1
|
Ramazanli B, Yagmur O, Sarioglu EC, Salman HE. Modeling Techniques and Boundary Conditions in Abdominal Aortic Aneurysm Analysis: Latest Developments in Simulation and Integration of Machine Learning and Data-Driven Approaches. Bioengineering (Basel) 2025; 12:437. [PMID: 40428056 PMCID: PMC12108684 DOI: 10.3390/bioengineering12050437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/03/2025] [Accepted: 04/16/2025] [Indexed: 05/29/2025] Open
Abstract
Research on abdominal aortic aneurysms (AAAs) primarily focuses on developing a clear understanding of the initiation, progression, and treatment of AAA through improved model accuracy. High-fidelity hemodynamic and biomechanical predictions are essential for clinicians to optimize preoperative planning and minimize therapeutic risks. Computational fluid dynamics (CFDs), finite element analysis (FEA), and fluid-structure interaction (FSI) are widely used to simulate AAA hemodynamics and biomechanics. However, the accuracy of these simulations depends on the utilization of realistic and sophisticated boundary conditions (BCs), which are essential for properly integrating the AAA with the rest of the cardiovascular system. Recent advances in machine learning (ML) techniques have introduced faster, data-driven surrogates for AAA modeling. These approaches can accelerate segmentation, predict hemodynamics and biomechanics, and assess disease progression. However, their reliability depends on high-quality training data derived from CFDs and FEA simulations, where BC modeling plays a crucial role. Accurate BCs can enhance ML predictions, increasing the clinical applicability. This paper reviews existing BC models, discussing their limitations and technical challenges. Additionally, recent advancements in ML and data-driven techniques are explored, discussing their current states, future directions, common algorithms, and limitations.
Collapse
Affiliation(s)
- Burcu Ramazanli
- School of Information Technologies and Engineering, ADA University, Baku AZ1008, Azerbaijan
| | - Oyku Yagmur
- Department of Mechanical Engineering, TOBB University of Economics and Technology, Ankara 06560, Türkiye; (O.Y.); (E.C.S.); (H.E.S.)
| | - Efe Cesur Sarioglu
- Department of Mechanical Engineering, TOBB University of Economics and Technology, Ankara 06560, Türkiye; (O.Y.); (E.C.S.); (H.E.S.)
| | - Huseyin Enes Salman
- Department of Mechanical Engineering, TOBB University of Economics and Technology, Ankara 06560, Türkiye; (O.Y.); (E.C.S.); (H.E.S.)
| |
Collapse
|
2
|
Scheuermann BC, Parr SK, Schulze KM, Kunkel ON, Turpin VG, Liang J, Ade CJ. Associations of Cerebrovascular Regulation and Arterial Stiffness With Cerebral Small Vessel Disease: A Systematic Review and Meta-Analysis. J Am Heart Assoc 2023; 12:e032616. [PMID: 37930079 PMCID: PMC10727345 DOI: 10.1161/jaha.123.032616] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Cerebral small vessel disease (cSVD) is a major contributing factor to ischemic stroke and dementia. However, the vascular pathologies of cSVD remain inconclusive. The aim of this systematic review and meta-analysis was to characterize the associations between cSVD and cerebrovascular reactivity (CVR), cerebral autoregulation, and arterial stiffness (AS). METHODS AND RESULTS MEDLINE, Web of Science, and Embase were searched from inception to September 2023 for studies reporting CVR, cerebral autoregulation, or AS in relation to radiological markers of cSVD. Data were extracted in predefined tables, reviewed, and meta-analyses performed using inverse-variance random effects models to determine pooled odds ratios (ORs). A total of 1611 studies were identified; 142 were included in the systematic review, of which 60 had data available for meta-analyses. Systematic review revealed that CVR, cerebral autoregulation, and AS were consistently associated with cSVD (80.4%, 78.6%, and 85.4% of studies, respectively). Meta-analysis in 7 studies (536 participants, 32.9% women) revealed a borderline association between impaired CVR and cSVD (OR, 2.26 [95% CI, 0.99-5.14]; P=0.05). In 37 studies (27 952 participants, 53.0% women) increased AS, per SD, was associated with cSVD (OR, 1.24 [95% CI, 1.15-1.33]; P<0.01). Meta-regression adjusted for comorbidities accounted for one-third of the AS model variance (R2=29.4%, Pmoderators=0.02). Subgroup analysis of AS studies demonstrated an association with white matter hyperintensities (OR, 1.42 [95% CI, 1.18-1.70]; P<0.01). CONCLUSIONS The collective findings of the present systematic review and meta-analyses suggest an association between cSVD and impaired CVR and elevated AS. However, longitudinal investigations into vascular stiffness and regulatory function as possible risk factors for cSVD remain warranted.
Collapse
Affiliation(s)
| | - Shannon K. Parr
- Department of KinesiologyKansas State UniversityManhattanKSUSA
| | | | | | | | - Jia Liang
- Department of Biostatistics, St. Jude Children’s Research HospitalMemphisTNUSA
| | - Carl J. Ade
- Department of KinesiologyKansas State UniversityManhattanKSUSA
- Department of Physician’s Assistant Studies, Kansas State UniversityManhattanKSUSA
- Johnson Cancer Research CenterKansas State UniversityManhattanKSUSA
| |
Collapse
|
3
|
Assoian RK, Xu T, Roberts E. Arterial mechanics, extracellular matrix, and smooth muscle differentiation in carotid arteries deficient for Rac1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567271. [PMID: 38014108 PMCID: PMC10680774 DOI: 10.1101/2023.11.15.567271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Stiffening of the extracellular matrix (ECM) occurs after vascular injury and contributes to the injury-associated proliferation of vascular smooth muscle cells (SMCs). ECM stiffness also activates Rac-GTP, and SMC Rac1 deletion strongly reduces the proliferative response to injury in vivo . However, ECM stiffening and Rac can affect SMC differentiation, which, in itself, can influence ECM stiffness and proliferation. Here, we used pressure myography and immunofluorescence analysis of mouse carotid arteries to ask if the reported effect of Rac1 deletion on in vivo SMC proliferation might be secondary to a Rac effect on basal arterial stiffness or SMC differentiation. The results show that Rac1 deletion does not affect the abundance of arterial collagen-I, -III, or -V, the integrity of arterial elastin, or the arterial responses to pressure, including the axial and circumferential stretch-strain relationships that are assessments of arterial stiffness. Medial abundance of alpha-smooth muscle actin and smooth muscle-myosin heavy chain, markers of the SMC differentiated phenotype, were not statistically different in carotid arteries containing or deficient in Rac1. Nor did Rac1 deficiency have a statistically significant effect on carotid artery contraction to KCl. Overall, these data argue that the inhibitory effect of Rac1 deletion on in vivo SMC proliferation reflects a primary effect of Rac1 signaling to the cell cycle rather than a secondary effect associated with altered SMC differentiation or arterial stiffness.
Collapse
|
4
|
Wang X, Carpenter HJ, Ghayesh MH, Kotousov A, Zander AC, Amabili M, Psaltis PJ. A review on the biomechanical behaviour of the aorta. J Mech Behav Biomed Mater 2023; 144:105922. [PMID: 37320894 DOI: 10.1016/j.jmbbm.2023.105922] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/14/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023]
Abstract
Large aortic aneurysm and acute and chronic aortic dissection are pathologies of the aorta requiring surgery. Recent advances in medical intervention have improved patient outcomes; however, a clear understanding of the mechanisms leading to aortic failure and, hence, a better understanding of failure risk, is still missing. Biomechanical analysis of the aorta could provide insights into the development and progression of aortic abnormalities, giving clinicians a powerful tool in risk stratification. The complexity of the aortic system presents significant challenges for a biomechanical study and requires various approaches to analyse the aorta. To address this, here we present a holistic review of the biomechanical studies of the aorta by categorising articles into four broad approaches, namely theoretical, in vivo, experimental and combined investigations. Experimental studies that focus on identifying mechanical properties of the aortic tissue are also included. By reviewing the literature and discussing drawbacks, limitations and future challenges in each area, we hope to present a more complete picture of the state-of-the-art of aortic biomechanics to stimulate research on critical topics. Combining experimental modalities and computational approaches could lead to more comprehensive results in risk prediction for the aortic system.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Harry J Carpenter
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Mergen H Ghayesh
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Andrei Kotousov
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Anthony C Zander
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Marco Amabili
- Department of Mechanical Engineering, McGill University, Montreal H3A 0C3, Canada
| | - Peter J Psaltis
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia; Department of Cardiology, Central Adelaide Local Health Network, Adelaide, South Australia 5000, Australia; Vascular Research Centre, Heart Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| |
Collapse
|
5
|
Wang X, Ghayesh MH, Kotousov A, Zander AC, Dawson JA, Psaltis PJ. Fluid-structure interaction study for biomechanics and risk factors in Stanford type A aortic dissection. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023:e3736. [PMID: 37258411 DOI: 10.1002/cnm.3736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
Aortic dissection is a life-threatening condition with a rising prevalence in the elderly population, possibly as a consequence of the increasing population life expectancy. Untreated aortic dissection can lead to myocardial infarction, aortic branch malperfusion or occlusion, rupture, aneurysm formation and death. This study aims to assess the potential of a biomechanical model in predicting the risks of a non-dilated thoracic aorta with Stanford type A dissection. To achieve this, a fully coupled fluid-structure interaction model was developed under realistic blood flow conditions. This model of the aorta was developed by considering three-dimensional artery geometry, multiple artery layers, hyperelastic artery wall, in vivo-based physiological time-varying blood velocity profiles, and non-Newtonian blood behaviours. The results demonstrate that in a thoracic aorta with Stanford type A dissection, the wall shear stress (WSS) is significantly low in the ascending aorta and false lumen, leading to potential aortic dilation and thrombus formation. The results also reveal that the WSS is highly related to blood flow patterns. The aortic arch region near the brachiocephalic and left common carotid artery is prone to rupture, showing a good agreement with the clinical reports. The results have been translated into their potential clinical relevance by revealing the role of the stress state, WSS and flow characteristics as the main parameters affecting lesion progression, including rupture and aneurysm. The developed model can be tailored for patient-specific studies and utilised as a predictive tool to estimate aneurysm growth and initiation of wall rupture inside the human thoracic aorta.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Mergen H Ghayesh
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Andrei Kotousov
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Anthony C Zander
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Joseph A Dawson
- Department of Vascular & Endovascular Surgery, Royal Adelaide Hospital, Adelaide, Australia
- Trauma Surgery Unit, Royal Adelaide Hospital, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Peter J Psaltis
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Vascular Research Centre, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|
6
|
Roberts E, Xu T, Assoian RK. Cell contractility and focal adhesion kinase control circumferential arterial stiffness. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2022; 4:28-39. [PMID: 36222505 PMCID: PMC9782408 DOI: 10.1530/vb-22-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
Abstract
Arterial stiffening is a hallmark of aging and cardiovascular disease. While it is well established that vascular smooth muscle cells (SMCs) contribute to arterial stiffness by synthesizing and remodeling the arterial extracellular matrix, the direct contributions of SMC contractility and mechanosensors to arterial stiffness, and particularly the arterial response to pressure, remain less well understood despite being a long-standing question of biomedical importance. Here, we have examined this issue by combining the use of pressure myography of intact carotid arteries, pharmacologic inhibition of contractility, and genetic deletion of SMC focal adhesion kinase (FAK). Biaxial inflation-extension tests performed at physiological pressures showed that acute inhibition of cell contractility with blebbistatin or EGTA altered vessel geometry and preferentially reduced circumferential, as opposed to axial, arterial stiffness in wild-type mice. Similarly, genetic deletion of SMC FAK, which attenuated arterial contraction to KCl, reduced vessel wall thickness and circumferential arterial stiffness in response to pressure while having minimal effect on axial mechanics. Moreover, these effects of FAK deletion were lost by treating arteries with blebbistatin or by inhibiting myosin light-chain kinase. The expression of arterial fibrillar collagens, the integrity of arterial elastin, or markers of SMC differentiation were not affected by the deletion of SMC FAK. Our results connect cell contractility and SMC FAK to the regulation of arterial wall thickness and directionally specific arterial stiffening.
Collapse
Affiliation(s)
- Emilia Roberts
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tina Xu
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard K Assoian
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
De Munck DG, De Meyer GR, Martinet W. Autophagy as an emerging therapeutic target for age-related vascular pathologies. Expert Opin Ther Targets 2020; 24:131-145. [PMID: 31985292 DOI: 10.1080/14728222.2020.1723079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: The incidence of age-related vascular diseases such as arterial stiffness, hypertension and atherosclerosis, is rising dramatically and is substantially impacting healthcare systems. Mounting evidence suggests that there is an important role for autophagy in maintaining (cardio)vascular health. Impaired vascular autophagy has been linked to arterial aging and the initiation of vascular disease.Areas covered: The function and implications of autophagy in vascular smooth muscle cells and endothelial cells are discussed in healthy blood vessels and arterial disease. Furthermore, we discuss current treatment options for vascular disease and their links with autophagy. A literature search was conducted in PubMed up to October 2019.Expert opinion: Although the therapeutic potential of inducing autophagy in age-related vascular pathologies is considerable, several issues should be addressed before autophagy induction can be clinically used to treat vascular disease. These issues include uncertainty regarding the most effective drug target as well as the lack of potency and selectivity of autophagy inducing drugs. Moreover, drug tolerance or autophagy mediated cell death have been reported as possible adverse effects. Special attention is required for determining the cause of autophagy deficiency to optimize the treatment strategy.
Collapse
Affiliation(s)
- Dorien G De Munck
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Guido Ry De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
8
|
Spronck B, Humphrey JD. Arterial Stiffness: Different Metrics, Different Meanings. J Biomech Eng 2019; 141:091004. [PMID: 30985880 PMCID: PMC6808013 DOI: 10.1115/1.4043486] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/25/2019] [Indexed: 12/18/2022]
Abstract
Findings from basic science and clinical studies agree that arterial stiffness is fundamental to both the mechanobiology and the biomechanics that dictate vascular health and disease. There is, therefore, an appropriately growing literature on arterial stiffness. Perusal of the literature reveals, however, that many different methods and metrics are used to quantify arterial stiffness, and reported values often differ by orders of magnitude and have different meanings. Without clear definitions and an understanding of possible inter-relations therein, it is increasingly difficult to integrate results from the literature to glean true understanding. In this paper, we briefly review methods that are used to infer values of arterial stiffness that span studies on isolated cells, excised intact vessels, and clinical assessments. We highlight similarities and differences and identify a single theoretical approach that can be used across scales and applications and thus could help to unify future results. We conclude by emphasizing the need to move toward a synthesis of many disparate reports, for only in this way will we be able to move from our current fragmented understanding to a true appreciation of how vascular cells maintain, remodel, or repair the arteries that are fundamental to cardiovascular properties and function.
Collapse
Affiliation(s)
- B. Spronck
- Department of Biomedical Engineering,
Yale University,
New Haven, CT 06520
| | - J. D. Humphrey
- Fellow ASME
Department of Biomedical Engineering,
Yale University,
New Haven, CT 06520;
Vascular Biology and Therapeutics Program,
Yale School of Medicine,
New Haven, CT 06520
e-mail:
| |
Collapse
|
9
|
Moro A, Driscoll TP, Boraas LC, Armero W, Kasper DM, Baeyens N, Jouy C, Mallikarjun V, Swift J, Ahn SJ, Lee D, Zhang J, Gu M, Gerstein M, Schwartz M, Nicoli S. MicroRNA-dependent regulation of biomechanical genes establishes tissue stiffness homeostasis. Nat Cell Biol 2019; 21:348-358. [PMID: 30742093 PMCID: PMC6528464 DOI: 10.1038/s41556-019-0272-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022]
Abstract
Vertebrate tissues exhibit mechanical homeostasis, showing stable stiffness and tension over time and recovery after changes in mechanical stress. However, the regulatory pathways that mediate these effects are unknown. A comprehensive identification of Argonaute-2(AGO2)-associated microRNAs and mRNAs in endothelial cells identified a network of 122 microRNA families that target 73 mRNAs encoding cytoskeletal, contractile, adhesive and extracellular matrix (CAM) proteins. These microRNAs increased in cells plated on stiff vs. soft substrates, consistent with homeostasis, and suppressed targets via microRNA recognition elements (MREs) within the 3’UTRs of CAM mRNAs. Inhibition of DROSHA or AGO2, or disruption of MREs within individual target mRNAs such as Connective Tissue Growth Factor (CTGF), induced hyper-adhesive, hyper-contractile phenotypes in endothelial and fibroblast cells in vitro, and increased tissue stiffness, contractility and extracellular matrix (ECM) deposition in the zebrafish fin-fold in vivo. Thus, a network of microRNAs buffers CAM expression to mediate tissue mechanical homeostasis.
Collapse
Affiliation(s)
- Albertomaria Moro
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
| | - Tristan P Driscoll
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
| | - Liana C Boraas
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
| | - William Armero
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
| | - Dionna M Kasper
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nicolas Baeyens
- Laboratoire de Physiologie et Pharmacologie, Faculty of Medicine, Université Libre De Bruxelles, Brussels, Belgium.,Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Charlene Jouy
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Venkatesh Mallikarjun
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Joe Swift
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Sang Joon Ahn
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
| | - Donghoon Lee
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jing Zhang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Mengting Gu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,Department of Computer Science, Yale University, New Haven, CT, USA
| | - Martin Schwartz
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA. .,Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK. .,Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Stefania Nicoli
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA. .,Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. .,Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Imsirovic J, Bartolák-Suki E, Jawde SB, Parameswaran H, Suki B. Blood pressure-induced physiological strain variability modulates wall structure and function in aorta rings. Physiol Meas 2018; 39:105014. [PMID: 30376453 DOI: 10.1088/1361-6579/aae65f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular smooth muscle cells respond to mechanical stretch by reorganizing their cytoskeletal and contractile elements. Recently, we showed that contractile forces in rat aorta rings were maintained when the rings were exposed to 4 h of physiological variability in cycle-by-cycle strain, called variable stretch (VS), mimicking beat-to-beat blood pressure variability. Contractility, however, was reduced when the aorta was exposed to monotonous stretch (MS) with an amplitude equal to the mean peak strain of VS. OBJECTIVE Here we reanalyzed the data to obtain wall stiffness as well as added new histologic and inhibitor studies to test the effects of VS on the extracellular matrix. MAIN RESULTS The results demonstrate that while the stiffness of the aorta did not change during 4 h MS or VS, nonlinearity in mechanical behavior was slightly stronger following MS. The inhibitor studies also showed that mitochondrial energy production and cytoskeletal organization were involved in this fluctuation-driven mechanotransduction. Reorganization of β-actin in the smooth muscle layer quantified from immunohistochemically labeled images correlated with contractile forces during contraction. Histologic analysis of wall structure provided evidence of reorganization of elastin and collagen fibers following MS but less so following VS. The results suggested that the loss of muscle contraction in MS was compensated by reorganization of fiber structure leading to similar wall stiffness as in VS. SIGNIFICANCE We conclude that muscle tone modulated by variability in stretch plays a role in maintaining aortic wall structural and mechanical homeostasis with implications for vascular conditions characterized by a loss or an increase in blood pressure variability.
Collapse
Affiliation(s)
- Jasmin Imsirovic
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America. These authors contributed equally to this work
| | | | | | | | | |
Collapse
|
11
|
Cholesterol Efflux: Does It Contribute to Aortic Stiffening? J Cardiovasc Dev Dis 2018; 5:jcdd5020023. [PMID: 29724005 PMCID: PMC6023341 DOI: 10.3390/jcdd5020023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
Aortic stiffness during cardiac contraction is defined by the rigidity of the aorta and the elastic resistance to deformation. Recent studies suggest that aortic stiffness may be associated with changes in cholesterol efflux in endothelial cells. This alteration in cholesterol efflux may directly affect endothelial function, extracellular matrix composition, and vascular smooth muscle cell function and behavior. These pathological changes favor an aortic stiffness phenotype. Among all of the proteins participating in the cholesterol efflux process, ATP binding cassette transporter A1 (ABCA1) appears to be the main contributor to arterial stiffness changes in terms of structural and cellular function. ABCA1 is also associated with vascular inflammation mediators implicated in aortic stiffness. The goal of this mini review is to provide a conceptual hypothesis of the recent advancements in the understanding of ABCA1 in cholesterol efflux and its role and association in the development of aortic stiffness, with a particular emphasis on the potential mechanisms and pathways involved.
Collapse
|
12
|
Shahini A, Mistriotis P, Asmani M, Zhao R, Andreadis ST. NANOG Restores Contractility of Mesenchymal Stem Cell-Based Senescent Microtissues. Tissue Eng Part A 2017; 23:535-545. [PMID: 28125933 DOI: 10.1089/ten.tea.2016.0494] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been extensively used in the field of tissue engineering as a source of smooth muscle cells (SMCs). However, recent studies showed deficits in the contractile function of SMCs derived from senescent MSCs and there are no available strategies to restore the contractile function that is impaired due to cellular or organismal senescence. In this study, we developed a tetracycline-regulatable system and employed micropost tissue arrays to evaluate the effects of the embryonic transcription factor, NANOG, on the contractility of senescent MSCs. Using this system, we show that expression of NANOG fortified the actin cytoskeleton and restored contractile function that was impaired in senescent MSCs. NANOG increased the expression of smooth muscle α-actin (ACTA2) as well as the contractile force generated by cells in three-dimensional microtissues. Interestingly, NANOG worked together with transforming growth factor-beta1 to further enhance the contractility of senescent microtissues. The effect of NANOG on contractile function was sustained for about 10 days after termination of its expression. Our results show that NANOG could reverse the effects of stem cell senescence and restore the myogenic differentiation potential of senescent MSCs. These findings may enable development of novel strategies to restore the function of senescent cardiovascular and other SMC-containing tissues.
Collapse
Affiliation(s)
- Aref Shahini
- 1 Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York , Amherst, New York
| | - Panagiotis Mistriotis
- 1 Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York , Amherst, New York
| | - Mohammadnabi Asmani
- 2 Department of Biomedical Engineering, University at Buffalo, The State University of New York , Amherst, New York
| | - Ruogang Zhao
- 2 Department of Biomedical Engineering, University at Buffalo, The State University of New York , Amherst, New York
| | - Stelios T Andreadis
- 1 Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York , Amherst, New York.,2 Department of Biomedical Engineering, University at Buffalo, The State University of New York , Amherst, New York.,3 Center of Excellence in Bioinformatics and Life Sciences , Buffalo, New York
| |
Collapse
|
13
|
Zhou N, Lee JJ, Stoll S, Ma B, Wiener R, Wang C, Costa KD, Qiu H. Inhibition of SRF/myocardin reduces aortic stiffness by targeting vascular smooth muscle cell stiffening in hypertension. Cardiovasc Res 2016; 113:171-182. [PMID: 28003268 PMCID: PMC5340142 DOI: 10.1093/cvr/cvw222] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/14/2016] [Accepted: 10/14/2016] [Indexed: 11/14/2022] Open
Abstract
AIMS Increased aortic stiffness is a fundamental manifestation of hypertension. However, the molecular mechanisms involved remain largely unknown. We tested the hypothesis that abnormal intrinsic vascular smooth muscle cell (VSMC) mechanical properties in large arteries, but not in distal arteries, contribute to the pathogenesis of aortic stiffening in hypertension, mediated by the serum response factor (SRF)/myocardin signalling pathway. METHODS AND RESULTS Four month old male spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats were studied. Using atomic force microscopy, significant VSMC stiffening was observed in the large conducting aorta compared with the distal arteries in SHR (P < 0.001), however, this regional variation was not observed in WKY rats (P > 0.4). The increase of VSMC stiffness was accompanied by a parallel increase in the expression of SRF by 9.8-fold and of myocardin by 10.5-fold in thoracic aortic VSMCs from SHR vs. WKY rats, resulting in a significant increase of downstream stiffness-associated genes (all, P < 0.01 vs. WKY). Inhibition of SRF/myocardin expression selectively attenuated aortic VSMC stiffening, and normalized downstream targets in VSMCs isolated from SHR but not from WKY rats. In vivo, 2 weeks of treatment with SRF/myocardin inhibitor delivered by subcutaneous osmotic minipump significantly reduced aortic stiffness and then blood pressure in SHR but not in WKY rats, although concomitant changes in aortic wall remodelling were not detected during this time frame. CONCLUSIONS SRF/myocardin pathway acts as a pivotal mediator of aortic VSMC mechanical properties and plays a central role in the pathological aortic stiffening in hypertension. Attenuation of aortic VSMC stiffening by pharmacological inhibition of SRF/myocardin signalling presents a novel therapeutic strategy for the treatment of hypertension by targeting the cellular contributors to aortic stiffness.
Collapse
Affiliation(s)
- Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.,Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, 92350 CA, USA
| | - Jia-Jye Lee
- Department of Medicine (Cardiology), Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, 10029 NY, USA; and
| | - Shaunrick Stoll
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, 92350 CA, USA
| | - Ben Ma
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, 92350 CA, USA
| | - Robert Wiener
- Department of Medicine (Cardiology), Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, 10029 NY, USA; and
| | - Charles Wang
- Department of Basic Sciences/School of Medicine, Center for Genomics, Loma Linda University, 11021 Campus St., Loma Linda, 92350 CA, USA
| | - Kevin D Costa
- Department of Medicine (Cardiology), Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, 10029 NY, USA; and
| | - Hongyu Qiu
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, 92350 CA, USA;
| |
Collapse
|
14
|
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev 2016; 68:476-532. [PMID: 27037223 PMCID: PMC4819215 DOI: 10.1124/pr.115.010652] [Citation(s) in RCA: 344] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.
Collapse
Affiliation(s)
- F V Brozovich
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C J Nicholson
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C V Degen
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - Yuan Z Gao
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - M Aggarwal
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - K G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| |
Collapse
|
15
|
Sehgel NL, Vatner SF, Meininger GA. "Smooth Muscle Cell Stiffness Syndrome"-Revisiting the Structural Basis of Arterial Stiffness. Front Physiol 2015; 6:335. [PMID: 26635621 PMCID: PMC4649054 DOI: 10.3389/fphys.2015.00335] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/02/2015] [Indexed: 02/05/2023] Open
Abstract
In recent decades, the pervasiveness of increased arterial stiffness in patients with cardiovascular disease has become increasingly apparent. Though, this phenomenon has been well documented in humans and animal models of disease for well over a century, there has been surprisingly limited development in a deeper mechanistic understanding of arterial stiffness. Much of the historical literature has focused on changes in extracellular matrix proteins—collagen and elastin. However, extracellular matrix changes alone appear insufficient to consistently account for observed changes in vascular stiffness, which we observed in our studies of aortic stiffness in aging monkeys. This led us to examine novel mechanisms operating at the level of the vascular smooth muscle cell (VSMC)—that include increased cell stiffness and adhesion to extracellular matrix—which that may be interrelated with other mechanisms contributing to arterial stiffness. We introduce these observations as a new concept—the Smooth Muscle Cell Stiffness Syndrome (SMCSS)—within the field of arterial stiffness and posit that stiffening of vascular cells impairs vascular function and may contribute stiffening to the vasculature with aging and cardiovascular disease. Importantly, this review article revisits the structural basis of arterial stiffness in light of these novel findings. Such classification of SMCSS and its contextualization into our current understanding of vascular mechanics may be useful in the development of strategic therapeutics to directly target arterial stiffness.
Collapse
Affiliation(s)
- Nancy L Sehgel
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University - Biomedical and Health Sciences Newark, NJ, USA ; Department of Biomedical Engineering, New Jersey Institute of Technology Newark, NJ, USA
| | - Stephen F Vatner
- Department of Biomedical Engineering, New Jersey Institute of Technology Newark, NJ, USA
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, University of Missouri Columbia, MO, USA
| |
Collapse
|
16
|
Majeed BA, Eberson LS, Tawinwung S, Larmonier N, Secomb TW, Larson DF. Functional aortic stiffness: role of CD4(+) T lymphocytes. Front Physiol 2015; 6:235. [PMID: 26379554 PMCID: PMC4549563 DOI: 10.3389/fphys.2015.00235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/06/2015] [Indexed: 11/13/2022] Open
Abstract
The immune system is suggested to be essential in vascular remodeling and stiffening. To study the dependence upon lymphocytes in vascular stiffening, we compared an angiotensin II-model of vascular stiffening in normal C57BL/6J mice with lymphocyte-deficient RAG 1−/− mice and additionally characterized the component of vascular stiffness due to vasoconstriction vs. vascular remodeling. Chronic angiotensin II increased aortic pulse wave velocity, effective wall stiffness, and effective Young's modulus in C57BL/6J mice by three-fold but caused no change in the RAG 1−/− mice. These functional measurements were supported by aortic morphometric analysis. Adoptive transfer of CD4+ T helper lymphocytes restored the angiotensin II-mediated aortic stiffening in the RAG 1−/− mice. In order to account for the hydraulic vs. material effects of angiotensin II on pulse wave velocity, subcutaneous osmotic pumps were removed after 21 days of angiotensin II-infusion in the WT mice to achieve normotensive values. The pulse wave velocity (PWV) decreased from three- to two-fold above baseline values up to 7 days following pump removal. This study supports the pivotal role of the CD4+ T-lymphocytes in angiotensin II-mediated vascular stiffening and that angiotensin II-mediated aortic stiffening is due to the additive effect of active vascular smooth muscle vasoconstriction and vascular remodeling.
Collapse
Affiliation(s)
- Beenish A Majeed
- Sarver Heart Center, College of Medicine, The University of Arizona Tucson, AZ, USA ; Department of Pharmacology, College of Medicine, The University of Arizona Tucson, AZ, USA
| | - Lance S Eberson
- Sarver Heart Center, College of Medicine, The University of Arizona Tucson, AZ, USA
| | - Supannikar Tawinwung
- Sarver Heart Center, College of Medicine, The University of Arizona Tucson, AZ, USA ; Department of Pharmacology, College of Medicine, The University of Arizona Tucson, AZ, USA
| | - Nicolas Larmonier
- Departments of Pediatrics and Immunology, College of Medicine, The University of Arizona Tucson, AZ, USA
| | - Timothy W Secomb
- Department of Physiology, College of Medicine, The University of Arizona Tucson, AZ, USA
| | - Douglas F Larson
- Sarver Heart Center, College of Medicine, The University of Arizona Tucson, AZ, USA ; Department of Pharmacology, College of Medicine, The University of Arizona Tucson, AZ, USA ; Department of Physiology, College of Medicine, The University of Arizona Tucson, AZ, USA ; Department of Surgery, College of Medicine, The University of Arizona Tucson, AZ, USA
| |
Collapse
|
17
|
Martinez-Lemus LA. Current opinions on the control and role of vascular smooth muscle cell adhesion, calcium sensitization, and the cytoskeleton in vascular structure and function. Microcirculation 2015; 21:197-200. [PMID: 24654930 DOI: 10.1111/micc.12130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/17/2014] [Indexed: 01/07/2023]
Abstract
Vascular smooth muscle contraction and relaxation play a preponderant role on the active (acute) and structural (long-term) control of vascular diameter. This editorial overview summarizes and highlights the opinions expressed in seven reviews contained in this special topic issue of Microcirculation. The reviews address diverse aspects of the mechanisms that influence cell adhesion, calcium homeostasis, and cytoskeletal remodeling, and how these mechanisms affect vascular structure and function at different levels of the circulation.
Collapse
Affiliation(s)
- Luis A Martinez-Lemus
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri, USA
| |
Collapse
|
18
|
Eberson LS, Sanchez PA, Majeed BA, Tawinwung S, Secomb TW, Larson DF. Effect of lysyl oxidase inhibition on angiotensin II-induced arterial hypertension, remodeling, and stiffness. PLoS One 2015; 10:e0124013. [PMID: 25875748 PMCID: PMC4395147 DOI: 10.1371/journal.pone.0124013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/09/2015] [Indexed: 12/20/2022] Open
Abstract
It is well accepted that angiotensin II (Ang II) induces altered vascular stiffness through responses including both structural and material remodeling. Concurrent with remodeling is the induction of the enzyme lysyl oxidase (LOX) through which ECM proteins are cross-linked. The study objective was to determine the effect of LOX mediated cross-linking on vascular mechanical properties. Three-month old mice were chronically treated with Ang II with or without the LOX blocker, β -aminopropionitrile (BAPN), for 14 days. Pulse wave velocity (PWV) from Doppler measurements of the aortic flow wave was used to quantify in vivo vascular stiffness in terms of an effective Young’s modulus. The increase in effective Young’s modulus with Ang II administration was abolished with the addition of BAPN, suggesting that the material properties are a major controlling element in vascular stiffness. BAPN inhibited the Ang II induced collagen cross-link formation by 2-fold and PWV by 44% (P<0.05). Consistent with this observation, morphometric analysis showed that BAPN did not affect the Ang II mediated increase in medial thickness but significantly reduced the adventitial thickness. Since the hypertensive state contributes to the measured in vivo PWV stiffness, we removed the Ang II infusion pumps on Day 14 and achieved normal arterial blood pressures. With pump removal we observed a decrease of the PWV in the Ang II group to 25% above that of the control values (P=0.002), with a complete return to control values in the Ang II plus BAPN group. In conclusion, we have shown that the increase in vascular stiffness with 14 day Ang II administration results from a combination of hypertension-induced wall strain, adventitial wall thickening and Ang II mediated LOX ECM cross-linking, which is a major material source of vascular stiffening, and that the increased PWV was significantly inhibited with co-administration of BAPN.
Collapse
Affiliation(s)
- Lance S. Eberson
- Department of Physiology, The University of Arizona, Tucson, Arizona, United States of America
- Sarver Heart Center, College of Medicine, The University of Arizona, Tucson, Arizona, United States of America
| | - Pablo A. Sanchez
- Department of Physiology, The University of Arizona, Tucson, Arizona, United States of America
- Sarver Heart Center, College of Medicine, The University of Arizona, Tucson, Arizona, United States of America
| | - Beenish A. Majeed
- Department of Pharmacology, The University of Arizona, Tucson, Arizona, United States of America
- Sarver Heart Center, College of Medicine, The University of Arizona, Tucson, Arizona, United States of America
| | - Supannikar Tawinwung
- Department of Pharmacology, The University of Arizona, Tucson, Arizona, United States of America
- Sarver Heart Center, College of Medicine, The University of Arizona, Tucson, Arizona, United States of America
| | - Timothy W. Secomb
- Department of Physiology, The University of Arizona, Tucson, Arizona, United States of America
| | - Douglas F. Larson
- Department of Physiology, The University of Arizona, Tucson, Arizona, United States of America
- Department of Pharmacology, The University of Arizona, Tucson, Arizona, United States of America
- Sarver Heart Center, College of Medicine, The University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
19
|
Fediuk J, Dakshinamurti S. A role for actin polymerization in persistent pulmonary hypertension of the newborn. Can J Physiol Pharmacol 2015; 93:185-94. [PMID: 25695400 DOI: 10.1139/cjpp-2014-0413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is defined as the failure of normal pulmonary vascular relaxation at birth. Hypoxia is known to impede postnatal disassembly of the actin cytoskeleton in pulmonary arterial myocytes, resulting in elevation of smooth muscle α-actin and γ-actin content in elastic and resistance pulmonary arteries in PPHN compared with age-matched controls. This review examines the original histological characterization of PPHN with attention to cytoskeletal structural remodeling and actin isoform abundance, reviews the existing evidence for understanding the biophysical and biochemical forces at play during neonatal circulatory transition, and specifically addresses the role of the cortical actin architecture, primarily identified as γ-actin, in the transduction of mechanical force in the hypoxic PPHN pulmonary circuit.
Collapse
Affiliation(s)
- Jena Fediuk
- Biology of Breathing Group, Manitoba Institute of Child Health, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada., Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
20
|
|
21
|
Ohanian J, Pieri M, Ohanian V. Non-receptor tyrosine kinases and the actin cytoskeleton in contractile vascular smooth muscle. J Physiol 2014; 593:3807-14. [PMID: 25433074 DOI: 10.1113/jphysiol.2014.284174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/14/2014] [Indexed: 01/01/2023] Open
Abstract
The contractility of vascular smooth muscle cells within the walls of arteries is regulated by mechanical stresses and vasoactive signals. Transduction of these diverse stimuli into a cellular response occurs through many different mechanisms, one being reorganisation of the actin cytoskeleton. In addition to a structural role in maintaining cellular architecture it is now clear that the actin cytoskeleton of contractile vascular smooth muscle cells is a dynamic structure reacting to changes in the cellular environment. Equally clear is that disrupting the cytoskeleton or interfering with its rearrangement, has profound effects on artery contractility. The actin cytoskeleton associates with dense plaques, also called focal adhesions, at the plasma membrane of smooth muscle cells. Vasoconstrictors and mechanical stress induce remodelling of the focal adhesions, concomitant with cytoskeletal reorganisation. Recent work has shown that non-receptor tyrosine kinases and tyrosine phosphorylation of focal adhesion proteins such as paxillin and Hic-5 are important for actin cytoskeleton and focal adhesion remodelling and contraction.
Collapse
Affiliation(s)
- Jacqueline Ohanian
- Institute of Cardiovascular Sciences, Manchester Academic Health Services Centre, University of Manchester, Manchester, UK
| | - Maria Pieri
- Institute of Cardiovascular Sciences, Manchester Academic Health Services Centre, University of Manchester, Manchester, UK
| | - Vasken Ohanian
- Institute of Cardiovascular Sciences, Manchester Academic Health Services Centre, University of Manchester, Manchester, UK
| |
Collapse
|
22
|
Interleukin-2/Anti-Interleukin-2 Immune Complex Expands Regulatory T Cells and Reduces Angiotensin II-Induced Aortic Stiffening. Int J Hypertens 2014; 2014:126365. [PMID: 25258681 PMCID: PMC4167213 DOI: 10.1155/2014/126365] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/24/2014] [Indexed: 01/24/2023] Open
Abstract
Adaptive immune function is implicated in the pathogenesis of vascular disease. Inhibition of T-lymphocyte function has been shown to reduce hypertension, target-organ damage, and vascular stiffness. To study the role of immune inhibitory cells, CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs), on vascular stiffness, we stimulated the proliferation of Treg lymphocytes in vivo using a novel cytokine immune complex of Interleukin-2 (IL-2) and anti-IL-2 monoclonal antibody clone JES6-1 (mAbCD25). Three-month-old male C57BL/6J mice were treated with IL-2/mAbCD25 concomitantly with continuous infusion of angiotensin type 1 receptor agonist, [Val(5)]angiotensin II. Our results indicate that the IL-2/mAbCD25 complex effectively induced Treg phenotype expansion by 5-fold in the spleens with minimal effects on total CD4(+) and CD8(+) T-lymphocyte numbers. The IL-2/mAbCD25 complex inhibited angiotensin II-mediated aortic collagen remodeling and the resulting stiffening, analyzed with in vivo pulse wave velocity and effective Young's modulus. Furthermore, the IL-2/mAbCD25 complex suppressed angiotensin II-mediated Th17 responses in the lymphoid organs and reduced gene expression of IL-17 as well as T cell and macrophage infiltrates in the aortic tissue. This study provides data that support the protective roles of Tregs in vascular stiffening and highlights the use of the IL-2/mAbCD25 complex as a new potential therapy in angiotensin II-related vascular diseases.
Collapse
|
23
|
Gao YZ, Saphirstein RJ, Yamin R, Suki B, Morgan KG. Aging impairs smooth muscle-mediated regulation of aortic stiffness: a defect in shock absorption function? Am J Physiol Heart Circ Physiol 2014; 307:H1252-61. [PMID: 25128168 DOI: 10.1152/ajpheart.00392.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Increased aortic stiffness is an early and independent biomarker of cardiovascular disease. Here we tested the hypothesis that vascular smooth muscle cells (VSMCs) contribute significantly to aortic stiffness and investigated the mechanisms involved. The relative contributions of VSMCs, focal adhesions (FAs), and matrix to stiffness in mouse aorta preparations at optimal length and with confirmed VSMC viability were separated by the use of small-molecule inhibitors and activators. Using biomechanical methods designed for minimal perturbation of cellular function, we directly quantified changes with aging in aortic material stiffness. An alpha adrenoceptor agonist, in the presence of N(G)-nitro-l-arginine methyl ester (l-NAME) to remove interference of endothelial nitric oxide, increases stiffness by 90-200% from baseline in both young and old mice. Interestingly, increases are robustly suppressed by the Src kinase inhibitor PP2 in young but not old mice. Phosphotyrosine screening revealed, with aging, a biochemical signature of markedly impaired agonist-induced FA remodeling previously associated with Src signaling. Protein expression measurement confirmed a decrease in Src expression with aging. Thus we report here an additive model for the in vitro biomechanical components of the mouse aortic wall in which 1) VSMCs are a surprisingly large component of aortic stiffness at physiological lengths and 2) regulation of the VSMC component through FA signaling and hence plasticity is impaired with aging, diminishing the aorta's normal shock absorption function in response to stressors.
Collapse
Affiliation(s)
- Yuan Z Gao
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, Massachusetts; and Department of Health Sciences, Sargent College, Boston University, Boston, Massachusetts
| | - Robert J Saphirstein
- Department of Health Sciences, Sargent College, Boston University, Boston, Massachusetts
| | - Rina Yamin
- Department of Health Sciences, Sargent College, Boston University, Boston, Massachusetts
| | - Bela Suki
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, Massachusetts; and
| | - Kathleen G Morgan
- Department of Health Sciences, Sargent College, Boston University, Boston, Massachusetts
| |
Collapse
|