7–12.6%). Furthermore, unclassified genera dominated in human-disturbed habitats. The community profiles of GeErMu, HongLiangHe, and CuoNaHu sites were different and metagenomic biomarkers were higher (22) in CuoNaHu sites. Among the soil physicochemical variables, the total nitrogen and electric conductivity significantly influenced the bacterial community structure. In conclusion, this study provides information regarding variation in diversity and composition of bacterial communities and elucidates the association between bacterial community structures and soil physicochemical variables in cold-desert habitats of Qinghai–Tibet Plateau.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (W.Z.); (G.Z.); (X.W.)
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (A.B.); (B.Z.)
| | - Ali Bahadur
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (A.B.); (B.Z.)
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Gaosen Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (W.Z.); (G.Z.); (X.W.)
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (A.B.); (B.Z.)
| | - Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China;
| | - Binglin Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (A.B.); (B.Z.)
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Xiukun Wu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (W.Z.); (G.Z.); (X.W.)
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (A.B.); (B.Z.)
| | - Guangxiu Liu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (W.Z.); (G.Z.); (X.W.)
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (A.B.); (B.Z.)
- Correspondence: (G.L.); (T.C.); Tel.: +86-0931-8273670 (T.C.)
| | - Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
- Correspondence: (G.L.); (T.C.); Tel.: +86-0931-8273670 (T.C.)
| |
Collapse
|
15
|
Romanis CS, Pearson LA, Neilan BA. Cyanobacterial blooms in wastewater treatment facilities: Significance and emerging monitoring strategies. J Microbiol Methods 2020; 180:106123. [PMID: 33316292 DOI: 10.1016/j.mimet.2020.106123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022]
Abstract
Municipal wastewater treatment facilities (WWTFs) are prone to the proliferation of cyanobacterial species which thrive in stable, nutrient-rich environments. Dense cyanobacterial blooms frequently disrupt treatment processes and the supply of recycled water due to their production of extracellular polymeric substances, which hinder microfiltration, and toxins, which pose a health risk to end-users. A variety of methods are employed by water utilities for the identification and monitoring of cyanobacteria and their toxins in WWTFs, including microscopy, flow cytometry, ELISA, chemoanalytical methods, and more recently, molecular methods. Here we review the literature on the occurrence and significance of cyanobacterial blooms in WWTFs and discuss the pros and cons of the various strategies for monitoring these potentially hazardous events. Particular focus is directed towards next-generation metagenomic sequencing technologies for the development of site-specific cyanobacterial bloom management strategies. Long-term multi-omic observations will enable the identification of indicator species and the development of site-specific bloom dynamics models for the mitigation and management of cyanobacterial blooms in WWTFs. While emerging metagenomic tools could potentially provide deep insight into the diversity and flux of problematic cyanobacterial species in these systems, they should be considered a complement to, rather than a replacement of, quantitative chemoanalytical approaches.
Collapse
Affiliation(s)
- Caitlin S Romanis
- School of Environmental and Life Sciences, University of Newcastle, Newcastle 2308, Australia
| | - Leanne A Pearson
- School of Environmental and Life Sciences, University of Newcastle, Newcastle 2308, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, University of Newcastle, Newcastle 2308, Australia.
| |
Collapse
|
16
|
Zhang W, Bahadur A, Zhang G, Zhang B, Wu X, Chen T, Liu G. Diverse Bacterial Communities From Qaidam Basin of the Qinghai-Tibet Plateau: Insights Into Variations in Bacterial Diversity Across Different Regions. Front Microbiol 2020; 11:554105. [PMID: 33042062 PMCID: PMC7530167 DOI: 10.3389/fmicb.2020.554105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
The Qaidam Basin of the Qinghai–Tibet Plateau is a cold, hyper-arid desert that presents extreme challenges to microbial communities. As little is known about variations between surface and subsurface microbial communities, high-throughput DNA sequencing was used in this study to profile bacterial communities of the soil samples collected at different depths in three regions in the Qaidam Basin. The α-diversity indices (Chao, Shannon, and Simpson) indicated that bacterial abundance and diversity were higher in the east and the high-elevation regions compared to the west region. In general, Firmicutes was dominant in the west region, while Proteobacteria and Acidobacteria were dominant in the east and the high-elevation regions. The structure of the bacterial communities differed greatly across regions, being strongly correlated with total organic carbon (TOC) and total nitrogen (TN) content. The differences in bacterial communities between the surface and the subsurface soil samples were smaller than the differences across the regions. Network analyses of environmental factors and bacterial genera indicated significant positive correlations in all regions. Overall, our study provides evidence that TOC and TN are the best predictors of both surface and subsurface bacterial communities across the Qaidam Basin. This study concludes that the bacterial community structure is influenced by both the spatial distance and the local environment, but environmental factors are the primary drivers of bacterial spatial patterns in the Qaidam Basin.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Ali Bahadur
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China.,State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Gaosen Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Binglin Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China.,State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xiukun Wu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Guangxiu Liu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| |
Collapse
|
17
|
Trout-Haney JV, Heindel RC, Virginia RA. Picocyanobacterial cells in near-surface air above terrestrial and freshwater substrates in Greenland and Antarctica. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:296-305. [PMID: 32134187 DOI: 10.1111/1758-2229.12832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 02/26/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Bioaerosols are an important component of the total atmospheric aerosol load, with implications for human health, climate feedbacks and the distribution and dispersal of microbial taxa. Bioaerosols are sourced from marine, freshwater and terrestrial surfaces, with different mechanisms potentially responsible for releasing biological particles from these substrates. Little is known about the production of freshwater and terrestrial bioaerosols in polar regions. We used portable collection devices to test for the presence of picocyanobacterial aerosols above freshwater and soil substrates in the southwestern Greenland tundra and the McMurdo Dry Valleys of Antarctica. We show that picocyanobacterial cells are present in the near-surface air at concentrations ranging from 2,431 to 28,355 cells m-3 of air, with no significant differences among substrates or between polar regions. Our concentrations are lower than those measured using the same methods in temperate ecosystems. We suggest that aerosolization is an important process linking terrestrial and aquatic ecosystems in these polar environments, and that future work is needed to explore aerosolization mechanisms and taxon-specific aerosolization rates. Our study is a first step toward understanding the production of bioaerosols in extreme environments dominated by microbial life.
Collapse
Affiliation(s)
- Jessica V Trout-Haney
- Department of Biological Sciences, Life Sciences Center, Dartmouth College, Hanover, NH, 03755
| | - Ruth C Heindel
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO
| | - Ross A Virginia
- Environmental Studies Program and Institute of Arctic Studies, Dartmouth College, Hanover, NH, 03755
| |
Collapse
|
18
|
Bezuidt OKI, Lebre PH, Pierneef R, León-Sobrino C, Adriaenssens EM, Cowan DA, Van de Peer Y, Makhalanyane TP. Phages Actively Challenge Niche Communities in Antarctic Soils. mSystems 2020; 5:e00234-20. [PMID: 32371471 PMCID: PMC7205518 DOI: 10.1128/msystems.00234-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 12/22/2022] Open
Abstract
By modulating the structure, diversity, and trophic outputs of microbial communities, phages play crucial roles in many biomes. In oligotrophic polar deserts, the effects of katabatic winds, constrained nutrients, and low water availability are known to limit microbial activity. Although phages may substantially govern trophic interactions in cold deserts, relatively little is known regarding the precise ecological mechanisms. Here, we provide the first evidence of widespread antiphage innate immunity in Antarctic environments using metagenomic sequence data from hypolith communities as model systems. In particular, immunity systems such as DISARM and BREX are shown to be dominant systems in these communities. Additionally, we show a direct correlation between the CRISPR-Cas adaptive immunity and the metavirome of hypolith communities, suggesting the existence of dynamic host-phage interactions. In addition to providing the first exploration of immune systems in cold deserts, our results suggest that phages actively challenge niche communities in Antarctic polar deserts. We provide evidence suggesting that the regulatory role played by phages in this system is an important determinant of bacterial host interactions in this environment.IMPORTANCE In Antarctic environments, the combination of both abiotic and biotic stressors results in simple trophic levels dominated by microbiomes. Although the past two decades have revealed substantial insights regarding the diversity and structure of microbiomes, we lack mechanistic insights regarding community interactions and how phages may affect these. By providing the first evidence of widespread antiphage innate immunity, we shed light on phage-host dynamics in Antarctic niche communities. Our analyses reveal several antiphage defense systems, including DISARM and BREX, which appear to dominate in cold desert niche communities. In contrast, our analyses revealed that genes which encode antiphage adaptive immunity were underrepresented in these communities, suggesting lower infection frequencies in cold edaphic environments. We propose that by actively challenging niche communities, phages play crucial roles in the diversification of Antarctic communities.
Collapse
Affiliation(s)
- Oliver K I Bezuidt
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Pedro Humberto Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Rian Pierneef
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - Carlos León-Sobrino
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Yves Van de Peer
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
19
|
Qu EB, Omelon CR, Oren A, Meslier V, Cowan DA, Maggs-Kölling G, DiRuggiero J. Trophic Selective Pressures Organize the Composition of Endolithic Microbial Communities From Global Deserts. Front Microbiol 2020; 10:2952. [PMID: 31969867 PMCID: PMC6960110 DOI: 10.3389/fmicb.2019.02952] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/09/2019] [Indexed: 11/29/2022] Open
Abstract
Studies of microbial biogeography are often convoluted by extremely high diversity and differences in microenvironmental factors such as pH and nutrient availability. Desert endolithic (inside rock) communities are relatively simple ecosystems that can serve as a tractable model for investigating long-range biogeographic effects on microbial communities. We conducted a comprehensive survey of endolithic sandstones using high-throughput marker gene sequencing to characterize global patterns of diversity in endolithic microbial communities. We also tested a range of abiotic variables in order to investigate the factors that drive community assembly at various trophic levels. Macroclimate was found to be the primary driver of endolithic community composition, with the most striking difference witnessed between hot and polar deserts. This difference was largely attributable to the specialization of prokaryotic and eukaryotic primary producers to different climate conditions. On a regional scale, microclimate and properties of the rock substrate were found to influence community assembly, although to a lesser degree than global hot versus polar conditions. We found new evidence that the factors driving endolithic community assembly differ between trophic levels. While phototrophic taxa, mostly oxygenic photosynthesizers, were rigorously selected for among different sites, heterotrophic taxa were more cosmopolitan, suggesting that stochasticity plays a larger role in heterotroph assembly. This study is the first to uncover the global drivers of desert endolithic diversity using high-throughput sequencing. We demonstrate that phototrophs and heterotrophs in the endolithic community assemble under different stochastic and deterministic influences, emphasizing the need for studies of microorganisms in context of their functional niche in the community.
Collapse
Affiliation(s)
- Evan B. Qu
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Chris R. Omelon
- Department of Geography and Planning, Queen’s University, Kingston, ON, Canada
| | - Aharon Oren
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Victoria Meslier
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | - Jocelyne DiRuggiero
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
20
|
Villa F, Cappitelli F. The Ecology of Subaerial Biofilms in Dry and Inhospitable Terrestrial Environments. Microorganisms 2019; 7:microorganisms7100380. [PMID: 31547498 PMCID: PMC6843906 DOI: 10.3390/microorganisms7100380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 11/23/2022] Open
Abstract
The ecological relationship between minerals and microorganisms arguably represents one of the most important associations in dry terrestrial environments, since it strongly influences major biochemical cycles and regulates the productivity and stability of the Earth’s food webs. Despite being inhospitable ecosystems, mineral substrata exposed to air harbor form complex and self-sustaining communities called subaerial biofilms (SABs). Using life on air-exposed minerals as a model and taking inspiration from the mechanisms of some microorganisms that have adapted to inhospitable conditions, we illustrate the ecology of SABs inhabiting natural and built environments. Finally, we advocate the need for the convergence between the experimental and theoretical approaches that might be used to characterize and simulate the development of SABs on mineral substrates and SABs’ broader impacts on the dry terrestrial environment.
Collapse
Affiliation(s)
- Federica Villa
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| | - Francesca Cappitelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
21
|
Valdespino-Castillo PM, Cerqueda-García D, Espinosa AC, Batista S, Merino-Ibarra M, Taş N, Alcántara-Hernández RJ, Falcón LI. Microbial distribution and turnover in Antarctic microbial mats highlight the relevance of heterotrophic bacteria in low-nutrient environments. FEMS Microbiol Ecol 2019; 94:5047302. [PMID: 29982398 DOI: 10.1093/femsec/fiy129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/04/2018] [Indexed: 11/14/2022] Open
Abstract
Maritime Antarctica has shown the highest increase in temperature in the Southern Hemisphere. Under this scenario, biogeochemical cycles may be altered, resulting in rapid environmental change for Antarctic biota. Microbes that drive biogeochemical cycles often form biofilms or microbial mats in continental meltwater environments. Limnetic microbial mats from the Fildes Peninsula were studied using high-throughput 16S rRNA gene sequencing. Mat samples were collected from 15 meltwater stream sites, comprising a natural gradient from ultraoligotrophic glacier flows to meltwater streams exposed to anthropogenic activities. Our analyses show that microbial community structure differences between mats are explained by environmental NH4+, NO3-, DIN, soluble reactive silicon and conductivity. Microbial mats living under ultraoligotrophic meltwater conditions did not exhibit a dominance of cyanobacterial photoautotrophs, as has been documented for other Antarctic limnetic microbial mats. Instead, ultraoligotrophic mat communities were characterized by the presence of microbes recognized as heterotrophs and photoheterotrophs. This suggests that microbial capabilities for recycling organic matter may be a key factor to dwell in ultra-low nutrient conditions. Our analyses show that phylotype level assemblages exhibit coupled distribution patterns in environmental oligotrophic inland waters. The evaluation of these microbes suggests the relevance of reproductive and structural strategies to pioneer these psychrophilic ultraoligotrophic environments.
Collapse
Affiliation(s)
| | - Daniel Cerqueda-García
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Ana Cecilia Espinosa
- LANCIS, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Silvia Batista
- Unidad de Microbiología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, 11600, Uruguay
| | - Martín Merino-Ibarra
- Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Neslihan Taş
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | | | - Luisa I Falcón
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| |
Collapse
|
22
|
Abstract
The Namib Desert is one of the world's only truly coastal desert ecosystem. Until the end of the 1st decade of the twenty-first century, very little was known of the microbiology of this southwestern African desert, with the few reported studies being based solely on culture-dependent approaches. However, from 2010, an intense research program was undertaken by researchers from the University of the Western Cape Institute for Microbial Biotechnology and Metagenomics, and subsequently the University of Pretoria Centre for Microbial Ecology and Genomics, and their collaborators, led to a more detailed understanding of the ecology of the indigenous microbial communities in many Namib Desert biotopes. Namib Desert soils and the associated specialized niche communities are inhabited by a wide array of prokaryotic, lower eukaryotic and virus/phage taxa. These communities are highly heterogeneous on both small and large spatial scales, with community composition impacted by a range of macro- and micro-environmental factors, from water regime to soil particle size. Community functionality is also surprisingly non-homogeneous, with some taxa retaining functionality even under hyper-arid soil conditions, and with subtle changes in gene expression and phylotype abundances even on diel timescales. Despite the growing understanding of the structure and function of Namib Desert microbiomes, there remain enormous gaps in our knowledge. We have yet to quantify many of the processes in these soil communities, from regional nutrient cycling to community growth rates. Despite the progress that has been made, we still have little knowledge of either the role of phages in microbial community dynamics or inter-species interactions. Furthermore, the intense research efforts of the past decade have highlighted the immense scope for future microbiological research in this dynamic, enigmatic and charismatic region of Africa.
Collapse
|
23
|
Guenther SP, Gibb KS, Rose AM, Kaestli M, Christian KA. Differences in structure of northern Australian hypolithic communities according to location, rock type, and gross morphology. AIMS Microbiol 2019; 4:469-481. [PMID: 31294228 PMCID: PMC6604943 DOI: 10.3934/microbiol.2018.3.469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/19/2018] [Indexed: 11/18/2022] Open
Abstract
Hypolithic communities (under translucent rocks) were compared between a semi-arid site (Wave Hill) and a site with considerably higher rainfall (Lake Bennett) to test the hypothesis that the communities at the higher rainfall site would be more diverse. A total of 153 cyanobacteria operational taxonomic units (OTUs) were identified, and only 50 of those were found at both sites. Of these, only two were core OTUs, as defined as being present in ≥90% of samples, highlighting the extreme differences in the cyanobacterial communities at the two sites. At Wave Hill, we compared the composition of the cyanobacterial components under two different rock types (quartz and prehnite) to determine if the different minerals would result in different hypolithic communities, but no differences were found. Of the 42 core OTUs found at Wave Hill, 22 (52%) were shared between the two rock types. As hypothesised, the diversity of both cyanobacteria and eukaryotes in the hypolithic communities was significantly higher at Lake Bennett. Some hypolithic communities were thin and tightly adhered to the rock surface, but others were thicker and could be peeled off the rock in sheets. However, the two types were not significantly different in OTU composition. Metazoans, primarily nematodes, were ubiquitous, raising the possibility that nematodes may act as vectors to transport the components of hypolithic communities from rock to rock as a mechanism of colonization.
Collapse
Affiliation(s)
- Susannah P Guenther
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia
| | - Karen S Gibb
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia
| | - Alea M Rose
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia
| | - Mirjam Kaestli
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia
| | - Keith A Christian
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia
| |
Collapse
|
24
|
Borrett SR, Sheble L, Moody J, Anway EC. Bibliometric review of ecological network analysis: 2010–2016. Ecol Modell 2018. [DOI: 10.1016/j.ecolmodel.2018.04.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
25
|
Namib Desert primary productivity is driven by cryptic microbial community N-fixation. Sci Rep 2018; 8:6921. [PMID: 29720684 PMCID: PMC5932006 DOI: 10.1038/s41598-018-25078-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/09/2018] [Indexed: 12/03/2022] Open
Abstract
Carbon exchange in drylands is typically low, but during significant rainfall events (wet anomalies) drylands act as a C sink. During these anomalies the limitation on C uptake switches from water to nitrogen. In the Namib Desert of southern Africa, the N inventory in soil organic matter available for mineralisation is insufficient to support the observed increase in primary productivity. The C4 grasses that flourish after rainfall events are not capable of N fixation, and so there is no clear mechanism for adequate N fixation in dryland ecosystems to support rapid C uptake. Here we demonstrate that N fixation by photoautotrophic hypolithic communities forms the basis for the N budget for plant productivity events in the Namib Desert. Stable N isotope (δ15N) values of Namib Desert hypolithic biomass, and surface and subsurface soils were measured over 3 years across dune and gravel plain biotopes. Hypoliths showed significantly higher biomass and lower δ15N values than soil organic matter. The δ15N values of hypoliths approach the theoretical values for nitrogen fixation. Our results are strongly indicative that hypolithic communities are the foundation of productivity after rain events in the Namib Desert and are likely to play similar roles in other arid environments.
Collapse
|
26
|
Meslier V, Casero MC, Dailey M, Wierzchos J, Ascaso C, Artieda O, McCullough PR, DiRuggiero J. Fundamental drivers for endolithic microbial community assemblies in the hyperarid Atacama Desert. Environ Microbiol 2018; 20:1765-1781. [DOI: 10.1111/1462-2920.14106] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/15/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Victoria Meslier
- Department of BiologyThe Johns Hopkins UniversityBaltimore MD USA
| | | | - Micah Dailey
- Department of BiologyThe Johns Hopkins UniversityBaltimore MD USA
| | | | - Carmen Ascaso
- Museo Nacional de Ciencias Naturales, CSICMadrid Spain
| | - Octavio Artieda
- Departamento Biologica Vegetal, Ecologia y ciencias de la TierraUniversidad de ExtremaduraPlasencia Spain
| | - P. R. McCullough
- Department of Physics and AstronomyThe Johns Hopkins UniversityBaltimore MD USA
| | | |
Collapse
|
27
|
Scola V, Ramond JB, Frossard A, Zablocki O, Adriaenssens EM, Johnson RM, Seely M, Cowan DA. Namib Desert Soil Microbial Community Diversity, Assembly, and Function Along a Natural Xeric Gradient. MICROBIAL ECOLOGY 2018; 75:193-203. [PMID: 28647755 DOI: 10.1007/s00248-017-1009-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/05/2017] [Indexed: 05/25/2023]
Abstract
The hyperarid Namib desert is a coastal desert in southwestern Africa and one of the oldest and driest deserts on the planet. It is characterized by a west/east increasing precipitation gradient and by regular coastal fog events (extending up to 75 km inland) that can also provide soil moisture. In this study, we evaluated the role of this natural aridity and xeric gradient on edaphic microbial community structure and function in the Namib desert. A total of 80 individual soil samples were collected at 10-km intervals along a 190-km transect from the fog-dominated western coastal region to the eastern desert boundary. Seventeen physicochemical parameters were measured for each soil sample. Soil parameters reflected the three a priori defined climatic/xeric zones along the transect ("fog," "low rain," and "high rain"). Microbial community structures were characterized by terminal restriction fragment length polymorphism fingerprinting and shotgun metaviromics, and their functional capacities were determined by extracellular enzyme activity assays. Both microbial community structures and activities differed significantly between the three xeric zones. The deep sequencing of surface soil metavirome libraries also showed shifts in viral composition along the xeric transect. While bacterial community assembly was influenced by soil chemistry and stochasticity along the transect, variations in community "function" were apparently tuned by xeric stress.
Collapse
Affiliation(s)
- Vincent Scola
- Centre for Microbial Ecology and Genomics (CMEG), Department of Microbiology, University of Pretoria, Pretoria, South Africa
| | - Jean-Baptiste Ramond
- Centre for Microbial Ecology and Genomics (CMEG), Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Aline Frossard
- Centre for Microbial Ecology and Genomics (CMEG), Department of Genetics, University of Pretoria, Pretoria, South Africa
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Olivier Zablocki
- Centre for Microbial Ecology and Genomics (CMEG), Department of Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| | - Evelien M Adriaenssens
- Centre for Microbial Ecology and Genomics (CMEG), Department of Genetics, University of Pretoria, Pretoria, South Africa
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Riegardt M Johnson
- Centre for Microbial Ecology and Genomics (CMEG), Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Mary Seely
- Gobabeb Research and Training Centre, Walvis Bay, Namibia
- Desert Research Foundation of Namibia (DRFN), Windhoek, Namibia
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics (CMEG), Department of Genetics, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
28
|
Van Goethem MW, Makhalanyane TP, Cowan DA, Valverde A. Cyanobacteria and Alphaproteobacteria May Facilitate Cooperative Interactions in Niche Communities. Front Microbiol 2017; 8:2099. [PMID: 29118751 PMCID: PMC5660985 DOI: 10.3389/fmicb.2017.02099] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/13/2017] [Indexed: 01/04/2023] Open
Abstract
Hypoliths, microbial assemblages found below translucent rocks, provide important ecosystem services in deserts. While several studies have assessed microbial diversity of hot desert hypoliths and whether these communities are metabolically active, the interactions among taxa remain unclear. Here, we assessed the structure, diversity, and co-occurrence patterns of hypolithic communities from the hyperarid Namib Desert by comparing total (DNA) and potentially active (RNA) communities. The potentially active and total hypolithic communities differed in their composition and diversity, with significantly higher levels of Cyanobacteria and Alphaproteobacteria in potentially active hypoliths. Several phyla known to be abundant in total hypolithic communities were metabolically inactive, indicating that some hypolithic taxa may be dormant or dead. The potentially active hypolith network was highly modular in structure with almost exclusively positive co-occurrences (>95% of the total) between taxa. Members of the Cyanobacteria and Alphaproteobacteria were identified as potential keystone taxa, and exhibited numerous positive co-occurrences with other microbes, suggesting that these groups might have important roles in maintaining network topological structure despite their low abundance.
Collapse
Affiliation(s)
- Marc W Van Goethem
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Angel Valverde
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
29
|
Christian K, Kaestli M, Gibb K. Spatial patterns of hypolithic cyanobacterial diversity in Northern Australia. Ecol Evol 2017; 7:7023-7033. [PMID: 28904780 PMCID: PMC5587464 DOI: 10.1002/ece3.3248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/13/2017] [Accepted: 06/25/2017] [Indexed: 02/01/2023] Open
Abstract
Photosynthetic microbial communities under translucent rocks (hypolithic) are found in many arid regions. At the global scale, there has been little intercontinental gene flow, and at a local scale, microbial composition is related to fine‐scale features of the rocks and their environment. Few studies have investigated patterns of hypolithic community composition at intermediate distances. We examined hypolithic cyanobacterial diversity in semi‐arid Australia along a 10‐km transect by sampling six rocks from four adjacent 1 m2 quadrats (“distance zero”) and from additional quadrats at 10, 100, 1,000, and 10,000 m to test the hypothesis that diversity would increase with the number of rocks sampled and distance. A total of 3,108 cyanobacterial operational taxonomic units (OTUs) were detected. Most were neither widespread nor abundant. The few that were widespread tended to be abundant. There was no difference in the community composition between the four sites at distance zero, but the samples 10 m away were significantly different, as were those at all other distances compared to distance zero. Many additional OTUs were recorded with increasing distance up to 100 m. These patterns of distribution are consistent with a colonization model involving dispersal from rock to rock. Our results indicate that distance was a significant factor that can be confounded by interrock differences. Most diversity was represented in the first 100 m of the transect, with an additional 1.5% of the total diversity added by the sample at 1 km, but only 0.2% added with the addition of the 10‐km site.
Collapse
Affiliation(s)
- Keith Christian
- Research Institute for the Environment and Livelihoods Charles Darwin University Darwin Northern Territory Australia
| | - Mirjam Kaestli
- Research Institute for the Environment and Livelihoods Charles Darwin University Darwin Northern Territory Australia
| | - Karen Gibb
- Research Institute for the Environment and Livelihoods Charles Darwin University Darwin Northern Territory Australia
| |
Collapse
|
30
|
Belowground top-down and aboveground bottom-up effects structure multitrophic community relationships in a biodiverse forest. Sci Rep 2017; 7:4222. [PMID: 28652616 PMCID: PMC5484685 DOI: 10.1038/s41598-017-04619-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/17/2017] [Indexed: 11/08/2022] Open
Abstract
Ecosystem functioning and human well-being critically depend on numerous species interactions above- and belowground. However, unraveling the structure of multitrophic interaction webs at the ecosystem level is challenging for biodiverse ecosystems. Attempts to identify major relationships between trophic levels usually rely on simplified proxies, such as species diversity. Here, we propose to consider the full information on species composition across trophic levels, using Procrustes correlation and structural equation models. We show that species composition data of a highly diverse subtropical forest―with 5,716 taxa across 25 trophic groups― reveal strong interrelationships among plants, arthropods, and microorganisms, indicating complex multitrophic interactions. We found substantial support for top-down effects of microorganisms belowground, indicating important feedbacks of microbial symbionts, pathogens, and decomposers on plant communities. In contrast, aboveground pathways were characterized by bottom-up control of plants on arthropods, including many non-trophic links. Additional analyses based on diversity patterns revealed much weaker interrelationships. Our study suggests that multitrophic communities in our forest system are structured via top-down effects of belowground biota on plants, which in turn affect aboveground arthropod communities across trophic levels. Moreover, the study shows that the consequences of species loss will be more complex than indicated by studies based solely on diversity.
Collapse
|
31
|
Lacap-Bugler DC, Lee KK, Archer S, Gillman LN, Lau MCY, Leuzinger S, Lee CK, Maki T, McKay CP, Perrott JK, de Los Rios-Murillo A, Warren-Rhodes KA, Hopkins DW, Pointing SB. Global Diversity of Desert Hypolithic Cyanobacteria. Front Microbiol 2017; 8:867. [PMID: 28559886 PMCID: PMC5432569 DOI: 10.3389/fmicb.2017.00867] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/28/2017] [Indexed: 12/02/2022] Open
Abstract
Global patterns in diversity were estimated for cyanobacteria-dominated hypolithic communities that colonize ventral surfaces of quartz stones and are common in desert environments. A total of 64 hypolithic communities were recovered from deserts on every continent plus a tropical moisture sufficient location. Community diversity was estimated using a combined t-RFLP fingerprinting and high throughput sequencing approach. The t-RFLP analysis revealed desert communities were different from the single non-desert location. A striking pattern also emerged where Antarctic desert communities were clearly distinct from all other deserts. Some overlap in community similarity occurred for hot, cold and tundra deserts. A further observation was that the producer-consumer ratio displayed a significant negative correlation with growing season, such that shorter growing seasons supported communities with greater abundance of producers, and this pattern was independent of macroclimate. High-throughput sequencing of 16S rRNA and nifH genes from four representative samples validated the t-RFLP study and revealed patterns of taxonomic and putative diazotrophic diversity for desert communities from the Taklimakan Desert, Tibetan Plateau, Canadian Arctic and Antarctic. All communities were dominated by cyanobacteria and among these 21 taxa were potentially endemic to any given desert location. Some others occurred in all but the most extreme hot and polar deserts suggesting they were relatively less well adapted to environmental stress. The t-RFLP and sequencing data revealed the two most abundant cyanobacterial taxa were Phormidium in Antarctic and Tibetan deserts and Chroococcidiopsis in hot and cold deserts. The Arctic tundra displayed a more heterogenous cyanobacterial assemblage and this was attributed to the maritime-influenced sampling location. The most abundant heterotrophic taxa were ubiquitous among samples and belonged to the Acidobacteria, Actinobacteria, Bacteroidetes, and Proteobacteria. Sequencing using nitrogenase gene-specific primers revealed all putative diazotrophs were Proteobacteria of the orders Burkholderiales, Rhizobiales, and Rhodospirillales. We envisage cyanobacterial carbon input to the system is accompanied by nitrogen fixation largely from non-cyanobacterial taxa. Overall the results indicate desert hypoliths worldwide are dominated by cyanobacteria and that growing season is a useful predictor of their abundance. Differences in cyanobacterial taxa encountered may reflect their adaptation to different moisture availability regimes in polar and non-polar deserts.
Collapse
Affiliation(s)
- Donnabella C Lacap-Bugler
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of TechnologyAuckland, New Zealand
| | - Kevin K Lee
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of TechnologyAuckland, New Zealand
| | - Stephen Archer
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of TechnologyAuckland, New Zealand
| | - Len N Gillman
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of TechnologyAuckland, New Zealand
| | - Maggie C Y Lau
- Department of Geosciences, Princeton University, PrincetonNJ, USA
| | - Sebastian Leuzinger
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of TechnologyAuckland, New Zealand
| | - Charles K Lee
- International Centre for Terrestrial Antarctic Research, School of Science, University of WaikatoHamilton, New Zealand
| | - Teruya Maki
- Institute of Nature and Environmental Technology, Kanazawa UniversityKanazawa, Japan
| | - Christopher P McKay
- National Aeronautics and Space Administration Ames Research Center, Moffett FieldCA, USA
| | - John K Perrott
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of TechnologyAuckland, New Zealand
| | | | | | | | - Stephen B Pointing
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of TechnologyAuckland, New Zealand.,Institute of Nature and Environmental Technology, Kanazawa UniversityKanazawa, Japan
| |
Collapse
|
32
|
Diel-scale temporal dynamics recorded for bacterial groups in Namib Desert soil. Sci Rep 2017; 7:40189. [PMID: 28071697 PMCID: PMC5223211 DOI: 10.1038/srep40189] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/01/2016] [Indexed: 11/23/2022] Open
Abstract
Microbes in hot desert soil partake in core ecosystem processes e.g., biogeochemical cycling of carbon. Nevertheless, there is still a fundamental lack of insights regarding short-term (i.e., over a 24-hour [diel] cycle) microbial responses to highly fluctuating microenvironmental parameters like temperature and humidity. To address this, we employed T-RFLP fingerprinting and 454 pyrosequencing of 16S rRNA-derived cDNA to characterize potentially active bacteria in Namib Desert soil over multiple diel cycles. Strikingly, we found that significant shifts in active bacterial groups could occur over a single 24-hour period. For instance, members of the predominant Actinobacteria phyla exhibited a significant reduction in relative activity from morning to night, whereas many Proteobacterial groups displayed an opposite trend. Contrary to our leading hypothesis, environmental parameters could only account for 10.5% of the recorded total variation. Potential biotic associations shown through co-occurrence networks indicated that non-random inter- and intra-phyla associations were ‘time-of-day-dependent’ which may constitute a key feature of this system. Notably, many cyanobacterial groups were positioned outside and/or between highly interconnected bacterial associations (modules); possibly acting as inter-module ‘hubs’ orchestrating interactions between important functional consortia. Overall, these results provide empirical evidence that bacterial communities in hot desert soils exhibit complex and diel-dependent inter-community associations.
Collapse
|
33
|
Johnson RM, Ramond JB, Gunnigle E, Seely M, Cowan DA. Namib Desert edaphic bacterial, fungal and archaeal communities assemble through deterministic processes but are influenced by different abiotic parameters. Extremophiles 2017; 21:381-392. [PMID: 28058513 DOI: 10.1007/s00792-016-0911-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/19/2016] [Indexed: 01/31/2023]
Abstract
The central Namib Desert is hyperarid, where limited plant growth ensures that biogeochemical processes are largely driven by microbial populations. Recent research has shown that niche partitioning is critically involved in the assembly of Namib Desert edaphic communities. However, these studies have mainly focussed on the Domain Bacteria. Using microbial community fingerprinting, we compared the assembly of the bacterial, fungal and archaeal populations of microbial communities across nine soil niches from four Namib Desert soil habitats (riverbed, dune, gravel plain and salt pan). Permutational multivariate analysis of variance indicated that the nine soil niches presented significantly different physicochemistries (R 2 = 0.8306, P ≤ 0.0001) and that bacterial, fungal and archaeal populations were soil niche specific (R 2 ≥ 0.64, P ≤ 0.001). However, the abiotic drivers of community structure were Domain-specific (P < 0.05), with P, clay and sand fraction, and NH4 influencing bacterial, fungal and archaeal communities, respectively. Soil physicochemistry and soil niche explained over 50% of the variation in community structure, and communities displayed strong non-random patterns of co-occurrence. Taken together, these results demonstrate that in central Namib Desert soil microbial communities, assembly is principally driven by deterministic processes.
Collapse
Affiliation(s)
- Riegardt M Johnson
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, Natural Sciences 2, University of Pretoria, Room 3-20, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Jean-Baptiste Ramond
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, Natural Sciences 2, University of Pretoria, Room 3-20, Private Bag X20, Hatfield, Pretoria, 0028, South Africa.
| | - Eoin Gunnigle
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, Natural Sciences 2, University of Pretoria, Room 3-20, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Mary Seely
- Gobabeb Research and Training Centre, Walvis Bay, Namibia
- School of Animal, Plant and Environmental Sciences (AP&ES), University of the Witwatersrand, Johannesburg, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, Natural Sciences 2, University of Pretoria, Room 3-20, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| |
Collapse
|
34
|
Armstrong A, Valverde A, Ramond JB, Makhalanyane TP, Jansson JK, Hopkins DW, Aspray TJ, Seely M, Trindade MI, Cowan DA. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input. Sci Rep 2016; 6:34434. [PMID: 27680878 PMCID: PMC5041089 DOI: 10.1038/srep34434] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/14/2016] [Indexed: 02/01/2023] Open
Abstract
The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.
Collapse
Affiliation(s)
- Alacia Armstrong
- Centre for Microbial Ecology and Genomics (CMEG), Genomics Research Institute, Department of Genetics, University of Pretoria, Pretoria 0002, South Africa
| | - Angel Valverde
- Centre for Microbial Ecology and Genomics (CMEG), Genomics Research Institute, Department of Genetics, University of Pretoria, Pretoria 0002, South Africa
| | - Jean-Baptiste Ramond
- Centre for Microbial Ecology and Genomics (CMEG), Genomics Research Institute, Department of Genetics, University of Pretoria, Pretoria 0002, South Africa
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics (CMEG), Genomics Research Institute, Department of Genetics, University of Pretoria, Pretoria 0002, South Africa
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - David W Hopkins
- The Royal Agricultural University, Cirencester, Gloucestershire GL7 6JS, UK
| | - Thomas J Aspray
- School of Life Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Mary Seely
- Gobabeb Training and Research Centre (GTRC), Walvis Bay, Namibia.,Animal, Plant and Environmental Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Marla I Trindade
- Institute for Microbial Biotechnology and Metagenomics (IMBM). University of the Western Cape, Bellville 7535, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics (CMEG), Genomics Research Institute, Department of Genetics, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
35
|
Le PT, Makhalanyane TP, Guerrero LD, Vikram S, Van de Peer Y, Cowan DA. Comparative Metagenomic Analysis Reveals Mechanisms for Stress Response in Hypoliths from Extreme Hyperarid Deserts. Genome Biol Evol 2016; 8:2737-47. [PMID: 27503299 PMCID: PMC5630931 DOI: 10.1093/gbe/evw189] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Understanding microbial adaptation to environmental stressors is crucial for interpreting broader ecological patterns. In the most extreme hot and cold deserts, cryptic niche communities are thought to play key roles in ecosystem processes and represent excellent model systems for investigating microbial responses to environmental stressors. However, relatively little is known about the genetic diversity underlying such functional processes in climatically extreme desert systems. This study presents the first comparative metagenome analysis of cyanobacteria-dominated hypolithic communities in hot (Namib Desert, Namibia) and cold (Miers Valley, Antarctica) hyperarid deserts. The most abundant phyla in both hypolith metagenomes were Actinobacteria, Proteobacteria, Cyanobacteria and Bacteroidetes with Cyanobacteria dominating in Antarctic hypoliths. However, no significant differences between the two metagenomes were identified. The Antarctic hypolithic metagenome displayed a high number of sequences assigned to sigma factors, replication, recombination and repair, translation, ribosomal structure, and biogenesis. In contrast, the Namib Desert metagenome showed a high abundance of sequences assigned to carbohydrate transport and metabolism. Metagenome data analysis also revealed significant divergence in the genetic determinants of amino acid and nucleotide metabolism between these two metagenomes and those of soil from other polar deserts, hot deserts, and non-desert soils. Our results suggest extensive niche differentiation in hypolithic microbial communities from these two extreme environments and a high genetic capacity for survival under environmental extremes.
Collapse
Affiliation(s)
- Phuong Thi Le
- Centre for Microbial Ecology and Genomics (CMEG), Department of Genetics, University of Pretoria, Pretoria, South Africa Department of Plant Systems Biology, VIB, Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics (CMEG), Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Leandro D Guerrero
- Centre for Microbial Ecology and Genomics (CMEG), Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Surendra Vikram
- Centre for Microbial Ecology and Genomics (CMEG), Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Yves Van de Peer
- Centre for Microbial Ecology and Genomics (CMEG), Department of Genetics, University of Pretoria, Pretoria, South Africa Department of Plant Systems Biology, VIB, Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, Ghent Belgium
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics (CMEG), Department of Genetics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
36
|
Archer SDJ, de los Ríos A, Lee KC, Niederberger TS, Cary SC, Coyne KJ, Douglas S, Lacap-Bugler DC, Pointing SB. Endolithic microbial diversity in sandstone and granite from the McMurdo Dry Valleys, Antarctica. Polar Biol 2016. [DOI: 10.1007/s00300-016-2024-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Valverde A, De Maayer P, Oberholster T, Henschel J, Louw MK, Cowan D. Specific Microbial Communities Associate with the Rhizosphere of Welwitschia mirabilis, a Living Fossil. PLoS One 2016; 11:e0153353. [PMID: 27064484 PMCID: PMC4827806 DOI: 10.1371/journal.pone.0153353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/29/2016] [Indexed: 11/24/2022] Open
Abstract
Welwitschia mirabilis is an ancient and rare plant distributed along the western coast of Namibia and Angola. Several aspects of Welwitschia biology and ecology have been investigated, but very little is known about the microbial communities associated with this plant. This study reports on the bacterial and fungal communities inhabiting the rhizosphere of W. mirabilis and the surrounding bulk soil. Rhizosphere communities were dominated by sequences of Alphaproteobacteria and Euromycetes, while Actinobacteria, Alphaproteobacteria, and fungi of the class Dothideomycetes jointly dominated bulk soil communities. Although microbial communities within the rhizosphere and soil samples were highly variable, very few “species” (OTUs defined at a 97% identity cut-off) were shared between these two environments. There was a small ‘core’ rhizosphere bacterial community (formed by Nitratireductor, Steroidobacter, Pseudonocardia and three Phylobacteriaceae) that together with Rhizophagus, an arbuscular mycorrhizal fungus, and other putative plant growth-promoting microbes may interact synergistically to promote Welwitschia growth.
Collapse
Affiliation(s)
- Angel Valverde
- Department of Genetics, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
- * E-mail:
| | - Pieter De Maayer
- Department of Genetics, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Tanzelle Oberholster
- Department of Genetics, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Joh Henschel
- Namib Ecological Restoration and Monitoring Unit, Gobabeb Research and Training Centre, Walvis Bay, Namibia
- SAEON Arid Lands Node, Hadison Park, Kimberly, South Africa
| | | | - Don Cowan
- Department of Genetics, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
38
|
Pointing SB. Hypolithic Communities. BIOLOGICAL SOIL CRUSTS: AN ORGANIZING PRINCIPLE IN DRYLANDS 2016. [DOI: 10.1007/978-3-319-30214-0_11] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
39
|
Vikram S, Guerrero LD, Makhalanyane TP, Le PT, Seely M, Cowan DA. Metagenomic analysis provides insights into functional capacity in a hyperarid desert soil niche community. Environ Microbiol 2015; 18:1875-88. [PMID: 26470632 DOI: 10.1111/1462-2920.13088] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/07/2015] [Accepted: 10/11/2015] [Indexed: 11/28/2022]
Abstract
In hyperarid ecosystems, macroscopic communities are often restricted to cryptic niches, such as hypoliths (microbial communities found beneath translucent rocks), which are widely distributed in hyperarid desert environments. While hypolithic communities are considered to play a major role in productivity, the functional guilds implicated in these processes remain unclear. Here, we describe the metagenomic sequencing, assembly and analysis of hypolithic microbial communities from the Namib Desert. Taxonomic analyses using Small Subunit phylogenetic markers showed that bacterial phylotypes (93%) dominated the communities, with relatively small proportions of archaea (0.43%) and fungi (5.6%). Refseq-viral database analysis showed the presence of double stranded DNA viruses (7.8% contigs), dominated by Caudovirales (59.2%). Analysis of functional genes and metabolic pathways revealed that cyanobacteria were primarily responsible for photosynthesis with the presence of multiple copies of genes for both photosystems I and II, with a smaller but significant fraction of proteobacterial anoxic photosystem II genes. Hypolithons demonstrated an extensive genetic capacity for the degradation of phosphonates and mineralization of organic sulphur. Surprisingly, we were unable to show the presence of genes representative of complete nitrogen cycles. Taken together, our analyses suggest an extensive capacity for carbon, phosphate and sulphate cycling but only limited nitrogen biogeochemistry.
Collapse
Affiliation(s)
- Surendra Vikram
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Leandro D Guerrero
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Phuong T Le
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa.,Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
| | - Mary Seely
- Gobabeb Research and Training Centre, Walvis Bay, Namibia
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
40
|
Villa F, Pitts B, Lauchnor E, Cappitelli F, Stewart PS. Development of a Laboratory Model of a Phototroph-Heterotroph Mixed-Species Biofilm at the Stone/Air Interface. Front Microbiol 2015; 6:1251. [PMID: 26635736 PMCID: PMC4646968 DOI: 10.3389/fmicb.2015.01251] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/27/2015] [Indexed: 12/19/2022] Open
Abstract
Recent scientific investigations have shed light on the ecological importance and physiological complexity of subaerial biofilms (SABs) inhabiting lithic surfaces. In the field of sustainable cultural heritage (CH) preservation, mechanistic approaches aimed at investigation of the spatiotemporal patterns of interactions between the biofilm, the stone, and the atmosphere are of outstanding importance. However, these interactions have proven difficult to explore with field experiments due to the inaccessibility of samples, the complexity of the ecosystem under investigation and the temporal resolution of the experiments. To overcome these limitations, we aimed at developing a unifying methodology to reproduce a fast-growing, phototroph-heterotroph mixed species biofilm at the stone/air interface. Our experiments underscore the ability of the dual-species SAB model to capture functional traits characteristic of biofilms inhabiting lithic substrate such as: (i) microcolonies of aggregated bacteria; (ii) network like structure following surface topography; (iii) cooperation between phototrophs and heterotrophs and cross feeding processes; (iv) ability to change the chemical parameters that characterize the microhabitats; (v) survival under desiccation and (vi) biocide tolerance. With its advantages in control, replication, range of different experimental scenarios and matches with the real ecosystem, the developed model system is a powerful tool to advance our mechanistic understanding of the stone-biofilm-atmosphere interplay in different environments.
Collapse
Affiliation(s)
- Federica Villa
- Center for Biofilm Engineering, Montana State University, Bozeman MT, USA ; Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano Milano, Italy
| | - Betsey Pitts
- Center for Biofilm Engineering, Montana State University, Bozeman MT, USA
| | - Ellen Lauchnor
- Center for Biofilm Engineering, Montana State University, Bozeman MT, USA
| | - Francesca Cappitelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano Milano, Italy
| | - Philip S Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman MT, USA
| |
Collapse
|