1
|
Vishwakarma R, Sgarlata GM, Soriano-Paños D, Rasteiro R, Maié T, Paixão T, Tournebize R, Chikhi L. Species-Specific Traits Shape Genetic Diversity During an Expansion-Contraction Cycle and Bias Demographic History Reconstruction. Mol Ecol 2025; 34:e17597. [PMID: 39663680 DOI: 10.1111/mec.17597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024]
Abstract
Species ranges are dynamic, experiencing expansions, contractions or shifts in response to habitat changes driven by extrinsic factors such as climate change or human activities. While existing research examines the genetic consequences of spatial processes, few studies integrate species-specific traits to analyse how habitat changes affect co-existing species. In this study, we address this gap by investigating how genetic diversity patterns vary among species with different traits (such as generation length, population density and dispersal) experiencing similar habitat changes. Using spatial simulations and a simpler panmictic population model, we investigate the temporal genetic diversity in refugium populations undergoing range expansion of their habitat, followed by stationary and contraction periods. By varying habitat contraction speed and species traits, we identified three distinct temporal dynamics of genetic diversity during contraction: (i) a decrease in genetic diversity, (ii) an initial increase followed by a decrease and (iii) a continuous increase throughout the contraction period. We show that genetic diversity trajectories during population decline can be predicted by comparing sampled population diversity to equilibrium values expected under expanded and contracted habitat ranges. Our study also challenges the belief that high genetic diversity in a refugium population is due to a recent and rapid habitat loss. Instead, we found contrasting effects of contraction speed on genetic diversity depending on the interaction between species-specific traits and the dynamics of habitat change. Finally, using simulated genetic data, we found that demographic histories inferred from effective population size estimates may vary across species, even when they experience similar habitat changes.
Collapse
Affiliation(s)
| | - Gabriele Maria Sgarlata
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, California, USA
| | - David Soriano-Paños
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Universitat Rovira i Virgili, Tarragona, Spain
| | - Rita Rasteiro
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Tiago Maié
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Tiago Paixão
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Rémi Tournebize
- Centre de Recherche Sur la Biodiversité et l'Environnement, UMR 5300, CNRS, IRD, UPS, Université de Toulouse Midi-Pyrénées, Toulouse, France
- DIADE, IRD, Université de Montpellier, Montpellier, France
| | - Lounès Chikhi
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Centre de Recherche Sur la Biodiversité et l'Environnement, UMR 5300, CNRS, IRD, UPS, Université de Toulouse Midi-Pyrénées, Toulouse, France
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| |
Collapse
|
2
|
Babik W, Marszałek M, Dudek K, Antunes B, Palomar G, Zając B, Taugbøl A, Pabijan M. Limited evidence for genetic differentiation or adaptation in two amphibian species across replicated rural-urban gradients. Evol Appl 2024; 17:e13700. [PMID: 38832082 PMCID: PMC11146147 DOI: 10.1111/eva.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
Urbanization leads to complex environmental changes and poses multiple challenges to organisms. Amphibians are highly susceptible to the effects of urbanization, with land use conversion, habitat destruction, and degradation ranked as the most significant threats. Consequently, amphibians are declining in urban areas, in both population numbers and abundance, however, the effect of urbanization on population genetic parameters remains unclear. Here, we studied the genomic response to urbanization in two widespread European species, the common toad Bufo bufo (26 localities, 480 individuals), and the smooth newt Lissotriton vulgaris (30 localities, 516 individuals) in three geographic regions: southern and northern Poland and southern Norway. We assessed genome-wide SNP variation using RADseq (ca. 42 and 552 thousand SNPs in toads and newts, respectively) and adaptively relevant major histocompatibility complex (MHC) class I and II genes. The results linked most of the genetic differentiation in both marker types to regional (latitudinal) effects, which also correspond to historical biogeography. Further, we did not find any association between genetic differentiation and level of urbanization at local scales for either species. However, urban smooth newts, but not toads, have lower levels of within-population genome-wide diversity, suggesting higher susceptibility to the negative effects of urbanization. A decreasing level of genetic diversity linked to increasing urbanization was also found for MHC II in smooth newts, while the relationship between MHC class I diversity and urbanization differed between geographic regions. We did not find any effects of urbanization on MHC diversity in the toad populations. Although two genetic environment association analyses of genome-wide data, LFMM and BayPass, revealed numerous (219 in B. bufo and 7040 in L. vulgaris) SNPs statistically associated with urbanization, we found a marked lack of repeatability between geographic regions, suggesting a complex and multifaceted response to natural selection elicited by life in the city.
Collapse
Affiliation(s)
- W. Babik
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - M. Marszałek
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - K. Dudek
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - B. Antunes
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - G. Palomar
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
- Department of Genetics, Physiology and Microbiology, Faculty of Biological SciencesComplutense University of MadridMadridSpain
| | - B. Zając
- Faculty of Biology, Institute of Zoology and Biomedical ResearchJagiellonian UniversityKrakówPoland
| | - A. Taugbøl
- Norwegian Institute for Nature ResearchLillehammerNorway
| | - M. Pabijan
- Faculty of Biology, Institute of Zoology and Biomedical ResearchJagiellonian UniversityKrakówPoland
| |
Collapse
|
3
|
Caizergues AE, Santangelo JS, Ness RW, Angeoletto F, Anstett DN, Anstett J, Baena-Diaz F, Carlen EJ, Chaves JA, Comerford MS, Dyson K, Falahati-Anbaran M, Fellowes MDE, Hodgins KA, Hood GR, Iñiguez-Armijos C, Kooyers NJ, Lázaro-Lobo A, Moles AT, Munshi-South J, Paule J, Porth IM, Santiago-Rosario LY, Whitney KS, Tack AJM, Johnson MTJ. Does urbanisation lead to parallel demographic shifts across the world in a cosmopolitan plant? Mol Ecol 2024; 33:e17311. [PMID: 38468155 DOI: 10.1111/mec.17311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/08/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024]
Abstract
Urbanisation is occurring globally, leading to dramatic environmental changes that are altering the ecology and evolution of species. In particular, the expansion of human infrastructure and the loss and fragmentation of natural habitats in cities is predicted to increase genetic drift and reduce gene flow by reducing the size and connectivity of populations. Alternatively, the 'urban facilitation model' suggests that some species will have greater gene flow into and within cities leading to higher diversity and lower differentiation in urban populations. These alternative hypotheses have not been contrasted across multiple cities. Here, we used the genomic data from the GLobal Urban Evolution project (GLUE), to study the effects of urbanisation on non-adaptive evolutionary processes of white clover (Trifolium repens) at a global scale. We found that white clover populations presented high genetic diversity and no evidence of reduced Ne linked to urbanisation. On the contrary, we found that urban populations were less likely to experience a recent decrease in effective population size than rural ones. In addition, we found little genetic structure among populations both globally and between urban and rural populations, which showed extensive gene flow between habitats. Interestingly, white clover displayed overall higher gene flow within urban areas than within rural habitats. Our study provides the largest comprehensive test of the demographic effects of urbanisation. Our results contrast with the common perception that heavily altered and fragmented urban environments will reduce the effective population size and genetic diversity of populations and contribute to their isolation.
Collapse
Affiliation(s)
- Aude E Caizergues
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - James S Santangelo
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - Rob W Ness
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Fabio Angeoletto
- Programa de Pós-Graduação em Gestão e Tecnologia Ambiental da Universidade Federal de Rondonópolis, Rondonópolis, Brasil
| | - Daniel N Anstett
- Department of Plant Biology, Department of Entomology, Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| | - Julia Anstett
- Genomic Sciences and Technology Program, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Elizabeth J Carlen
- Living Earth Collaborative, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jaime A Chaves
- Universidad San Francisco de Quito, Ecuador, Quito
- San Francisco State University, San Francisco, California, USA
| | - Mattheau S Comerford
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | | | | | | | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Glen Ray Hood
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Carlos Iñiguez-Armijos
- Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs-Lab), Universidad Técnica Particular de Loja, Loja, Ecuador
| | | | - Adrián Lázaro-Lobo
- Biodiversity Research Institute (IMIB), CSIC-University of Oviedo-Principality of Asturias, Mieres, Spain
| | - Angela T Moles
- Evolution & Ecology Research Centre, UNSW-University of New South Wales, Sydney, New South Wales, Australia
| | - Jason Munshi-South
- Department of Biology and Louis Calder Center, Fordham University, New York City, New York, USA
| | - Juraj Paule
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin, Germany
| | - Ilga M Porth
- Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, Quebec, Canada
| | - Luis Y Santiago-Rosario
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Kaitlin Stack Whitney
- Science, Technology & Society Department, Rochester Institute of Technology, Rochester, New York, USA
| | - Ayko J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Marc T J Johnson
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
4
|
Freitas I, Velo-Antón G, Lopes S, Muñoz-Merida A, Martínez-Freiría F. Isolation and characterization of polymorphic microsatellite loci for the three Iberian vipers, Vipera aspis, V. Latastei and V. seoanei by Illumina MiSeq sequencing. Mol Biol Rep 2024; 51:294. [PMID: 38334910 PMCID: PMC10857953 DOI: 10.1007/s11033-024-09263-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND European vipers (genus Vipera) are a well-studied taxonomic group, but the low resolution of nuclear sanger-sequenced regions has precluded thorough studies at systematic, ecological, evolutionary and conservation levels. In this study, we developed novel microsatellite markers for the three Iberian vipers, Vipera aspis, V. latastei and V. seoanei, and assessed their polymorphism in north-central Iberian populations. METHODS AND RESULTS Genomic libraries were developed for each species using an Illumina Miseq sequencing approach. From the 70 primer pairs initially tested, 48 amplified reliably and were polymorphic within species. Cross-species transferability was achieved for 31 microsatellites loci in the three target species and four additional loci that were transferable to one species only. The 48 loci amplified in average seven alleles, and detected average expected and observed heterozygosities of 0.7 and 0.55, in the three genotyped populations/species (26 V. aspis, 20 V. latastei and 10 V. seoanei). CONCLUSIONS Our study provides a selection of 48 polymorphic microsatellite markers that will contribute significantly to current knowledge on genetic diversity, gene flow, population structure, demographic dynamics, systematics, reproduction and heritability in these species, and potentially in other congeneric taxa.
Collapse
Affiliation(s)
- Inês Freitas
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Vairão, 4485-661, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, 4099-002, Portugal.
| | - Guillermo Velo-Antón
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Vairão, 4485-661, Portugal
- Facultad de Biología, Edificio de Ciencias Experimentales, Universidad de Vigo, Bloque B, Planta 2, Laboratorio 39 (Grupo GEA), Vigo, E-36310, Spain
| | - Susana Lopes
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Vairão, 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal
| | - Antonio Muñoz-Merida
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Vairão, 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal
| | - Fernando Martínez-Freiría
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Vairão, 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal
| |
Collapse
|
5
|
Moran PA, Bosse M, Mariën J, Halfwerk W. Genomic footprints of (pre) colonialism: Population declines in urban and forest túngara frogs coincident with historical human activity. Mol Ecol 2024; 33:e17258. [PMID: 38153193 DOI: 10.1111/mec.17258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Urbanisation is rapidly altering ecosystems, leading to profound biodiversity loss. To mitigate these effects, we need a better understanding of how urbanisation impacts dispersal and reproduction. Two contrasting population demographic models have been proposed that predict that urbanisation either promotes (facilitation model) or constrains (fragmentation model) gene flow and genetic diversity. Which of these models prevails likely depends on the strength of selection on specific phenotypic traits that influence dispersal, survival, or reproduction. Here, we a priori examined the genomic impact of urbanisation on the Neotropical túngara frog (Engystomops pustulosus), a species known to adapt its reproductive traits to urban selective pressures. Using whole-genome resequencing for multiple urban and forest populations we examined genomic diversity, population connectivity and demographic history. Contrary to both the fragmentation and facilitation models, urban populations did not exhibit substantial changes in genomic diversity or differentiation compared with forest populations, and genomic variation was best explained by geographic distance rather than environmental factors. Adopting an a posteriori approach, we additionally found both urban and forest populations to have undergone population declines. The timing of these declines appears to coincide with extensive human activity around the Panama Canal during the last few centuries rather than recent urbanisation. Our study highlights the long-lasting legacy of past anthropogenic disturbances in the genome and the importance of considering the historical context in urban evolution studies as anthropogenic effects may be extensive and impact nonurban areas on both recent and older timescales.
Collapse
Affiliation(s)
- Peter A Moran
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mirte Bosse
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Janine Mariën
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wouter Halfwerk
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Ålund M, Cenzer M, Bierne N, Boughman JW, Cerca J, Comerford MS, Culicchi A, Langerhans B, McFarlane SE, Möst MH, North H, Qvarnström A, Ravinet M, Svanbäck R, Taylor SA. Anthropogenic Change and the Process of Speciation. Cold Spring Harb Perspect Biol 2023; 15:a041455. [PMID: 37788888 PMCID: PMC10691492 DOI: 10.1101/cshperspect.a041455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Anthropogenic impacts on the environment alter speciation processes by affecting both geographical contexts and selection patterns on a worldwide scale. Here we review evidence of these effects. We find that human activities often generate spatial isolation between populations and thereby promote genetic divergence but also frequently cause sudden secondary contact and hybridization between diverging lineages. Human-caused environmental changes produce new ecological niches, altering selection in diverse ways that can drive diversification; but changes also often remove niches and cause extirpations. Human impacts that alter selection regimes are widespread and strong in magnitude, ranging from local changes in biotic and abiotic conditions to direct harvesting to global climate change. Altered selection, and evolutionary responses to it, impacts early-stage divergence of lineages, but does not necessarily lead toward speciation and persistence of separate species. Altogether, humans both promote and hinder speciation, although new species would form very slowly relative to anthropogenic hybridization, which can be nearly instantaneous. Speculating about the future of speciation, we highlight two key conclusions: (1) Humans will have a large influence on extinction and "despeciation" dynamics in the short term and on early-stage lineage divergence, and thus potentially speciation in the longer term, and (2) long-term monitoring combined with easily dated anthropogenic changes will improve our understanding of the processes of speciation. We can use this knowledge to preserve and restore ecosystems in ways that promote (re-)diversification, increasing future opportunities of speciation and enhancing biodiversity.
Collapse
Affiliation(s)
- Murielle Ålund
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Meredith Cenzer
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| | - Nicolas Bierne
- ISEM, Université de Montpellier, CNRS, IRD, Montpellier 34095, France
| | - Janette W Boughman
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - José Cerca
- CEES - Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | | | - Alessandro Culicchi
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Brian Langerhans
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - S Eryn McFarlane
- Department of Botany, University of Wyoming, Laramie, Wyoming 82071, USA
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Markus H Möst
- Research Department for Limnology, University of Innsbruck, Innsbruck 6020, Austria
| | - Henry North
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Anna Qvarnström
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Mark Ravinet
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Richard Svanbäck
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Scott A Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
7
|
Ludwig S, Pimentel JDSM, Cardoso Resende L, Kalapothakis E. Eco-evolutionary factors that influence its demographic oscillations in Prochilodus costatus (Actinopterygii: Characiformes) populations evidenced through a genetic spatial-temporal evaluation. Evol Appl 2023; 16:895-910. [PMID: 37124086 PMCID: PMC10130561 DOI: 10.1111/eva.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 02/10/2020] [Accepted: 03/04/2020] [Indexed: 05/02/2023] Open
Abstract
The human activity impact on wild animal populations is indicated by eco-evolutionary and demographic processes, along with their survival and capacity to evolve; consequently, such data can contribute toward enhancing genetic-based conservation programs. In this context, knowledge on the life-history and the eco-evolutionary processes is required to understand extant patterns of population structure in Prochilodus costatus a Neotropical migratory fish that has been threatened due to loss and fragmentation of its natural habitat since 1960s promoted by the expansion of hydroelectric power plant construction programs. This study evaluated the eco-evolutionary parameters that cause oscillations in the demography and structure of P. costatus populations. An integrated approach was used, including temporal and spatial sampling, next-generation sequencing of eight microsatellite loci, multivariate genetic analysis, and demographic life-history reconstruction. The results provided evidence of the complex interplay of ecological-evolutionary and human-interference events on the life history of this species in the upper basin. In particular, spawning wave behavior might have ecological triggers resulting in an overlapping of distinct genetic generations, and arising distinct migratory and nonmigratory genetic patterns living in the same area. An abrupt decrease in the effective population size of the P. costatus populations in the recent past (1960-80) was likely driven by environment fragmentation promoted by the construction of the Três Marias hydropower dam. The low allelic diversity that resulted from this event is still detected today; thus, active stocking programs are not effective at expanding the genetic diversity of this species in the river basin. Finally, this study highlights the importance of using mixed methods to understand spatial and temporal variation in genetic structure for effective mitigation and conservation programs for threatened species that are directly affected by human actions.
Collapse
Affiliation(s)
- Sandra Ludwig
- Departament of Genetics, Ecology and EvolutionFederal University of Minas GeraisBelo HorizonteBrazil
| | | | - Leonardo Cardoso Resende
- Departament of Genetics, Ecology and EvolutionFederal University of Minas GeraisBelo HorizonteBrazil
| | - Evanguedes Kalapothakis
- Departament of Genetics, Ecology and EvolutionFederal University of Minas GeraisBelo HorizonteBrazil
| |
Collapse
|
8
|
Cronin AD, Smit JAH, Muñoz MI, Poirier A, Moran PA, Jerem P, Halfwerk W. A comprehensive overview of the effects of urbanisation on sexual selection and sexual traits. Biol Rev Camb Philos Soc 2022; 97:1325-1345. [PMID: 35262266 PMCID: PMC9541148 DOI: 10.1111/brv.12845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022]
Abstract
Urbanisation can affect mating opportunities and thereby alter inter- and intra-sexual selection pressures on sexual traits. Biotic and abiotic urban conditions can influence an individual's success in pre- and post-copulatory mating, for example through impacts on mate attraction and mate preference, fertilisation success, resource competition or rival interactions. Divergent sexual selection pressures can lead to differences in behavioural, physiological, morphological or life-history traits between urban and non-urban populations, ultimately driving adaptation and speciation. Most studies on urban sexual selection and mating interactions report differences between urban and non-urban populations or correlations between sexual traits and factors associated with increased urbanisation, such as pollution, food availability and risk of predation and parasitism. Here we review the literature on sexual selection and sexual traits in relation to urbanisation or urban-associated conditions. We provide an extensive list of abiotic and biotic factors that can influence processes involved in mating interactions, such as signal production and transmission, mate choice and mating opportunities. We discuss all relevant data through the lens of two, non-mutually exclusive theories on sexual selection, namely indicator and sensory models. Where possible, we indicate whether these models provide the same or different predictions regarding urban-adapted sexual signals and describe different experimental designs that can be useful for the different models as well as to investigate the drivers of sexual selection. We argue that we lack a good understanding of: (i) the factors driving urban sexual selection; (ii) whether reported changes in traits result in adaptive benefits; and (iii) whether these changes reflect a short-term ecological, or long-term evolutionary response. We highlight that urbanisation provides a unique opportunity to study the process and outcomes of sexual selection, but that this requires a highly integrative approach combining experimental and observational work.
Collapse
Affiliation(s)
- Andrew D Cronin
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Judith A H Smit
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Matías I Muñoz
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Armand Poirier
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Peter A Moran
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Paul Jerem
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Wouter Halfwerk
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| |
Collapse
|
9
|
Kiss I, Vörös J, Hamer A. Movement patterns within an urban population of fire salamanders highlight the importance of conserving small habitat patches. J Zool (1987) 2021. [DOI: 10.1111/jzo.12949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- I. Kiss
- Department of Zoology and Animal Ecology Szent István University Gödöllő Hungary
| | - J. Vörös
- Department of Zoology Hungarian Natural History Museum Budapest Hungary
| | - A.J. Hamer
- Balaton Limnological Research Institute Eötvös Loránd Research Network (ELKH) Klebelsberg K. u. 3 Tihany 8237 Hungary
| |
Collapse
|
10
|
Pikus E, Włodarczyk R, Jedlikowski J, Minias P. Urbanization processes drive divergence at the major histocompatibility complex in a common waterbird. PeerJ 2021; 9:e12264. [PMID: 34707940 PMCID: PMC8500109 DOI: 10.7717/peerj.12264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/16/2021] [Indexed: 11/20/2022] Open
Abstract
Urban sprawl is one of the most common landscape alterations occurring worldwide, and there is a growing list of species that are recognised to have adapted to urban life. To be successful, processes of urban colonization by wildlife require a broad spectrum of phenotypic (e.g., behavioural or physiological) adjustments, but evidence for genetic adaptations is much scarcer. One hypothesis proposes that different pathogen-driven selective pressures between urban and non-urban landscapes leads to adaptations in host immune genes. Here, we examined urbanization-related differentiation at the key pathogen-recognition genes of vertebrate adaptive immunity-the major histocompatibility complex (MHC)-in a common waterbird, the Eurasian coot (Fulica atra). Samples were collected from an old urban population (established before the 1950s), a new urban population (established in the 2000s), and two rural populations from central Poland. We found strong significant divergence (as measured with Jost's D) at the MHC class II between the old urban population and the remaining (new urban and rural) populations. Also, there was a moderate, but significant divergence at the MHC between the new urban population and two rural populations, while no divergence was found between the two rural populations. The total number of MHC alleles and the number of private (population-specific) MHC alleles was lower in old urban populations, as compared to the rural ones. These patterns of differentiation at the MHC were not consistent with patterns found for neutral genetic markers (microsatellites), which showed few differences between the populations. Our results indicate that MHC allele composition depended on the level of anthropogenic disturbance and the time which passed since urban colonization, possibly due to the processes of genotype sorting and local adaptation. As such, our study contributes to the understanding of genetic mechanisms associated with urbanization processes in wildlife.
Collapse
Affiliation(s)
- Ewa Pikus
- Department of Biodiversity Studies and Bioeducation, University of Łódź, Łódź, Poland
| | - Radosław Włodarczyk
- Department of Biodiversity Studies and Bioeducation, University of Łódź, Łódź, Poland
| | - Jan Jedlikowski
- Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, University of Łódź, Łódź, Poland
| |
Collapse
|
11
|
Alarcón-Ríos L, Velo-Antón G. Multiple paternity in the pueriparous North African fire salamander, Salamandra algira, supports polyandry as a successful mating strategy in low fecundity Salamandra lineages. AMPHIBIA-REPTILIA 2021. [DOI: 10.1163/15685381-bja10075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Multiple paternity is widespread in nature and despite costs, it has many associated benefits like increased genetic diversity and fertilization success. It has been described in many viviparous systems, suggesting the existence of some fitness advantages counteracting the inherent costs of viviparity, such as fecundity reduction and high parental investment. Reproductively polymorphic species, like the urodele Salamandra algira, which shows two types of viviparity: larviparity (i.e., delivering aquatic larvae), and pueriparity (i.e., delivering terrestrial metamorphosed juveniles), are suitable systems to study the relationship between reproductive modes and polygamous mating. Here, multiple paternity is confirmed in a pueriparous lineage of S. algira, as previously verified for the pueriparous lineages of the reproductively polymorphic species S. salamandra, suggesting polyandry is a successful mating strategy in pueriparous systems with reduced brood sizes. We discuss the potential benefits of polyandry in the context of viviparity evolution in urodeles.
Collapse
Affiliation(s)
- Lucía Alarcón-Ríos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Guillermo Velo-Antón
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, Grupo de Ecoloxía Animal, Torre Cacti (Lab 97), E-36310, Vigo, Spain
| |
Collapse
|
12
|
Blumenfeld AJ, Eyer PA, Helms AM, Buczkowski G, Vargo EL. Consistent signatures of urban adaptation in a native, urban invader ant Tapinoma sessile. Mol Ecol 2021; 31:4832-4850. [PMID: 34551170 DOI: 10.1111/mec.16188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022]
Abstract
Biological invasions are becoming more prevalent due to the rise of global trade and expansion of urban areas. Ants are among the most prolific invaders with many exhibiting a multiqueen colony structure, dependent colony foundation and reduced internest aggression. Although these characteristics are generally associated with the invasions of exotic ants, they may also facilitate the spread of native ants into novel habitats. Native to diverse habitats across North America, the odorous house ant Tapinoma sessile has become abundant in urban environments throughout the United States. Natural colonies typically have a small workforce, inhabit a single nest, and are headed by a single queen, whereas urban colonies tend to be several orders of magnitude larger, inhabit multiple nests (i.e., polydomy) and are headed by multiple queens (i.e., polygyny). Here, we explore and compare the population genetic and breeding structure of T. sessile within and between urban and natural environments in several localities across its distribution range. We found the social structure of a colony to be a plastic trait in both habitats, although extreme polygyny was confined to urban habitats. Additionally, polydomous colonies were only present in urban habitats, suggesting T. sessile can only achieve supercoloniality within urbanized areas. Finally, we identified strong differentiation between urban and natural populations in each locality and continent-wide, indicating cities may restrict gene flow and exert intense selection pressure. Overall, our study highlights urbanization's influence in charting the evolutionary course for species.
Collapse
Affiliation(s)
| | - Pierre-André Eyer
- Department of Entomology, TAMU, Texas A&M University, College Station, Texas, USA
| | - Anjel M Helms
- Department of Entomology, TAMU, Texas A&M University, College Station, Texas, USA
| | | | - Edward L Vargo
- Department of Entomology, TAMU, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
13
|
Modi S, Mondol S, Nigam P, Habib B. Genetic analyses reveal demographic decline and population differentiation in an endangered social carnivore, Asiatic wild dog. Sci Rep 2021; 11:16371. [PMID: 34385570 PMCID: PMC8361113 DOI: 10.1038/s41598-021-95918-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 07/31/2021] [Indexed: 02/07/2023] Open
Abstract
Deforestation and agricultural intensification have resulted in an alarming change in the global land cover over the past 300 years, posing a threat to species conservation. Dhole is a monophyletic, social canid and, being an endangered and highly forest-dependent species, is more prone to the loss of favorable habitat in the Anthropocene. We determined the genetic differentiation and demographic history of dhole across the tiger reserves of Maharashtra using the microsatellite data of 305 individuals. Simulation-based analyses revealed a 77-85% decline in the major dhole sub-populations. Protected areas have provided refuge to the historically declining dhole population resulting in clustering with strong genetic structure in the remnant dhole population. The historical population decline coincides with the extreme events in the landscape over the past 300 years. The study highlights the pattern of genetic differentiation and diversity of a highly forest-dependent species which can be associated with the loss of forest cover outside tiger reserves. It also warrants attention to develop conservation plans for the remnant surviving population of dholes in India.
Collapse
Affiliation(s)
- Shrushti Modi
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Samrat Mondol
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Parag Nigam
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Bilal Habib
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India.
| |
Collapse
|
14
|
Bosch J, Martel A, Sopniewski J, Thumsová B, Ayres C, Scheele BC, Velo-Antón G, Pasmans F. Batrachochytrium salamandrivorans Threat to the Iberian Urodele Hotspot. J Fungi (Basel) 2021; 7:jof7080644. [PMID: 34436183 PMCID: PMC8400424 DOI: 10.3390/jof7080644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022] Open
Abstract
The recent introduction of the chytrid fungus Batrachochytrium salamandrivorans into northeastern Spain threatens salamander diversity on the Iberian Peninsula. We assessed the current epidemiological situation with extensive field sampling of urodele populations. We then sought to delineate priority regions and identify conservation units for the Iberian Peninsula by estimating the susceptibility of Iberian urodeles using laboratory experiments, evidence from mortality events in nature and captivity and inference from phylogeny. None of the 1395 field samples, collected between 2015 and 2021 were positive for Bsal and no Bsal-associated mortality events were recorded, in contrast to the confirmed occurrence of Bsal outbreak previously described in 2018. We classified five of eleven Iberian urodele species as highly susceptible, predicting elevated mortality and population declines following potential Bsal emergence in the wild, five species as intermediately susceptible with variable disease outcomes and one species as resistant to disease and mortality. We identified the six conservation units (i.e., species or lineages within species) at highest risk and propose priority areas for active disease surveillance and field biosecurity measures. The magnitude of the disease threat identified here emphasizes the need for region-tailored disease abatement plans that couple active disease surveillance to rapid and drastic actions.
Collapse
Affiliation(s)
- Jaime Bosch
- Biodiversity Research Institute (IMIB), University of Oviedo-Principality of Asturias-CSIC, 33600 Mieres, Spain;
- Museo Nacional de Ciencias Naturales-CSIC, 28006 Madrid, Spain
- Correspondence: ; Tel.: +34-6-777-724-02
| | - An Martel
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, B9820 Merelbeke, Belgium; (A.M.); (F.P.)
| | - Jarrod Sopniewski
- Fenner School of Environment and Society, Australian National University, Canberra 2601, Australia; (J.S.); (B.C.S.)
| | - Barbora Thumsová
- Biodiversity Research Institute (IMIB), University of Oviedo-Principality of Asturias-CSIC, 33600 Mieres, Spain;
- Museo Nacional de Ciencias Naturales-CSIC, 28006 Madrid, Spain
- Asociación Herpetologica Española, 28006 Madrid, Spain;
| | - Cesar Ayres
- Asociación Herpetologica Española, 28006 Madrid, Spain;
| | - Ben C. Scheele
- Fenner School of Environment and Society, Australian National University, Canberra 2601, Australia; (J.S.); (B.C.S.)
| | - Guillermo Velo-Antón
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal;
- Grupo GEA, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, 36310 Vigo, Spain
| | - Frank Pasmans
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, B9820 Merelbeke, Belgium; (A.M.); (F.P.)
| |
Collapse
|
15
|
Kiss I, Hamer AJ, Vörös J. Life history modelling reveals trends in fitness and apparent survival of an isolated Salamandra salamandra population in an urbanised landscape. EUR J WILDLIFE RES 2021. [DOI: 10.1007/s10344-021-01521-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Schmidt C, Garroway CJ. The population genetics of urban and rural amphibians in North America. Mol Ecol 2021; 30:3918-3929. [PMID: 34053153 DOI: 10.1111/mec.16005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Human land transformation is one of the leading causes of vertebrate population declines. These declines are thought to be partly due to decreased connectivity and habitat loss reducing animal population sizes in disturbed habitats. With time, this can lead to declines in effective population size and genetic diversity which restrict the ability of wildlife to efficiently cope with environmental change through genetic adaptation. However, it is not well understood whether these effects generally hold across taxa. We address this question by repurposing and synthesizing raw microsatellite data from online repositories for 19 amphibian species sampled at 554 georeferenced sites in North America. For each site, we estimated gene diversity, allelic richness, effective population size, and population differentiation. Using binary urban-rural census designations, and continuous measures of human population density, the Human Footprint Index, and impervious surface cover, we tested for generalizable effects of human land use on amphibian genetic diversity. We found minimal evidence, either positive or negative, for relationships between genetic metrics and urbanization. Together with previous work on focal species that also found varying effects of urbanization on genetic composition, it seems likely that the consequences of urbanization are not easily generalizable within or across amphibian species. Questions about the genetic consequences of urbanization for amphibians should be addressed on a case-by-case basis. This contrasts with general negative effects of urbanization in mammals and consistent, but species-specific, positive and negative effects in birds.
Collapse
Affiliation(s)
- Chloé Schmidt
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Colin J Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
17
|
Velo-Antón G, Lourenço A, Galán P, Nicieza A, Tarroso P. Landscape resistance constrains hybridization across contact zones in a reproductively and morphologically polymorphic salamander. Sci Rep 2021; 11:9259. [PMID: 33927228 PMCID: PMC8085075 DOI: 10.1038/s41598-021-88349-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Explicitly accounting for phenotypic differentiation together with environmental heterogeneity is crucial to understand the evolutionary dynamics in hybrid zones. Species showing intra-specific variation in phenotypic traits that meet across environmentally heterogeneous regions constitute excellent natural settings to study the role of phenotypic differentiation and environmental factors in shaping the spatial extent and patterns of admixture in hybrid zones. We studied three environmentally distinct contact zones where morphologically and reproductively divergent subspecies of Salamandra salamandra co-occur: the pueriparous S. s. bernardezi that is mostly parapatric to its three larviparous subspecies neighbours. We used a landscape genetics framework to: (i) characterise the spatial location and extent of each contact zone; (ii) assess patterns of introgression and hybridization between subspecies pairs; and (iii) examine the role of environmental heterogeneity in the evolutionary dynamics of hybrid zones. We found high levels of introgression between parity modes, and between distinct phenotypes, thus demonstrating the evolution to pueriparity alone or morphological differentiation do not lead to reproductive isolation between these highly divergent S. salamandra morphotypes. However, we detected substantial variation in patterns of hybridization across contact zones, being lower in the contact zone located on a topographically complex area. We highlight the importance of accounting for spatial environmental heterogeneity when studying evolutionary dynamics of hybrid zones.
Collapse
Affiliation(s)
- Guillermo Velo-Antón
- grid.5808.50000 0001 1503 7226CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Instituto de Ciências Agrárias de Vairão. R. Padre Armando Quintas, 4485-661 Vairão, Portugal ,grid.6312.60000 0001 2097 6738Universidade de Vigo, Grupo de Ecoloxía Animal, Departamento de Ecoloxía e Bioloxía Animal, Torre Cacti (Lab 97), 36310 Vigo, Spain
| | - André Lourenço
- grid.5808.50000 0001 1503 7226CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Instituto de Ciências Agrárias de Vairão. R. Padre Armando Quintas, 4485-661 Vairão, Portugal ,grid.5808.50000 0001 1503 7226Departamento de Biologia da Faculdade de Ciências, Universidade do Porto. Rua Campo Alegre, 4169-007 Porto, Portugal
| | - Pedro Galán
- grid.8073.c0000 0001 2176 8535Grupo de Investigación en Bioloxía Evolutiva (GIBE), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n, 15071 A Coruña, Spain
| | - Alfredo Nicieza
- grid.10863.3c0000 0001 2164 6351Departamento de Biologıa de Organismos y Sistemas, Universidad de Oviedo, Oviedo, Spain ,grid.10863.3c0000 0001 2164 6351Unidad Mixta de Investigacion en Biodiversidad (UMIB), CSIC-Universidad de Oviedo-Principado de Asturias, Mieres, Spain
| | - Pedro Tarroso
- grid.5808.50000 0001 1503 7226CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Instituto de Ciências Agrárias de Vairão. R. Padre Armando Quintas, 4485-661 Vairão, Portugal
| |
Collapse
|
18
|
Fusco NA, Pehek E, Munshi‐South J. Urbanization reduces gene flow but not genetic diversity of stream salamander populations in the New York City metropolitan area. Evol Appl 2021; 14:99-116. [PMID: 33519959 PMCID: PMC7819553 DOI: 10.1111/eva.13025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
Natural landscape heterogeneity and barriers resulting from urbanization can reduce genetic connectivity between populations. The evolutionary, demographic, and ecological effects of reduced connectivity may lead to population isolation and ultimately extinction. Alteration to the terrestrial and aquatic environment caused by urban influence can affect gene flow, specifically for stream salamanders who depend on both landscapes for survival and reproduction. To examine how urbanization affects a relatively common stream salamander species, we compared genetic connectivity of Eurycea bislineata (northern two-lined salamander) populations within and between streams in an urban, suburban, and rural habitat around the New York City (NYC) metropolitan area. We report reduced genetic connectivity between streams within the urban landscape found to correspond with potential barriers to gene flow, that is, areas with more dense urbanization (roadways, industrial buildings, and residential housing). The suburban populations also exhibited areas of reduced connectivity correlated with areas of greater human land use and greater connectivity within a preserve protected from development. Connectivity was relatively high among neighboring rural streams, but a major roadway corresponded with genetic breaks even though the habitat contained more connected green space overall. Despite greater human disturbance across the landscape, urban and suburban salamander populations maintained comparable levels of genetic diversity to their rural counterparts. Yet small effective population size in the urban habitats yielded a high probability of loss of heterozygosity due to genetic drift in the future. In conclusion, urbanization impacted connectivity among stream salamander populations where its continual influence may eventually hinder population persistence for this native species in urban habitats.
Collapse
Affiliation(s)
| | - Ellen Pehek
- Natural Resources GroupNew York City Department of Parks & RecreationNew YorkNYUSA
| | | |
Collapse
|
19
|
Miles LS, Carlen EJ, Winchell KM, Johnson MTJ. Urban evolution comes into its own: Emerging themes and future directions of a burgeoning field. Evol Appl 2021; 14:3-11. [PMID: 33519952 PMCID: PMC7819569 DOI: 10.1111/eva.13165] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/01/2020] [Indexed: 01/02/2023] Open
Abstract
Urbanization has recently emerged as an exciting new direction for evolutionary research founded on our growing understanding of rapid evolution paired with the expansion of novel urban habitats. Urbanization can influence adaptive and nonadaptive evolution in urban-dwelling species, but generalized patterns and the predictability of urban evolutionary responses within populations remain unclear. This editorial introduces the special feature "Evolution in Urban Environments" and addresses four major emerging themes, which include: (a) adaptive evolution and phenotypic plasticity via physiological responses to urban climate, (b) adaptive evolution via phenotype-environment relationships in urban habitats, (c) population connectivity and genetic drift in urban landscapes, and (d) human-wildlife interactions in urban spaces. Here, we present the 16 articles (12 empirical, 3 review, 1 capstone) within this issue and how they represent each of these four emerging themes in urban evolutionary biology. Finally, we discuss how these articles address previous questions and have now raised new ones, highlighting important new directions for the field.
Collapse
Affiliation(s)
- Lindsay S. Miles
- Department of BiologyUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Urban EnvironmentsUniversity of Toronto MississaugaMississaugaONCanada
| | | | | | - Marc T. J. Johnson
- Department of BiologyUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Urban EnvironmentsUniversity of Toronto MississaugaMississaugaONCanada
| |
Collapse
|
20
|
Wei X, Huang M, Yue Q, Ma S, Li B, Mu Z, Peng C, Gao W, Liu W, Zheng J, Weng X, Sun X, Zuo Q, Bo S, Yuan X, Zhang W, Yang G, Ding Y, Wang X, Wang T, Hua P, Wang Z. Long-term urbanization impacts the eastern golden frog ( Pelophylax plancyi) in Shanghai City: Demographic history, genetic structure, and implications for amphibian conservation in intensively urbanizing environments. Evol Appl 2021; 14:117-135. [PMID: 33519960 PMCID: PMC7819575 DOI: 10.1111/eva.13156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/11/2020] [Accepted: 10/20/2020] [Indexed: 11/29/2022] Open
Abstract
Understanding the mechanisms of how urbanization influences the evolution of native species is vital for urban wildlife ecology and conservation in the Anthropocene. With thousands of years of agriculture-dominated historical urbanization followed by 40 years of intensive and rapid urbanization, Shanghai provides an ideal environment to study how the two-stage urbanization process influences the evolution of indigenous wildlife, especially of anuran species. Therefore, in this study, we used mitochondrial Cyt-b gene, microsatellite (SSR), and single nucleotide polymorphism (SNP) data to evaluate the demographic history and genetic structure of the eastern golden frog (Pelophylax plancyi), by sampling 407 individuals from 15 local populations across Shanghai, China. All local populations experienced bottlenecks during historical urbanization, while the local populations in urban areas maintained comparable contemporary effective population sizes (N e) and genetic diversity with suburban and rural populations. Nevertheless, the rapid modern urbanization has already imposed significant negative effects to the integrity of populations. The 15 local populations were differentiated into eight genetic clusters, showing a spatial distribution pattern consistent with the current urbanization gradient and island-mainland geography. Although moderate gene flow still occurred from the rural peripheral cluster to urban and suburban clusters, population fragmentation was more serious in the urban and suburban populations, where higher urbanization levels within 2-km radius areas showed significant negative relationships to the N e and genetic diversity of local populations. Therefore, to protect urban wildlife with limited dispersal ability, improving conditions in fragmented habitat remnants might be most essential for local populations living in more urbanized areas. Meanwhile, we highlight the need to preserve large unfragmented rural habitats and to construct corridor networks to connect discrete urban habitat remnants for the long-term wildlife conservation in intensively urbanizing environments.
Collapse
Affiliation(s)
- Xu Wei
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Meiling Huang
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Qu Yue
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Shuo Ma
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Ben Li
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Zhiqiang Mu
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Chuan Peng
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Wenxuan Gao
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Wenli Liu
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Jiaxin Zheng
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Xiaodong Weng
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Xiaohui Sun
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Qingqiu Zuo
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Shunqi Bo
- Shanghai Landscaping & City Appearance Administrative BureauShanghai Forestry BureauShanghaiChina
| | - Xiao Yuan
- Shanghai Landscaping & City Appearance Administrative BureauShanghai Forestry BureauShanghaiChina
| | - Wei Zhang
- Natural History Research Centre of Shanghai Natural History MuseumShanghai Science and Technology MuseumShanghaiChina
| | - Gang Yang
- Natural History Research Centre of Shanghai Natural History MuseumShanghai Science and Technology MuseumShanghaiChina
| | - Youzhong Ding
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Xiaoming Wang
- School of Life SciencesEast China Normal UniversityShanghaiChina
- Shanghai Science and Technology MuseumShanghaiChina
| | - Tianhou Wang
- School of Life SciencesEast China Normal UniversityShanghaiChina
- Institute of Eco‐ChongmingShanghaiChina
| | - Panyu Hua
- School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
| | - Zhenghuan Wang
- School of Life SciencesEast China Normal UniversityShanghaiChina
- Joint Translational Science and Technology Research InstituteEast China Normal UniversityShanghaiChina
- Yangtze Delta Estuarine Wetland Ecosystem Observation and Research StationMinistry of Education & Shanghai Science and Technology CommitteeShanghaiChina
| |
Collapse
|
21
|
Burgon JD, Vences M, Steinfartz S, Bogaerts S, Bonato L, Donaire-Barroso D, Martínez-Solano I, Velo-Antón G, Vieites DR, Mable BK, Elmer KR. Phylogenomic inference of species and subspecies diversity in the Palearctic salamander genus Salamandra. Mol Phylogenet Evol 2020; 157:107063. [PMID: 33387650 DOI: 10.1016/j.ympev.2020.107063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 02/09/2023]
Abstract
The salamander genus Salamandra is widespread across Europe, North Africa, and the Near East and is renowned for its conspicuous and polymorphic colouration and diversity of reproductive modes. The phylogenetic relationships within the genus, and especially in the highly polymorphic species S. salamandra, have been very challenging to elucidate, leaving its real evolutionary history and classification at species and subspecies levels a topic of debate and contention. However, the distribution of diversity and species delimitation within the genus are critically important for identifying evolutionarily significant units for conservation and management, especially in light of threats posed by the pathogenic chytrid fungus Batrachochytrium salamandrivorans that is causing massive declines of S. salamandra populations in central Europe. Here, we conducted a phylogenomic analysis from across the taxonomic and geographic breadth of the genus Salamandra in its entire range. Bayesian, maximum likelihood and network-based phylogenetic analyses of up to 4905 ddRADseq-loci (294,300 nucleotides of sequence) supported the distinctiveness of all currently recognised species (Salamandra algira, S. atra, S. corsica, S. infraimmaculata, S. lanzai, and S. salamandra), and all five species for which we have multiple exemplars were confirmed as monophyletic. Within S. salamandra, two main clades can be distinguished: one clade with the Apenninic subspecies S. s. gigliolii nested within the Iberian S. s. bernardezi/fastuosa; and a second clade comprising all other Iberian, Central and East European subspecies. Our analyses revealed that some of the currently recognized subspecies of S. salamandra are paraphyletic and may require taxonomic revision, with the Central- and Eastern-European subspecies all being poorly differentiated at the analysed genomic markers. Salamandra s. longirostris - sometimes considered a separate species - was nested within S. salamandra, consistent with its subspecies status. The relationships identified within and between Salamandra species provide valuable context for future systematic and biogeographic studies, and help elucidate critical evolutionary units for conservation and taxonomy.
Collapse
Affiliation(s)
- James D Burgon
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Miguel Vences
- Division of Evolutionary Biology, Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany.
| | - Sebastian Steinfartz
- Institute of Biology, University of Leipzig, Talstrasse 33, 04103 Leipzig, Germany
| | | | - Lucio Bonato
- Department of Biology, University of Padova, Via Bassi 58B, 35131 Padova, Italy
| | - David Donaire-Barroso
- Asociación Herpetológica Fretum Gaditanum, Calle Mar Egeo 7, 11407 Jerez de la Frontera, Spain
| | - Iñigo Martínez-Solano
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), C./ José Gutiérrez Abascal n°2, 28006 Madrid, Spain
| | - Guillermo Velo-Antón
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Instituto de Ciências Agrárias de Vairão, R. Padre Armando Quintas n° 7, 4485-661 Vairão, Portugal; Grupo de Ecoloxía Animal (GEA), Universidade de Vigo, 36310 Vigo, Spain
| | - David R Vieites
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), C./ José Gutiérrez Abascal n°2, 28006 Madrid, Spain
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
22
|
Unexpected Gene-Flow in Urban Environments: The Example of the European Hedgehog. Animals (Basel) 2020; 10:ani10122315. [PMID: 33297373 PMCID: PMC7762246 DOI: 10.3390/ani10122315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary An urban environment holds many barriers for mammals with limited mobility such as hedgehogs. These barriers appear often unsurmountable (e.g., rivers, highways, fences) and thus hinder contact between hedgehogs, leading to genetic isolation. In our study we tested whether these barriers affect the hedgehog population of urban Berlin, Germany. As Berlin has many of these barriers, we were expecting a strong genetic differentiation among hedgehog populations. However, when we looked at unrelated individuals, we did not see genetic differentiation among populations. The latter was only detected when we included related individuals too, a ‘family clan’ structure that is referred to as gamodemes. We conclude that the high percentage of greenery in Berlin provides sufficient habitat for hedgehogs to maintain connectivity across the city. Abstract We use the European hedgehog (Erinaceus europaeus), a mammal with limited mobility, as a model species to study whether the structural matrix of the urban environment has an influence on population genetic structure of such species in the city of Berlin (Germany). Using ten established microsatellite loci we genotyped 143 hedgehogs from numerous sites throughout Berlin. Inclusion of all individuals in the cluster analysis yielded three genetic clusters, likely reflecting spatial associations of kin (larger family groups, known as gamodemes). To examine the potential bias in the cluster analysis caused by closely related individuals, we determined all pairwise relationships and excluded close relatives before repeating the cluster analysis. For this data subset (N = 65) both clustering algorithms applied (Structure, Baps) indicated the presence of a single genetic cluster. These results suggest that the high proportion of green patches in the city of Berlin provides numerous steppingstone habitats potentially linking local subpopulations. Alternatively, translocation of individuals across the city by hedgehog rescue facilities may also explain the existence of only a single cluster. We therefore propose that information about management activities such as releases by animal rescue centres should include location data (as exactly as possible) regarding both the collection and the release site, which can then be used in population genetic studies.
Collapse
|
23
|
Alarcón-Ríos L, Nicieza AG, Lourenço A, Velo-Antón G. The evolution of pueriparity maintains multiple paternity in a polymorphic viviparous salamander. Sci Rep 2020; 10:14744. [PMID: 32901062 PMCID: PMC7479106 DOI: 10.1038/s41598-020-71609-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/17/2020] [Indexed: 12/03/2022] Open
Abstract
The reduction in fecundity associated with the evolution of viviparity may have far-reaching implications for the ecology, demography, and evolution of populations. The evolution of a polygamous behaviour (e.g. polyandry) may counteract some of the effects underlying a lower fecundity, such as the reduction in genetic diversity. Comparing patterns of multiple paternity between reproductive modes allows us to understand how viviparity accounts for the trade-off between offspring quality and quantity. We analysed genetic patterns of paternity and offspring genetic diversity across 42 families from two modes of viviparity in a reproductive polymorphic species, Salamandra salamandra. This species shows an ancestral (larviparity: large clutches of free aquatic larvae), and a derived reproductive mode (pueriparity: smaller clutches of larger terrestrial juveniles). Our results confirm the existence of multiple paternity in pueriparous salamanders. Furthermore, we show the evolution of pueriparity maintains, and even increases, the occurrence of multiple paternity and the number of sires compared to larviparity, though we did not find a clear effect on genetic diversity. High incidence of multiple paternity in pueriparous populations might arise as a mechanism to avoid fertilization failures and to ensure reproductive success, and thus has important implications in highly isolated populations with small broods.
Collapse
Affiliation(s)
- Lucía Alarcón-Ríos
- Departamento de Biología de Organismos y Sistemas, Área de Ecología, Universidad de Oviedo, C/ Valentín Andrés Álvarez S/N, 33071, Oviedo, Spain.
| | - Alfredo G Nicieza
- Departamento de Biología de Organismos y Sistemas, Área de Ecología, Universidad de Oviedo, C/ Valentín Andrés Álvarez S/N, 33071, Oviedo, Spain.,Unidad Mixta de Investigación en Biodiversidad (UMIB), CSIC-Universidad de Oviedo-Principado de Asturias, Mieres, Spain
| | - André Lourenço
- CIBIO/InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Instituto de Ciências Agrárias de Vairão , Universidade do Porto, R. Padre Armando Quintas 7, 4485-661, Vairão, Portugal.,Departamento de Biologia da Faculdade de Ciências da, Universidade do Porto, Rua Campo Alegre, 4169-007, Porto, Portugal
| | - Guillermo Velo-Antón
- CIBIO/InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Instituto de Ciências Agrárias de Vairão , Universidade do Porto, R. Padre Armando Quintas 7, 4485-661, Vairão, Portugal.
| |
Collapse
|
24
|
Pabijan M, Palomar G, Antunes B, Antoł W, Zieliński P, Babik W. Evolutionary principles guiding amphibian conservation. Evol Appl 2020; 13:857-878. [PMID: 32431739 PMCID: PMC7232768 DOI: 10.1111/eva.12940] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
The Anthropocene has witnessed catastrophic amphibian declines across the globe. A multitude of new, primarily human-induced drivers of decline may lead to extinction, but can also push species onto novel evolutionary trajectories. If these are recognized by amphibian biologists, they can be engaged in conservation actions. Here, we summarize how principles stemming from evolutionary concepts have been applied for conservation purposes, and address emerging ideas at the vanguard of amphibian conservation science. In particular, we examine the consequences of increased drift and inbreeding in small populations and their implications for practical conservation. We then review studies of connectivity between populations at the landscape level, which have emphasized the limiting influence of anthropogenic structures and degraded habitat on genetic cohesion. The rapid pace of environmental changes leads to the central question of whether amphibian populations can cope either by adapting to new conditions or by shifting their ranges. We gloomily conclude that extinction seems far more likely than adaptation or range shifts for most species. That said, conservation strategies employing evolutionary principles, such as selective breeding, introduction of adaptive variants through translocations, ecosystem interventions aimed at decreasing phenotype-environment mismatch, or genetic engineering, may effectively counter amphibian decline in some areas or for some species. The spread of invasive species and infectious diseases has often had disastrous consequences, but has also provided some premier examples of rapid evolution with conservation implications. Much can be done in terms of setting aside valuable amphibian habitat that should encompass both natural and agricultural areas, as well as designing protected areas to maximize the phylogenetic and functional diversity of the amphibian community. We conclude that an explicit consideration and application of evolutionary principles, although certainly not a silver bullet, should increase effectiveness of amphibian conservation in both the short and long term.
Collapse
Affiliation(s)
- Maciej Pabijan
- Institute of Zoology and Biomedical ResearchFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Gemma Palomar
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Bernardo Antunes
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Weronika Antoł
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Piotr Zieliński
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Wiesław Babik
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| |
Collapse
|
25
|
Ziege M, Theodorou P, Jüngling H, Merker S, Plath M, Streit B, Lerp H. Population genetics of the European rabbit along a rural-to-urban gradient. Sci Rep 2020; 10:2448. [PMID: 32051442 PMCID: PMC7015939 DOI: 10.1038/s41598-020-57962-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/24/2019] [Indexed: 11/17/2022] Open
Abstract
The European rabbit (Oryctolagus cuniculus) is declining in large parts of Europe but populations in some German cities remained so far unaffected by this decline. The question arises of how urbanization affects patterns of population genetic variation and differentiation in German rabbit populations, as urban habitat fragmentation may result in altered meta-population dynamics. To address this question, we used microsatellite markers to genotype rabbit populations occurring along a rural-to-urban gradient in and around the city of Frankfurt, Germany. We found no effect of urbanization on allelic richness. However, the observed heterozygosity was significantly higher in urban than rural populations and also the inbreeding coefficients were lower, most likely reflecting the small population sizes and possibly on-going loss of genetic diversity in structurally impoverished rural areas. Global FST and G'ST-values suggest moderate but significant differentiation between populations. Multiple matrix regression with randomization ascribed this differentiation to isolation-by-environment rather than isolation-by-distance. Analyses of migration rates revealed asymmetrical gene flow, which was higher from rural into urban populations than vice versa and may again reflect intensified agricultural land-use practices in rural areas. We discuss that populations inhabiting urban areas will likely play an important role in the future distribution of European rabbits.
Collapse
Affiliation(s)
- Madlen Ziege
- University of Potsdam, Plant Ecology and Nature Conservation, Am Mühlenberg 3, D-14476, Potsdam, Golm, Germany.
- University of Frankfurt, Department of Ecology & Evolution, Max-von-Laue-Str. 13, D-60438, Frankfurt am Main, Germany.
| | - Panagiotis Theodorou
- Martin-Luther-University Halle-Wittenberg, Institute of Biology, General Zoology, Hoher Weg 8, D-06120, Halle, Saale, Germany
| | - Hannah Jüngling
- Senckenberg Gesellschaft für Naturforschung, Clamecystraße 12, D-63571, Gelnhausen, Germany
| | - Stefan Merker
- State Museum of Natural History Stuttgart, Department of Zoology, Rosenstein 1, D-70191, Stuttgart, Germany
| | - Martin Plath
- Northwest A&F University, College of Animal Science and Technology, Yangling, Shaanxi, 712100, China
| | - Bruno Streit
- University of Frankfurt, Department of Ecology & Evolution, Max-von-Laue-Str. 13, D-60438, Frankfurt am Main, Germany
| | - Hannes Lerp
- Museum Wiesbaden, Natural History Collections, Friedrich-Ebert-Allee 2, D-65185, Wiesbaden, Germany
| |
Collapse
|
26
|
Arntzen JW, van Belkom J. 'Mainland-island' population structure of a terrestrial salamander in a forest-bocage landscape with little evidence for in situ ecological speciation. Sci Rep 2020; 10:1700. [PMID: 32015401 PMCID: PMC6997349 DOI: 10.1038/s41598-020-58551-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
Adaptation to different ecological environments can, through divergent selection, generate phenotypic and genetic differences between populations, and eventually give rise to new species. The fire salamander (Salamandra salamandra) has been proposed to represent an early stage of ecological speciation, driven by differential habitat adaptation through the deposition and development of larvae in streams versus ponds in the Kottenforst near Bonn (Germany). We set out to test this hypothesis of ecological speciation in an area different from the one where it was raised and we took the opportunity to explore for drivers of genetic differentiation at a landscape scale. A survey over 640 localities demonstrated the species' presence in ponds and streams across forests, hilly terrain and areas with hedgerows ('bocage'). Genetic variation at 14 microsatellite loci across 41 localities in and around two small deciduous forests showed that salamander effective population sizes were higher in forests than in the bocage, with panmixia in the forests (Fst < 0.010) versus genetic drift or founder effects in several of the small and more or less isolated bocage populations (Fst > 0.025). The system fits the 'mainland-island' metapopulation model rather than indicating adaptive genetic divergence in pond versus stream larval habitats. A reanalysis of the Kottenforst data indicated that microsatellite genetic variation fitted a geographical rather than an environmental axis, with a sharp transition from a western pond-breeding to an eastern, more frequently stream-breeding group of populations. A parallel changeover in mitochondrial DNA exists but remains to be well documented. The data support the existence of a hybrid zone following secondary contact of differentiated lineages, more so than speciation in situ.
Collapse
Affiliation(s)
- Jan W Arntzen
- Naturalis Biodiversity Center, Leiden, The Netherlands.
| | | |
Collapse
|
27
|
Kimmig SE, Beninde J, Brandt M, Schleimer A, Kramer-Schadt S, Hofer H, Börner K, Schulze C, Wittstatt U, Heddergott M, Halczok T, Staubach C, Frantz AC. Beyond the landscape: Resistance modelling infers physical and behavioural gene flow barriers to a mobile carnivore across a metropolitan area. Mol Ecol 2020; 29:466-484. [PMID: 31880844 DOI: 10.1111/mec.15345] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 01/02/2023]
Abstract
Urbanization affects key aspects of wildlife ecology. Dispersal in urban wildlife species may be impacted by geographical barriers but also by a species' inherent behavioural variability. There are no functional connectivity analyses using continuous individual-based sampling across an urban-rural continuum that would allow a thorough assessment of the relative importance of physical and behavioural dispersal barriers. We used 16 microsatellite loci to genotype 374 red foxes (Vulpes vulpes) from the city of Berlin and surrounding rural regions in Brandenburg in order to study genetic structure and dispersal behaviour of a mobile carnivore across the urban-rural landscape. We assessed functional connectivity by applying an individual-based landscape genetic optimization procedure. Three commonly used genetic distance measures yielded different model selection results, with only the results of an eigenvector-based multivariate analysis reasonably explaining genetic differentiation patterns. Genetic clustering methods and landscape resistance modelling supported the presence of an urban population with reduced dispersal across the city border. Artificial structures (railways, motorways) served as main dispersal corridors within the cityscape, yet urban foxes avoided densely built-up areas. We show that despite their ubiquitous presence in urban areas, their mobility and behavioural plasticity, foxes were affected in their dispersal by anthropogenic presence. Distinguishing between man-made structures and sites of human activity, rather than between natural and artificial structures, is thus essential for better understanding urban fox dispersal. This differentiation may also help to understand dispersal of other urban wildlife and to predict how behaviour can shape population genetic structure beyond physical barriers.
Collapse
Affiliation(s)
- Sophia E Kimmig
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Joscha Beninde
- Department of Biogeography, Trier University, Trier, Germany.,LA Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, USA
| | - Miriam Brandt
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Anna Schleimer
- Musée National d'Histoire Naturelle, Luxembourg, Luxembourg
| | - Stephanie Kramer-Schadt
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany.,Department of Ecology, Technische Universität Berlin, Berlin, Germany
| | - Heribert Hofer
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany.,Freie Universität Berlin (FU), Berlin, Germany
| | - Konstantin Börner
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | | | | | | | - Tanja Halczok
- Universität Greifswald, Zoologisches Institut und Museum, Greifswald, Germany
| | - Christoph Staubach
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Alain C Frantz
- Musée National d'Histoire Naturelle, Luxembourg, Luxembourg
| |
Collapse
|
28
|
Alarcón-Ríos L, Nicieza AG, Kaliontzopoulou A, Buckley D, Velo-Antón G. Evolutionary History and Not Heterochronic Modifications Associated with Viviparity Drive Head Shape Differentiation in a Reproductive Polymorphic Species, Salamandra salamandra. Evol Biol 2019. [DOI: 10.1007/s11692-019-09489-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Lourenço A, Gonçalves J, Carvalho F, Wang IJ, Velo‐Antón G. Comparative landscape genetics reveals the evolution of viviparity reduces genetic connectivity in fire salamanders. Mol Ecol 2019; 28:4573-4591. [DOI: 10.1111/mec.15249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/22/2019] [Accepted: 09/16/2019] [Indexed: 01/07/2023]
Affiliation(s)
- André Lourenço
- Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
- CIBIO/InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto Instituto de Ciências Agrárias de Vairão Vairão Portugal
| | - João Gonçalves
- CIBIO/InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto Instituto de Ciências Agrárias de Vairão Vairão Portugal
| | - Filipe Carvalho
- CIBIO/InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto Instituto de Ciências Agrárias de Vairão Vairão Portugal
- Department of Zoology and Entomology School of Biological and Environmental Sciences University of Fort Hare Alice South Africa
| | - Ian J. Wang
- Department of Environmental Science, Policy, and Management University of California Berkeley CA USA
| | - Guillermo Velo‐Antón
- CIBIO/InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto Instituto de Ciências Agrárias de Vairão Vairão Portugal
| |
Collapse
|
30
|
Vukov T, Mirč M, Tomašević Kolarov N, Stamenković S. Urbanization and the common wall lizard (
Podarcis muralis
) in the Pannonian basin, Serbia: nowhere safe? J Zool (1987) 2019. [DOI: 10.1111/jzo.12735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- T. Vukov
- Department of Evolutionary Biology Institute for Biological Research ‘Siniša Stanković’ University of Belgrade Belgrade Serbia
| | - M. Mirč
- Department of Evolutionary Biology Institute for Biological Research ‘Siniša Stanković’ University of Belgrade Belgrade Serbia
| | - N. Tomašević Kolarov
- Department of Evolutionary Biology Institute for Biological Research ‘Siniša Stanković’ University of Belgrade Belgrade Serbia
| | - S. Stamenković
- Faculty of Biology University of Belgrade Belgrade Serbia
| |
Collapse
|
31
|
Cameron AC, Page RB, Watling JI, Hickerson CAM, Anthony CD. Using a comparative approach to investigate the relationship between landscape and genetic connectivity among woodland salamander populations. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01207-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
|
33
|
Matich P, Schalk CM. Move it or lose it: interspecific variation in risk response of pond-breeding anurans. PeerJ 2019; 7:e6956. [PMID: 31211010 PMCID: PMC6557263 DOI: 10.7717/peerj.6956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/13/2019] [Indexed: 11/20/2022] Open
Abstract
Changes in behavior are often the proximate response of animals to human disturbance, with variability in tolerance levels leading some species to exhibit striking shifts in life history, fitness, and/or survival. Thus, elucidating the effects of disturbance on animal behavior, and how this varies among taxonomically similar species with inherently different behaviors and life histories is of value for management and conservation. We evaluated the risk response of three anuran species-southern leopard frog (Lithobates sphenocephalus), Blanchard's cricket frog (Acris blanchardi), and green tree frog (Hyla cinerea)-to determine how differences in microhabitat use (arboreal vs ground-dwelling) and body size (small vs medium) may play a role in response to a potential threat within a human-altered subtropical forest. Each species responded to risk with both flight and freeze behaviors, however, behaviors were species- and context-specific. As distance to cover increased, southern leopard frogs increased freezing behavior, green tree frogs decreased freezing behavior, and Blanchard's cricket frogs increased flight response. The propensity of green tree frogs to use the canopy of vegetation as refugia, and the small body size of Blanchard's cricket frogs likely led to greater flight response as distance to cover increased, whereas innate reliance on camouflage among southern leopard frogs may place them at greater risk to landscaping, agricultural, and transportation practices in open terrain. As such, arboreal and small-bodied species may inherently be better suited in human altered-landscapes compared to larger, ground-dwelling species. As land-use change continues to modify habitats, understanding how species respond to changes in their environment continues to be of importance, particularly in ecosystems where human-wildlife interactions are expected to increase in frequency.
Collapse
Affiliation(s)
- Philip Matich
- Department of Marine Biology, Texas A&M University-Galveston, Galveston, TX, USA.,Texas Research Institute for Environmental Studies, Sam Houston State University, Huntsville, TX, USA
| | - Christopher M Schalk
- Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, TX, USA
| |
Collapse
|
34
|
Santangelo JS, Johnson MTJ, Ness RW. Modern spandrels: the roles of genetic drift, gene flow and natural selection in the evolution of parallel clines. Proc Biol Sci 2019; 285:rspb.2018.0230. [PMID: 29743253 DOI: 10.1098/rspb.2018.0230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/12/2018] [Indexed: 11/12/2022] Open
Abstract
Urban environments offer the opportunity to study the role of adaptive and non-adaptive evolutionary processes on an unprecedented scale. While the presence of parallel clines in heritable phenotypic traits is often considered strong evidence for the role of natural selection, non-adaptive evolutionary processes can also generate clines, and this may be more likely when traits have a non-additive genetic basis due to epistasis. In this paper, we use spatially explicit simulations modelled according to the cyanogenesis (hydrogen cyanide, HCN) polymorphism in white clover (Trifolium repens) to examine the formation of phenotypic clines along urbanization gradients under varying levels of drift, gene flow and selection. HCN results from an epistatic interaction between two Mendelian-inherited loci. Our results demonstrate that the genetic architecture of this trait makes natural populations susceptible to decreases in HCN frequencies via drift. Gradients in the strength of drift across a landscape resulted in phenotypic clines with lower frequencies of HCN in strongly drifting populations, giving the misleading appearance of deterministic adaptive changes in the phenotype. Studies of heritable phenotypic change in urban populations should generate null models of phenotypic evolution based on the genetic architecture underlying focal traits prior to invoking selection's role in generating adaptive differentiation.
Collapse
Affiliation(s)
- James S Santangelo
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6 .,Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Marc T J Johnson
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6.,Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Rob W Ness
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6.,Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| |
Collapse
|
35
|
Rivkin LR, Santangelo JS, Alberti M, Aronson MFJ, de Keyzer CW, Diamond SE, Fortin M, Frazee LJ, Gorton AJ, Hendry AP, Liu Y, Losos JB, MacIvor JS, Martin RA, McDonnell MJ, Miles LS, Munshi‐South J, Ness RW, Newman AEM, Stothart MR, Theodorou P, Thompson KA, Verrelli BC, Whitehead A, Winchell KM, Johnson MTJ. A roadmap for urban evolutionary ecology. Evol Appl 2019; 12:384-398. [PMID: 30828362 PMCID: PMC6383741 DOI: 10.1111/eva.12734] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/29/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022] Open
Abstract
Urban ecosystems are rapidly expanding throughout the world, but how urban growth affects the evolutionary ecology of species living in urban areas remains largely unknown. Urban ecology has advanced our understanding of how the development of cities and towns change environmental conditions and alter ecological processes and patterns. However, despite decades of research in urban ecology, the extent to which urbanization influences evolutionary and eco-evolutionary change has received little attention. The nascent field of urban evolutionary ecology seeks to understand how urbanization affects the evolution of populations, and how those evolutionary changes in turn influence the ecological dynamics of populations, communities, and ecosystems. Following a brief history of this emerging field, this Perspective article provides a research agenda and roadmap for future research aimed at advancing our understanding of the interplay between ecology and evolution of urban-dwelling organisms. We identify six key questions that, if addressed, would significantly increase our understanding of how urbanization influences evolutionary processes. These questions consider how urbanization affects nonadaptive evolution, natural selection, and convergent evolution, in addition to the role of urban environmental heterogeneity on species evolution, and the roles of phenotypic plasticity versus adaptation on species' abundance in cities. Our final question examines the impact of urbanization on evolutionary diversification. For each of these six questions, we suggest avenues for future research that will help advance the field of urban evolutionary ecology. Lastly, we highlight the importance of integrating urban evolutionary ecology into urban planning, conservation practice, pest management, and public engagement.
Collapse
|
36
|
Fine-scale genetic structure in a salamander with two reproductive modes: Does reproductive mode affect dispersal? Evol Ecol 2018. [DOI: 10.1007/s10682-018-9957-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Combining phylogeography and landscape genetics to infer the evolutionary history of a short-range Mediterranean relict, Salamandra salamandra longirostris. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1110-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Beninde J, Feldmeier S, Veith M, Hochkirch A. Admixture of hybrid swarms of native and introduced lizards in cities is determined by the cityscape structure and invasion history. Proc Biol Sci 2018; 285:rspb.2018.0143. [PMID: 30051861 DOI: 10.1098/rspb.2018.0143] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022] Open
Abstract
Introductions of non-native lineages increase opportunities for hybridization. Non-native lineages of the common wall lizard, Podarcis muralis, are frequently introduced in cities where they hybridize with native populations. We aimed at unravelling the invasion history and admixture of native and non-native wall lizards in four German cities using citywide, comprehensive sampling. We barcoded and genotyped 826 lizards and tested if gene flow in populations composed of admixed native and introduced lineages is facilitated by similar environmental factors to those in native populations by comparing fine-scale landscape genetic patterns. In cities with non-native lineages, lizards commonly occurred in numerous clusters of hybrid swarms, which showed variable lineage composition, consisting of up to four distinct evolutionary lineages. Hybrid swarms held vast genetic diversity and showed recent admixture with other hybrid swarms. Landscape genetic analyses showed differential effects of cityscape structures across cities, but identified water bodies as strong barriers to gene flow in both native and admixed populations. By contrast, railway tracks facilitated gene flow of admixed populations only. Our study shows that cities represent unique settings for hybridization, caused by multiple introductions of non-native taxa. Cityscape structure and invasion histories of cities will determine future evolutionary pathways at these novel hybrid zones.
Collapse
Affiliation(s)
- Joscha Beninde
- Department of Biogeography, Trier University, 54286 Trier, Germany
| | | | - Michael Veith
- Department of Biogeography, Trier University, 54286 Trier, Germany
| | - Axel Hochkirch
- Department of Biogeography, Trier University, 54286 Trier, Germany
| |
Collapse
|
39
|
Johnson MTJ, Prashad CM, Lavoignat M, Saini HS. Contrasting the effects of natural selection, genetic drift and gene flow on urban evolution in white clover ( Trifolium repens). Proc Biol Sci 2018; 285:20181019. [PMID: 30051843 PMCID: PMC6083247 DOI: 10.1098/rspb.2018.1019] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 06/21/2018] [Indexed: 02/06/2023] Open
Abstract
Urbanization is a global phenomenon with profound effects on the ecology and evolution of organisms. We examined the relative roles of natural selection, genetic drift and gene flow in influencing the evolution of white clover (Trifolium repens), which thrives in urban and rural areas. Trifolium repens exhibits a Mendelian polymorphism for the production of hydrogen cyanide (HCN), a potent antiherbivore defence. We quantified the relative frequency of HCN in 490 populations sampled along urban-rural transects in 20 cities. We also characterized genetic variation within 120 populations in eight cities using 16 microsatellite loci. HCN frequency increased by 0.6% for every kilometre from an urban centre, and the strength of this relationship did not significantly vary between cities. Populations did not exhibit changes in genetic diversity with increasing urbanization, indicating that genetic drift is unlikely to explain urban-rural clines in HCN frequency. Populations frequently exhibited isolation-by-distance and extensive gene flow along most urban-rural transects, with the exception of a single city that exhibited genetic differentiation between urban and rural populations. Our results show that urbanization repeatedly drives parallel evolution of an ecologically important trait across many cities that vary in size, and this evolution is best explained by urban-rural gradients in natural selection.
Collapse
Affiliation(s)
- Marc T J Johnson
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Cindy M Prashad
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | | | - Hargurdeep S Saini
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6
- University of Canberra, Bruce, Australian Territory 2617, Australia
| |
Collapse
|
40
|
Miles LS, Johnson JC, Dyer RJ, Verrelli BC. Urbanization as a facilitator of gene flow in a human health pest. Mol Ecol 2018; 27:3219-3230. [PMID: 29972610 DOI: 10.1111/mec.14783] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/16/2018] [Accepted: 04/11/2018] [Indexed: 01/04/2023]
Abstract
Urban fragmentation can reduce gene flow that isolates populations, reduces genetic diversity and increases population differentiation, all of which have negative conservation implications. Alternatively, gene flow may actually be increased among urban areas consistent with an urban facilitation model. In fact, urban adapter pests are able to thrive in the urban environment and may be experiencing human-mediated transport. Here, we used social network theory with a population genetic approach to investigate the impact of urbanization on genetic connectivity in the Western black widow spider, as an urban pest model of human health concern. We collected genomewide single nucleotide polymorphism variation from mitochondrial and nuclear double-digest RAD (ddRAD) sequence data sets from 210 individuals sampled from 11 urban and 10 nonurban locales across its distribution of the Western United States. From urban and nonurban contrasts of population, phylogenetic, and network analyses, urban locales have higher within-population genetic diversity, lower between-population genetic differentiation and higher estimates of genetic connectivity. Social network analyses show that urban locales not only have more connections, but can act as hubs that drive connectivity among nonurban locales, which show signatures of historical isolation. These results are consistent with an urban facilitation model of gene flow and demonstrate the importance of sampling multiple cities and markers to identify the role that urbanization has had on larger spatial scales. As the urban landscape continues to grow, this approach will help determine what factors influence the spread and adaptation of pests, like the venomous black widow spider, in building policies for human and biodiversity health.
Collapse
Affiliation(s)
- Lindsay S Miles
- Center for Life Sciences Education, Virginia Commonwealth University, Richmond, Virginia
- Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, Virginia
| | - J Chadwick Johnson
- Division of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, Arizona
| | - Rodney J Dyer
- Center for Environmental Studies, Virginia Commonwealth University, Richmond, Virginia
| | - Brian C Verrelli
- Center for Life Sciences Education, Virginia Commonwealth University, Richmond, Virginia
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
41
|
Gorton AJ, Moeller DA, Tiffin P. Little plant, big city: a test of adaptation to urban environments in common ragweed ( Ambrosia artemisiifolia). Proc Biol Sci 2018; 285:20180968. [PMID: 30051853 PMCID: PMC6030533 DOI: 10.1098/rspb.2018.0968] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/06/2018] [Indexed: 11/12/2022] Open
Abstract
A full understanding of how cities shape adaptation requires characterizing genetically-based phenotypic and fitness differences between urban and rural populations under field conditions. We used a reciprocal transplant experiment with the native plant common ragweed, (Ambrosia artemisiifolia), and found that urban and rural populations have diverged in flowering time, a trait that strongly affects fitness. Although urban populations flowered earlier than rural populations, plants growing in urban field sites flowered later than plants in rural field sites. This counter-gradient variation is consistent adaptive divergence between urban and rural populations. Also consistent with local adaptation, both urban and rural genotypes experienced stronger net selection in the foreign than in the local habitat, but this pattern was not significant for male fitness. Despite the evidence for local adaptation, rural populations had higher lifetime fitness at all sites, suggesting that selection has been stronger or more uniform in rural than urban populations. We also found that inter-population differences in both flowering time and fitness tended to be greater among urban than rural populations, which is consistent with greater drift or spatial variation in selection within urban environments. In summary, our results are consistent with adaptive divergence of urban and rural populations, but also suggest there may be greater environmental heterogeneity in urban environments which also affects evolution in urban landscapes.
Collapse
Affiliation(s)
- Amanda J Gorton
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1987 Upper Buford Circle, St Paul, MN 55108, USA
| | - David A Moeller
- Department of Plant and Microbial Biology, University of Minnesota, 1479 Gortner Avenue, St Paul, MN 55108, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, 1479 Gortner Avenue, St Paul, MN 55108, USA
| |
Collapse
|
42
|
Combs M, Byers KA, Ghersi BM, Blum MJ, Caccone A, Costa F, Himsworth CG, Richardson JL, Munshi-South J. Urban rat races: spatial population genomics of brown rats ( Rattus norvegicus) compared across multiple cities. Proc Biol Sci 2018; 285:20180245. [PMID: 29875297 PMCID: PMC6015871 DOI: 10.1098/rspb.2018.0245] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/15/2018] [Indexed: 01/30/2023] Open
Abstract
Urbanization often substantially influences animal movement and gene flow. However, few studies to date have examined gene flow of the same species across multiple cities. In this study, we examine brown rats (Rattus norvegicus) to test hypotheses about the repeatability of neutral evolution across four cities: Salvador, Brazil; New Orleans, USA; Vancouver, Canada; and New York City, USA. At least 150 rats were sampled from each city and genotyped for a minimum of 15 000 genome-wide single nucleotide polymorphisms. Levels of genome-wide diversity were similar across cities, but varied across neighbourhoods within cities. All four populations exhibited high spatial autocorrelation at the shortest distance classes (less than 500 m) owing to limited dispersal. Coancestry and evolutionary clustering analyses identified genetic discontinuities within each city that coincided with a resource desert in New York City, major waterways in New Orleans, and roads in Salvador and Vancouver. Such replicated studies are crucial to assessing the generality of predictions from urban evolution, and have practical applications for pest management and public health. Future studies should include a range of global cities in different biomes, incorporate multiple species, and examine the impact of specific characteristics of the built environment and human socioeconomics on gene flow.
Collapse
Affiliation(s)
- Matthew Combs
- Louis Calder Center-Biological Field Station, Fordham University, 31 Whippoorwill Road, Armonk, NY 10504, USA
| | - Kaylee A Byers
- Department of Interdisciplinary Studies, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Canadian Wildlife Health Cooperative, The Animal Health Centre, Abbotsford, British Columbia, Canada
| | - Bruno M Ghersi
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Michael J Blum
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Federico Costa
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, BA, 40296-710, Brazil
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Chelsea G Himsworth
- Canadian Wildlife Health Cooperative, The Animal Health Centre, Abbotsford, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | | | - Jason Munshi-South
- Louis Calder Center-Biological Field Station, Fordham University, 31 Whippoorwill Road, Armonk, NY 10504, USA
| |
Collapse
|
43
|
Perrier C, Lozano del Campo A, Szulkin M, Demeyrier V, Gregoire A, Charmantier A. Great tits and the city: Distribution of genomic diversity and gene-environment associations along an urbanization gradient. Evol Appl 2018; 11:593-613. [PMID: 29875805 PMCID: PMC5979639 DOI: 10.1111/eva.12580] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/19/2017] [Indexed: 01/02/2023] Open
Abstract
Urbanization is a growing concern challenging the evolutionary potential of wild populations by reducing genetic diversity and imposing new selection regimes affecting many key fitness traits. However, genomic footprints of urbanization have received little attention so far. Using RAD sequencing, we investigated the genomewide effects of urbanization on neutral and adaptive genomic diversity in 140 adult great tits Parus major collected in locations with contrasted urbanization levels (from a natural forest to highly urbanized areas of a city; Montpellier, France). Heterozygosity was slightly lower in the more urbanized sites compared to the more rural ones. Low but significant effect of urbanization on genetic differentiation was found, at the site level but not at the nest level, indicative of the geographic scale of urbanization impact and of the potential for local adaptation despite gene flow. Gene-environment association tests identified numerous SNPs with small association scores to urbanization, distributed across the genome, from which a subset of 97 SNPs explained up to 81% of the variance in urbanization, overall suggesting a polygenic response to selection in the urban environment. These findings open stimulating perspectives for broader applications of high-resolution genomic tools on other cities and larger sample sizes to investigate the consistency of the effects of urbanization on the spatial distribution of genetic diversity and the polygenic nature of gene-urbanization association.
Collapse
Affiliation(s)
- Charles Perrier
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, Campus CNRS, Université de MontpellierMontpellier Cedex 5France
| | - Ana Lozano del Campo
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, Campus CNRS, Université de MontpellierMontpellier Cedex 5France
| | - Marta Szulkin
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, Campus CNRS, Université de MontpellierMontpellier Cedex 5France
- Wild Urban Evolution and Ecology LaboratoryCentre of New TechnologiesUniversity of WarsawWarsawPoland
| | - Virginie Demeyrier
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, Campus CNRS, Université de MontpellierMontpellier Cedex 5France
| | - Arnaud Gregoire
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, Campus CNRS, Université de MontpellierMontpellier Cedex 5France
| | - Anne Charmantier
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, Campus CNRS, Université de MontpellierMontpellier Cedex 5France
| |
Collapse
|
44
|
Tay YC, Ng DJJ, Loo JB, Huang D, Cai Y, Yeo DCJ, Meier R. Roads to isolation: Similar genomic history patterns in two species of freshwater crabs with contrasting environmental tolerances and range sizes. Ecol Evol 2018; 8:4657-4668. [PMID: 29760905 PMCID: PMC5938456 DOI: 10.1002/ece3.4017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 11/07/2022] Open
Abstract
Freshwater species often show high levels of endemism and risk of extinction owing to their limited dispersal abilities. This is exemplified by the stenotopic freshwater crab, Johora singaporensis which is one of the world's 100 most threatened species, and currently inhabits less than 0.01 km2 of five low order hill streams within the highly urbanized island city‐state of Singapore. We compared populations of J. singaporensis with that of the non‐threatened, widespread, abundant, and eurytopic freshwater crab, Parathelphusa maculata, and found surprisingly high congruence between their population genomic histories. Based on 2,617 and 2,470 genome‐wide SNPs mined via the double‐digest restriction‐associated DNA sequencing method for ~90 individuals of J. singaporensis and P. maculata, respectively, the populations are strongly isolated (FST = 0.146–0.371), have low genetic diversity for both species (also for COI), and show signatures of recent genetic bottlenecks. The most genetically isolated populations for both species are separated from other populations by one of the oldest roads in Singapore. These results suggest that anthropogenic developments may have impacted stream‐dependent species in a uniform manner, regardless of ubiquity, habitat preference, or dispersal modes of the species. While signs of inbreeding were not detected for the critically endangered species, the genetic distinctiveness and low diversity of the populations call for genetic rescue and connecting corridors between the remaining fragments of the natural habitat.
Collapse
Affiliation(s)
- Ywee Chieh Tay
- Department of Biological Sciences National University of Singapore Singapore City Singapore.,Tropical Marine Science Institute National University of Singapore Singapore City Singapore
| | - Daniel Jia Jun Ng
- National Biodiversity Centre National Parks Board Singapore City Singapore
| | - Jun Bin Loo
- School of Chemical and Life Sciences Singapore Polytechnic Singapore City Singapore
| | - Danwei Huang
- Department of Biological Sciences National University of Singapore Singapore City Singapore.,Tropical Marine Science Institute National University of Singapore Singapore City Singapore
| | - Yixiong Cai
- National Biodiversity Centre National Parks Board Singapore City Singapore
| | - Darren Chong Jinn Yeo
- Department of Biological Sciences National University of Singapore Singapore City Singapore
| | - Rudolf Meier
- Department of Biological Sciences National University of Singapore Singapore City Singapore.,Tropical Marine Science Institute National University of Singapore Singapore City Singapore.,Lee Kong Chian Natural History Museum National University of Singapore Singapore City Singapore
| |
Collapse
|
45
|
Abstract
Our planet is an increasingly urbanized landscape, with over half of the human population residing in cities. Despite advances in urban ecology, we do not adequately understand how urbanization affects the evolution of organisms, nor how this evolution may affect ecosystems and human health. Here, we review evidence for the effects of urbanization on the evolution of microbes, plants, and animals that inhabit cities. Urbanization affects adaptive and nonadaptive evolutionary processes that shape the genetic diversity within and between populations. Rapid adaptation has facilitated the success of some native species in urban areas, but it has also allowed human pests and disease to spread more rapidly. The nascent field of urban evolution brings together efforts to understand evolution in response to environmental change while developing new hypotheses concerning adaptation to urban infrastructure and human socioeconomic activity. The next generation of research on urban evolution will provide critical insight into the importance of evolution for sustainable interactions between humans and our city environments.
Collapse
Affiliation(s)
- Marc T J Johnson
- Department of Biology and Center for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada. .,Department of Ecology and Evolutionary Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Jason Munshi-South
- Department of Biological Sciences and Louis Calder Center, Fordham University, Armonk, NY, USA.
| |
Collapse
|
46
|
Schell CJ. Urban Evolutionary Ecology and the Potential Benefits of Implementing Genomics. J Hered 2018; 109:138-151. [DOI: 10.1093/jhered/esy001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/06/2018] [Indexed: 01/01/2023] Open
|
47
|
Combs M, Puckett EE, Richardson J, Mims D, Munshi‐South J. Spatial population genomics of the brown rat (
Rattus norvegicus
) in New York City. Mol Ecol 2017; 27:83-98. [DOI: 10.1111/mec.14437] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Matthew Combs
- Louis Calder Center Biological Field Station Fordham University Armonk NY USA
| | - Emily E. Puckett
- Louis Calder Center Biological Field Station Fordham University Armonk NY USA
| | | | - Destiny Mims
- Louis Calder Center Biological Field Station Fordham University Armonk NY USA
| | - Jason Munshi‐South
- Louis Calder Center Biological Field Station Fordham University Armonk NY USA
| |
Collapse
|
48
|
Rochat E, Manel S, Deschamps-Cottin M, Widmer I, Joost S. Persistence of butterfly populations in fragmented habitats along urban density gradients: motility helps. Heredity (Edinb) 2017; 119:328-338. [PMID: 28792492 PMCID: PMC5637364 DOI: 10.1038/hdy.2017.40] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/19/2017] [Accepted: 06/02/2017] [Indexed: 12/25/2022] Open
Abstract
In a simulation study of genotypes conducted over 100 generations for more than 1600 butterfly's individuals, we evaluate how the increase of anthropogenic fragmentation and reduction of habitat size along urbanisation gradients (from 7 to 59% of impervious land cover) influences genetic diversity and population persistence in butterfly species. We show that in areas characterised by a high urbanisation rate (>56% impervious land cover), a large decrease of both genetic diversity (loss of 60-80% of initial observed heterozygosity) and population size (loss of 70-90% of individuals) is observed over time. This is confirmed by empirical data available for the mobile butterfly species Pieris rapae in a subpart of the study area. Comparing simulated data for P. rapae with its normal dispersal ability and with a reduced dispersal ability, we also show that a higher dispersal ability can be an advantage to survive in an urban or highly fragmented environment. The results obtained here suggest that it is of high importance to account for population persistence, and confirm that it is crucial to maintain habitat size and connectivity in the context of land-use planning.
Collapse
Affiliation(s)
- E Rochat
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - S Manel
- Ecole Pratique des Hautes Etudes, PSL Research University, Centre National de la Recherche Scientifique, Université de Montpellier, Université Paul-Valéry Montpellier, Institut de Recherche pour le Développement, UMR CEFE 5175, Montpellier, France
| | - M Deschamps-Cottin
- Aix Marseille University, IRD, Laboratoire Population Environnement Développement, Marseille, France
| | - I Widmer
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Academy of Sciences SCNAT, Swiss Biodiversity Forum, Bern, Switzerland
| | - S Joost
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Urban and regional planning community (CEAT), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
49
|
Harris SE, Munshi-South J. Signatures of positive selection and local adaptation to urbanization in white-footed mice (Peromyscus leucopus). Mol Ecol 2017; 26:6336-6350. [PMID: 28980357 DOI: 10.1111/mec.14369] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 09/25/2017] [Indexed: 02/06/2023]
Abstract
Urbanization significantly alters natural ecosystems and has accelerated globally. Urban wildlife populations are often highly fragmented by human infrastructure, and isolated populations may adapt in response to local urban pressures. However, relatively few studies have identified genomic signatures of adaptation in urban animals. We used a landscape genomic approach to examine signatures of selection in urban populations of white-footed mice (Peromyscus leucopus) in New York City. We analysed 154,770 SNPs identified from transcriptome data from 48 P. leucopus individuals from three urban and three rural populations and used outlier tests to identify evidence of urban adaptation. We accounted for demography by simulating a neutral SNP data set under an inferred demographic history as a null model for outlier analysis. We also tested whether candidate genes were associated with environmental variables related to urbanization. In total, we detected 381 outlier loci and after stringent filtering, identified and annotated 19 candidate loci. Many of the candidate genes were involved in metabolic processes and have well-established roles in metabolizing lipids and carbohydrates. Our results indicate that white-footed mice in New York City are adapting at the biomolecular level to local selective pressures in urban habitats. Annotation of outlier loci suggests selection is acting on metabolic pathways in urban populations, likely related to novel diets in cities that differ from diets in less disturbed areas.
Collapse
Affiliation(s)
- Stephen E Harris
- The Graduate Center, City University of New York (CUNY), New York, NY, USA
| | - Jason Munshi-South
- Louis Calder Center-Biological Field Station, Fordham University, Armonk, NY, USA
| |
Collapse
|
50
|
Faucher L, Hénocq L, Vanappelghem C, Rondel S, Quevillart R, Gallina S, Godé C, Jaquiéry J, Arnaud JF. When new human-modified habitats favour the expansion of an amphibian pioneer species: Evolutionary history of the natterjack toad (Bufo calamita) in a coal basin. Mol Ecol 2017; 26:4434-4451. [PMID: 28667796 DOI: 10.1111/mec.14229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/17/2017] [Accepted: 06/05/2017] [Indexed: 11/29/2022]
Abstract
Human activities affect microevolutionary dynamics by inducing environmental changes. In particular, land cover conversion and loss of native habitats decrease genetic diversity and jeopardize the adaptive ability of populations. Nonetheless, new anthropogenic habitats can also promote the successful establishment of emblematic pioneer species. We investigated this issue by examining the population genetic features and evolutionary history of the natterjack toad (Bufo [Epidalea] calamita) in northern France, where populations can be found in native coastal habitats and coalfield habitats shaped by European industrial history, along with an additional set of European populations located outside this focal area. We predicted contrasting patterns of genetic structure, with newly settled coalfield populations departing from migration-drift equilibrium. As expected, coalfield populations showed a mosaic of genetically divergent populations with short-range patterns of gene flow, and native coastal populations indicated an equilibrium state with an isolation-by-distance pattern suggestive of postglacial range expansion. However, coalfield populations exhibited (i) high levels of genetic diversity, (ii) no evidence of local inbreeding or reduced effective population size and (iii) multiple maternal mitochondrial lineages, a genetic footprint depicting independent colonization events. Furthermore, approximate Bayesian computations suggested several evolutionary trajectories from ancient isolation in glacial refugia during the Pleistocene, with biogeographical signatures of recent expansion probably confounded by human-mediated mixing of different lineages. From an evolutionary and conservation perspective, this study highlights the ecological value of industrial areas, provided that ongoing regional gene flow is ensured within the existing lineage boundaries.
Collapse
Affiliation(s)
- Leslie Faucher
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, Lille, France
| | - Laura Hénocq
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, Lille, France
| | - Cédric Vanappelghem
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, Lille, France.,Conservatoire d'espaces naturels du Nord et du Pas de Calais, Lillers, France
| | - Stéphanie Rondel
- Centre Permanent d'Initiatives pour l'Environnement - Chaîne des Terrils, Loos-en-Gohelle, France
| | - Robin Quevillart
- Groupe ornithologique et naturaliste du Nord - Pas-de-Calais, Lille, France
| | - Sophie Gallina
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, Lille, France
| | - Cécile Godé
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, Lille, France
| | - Julie Jaquiéry
- UMR CNRS 6553 - ECOBIO, Université de Rennes 1, Rennes Cedex, France
| | | |
Collapse
|