1
|
Liu S, Matsuo T, Matsuo C, Abe T, Chen J, Sun C, Zhao Q. Perspectives of traditional herbal medicines in treating retinitis pigmentosa. Front Med (Lausanne) 2024; 11:1468230. [PMID: 39712182 PMCID: PMC11660805 DOI: 10.3389/fmed.2024.1468230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Medicinal plants, also known as herbs, have been discovered and utilized in traditional medical practice since prehistoric times. Medicinal plants have been proven rich in thousands of natural products that hold great potential for the development of new drugs. Previously, we reviewed the types of Chinese traditional medicines that a Tang Dynasty monk Jianzhen (Japanese: Ganjin) brought to Japan from China in 742. This article aims to review the origin of Kampo (Japanese traditional medicine), and to present the overview of neurodegenerative diseases and retinitis pigmentosa as well as medicinal plants in some depth. Through the study of medical history of the origin of Kampo, we found that herbs medicines contain many neuroprotective ingredients. It provides us a new perspective on extracting neuroprotective components from herbs medicines to treat neurodegenerative diseases. Retinitis pigmentosa (one of the ophthalmic neurodegenerative diseases) is an incurable blinding disease and has become a popular research direction in global ophthalmology. To date, treatments for retinitis pigmentosa are very limited worldwide. Therefore, we intend to integrate the knowledge and skills from different disciplines, such as medical science, pharmaceutical science and plant science, to take a new therapeutic approach to treat neurodegenerative diseases. In the future, we will use specific active ingredients extracted from medicinal plants to treat retinitis pigmentosa. By exploring the potent bioactive ingredients present in medicinal plants, a valuable opportunity will be offered to uncover novel approaches for the development of drugs which target for retinitis pigmentosa.
Collapse
Affiliation(s)
- Shihui Liu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Toshihiko Matsuo
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
- Department of Ophthalmology, Okayama University Hospital, Okayama, Japan
| | - Chie Matsuo
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Takumi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jinghua Chen
- Department of Ophthalmology, University of Florida, College of Medicine, Gainesville, FL, United States
| | - Chi Sun
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Qing Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Zhao C, Bai X, Wen A, Wang J, Ding Y. The therapeutic effects of salvianolic acids on ischemic stroke: From molecular mechanisms to clinical applications. Pharmacol Res 2024; 210:107527. [PMID: 39615615 DOI: 10.1016/j.phrs.2024.107527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/11/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Ischemic stroke (IS), primarily caused by cerebrovascular occlusion, poses a significant public health challenge with limited effective therapeutic options. Evidence suggests that salvianolic acids (SAs), mainly from Salvia miltiorrhiza Bunge, have been formulated into injections and are widely used in clinical treatments for cardiovascular and cerebrovascular diseases, including stroke. The pharmacological properties of SAs include reducing neuroinflammation, alleviating oxidative stress injury, inhibiting cellular apoptosis, preserving endothelial function, maintaining blood-brain barrier integrity, and promoting angiogenesis. Salvianolic acids for injection (SAFI) serve as a safe and effective treatment option for cardiovascular and cerebrovascular conditions by influencing various signaling pathways and molecular targets associated with these diseases. In this review, we first discuss the pathogenesis of IS, then summarize the classification of SAs, elaborate detailed molecular mechanisms of their efficacy, and the related clinical applications of SAFI. We also emphasize the recent pharmacological advancements and therapeutic possibilities of this promising drug preparation derived from herbs for cerebrovascular conditions.
Collapse
Key Words
- Caffeic acid (PubChem CID 689043)
- Clinical applications
- Danshensu (PubChem CID 11600642)
- Ischemic stroke
- Lithospermic acid (PubChem CID 6441498)
- Molecular mechanisms
- Pathogenesis
- Protocatechualdehyde (PubChem CID 8768)
- Protocatechuic acid (PubChem CID 72)
- Rosmarinic acid (PubChem CID 5281792)
- Salvia miltiorrhiza
- Salvianolic acids
- Salvianolic acids A, B, C, D, E, and Y (PubChem CIDs 5281793, 11629084, 13991590, 75412558, 86278266, 97182154)
Collapse
Affiliation(s)
- Chao Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaodan Bai
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710021, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
3
|
Lyu Y, Meng Z, Hu Y, Jiang B, Yang J, Chen Y, Zhou J, Li M, Wang H. Mechanisms of mitophagy and oxidative stress in cerebral ischemia-reperfusion, vascular dementia, and Alzheimer's disease. Front Mol Neurosci 2024; 17:1394932. [PMID: 39169952 PMCID: PMC11335644 DOI: 10.3389/fnmol.2024.1394932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Neurological diseases have consistently represented a significant challenge in both clinical treatment and scientific research. As research has progressed, the significance of mitochondria in the pathogenesis and progression of neurological diseases has become increasingly prominent. Mitochondria serve not only as a source of energy, but also as regulators of cellular growth and death. Both oxidative stress and mitophagy are intimately associated with mitochondria, and there is mounting evidence that mitophagy and oxidative stress exert a pivotal regulatory influence on the pathogenesis of neurological diseases. In recent years, there has been a notable rise in the prevalence of cerebral ischemia/reperfusion injury (CI/RI), vascular dementia (VaD), and Alzheimer's disease (AD), which collectively represent a significant public health concern. Reduced levels of mitophagy have been observed in CI/RI, VaD and AD. The improvement of associated pathology has been demonstrated through the increase of mitophagy levels. CI/RI results in cerebral tissue ischemia and hypoxia, which causes oxidative stress, disruption of the blood-brain barrier (BBB) and damage to the cerebral vasculature. The BBB disruption and cerebral vascular injury may induce or exacerbate VaD to some extent. In addition, inadequate cerebral perfusion due to vascular injury or altered function may exacerbate the accumulation of amyloid β (Aβ) thereby contributing to or exacerbating AD pathology. Intravenous tissue plasminogen activator (tPA; alteplase) and endovascular thrombectomy are effective treatments for stroke. However, there is a narrow window of opportunity for the administration of tPA and thrombectomy, which results in a markedly elevated incidence of disability among patients with CI/RI. It is regrettable that there are currently no there are still no specific drugs for VaD and AD. Despite the availability of the U.S. Food and Drug Administration (FDA)-approved clinical first-line drugs for AD, including memantine, donepezil hydrochloride, and galantamine, these agents do not fundamentally block the pathological process of AD. In this paper, we undertake a review of the mechanisms of mitophagy and oxidative stress in neurological disorders, a summary of the clinical trials conducted in recent years, and a proposal for a new strategy for targeted treatment of neurological disorders based on both mitophagy and oxidative stress.
Collapse
Affiliation(s)
- Yujie Lyu
- Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, China
- Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, China
| | - Zhipeng Meng
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yunyun Hu
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Bing Jiang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Jiao Yang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yiqin Chen
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Jun Zhou
- Xichang Hospital of Traditional Chinese Medicine, Xichang, China
| | - Mingcheng Li
- Qujing 69 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Qujing, China
| | - Huping Wang
- Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, China
- Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, China
| |
Collapse
|
4
|
Liu Y, Xiang R, Lu W, Qin X. Symptom-oriented network pharmacology revealed the mechanism of HuangQi-DanShen herb pair against cerebral ischemia coupled with comprehensive chemical characterization. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116845. [PMID: 37437791 DOI: 10.1016/j.jep.2023.116845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the clinical practice of traditional Chinese medicine, HuangQi-DanShen (HD) is an important drug pair for the treatment of cerebral ischemia (CI). AIM OF THE STUDY Elucidate the mechanism of HD against CI based on symptom-oriented network pharmacology coupled with comprehensive chemical characterization. MATERIALS AND METHODS UHPLC-Q-Exactive Orbitrap-MS technology was firstly used to obtain the chemical profile of HD constituents. A comprehensive strategy combining in-house library, diagnostic ions, Compound Discover software and network databases was then established to identify its chemical constitutes. Symptomatic treatment is a treatment aimed at relieving or eliminating symptoms which is often characterized as a stop-gap measure due to its inability to cure the disease fundamentally. Nevertheless, symptomatic treatment is an indispensable part of clinical practice and has an important place in medical therapeutics. Therefore, network pharmacology technique were used to elucidate molecular mechanisms from the symptoms of CI. Finally, some literatures were further mined to support our conclusions. RESULTS A total of 190 ingredients were identified in HD. Symptom-oriented network pharmacology analysis indicated that compounds of HD relieved "blood" through the regulation of ADORA2A, ADORA1, PTPN11, MMP9 and EGFR, relieved "qi" via the regulation of ADORA2A, EGFR, MMP9 and CA2. The therapeutic effect of HD on "faint" was linked to PTPN11 and MMP9, while the regulation of "dyskinesia" was related to ADORA2A and EGFR, and ADORA1, PTPN11 and MMP9 were associated withe its effect on "speech disorder". ADORA1, ADORA2A and MMP9 were key to the HD component in treating "visual disturbance". CONCLUSION The approach of symptom-oriented network pharmacology coupled with comprehensive chemical characterization proposed a further orientation for exploring the mechanisms of HD against CI.
Collapse
Affiliation(s)
- Yuetao Liu
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China.
| | - Ruoxin Xiang
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China.
| | - Wentian Lu
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China.
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China.
| |
Collapse
|
5
|
Wang L, Liu Y, Wei J, Liang X, Zhang Y. Effects of intravenous thrombolysis with and without salvianolic acids for injection on the functional recovery of patients with acute ischemic stroke: A systematic review, meta-analysis, and trial sequential analysis. Phytother Res 2023. [PMID: 37092721 DOI: 10.1002/ptr.7843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/23/2023] [Accepted: 04/08/2023] [Indexed: 04/25/2023]
Abstract
In patients with acute ischemic stroke (AIS), the effect of salvianolic acids for injection (SAFI) as the secondary treatment after intravenous thrombolysis (IVT) is unclear. We aimed to evaluate the efficacy of SAFI for patients with AIS undergoing IVT. We searched seven electronic databases and two registries from inception to July 24, 2022, for randomized controlled trials (RCTs) assessing the effect of SAFI plus recombinant tissue plasminogen activator (rt-PA) on the functional recovery compared to rt-PA alone in patients with AIS. Two independent authors selected RCTs, extracted data, and assessed the risk of bias. A meta-analysis was conducted. Eight RCTs involving 682 patients with AIS were included. Compared to patients receiving intravenous rt-PA alone, those receiving intravenous rt-PA combined with SAFI had a higher likelihood of achieving favorable functional outcomes at 3 months. In addition, the use of SAFI for 2 weeks was associated with better neurological recovery. The evidence of benefit was confirmed by trial sequential analysis (TSA). The incidence of intracranial hemorrhage did not differ between the two groups. In patients with AIS, intravenous rt-PA combined with SAFI might achieve better functional outcomes. However, further high-quality studies are needed to firmly establish the clinical efficacy of SAFI.
Collapse
Affiliation(s)
- Liuding Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Wei
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao Liang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yunling Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Tang H, Zhang X, Hao X, Dou H, Zou C, Zhou Y, Li B, Yue H, Wang D, Wang Y, Yang C, Fu J. Hepatocyte growth factor-modified hair follicle stem cells ameliorate cerebral ischemia/reperfusion injury in rats. Stem Cell Res Ther 2023; 14:25. [PMID: 36782269 PMCID: PMC9926795 DOI: 10.1186/s13287-023-03251-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 08/22/2022] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Hair follicle stem cells (HFSCs) are considered as a promising cell type in the stem cell transplantation treatment of neurological diseases because of their rich sources, easy access, and the same ectoderm source as the nervous system. Hepatocyte growth factor (HGF) is a pleiotropic cytokine that shows neuroprotective function in ischemic stroke. Here we assessed the therapeutic effects of HFSCs on ischemic stroke injury and the synthetic effect of HGF along with HFSCs. METHODS Rat HFSCs were intravenously transplanted into a middle cerebral artery ischemia/reperfusion (I/R) rat model. Neurological scoring and TTC staining were performed to assess the benefits of HFSC transplantation. Inflammatory cytokines, blood-brain barrier integrity and angiogenesis within penumbra were estimated by Western blot and immunohistochemistry. The differentiation of HFSCs was detected by immunofluorescence method 2 weeks after transplantation. RESULTS HFSC transplantation could significantly inhibit the activation of microglia, improve the integrity of blood-brain barrier and reduce brain edema. Moreover, the number of surviving neurons and microvessels density in the penumbra were upregulated by HFSC transplantation, leading to better neurological score. The combination of HFSCs and HGF could significantly improve the therapeutic benefit. CONCLUSION Our results indicate for the first time that HGF modified HFSCs can reduce I/R injury and promote the neurological recovery by inhibiting inflammatory response, protecting blood-brain barrier and promoting angiogenesis.
Collapse
Affiliation(s)
- Hao Tang
- grid.412463.60000 0004 1762 6325Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086 Heilongjiang China
| | - Xuemei Zhang
- grid.412463.60000 0004 1762 6325Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086 Heilongjiang China
| | - Xiaojun Hao
- grid.412463.60000 0004 1762 6325Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086 Heilongjiang China
| | - Haitong Dou
- grid.412463.60000 0004 1762 6325Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086 Heilongjiang China
| | - Chendan Zou
- grid.410736.70000 0001 2204 9268Department of Biochemistry and Molecular Biology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150086 Heilongjiang China
| | - Yinglian Zhou
- grid.412463.60000 0004 1762 6325Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086 Heilongjiang China
| | - Bing Li
- grid.412463.60000 0004 1762 6325Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086 Heilongjiang China
| | - Hui Yue
- grid.412463.60000 0004 1762 6325Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086 Heilongjiang China
| | - Duo Wang
- grid.412463.60000 0004 1762 6325Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086 Heilongjiang China
| | - Yifei Wang
- grid.412463.60000 0004 1762 6325Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086 Heilongjiang China
| | - Chunxiao Yang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang, China.
| | - Jin Fu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang, China.
| |
Collapse
|
7
|
Hao DL, Li JM, Xie R, Huo HR, Xiong XJ, Sui F, Wang PQ. The role of traditional herbal medicine for ischemic stroke: from bench to clinic-A critical review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154609. [PMID: 36610141 DOI: 10.1016/j.phymed.2022.154609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/29/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ischemic stroke (IS) is a leading cause of death and severe long-term disability worldwide. Over the past few decades, considerable progress has been made in anti-ischemic therapies. However, IS remains a tremendous challenge, with favourable clinical outcomes being generally difficult to achieve from candidate drugs in preclinical phase testing. Traditional herbal medicine (THM) has been used to treat stroke for over 2,000 years in China. In modern times, THM as an alternative and complementary therapy have been prescribed in other Asian countries and have gained increasing attention for their therapeutic effects. These millennia of clinical experience allow THM to be a promising avenue for improving clinical efficacy and accelerating drug discovery. PURPOSE To summarise the clinical evidence and potential mechanisms of THMs in IS. METHODS A comprehensive literature search was conducted in seven electronic databases, including PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the Chinese National Knowledge Infrastructure, the VIP Information Database, the Chinese Biomedical Literature Database, and the Wanfang Database, from inception to 17 June 2022 to examine the efficacy and safety of THM for IS, and to investigate experimental studies regarding potential mechanisms. RESULTS THM is widely prescribed for IS alone or as adjuvant therapy. In clinical trials, THM is generally administered within 72 h of stroke onset and are continuously prescribed for over 3 months. Compared with Western medicine (WM), THM combined with routine WM can significantly improve neurological function defect scores, promote clinical total effective rate, and accelerate the recovery time of stroke with fewer adverse effects (AEs). These effects can be attributed to multiple mechanisms, mainly anti-inflammation, antioxidative stress, anti-apoptosis, brain blood barrier (BBB) modulation, inhibition of platelet activation and thrombus formation, and promotion of neurogenesis and angiogenesis. CONCLUSIONS THM may be a promising candidate for IS management to guide clinical applications and as a reference for drug development.
Collapse
Affiliation(s)
- Dan-Li Hao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jia-Meng Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hai-Ru Huo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xing-Jiang Xiong
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peng-Qian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
8
|
Wang D, Wang T, Zhang Z, Li Z, Guo Y, Zhao G, Wu L. Recent advances in the effects of dietary polyphenols on inflammation in vivo: potential molecular mechanisms, receptor targets, safety issues, and uses of nanodelivery system and polyphenol polymers. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Cai J, Chen X, Liu X, Li Z, Shi A, Tang X, Xia P, Zhang J, Yu P. AMPK: The key to ischemia-reperfusion injury. J Cell Physiol 2022; 237:4079-4096. [PMID: 36134582 DOI: 10.1002/jcp.30875] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
Ischemia-reperfusion injury (IRI) refers to a syndrome in which tissue damage is further aggravated and organ function further deteriorates when blood flow is restored after a period of tissue ischemia. Acute myocardial infarction, stress ulcer, pancreatitis, intestinal ischemia, intermittent claudication, acute tubular necrosis, postshock liver failure, and multisystem organ failure are all related to reperfusion injury. AMP-activated protein kinase (AMPK) has been identified in multiple catabolic and anabolic signaling pathways. The functions of AMPK during health and diseases are intriguing but still need further research. Except for its conventional roles as an intracellular energy switch, emerging evidence reveals the critical role of AMPK in IRI as an energy-sensing signal molecule by regulating metabolism, autophagy, oxidative stress, inflammation, and other progressions. At the same time, drugs based on AMPK for the treatment of IRI are constantly being researched and applied in clinics. In this review, we summarize the mechanisms underlying the effects of AMPK in IRI and describe the AMPK-targeting drugs in treatment, hoping to increase the understanding of AMPK in IRI and provide new insights into future clinical treatment.
Collapse
Affiliation(s)
- Jie Cai
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinyue Chen
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xingyu Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ao Shi
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry and Molecular Biology, Mayo Graduate School of Biomedical Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| |
Collapse
|
10
|
Chlorpromazine and Promethazine (C+P) Reduce Brain Injury after Ischemic Stroke through the PKC-δ/NOX/MnSOD Pathway. Mediators Inflamm 2022; 2022:6886752. [PMID: 35873710 PMCID: PMC9307415 DOI: 10.1155/2022/6886752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/11/2022] [Indexed: 11/18/2022] Open
Abstract
Cerebral ischemia-reperfusion (I/R) incites neurologic damage through a myriad of complex pathophysiological mechanisms, most notably, inflammation and oxidative stress. In I/R injury, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) produces reactive oxygen species (ROS), which promote inflammatory and apoptotic pathways, augmenting ROS production and promoting cell death. Inhibiting ischemia-induced oxidative stress would be beneficial for reducing neuroinflammation and promoting neuronal cell survival. Studies have demonstrated that chlorpromazine and promethazine (C+P) induce neuroprotection. This study investigated how C+P minimizes oxidative stress triggered by ischemic injury. Adult male Sprague-Dawley rats were subject to middle cerebral artery occlusion (MCAO) and subsequent reperfusion. 8 mg/kg of C+P was injected into the rats when reperfusion was initiated. Neurologic damage was evaluated using infarct volumes, neurological deficit scoring, and TUNEL assays. NOX enzymatic activity, ROS production, protein expression of NOX subunits, manganese superoxide dismutase (MnSOD), and phosphorylation of PKC-δ were assessed. Neural SHSY5Y cells underwent oxygen-glucose deprivation (OGD) and subsequent reoxygenation and C+P treatment. We also evaluated ROS levels and NOX protein subunit expression, MnSOD, and p-PKC-δ/PKC-δ. Additionally, we measured PKC-δ membrane translocation and the level of interaction between NOX subunit (p47phox) and PKC-δ via coimmunoprecipitation. As hypothesized, treatment with C+P therapy decreased levels of neurologic damage. ROS production, NOX subunit expression, NOX activity, and p-PKC-δ/PKC-δ were all significantly decreased in subjects treated with C+P. C+P decreased membrane translocation of PKC-δ and lowered the level of interaction between p47phox and PKC-δ. This study suggests that C+P induces neuroprotective effects in ischemic stroke through inhibiting oxidative stress. Our findings also indicate that PKC-δ, NOX, and MnSOD are vital regulators of oxidative processes, suggesting that C+P may serve as an antioxidant.
Collapse
|
11
|
Li X, Guo K, Zhang R, Wang W, Sun H, Yagüe E, Hu Y. Exploration of the Mechanism of Salvianolic Acid for Injection Against Ischemic Stroke: A Research Based on Computational Prediction and Experimental Validation. Front Pharmacol 2022; 13:894427. [PMID: 35694259 PMCID: PMC9175744 DOI: 10.3389/fphar.2022.894427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemic stroke (IS) is an acute neurological injury that occurs when a vessel supplying blood to the brain is obstructed, which is a leading cause of death and disability. Salvia miltiorrhiza has been used in the treatment of cardiovascular and cerebrovascular diseases for over thousands of years due to its effect activating blood circulation and dissipating blood stasis. However, the herbal preparation is chemically complex and the diversity of potential targets makes difficult to determine its mechanism of action. To gain insight into its mechanism of action, we analyzed “Salvianolic acid for injection” (SAFI), a traditional Chinese herbal medicine with anti-IS effects, using computational systems pharmacology. The potential targets of SAFI, obtained from literature mining and database searches, were compared with IS-associated genes, giving 38 common genes that were related with pathways involved in inflammatory response. This suggests that SAFI might function as an anti-inflammatory agent. Two genes associated with inflammation (PTGS1 and PTGS2), which were inhibited by SAFI, were preliminarily validated in vitro. The results showed that SAFI inhibited PTGS1 and PTGS2 activity in a dose-dependent manner and inhibited the production of prostaglandin E2 induced by lipopolysaccharide in RAW264.7 macrophages and BV-2 microglia. This approach reveals the possible pharmacological mechanism of SAFI acting on IS, and also provides a feasible way to elucidate the mechanism of traditional Chinese medicine (TCM).
Collapse
Affiliation(s)
- Xiaoqiang Li
- Cloudphar Pharmaceuticals Co., Ltd., Shenzhen, China
| | - Kaimin Guo
- Cloudphar Pharmaceuticals Co., Ltd., Shenzhen, China
| | - Ruili Zhang
- College of Pharmacy, Haihe Education Park, Nankai University, Tianjin, China
| | - Wenjia Wang
- Cloudphar Pharmaceuticals Co., Ltd., Shenzhen, China
| | - He Sun
- Tasly Pharmaceuticals Co., Ltd., Tianjin, China
| | - Ernesto Yagüe
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, London, United Kingdom
| | - Yunhui Hu
- Cloudphar Pharmaceuticals Co., Ltd., Shenzhen, China
- *Correspondence: Yunhui Hu,
| |
Collapse
|
12
|
Zhang J, Hu K, Di L, Wang P, Liu Z, Zhang J, Yue P, Song W, Zhang J, Chen T, Wang Z, Zhang Y, Wang X, Zhan C, Cheng YC, Li X, Li Q, Fan JY, Shen Y, Han JY, Qiao H. Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. Adv Drug Deliv Rev 2021; 178:113964. [PMID: 34499982 DOI: 10.1016/j.addr.2021.113964] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Traditional herbal medicine (THM), an ancient science, is a gift from nature. For thousands of years, it has helped humans fight diseases and protect life, health, and reproduction. Nanomedicine, a newer discipline has evolved from exploitation of the unique nanoscale morphology and is widely used in diagnosis, imaging, drug delivery, and other biomedical fields. Although THM and nanomedicine differ greatly in time span and discipline dimensions, they are closely related and are even evolving toward integration and convergence. This review begins with the history and latest research progress of THM and nanomedicine, expounding their respective developmental trajectory. It then discusses the overlapping connectivity and relevance of the two fields, including nanoaggregates generated in herbal medicine decoctions, the application of nanotechnology in the delivery and treatment of natural active ingredients, and the influence of physiological regulatory capability of THM on the in vivo fate of nanoparticles. Finally, future development trends, challenges, and research directions are discussed.
Collapse
|
13
|
Yu L, Zhang Y, Zhao X, Wan H, He Y, Jin W. Guhong Injection Alleviates Cerebral Ischemia-Reperfusion Injury via the PKC/HIF-1α Pathway in Rats. Front Pharmacol 2021; 12:716121. [PMID: 34539402 PMCID: PMC8443782 DOI: 10.3389/fphar.2021.716121] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/19/2021] [Indexed: 01/01/2023] Open
Abstract
Guhong injection (GHI) is a drug for ischemic stroke created by combining safflower, a traditional Chinese medicine, and aceglutamide, a Western medicine. In this study, we investigated the curative effect of GHI on cerebral ischemia–reperfusion (I/R) injury via the PKC/HIF-1α pathway in rats. Adult male Sprague Dawley rats were randomly divided into seven groups: sham-operated, middle cerebral artery occlusion (MCAO), GHI, nimodipine injection (NMDP), MCAO + LY317615 (PKC inhibitor), GHI + LY317615, and NMDP + LY317615. After establishing an MCAO rat model, we performed neurological deficit testing, 2,3,5-triphenyltetrazolium chloride staining, hematoxylin and eosin (HE) staining, enzyme-linked immunosorbent assay, Western blotting, and q-PCR to detect the brain damage in rats. Compared with the MCAO group, the GHI and GHI + LY317615 group showed neurological damage amelioration as well as decreases in serum hypoxia-inducible factor-1α (HIF-1α), protein kinase C (PKC), and erythropoietin levels; brain HIF-1α and inducible nitric oxide synthase protein expression; and brain HIF-1α and NOX-4 mRNA expression. These effects were similar to those in the positive control groups NMDP and NMDP + LY317615. Thus, our results confirmed GHI can ameliorate cerebral I/R injury in MCAO rats possibly via the PKC/HIF-1α pathway.
Collapse
Affiliation(s)
- Li Yu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yangyang Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xixi Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weifeng Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
14
|
Ma DC, Zhang NN, Zhang YN, Chen HS. Salvianolic Acids for Injection alleviates cerebral ischemia/reperfusion injury by switching M1/M2 phenotypes and inhibiting NLRP3 inflammasome/pyroptosis axis in microglia in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113776. [PMID: 33421597 DOI: 10.1016/j.jep.2021.113776] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE After cerebral ischemia/reperfusion injury, pro-inflammatory M1 and anti-inflammatory M2 phenotypes of microglia are involved in neuroinflammation, in which activation of NLRP3 inflammasome and subsequent pyroptosis play essential roles. Salvianolic Acids for Injection (SAFI) is Chinese medicine injection which composed of multiple phenolic acids extracted from Radix Salviae Miltiorrhizae, and has been reported to generate neuroprotective effects after cerebral ischemic insult in clinical and animal studies. AIM OF THE STUDY The present study was designed to investigate whether SAFI exerts neuroprotective effects by switching microglial phenotype and inhibiting NLRP3 inflammasome/pyroptosis axis in microglia. MATERIALS AND METHODS The middle cerebral artery occlusion/reperfusion (MCAO/R) model in rats and oxygen-glucose deprivation/reoxygenation (OGD/R) model in co-cultured primary neurons and primary microglia were utilized. The neuroprotective effect of SAFI was evaluated through measuring neurological deficit scores, neuropathological changes, inflammatory factors, cell phenotype markers, and related proteins of NLRP3 inflammasome/pyroptosis axis. RESULTS The results showed that SAFI treatment was able to: (1) produce a significant increase in neurological deficit scores and decrease in infarct volumes, and alleviate histological injury and neuronal apoptosis in cerebral cortex in MCAO/R model; (2) increase neuronal viability and reduce neuronal apoptosis in the OGD model; (3) reshape microglial polarization patterns from M1-like phenotype to M2-like phenotype; (4) inhibit the activation of the NLRP3 inflammasome and the expression of proteins related to NLRP3 inflammasome/pyroptosis axis in vivo and in vitro. CONCLUSION These findings indicate that SAFI exert neuroprotective effect, probably via reducing neuronal apoptosis, switching microglial phenotype from M1 towards M2, and inhibiting NLRP3 inflammasome/pyroptosis axis in microglia.
Collapse
Affiliation(s)
- Dai-Chao Ma
- Graduate College, Liaoning University of Traditional Chinese Medicine, China; Department of Neurology, General Hospital of Northern Theater Command, China
| | - Nan-Nan Zhang
- Department of Neurology, General Hospital of Northern Theater Command, China
| | - Yi-Na Zhang
- Department of Neurology, General Hospital of Northern Theater Command, China
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theater Command, China.
| |
Collapse
|
15
|
Yang SJ, Fan CN, Wang MJ, Fan SZ, Tsai JC, Sun WZ, Chan WS, Yeh YC. Effects of dexmedetomidine on renal microcirculation in ischemia/reperfusion-induced acute kidney injury in rats. Sci Rep 2021; 11:2026. [PMID: 33479346 PMCID: PMC7820577 DOI: 10.1038/s41598-021-81288-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 12/31/2020] [Indexed: 11/25/2022] Open
Abstract
Microcirculatory dysfunction plays a crucial role in renal ischemia/reperfusion (IR)-induced injury. Dexmedetomidine was reported to ameliorate IR-induced acute kidney injury. This study investigated the effects of dexmedetomidine on renal microcirculation after IR-induced acute kidney injury in rats. In total, 50 rats were randomly allocated to the following five groups (10 in each group): Sham, Control‒IR, Dex (dexmedetomidine) ‒Sham, Dex‒IR, and IR‒Dex group. The microcirculation parameters included total small vessel density, perfused small vessel density (PSVD), proportion of perfused small vessels, microvascular flow index, and tissue oxygen saturation (StO2) were recorded. The repeated measures analysis showed that PSVD on renal surface was higher in the Dex‒IR group than in the Control‒IR group (3.5 mm/mm2, 95% confidence interval [CI] 0.6 to 6.4 mm/mm2, P = 0.01). At 240 min, StO2 on renal surface was lower in the Control‒IR group than in the Sham group (- 7%, 95% CI - 13 to - 1%, P = 0.021), but StO2 did not differ significantly among the Sham, Dex‒IR, and IR‒Dex groups. Our results showed that pretreatment with dexmedetomidine improved renal microcirculation in rats with IR-induced acute kidney injury. However, the adverse effects of low mean arterial pressure and heart rate might offset the protective effect of dexmedetomidine on organ injury.
Collapse
Affiliation(s)
- Szu-Jen Yang
- Department of Anesthesiology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd., Taipei City, 10002, Taiwan
| | - Chia-Ning Fan
- Department of Anesthesiology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd., Taipei City, 10002, Taiwan
| | - Ming-Jiuh Wang
- Department of Anesthesiology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd., Taipei City, 10002, Taiwan
| | - Shou-Zen Fan
- Department of Anesthesiology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd., Taipei City, 10002, Taiwan
| | - Jui-Chang Tsai
- Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Zen Sun
- Department of Anesthesiology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd., Taipei City, 10002, Taiwan
| | - Wing-Sum Chan
- Department of Anesthesiology, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd., Banciao Dist., New Taipei, Taiwan.
| | - Yu-Chang Yeh
- Department of Anesthesiology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd., Taipei City, 10002, Taiwan.
| |
Collapse
|
16
|
Ding R, Wu W, Sun Z, Li Z. AMP-activated protein kinase: An attractive therapeutic target for ischemia-reperfusion injury. Eur J Pharmacol 2020; 888:173484. [DOI: 10.1016/j.ejphar.2020.173484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/26/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
|
17
|
The Effect of Salvianolic Acid on Vascular Protection and Possible Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5472096. [PMID: 33062143 PMCID: PMC7533016 DOI: 10.1155/2020/5472096] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 01/29/2023]
Abstract
Salvia miltiorrhiza (Danshen), as an important traditional Chinese medicinal plant, has been used in China for the treatment of cardiovascular diseases for hundreds of years. Salvianolic acids (salvianolic acid A and salvianolic acid B) as the most abundant water-soluble component extracted from Salvia miltiorrhiza have attracted more and more attention from cardiovascular scientists due to its comprehensive cardiovascular actions. In vivo and in vitro studies have rendered salvianolic acid an excellent drug candidate for the treatment and prevention of cardiovascular diseases. In this review, we surveyed the protective effects of salvianolic acid A and salvianolic acid B against cardiovascular diseases and the pharmacological basis, providing a strong scientific rationale for elucidating the important role of Salvia miltiorrhiza in cardiovascular therapy. More importantly, we also hope to provide new inspiration and perspectives on the development and innovation of small-molecule cardiovascular drugs based on salvianolic acid.
Collapse
|
18
|
Zhang X, Tang H, Mao S, Li B, Zhou Y, Yue H, Wang D, Wang Y, Fu J. Transplanted hair follicle stem cells migrate to the penumbra and express neural markers in a rat model of cerebral ischaemia/reperfusion. Stem Cell Res Ther 2020; 11:413. [PMID: 32967732 PMCID: PMC7510278 DOI: 10.1186/s13287-020-01927-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/16/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Ischaemic stroke has become the main cause of death and severe neurological disorders, for which effective restorative treatments are currently limited. While stem cell transplantation offers therapeutic potential through neural regeneration, this approach is associated with the challenges of limited applicable sources. Hair follicle stem cells (HFSCs) are multipotential cells that can differentiate into ectodermal and mesodermal lineages and proliferate for long periods. The therapeutic potentials of HFSCs have not been investigated in ischaemic stroke models, and therefore, in this study, we aimed to determine whether they could survive and migrate to ischaemic areas after a stroke attack. METHODS A rat model of middle cerebral artery ischaemia/reperfusion was established and intravenously administered HFSCs. The potential of HFSCs to migrate and differentiate into neuron-like cells as well as their ability to reduce the infarct size was evaluated. Rat brain tissue samples were collected 2 weeks after cell transplantation and analysed via TTC staining, immunofluorescence and immunohistochemistry methods. The data were statistically analysed and presented as the means ± standard deviations. RESULTS Intravenously administrated rat HFSCs were able to migrate to the penumbra where they expressed neuron-specific markers, reduced the infarct volume and promoted neurological recovery. CONCLUSION HFSC transplantation has therapeutic potential for ischaemic stroke and is, therefore, worthy of further investigation toward possible clinical development for treating stroke patients.
Collapse
Affiliation(s)
- Xuemei Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
| | - Hao Tang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
| | - Senlin Mao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
| | - Bing Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
| | - Yinglian Zhou
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
| | - Hui Yue
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
| | - Duo Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
| | - Yifei Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
| | - Jin Fu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China.
| |
Collapse
|
19
|
Salvianolic acid B ameliorates atherosclerosis via inhibiting YAP/TAZ/JNK signaling pathway in endothelial cells and pericytes. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158779. [PMID: 32739616 DOI: 10.1016/j.bbalip.2020.158779] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 01/22/2023]
Abstract
Atherosclerosis (AS) is a chronic disease of the arterial wall where both innate and adaptive immunoinflammatory mechanisms are involved. Inflammation plays an important role in the pathological process of atherosclerosis at various stages. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ, also known as WWTR1) behave as a novel drug target against atherosclerosis. Therefore, the mechanism relationship of YAP/TAZ, inflammation and AS was explored in this study. Experiments demonstrated that serine dephosphorylation and nuclear translocation of YAP was increased in ECs and pericytes induced by oxidative low-density lipoprotein (ox-LDL), while the inhibition of YAP degraded the expression of downstream inflammatory factors. The expression of YAP/TAZ and inflammation proteins (JNK, NF-κB and TNF-α) in ECs and pericytes was suppressed through the application of Sal-B. Besides, Sal-B protects ECs and pericytes from oxidative stress and apoptosis. In vivo, Sal-B reduced en face and aortic root sinus lesions size, and decreased the expression of inflammation related factors (IL-6, IL-1β, TNF-α) and ox-LDL in serum sample of ApoE-/- mice fed a high fat diet. Therefore, our work provides a potential therapeutic strategy of using Sal-B to attenuate the development of atherosclerosis, the anti-atherosclerosis effects of Sal-B is related to regulate YAP/TAZ/JNK signaling pathway.
Collapse
|
20
|
Medicinal Plant Polyphenols Attenuate Oxidative Stress and Improve Inflammatory and Vasoactive Markers in Cerebral Endothelial Cells during Hyperglycemic Condition. Antioxidants (Basel) 2020; 9:antiox9070573. [PMID: 32630636 PMCID: PMC7402133 DOI: 10.3390/antiox9070573] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Blood-brain barrier endothelial cells are the main targets of diabetes-related hyperglycemia that alters endothelial functions and brain homeostasis. Hyperglycemia-mediated oxidative stress may play a causal role. This study evaluated the protective effects of characterized polyphenol-rich medicinal plant extracts on redox, inflammatory and vasoactive markers on murine bEnd3 cerebral endothelial cells exposed to high glucose concentration. The results show that hyperglycemic condition promoted oxidative stress through increased reactive oxygen species (ROS) levels, deregulated antioxidant superoxide dismutase (SOD) activity, and altered expression of genes encoding Cu/ZnSOD, MnSOD, catalase, glutathione peroxidase (GPx), heme oxygenase-1 (HO-1), NADPH oxidase 4 (Nox4), and nuclear factor erythroid 2-related factor 2 (Nrf2) redox factors. Cell preconditioning with inhibitors of signaling pathways highlights a causal role of nuclear factor kappa B (NFκB), while a protective action of AMP-activated protein kinase (AMPK) on redox changes. The hyperglycemic condition induced a pro-inflammatory response by elevating NFκB gene expression and interleukin-6 (IL-6) secretion, and deregulated the production of endothelin-1 (ET-1), endothelial nitric oxide synthase (eNOS), and nitric oxide (NO) vasoactive markers. Importantly, polyphenolic extracts from Antirhea borbonica, Ayapana triplinervis, Dodonaea viscosa, and Terminalia bentzoe French medicinal plants, counteracted high glucose deleterious effects by exhibiting antioxidant and anti-inflammatory properties. In an innovative way, quercetin, caffeic, chlorogenic and gallic acids identified as predominant plant polyphenols, and six related circulating metabolites were found to exert similar benefits. Collectively, these findings demonstrate polyphenol protective action on cerebral endothelial cells during hyperglycemic condition.
Collapse
|
21
|
Total Salvianolic Acid Injection Prevents Ischemia/Reperfusion-Induced Myocardial Injury Via Antioxidant Mechanism Involving Mitochondrial Respiratory Chain Through the Upregulation of Sirtuin1 and Sirtuin3. Shock 2020; 51:745-756. [PMID: 29863652 PMCID: PMC6511432 DOI: 10.1097/shk.0000000000001185] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Supplemental Digital Content is available in the text Sirtuin1 (Sirt1) and Sirtuin3 (Sirt3) are known to participate in regulating mitochondrial function. However, whether Total Salvianolic Acid Injection (TSI) protects against myocardial ischemia/reperfusion (I/R) injury through regulating Sirt1, Sirt3, and mitochondrial respiratory chain complexes is unclear. The aim of this study was to explore the effects of TSI on I/R-induced myocardial injury and the underlying mechanism. Male Sprague–Dawley rats were subjected to 30 min occlusion of the left anterior descending coronary artery followed by 90 min reperfusion with or without TSI treatment (8 mg/kg/h). The results demonstrated that TSI attenuated I/R-induced myocardial injury by the reduced infarct size, recovery of myocardial blood flow, and decreased cardiac apoptosis. Moreover, TSI protected heart from oxidative insults, such as elevation of myeloperoxidase, malondialdehyde, hydrogen peroxide, ROS, as well as attenuated I/R-elicited downregulation of Sirt1, Sirt3, NADH dehydrogenase [ubiquinone] 1 alpha subcomplex 10 (NDUFA10), succinate dehydrogenase complex, subunit A, flavoprotein variant (SDHA), and restoring mitochondrial respiratory chain complexes activity. The in vitro study in H9c2 cells using siRNA transfection further confirmed the critical role of Sirt1 and Sirt3 in the effect of TSI on the expression of NDUFA10 and SDHA. These results demonstrated that TSI attenuated I/R-induced myocardial injury via inhibition of oxidative stress, which was related to the activation of NDUFA10 and SDHA through the upregulation of Sirt1 and Sirt3.
Collapse
|
22
|
Arcambal A, Taïlé J, Couret D, Planesse C, Veeren B, Diotel N, Gauvin-Bialecki A, Meilhac O, Gonthier MP. Protective Effects of Antioxidant Polyphenols against Hyperglycemia-Mediated Alterations in Cerebral Endothelial Cells and a Mouse Stroke Model. Mol Nutr Food Res 2020; 64:e1900779. [PMID: 32447828 DOI: 10.1002/mnfr.201900779] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/08/2020] [Indexed: 12/15/2022]
Abstract
SCOPE Hyperglycemia alters cerebral endothelial cell and blood-brain barrier functions, aggravating cerebrovascular complications such as stroke during diabetes. Redox and inflammatory changes play a causal role. This study evaluates polyphenol protective effects in cerebral endothelial cells and a mouse stroke model during hyperglycemia. METHODS AND RESULTS Murine bEnd.3 cerebral endothelial cells and a mouse stroke model are exposed to a characterized, polyphenol-rich extract of Antirhea borbonica or its predominant constituent caffeic acid, during hyperglycemia. Polyphenol effects on redox, inflammatory and vasoactive markers, infarct volume, and hemorrhagic transformation are determined. In vitro, polyphenols improve reactive oxygen species levels, Cu/Zn superoxide dismutase activity, and both NAPDH oxidase 4 and nuclear factor erythroid 2-related factor 2 (Nrf2) gene expression deregulated by high glucose. Polyphenols reduce Nrf2 nuclear translocation and counteract nuclear factor-ĸappa B activation, interleukin-6 secretion, and the altered production of vasoactive markers mediated by high glucose. In vivo, polyphenols reduce cerebral infarct volume and hemorrhagic transformation aggravated by hyperglycemia. Polyphenols attenuate redox changes, increase vascular endothelial-Cadherin production, and decrease neuro-inflammation in the infarcted hemisphere. CONCLUSION Polyphenols protect against hyperglycemia-mediated alterations in cerebral endothelial cells and a mouse stroke model. It is relevant to assess polyphenol benefits to improve cerebrovascular damages during diabetes.
Collapse
Affiliation(s)
- Angélique Arcambal
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - Janice Taïlé
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - David Couret
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France.,CHU de La Réunion, Saint-Pierre, La Réunion, 97410, France
| | - Cynthia Planesse
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - Bryan Veeren
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - Anne Gauvin-Bialecki
- Université de La Réunion, EA 2212 Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments (LCSNSA), Saint-Denis, La Réunion, 97490, France
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France.,CHU de La Réunion, Saint-Pierre, La Réunion, 97410, France
| | - Marie-Paule Gonthier
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| |
Collapse
|
23
|
Wu Q, Yuan X, Li B, Han R, Zhang H, Xiu R. Salvianolic Acid Alleviated Blood-Brain Barrier Permeability in Spontaneously Hypertensive Rats by Inhibiting Apoptosis in Pericytes via P53 and the Ras/Raf/MEK/ERK Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1523-1534. [PMID: 32368011 PMCID: PMC7170553 DOI: 10.2147/dddt.s245959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/15/2020] [Indexed: 01/02/2023]
Abstract
Objective To investigate the effect of salvianolic acid A (SA) on the permeability of blood–brain barrier (BBB) and brain microvascular pericyte apoptosis in spontaneously hypertensive rats (SHR). Methods Evans Blue was used to determine the BBB permeability in control rats and SHR. Western blotting was used to evaluate the expression levels of relevant proteins in the pericytes isolated from the differentially treated animals. An in vitro model of hypertension was established by stimulating pericytes with angiopoietin-2 (Ang2). MTT assay was used to assess cell viability, and apoptosis and cell cycle distribution were analyzed by flow cytometry. Results SA attenuated BBB permeability in SHR in a dose-dependent manner. It downregulated pro-apoptotic proteins including p53, p21, Fas, FasL, cleaved-caspase 3/caspase 3 and Bax in the pericytes of SHR and upregulated CDK6, cyclin D1, CDK2, cyclin E and Bcl2. In addition, SA activated the Ras/Raf/MEK/ERK pathway in a dose-dependent manner by increasing the levels of Ras, Raf, p-MEK1, p-MEK2, p-ERK1 and p-ERK2. Finally, SA reduced Ang2-induced apoptosis of cerebral microvessels pericytes and decreased the proportion of cells in the G0/G1 phase of the cell cycle by inhibiting the p53 pathway and activating the Ras/Raf/MEK/ERK pathway. Conclusion SA reduced BBB permeability in spontaneously hypertensive rats, possibly by inhibiting Ang2-induced apoptosis of pericytes by activating the Ras/Raf/MEK/ERK pathway.
Collapse
Affiliation(s)
- Qingbin Wu
- Institute of Microcirculation, Chinese Academy Medical Sciences & Pecking Union Medical College
| | - Xiaochen Yuan
- Institute of Microcirculation, Chinese Academy Medical Sciences & Pecking Union Medical College
| | - Bingwei Li
- Institute of Microcirculation, Chinese Academy Medical Sciences & Pecking Union Medical College
| | - Ruiqin Han
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, People's Republic of China
| | - Honggang Zhang
- Institute of Microcirculation, Chinese Academy Medical Sciences & Pecking Union Medical College
| | - Ruijuan Xiu
- Institute of Microcirculation, Chinese Academy Medical Sciences & Pecking Union Medical College
| |
Collapse
|
24
|
Zhao W, Zhang X, Chen Y, Shao Y, Feng Y. Downregulation of TRIM8 protects neurons from oxygen–glucose deprivation/re-oxygenation-induced injury through reinforcement of the AMPK/Nrf2/ARE antioxidant signaling pathway. Brain Res 2020; 1728:146590. [DOI: 10.1016/j.brainres.2019.146590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/19/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022]
|
25
|
Du G, Song J, Du L, Zhang L, Qiang G, Wang S, Yang X, Fang L. Chemical and pharmacological research on the polyphenol acids isolated from Danshen: A review of salvianolic acids. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 87:1-41. [PMID: 32089230 DOI: 10.1016/bs.apha.2019.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Danshen, the dried root of Salvia miltiorrhiza Bge, is a common medicinal herb in Traditional Chinese Medicine, which has been used for the treatment of a number of diseases for thousands of years. More than 2000 years ago, the Chinese early pharmacy monograph "Shennong Materia Medica" recorded that Danshen could be used for the treatment of gastrointestinal diseases, cardiovascular diseases, certain gynecological diseases, etc. Since then, Danshen has been widely used clinically in many different prescriptions for many different diseases, especially for the treatment of cardiovascular diseases. Nowadays, many pharmacological studies about the water-soluble components from Danshen have been reported, especially salvianolic acids. It turned out that salvianolic acids showed strong anti-lipid peroxidation and anti-thrombic activities, and among them, SalAA and SalAB were the most potent. This review focused on the achievements in research of salvianolic acids regarding their bioactivities and pharmacological effects. These studies not only shed light on the water-soluble active components of Danshen and their mechanisms at the molecular level, but also provided theoretical information for the development of new medicines from Danshen for the treatment of cardiovascular and cerebrovascular diseases, inflammatory diseases, metabolic diseases, etc.
Collapse
Affiliation(s)
- Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Junke Song
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lida Du
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Li Zhang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guifen Qiang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shoubao Wang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiuying Yang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lianhua Fang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Lyu J, Xie Y, Wang Z, Wang L. Salvianolic Acids for Injection Combined with Conventional Treatment for Patients with Acute Cerebral Infarction: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Med Sci Monit 2019; 25:7914-7927. [PMID: 31639122 PMCID: PMC6820361 DOI: 10.12659/msm.917421] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background This meta-analysis was conducted to evaluate the clinical effectiveness and safety of Salvianolic acids for injection (SAFI) plus conventional treatment (CT) for patients with acute cerebral infarction (ACI) and to assess the evidence to guide clinical practice. Material/Methods PubMed, EMBASE, Cochrane Library, Web of Science, and 4 Chinese electronic databases were searched to identify relevant randomized controlled trials (RCTs). The methodological quality of eligible studies was evaluated using the Cochrane risk of bias tool. The reporting quality of eligible studies was evaluated by Consolidated Standards of Reporting Trials (CONSORT) for traditional Chinese medicine. Meta-analysis and evidence quality were performed using RevMan 5.3 and Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Results A total of 14 RCTs involving 1309 patients were included. Meta-analysis showed that SAFI plus CT was better than CT alone in improving the total effective rate (RR=1.35, 95% CI 1.25 to 1.44, P<0.00001), reducing the National Institutes of Health Stroke Scale (NIHSS) score (130 mg: WMD=−3.31, 95% CI −3.80 to −2.47, P<0.00001; 100 mg: WMD=−1.91, 95% CI −2.28 to −1.54, P<0.00001), improving the activity of daily living and cognitive function of ACI, and improving the hemorheology (HBV: high shear rate blood viscosity, LBV: low shear rate blood viscosity, PV: plasma viscosity) and C-reactive protein (CRP). Conclusions SAFI plus CT in the treatment of ACI can improve the total effective rate, neurological deficit, and ability to perform activities of daily living, and there is no serious adverse reaction. Based on the GRADE system, the evidence quality is low. More large-scale, well-designed, and high-quality RCTs are required to confirm the positive results.
Collapse
Affiliation(s)
- Jian Lyu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China (mainland)
| | - Yanming Xie
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China (mainland)
| | - Zhifei Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China (mainland)
| | - Lianxin Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China (mainland)
| |
Collapse
|
27
|
Chen QF, Liu YY, Pan CS, Fan JY, Yan L, Hu BH, Chang X, Li Q, Han JY. Angioedema and Hemorrhage After 4.5-Hour tPA (Tissue-Type Plasminogen Activator) Thrombolysis Ameliorated by T541 via Restoring Brain Microvascular Integrity. Stroke 2019; 49:2211-2219. [PMID: 30354988 DOI: 10.1161/strokeaha.118.021754] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background and Purpose- tPA (tissue-type plasminogen activator) is the only recommended intravenous thrombolytic agent for ischemic stroke. However, its application is limited because of increased risk of hemorrhagic transformation beyond the time window. T541 is a Chinese compound medicine with potential to attenuate ischemia and reperfusion injury. This study was to explore whether T541-benefited subjects underwent tPA thrombolysis extending the time window. Methods- Male C57BL/6 N mice were subjected to carotid artery thrombosis by stimulation with 10% FeCl3 followed by 10 mg/kg tPA with/without 20 mg/kg T541 intervention at 4.5 hours. Thrombolysis and cerebral blood flow were observed dynamically until 24 hours after drug treatment. Neurological deficit scores, brain edema and hemorrhage, cerebral microvascular junctions and basement membrane proteins, and energy metabolism in cortex were assessed then. An in vitro hypoxia/reoxygenation model using human cerebral microvascular endothelial cells was used to evaluate effect of T541 on tight junctions and F-actin in the presence of tPA. Results- tPA administered at 4.5 hours after carotid thrombosis resulted in a decrease in thrombus area and survival rate, whereas no benefit on cerebral blood flow. Study at 24 hours after tPA administration revealed a significant angioedema and hemorrhage in the ischemia hemisphere, a decreased expression of junction proteins claudin-5, zonula occludens-1, occludin, junctional adhesion molecule-1 and vascular endothelial cadherin, and collagen IV and laminin. Meanwhile, ADP/ATP, AMP/ATP, and ATP5D (ATP synthase subunit) expression and activities of mitochondria complex I, II, and IV declined, whereas malondialdehyde and 8-Oxo-2'-deoxyguanosine increased and F-actin arrangement disordered. All the insults after tPA treatment were attenuated by addition of T541 dose dependently. Conclusions- The results suggest T541 as a potential remedy to attenuate delayed tPA-related angioedema and hemorrhage and extend time window for tPA treatment. The potential of T541 to upregulate energy metabolism and protect blood-brain barrier is likely attributable to its effects observed.
Collapse
Affiliation(s)
- Qing-Fang Chen
- From the Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China (Q.-F.C., J.-Y.H.).,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| | - Bai-He Hu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| | - Xin Chang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| | - Jing-Yan Han
- From the Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China (Q.-F.C., J.-Y.H.).,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| |
Collapse
|
28
|
Zhang KJ, Zheng Q, Zhu PC, Tong Q, Zhuang Z, Zhu JZ, Bao XY, Huang YY, Zheng GQ, Wang Y. Traditional Chinese Medicine for Coronary Heart Disease: Clinical Evidence and Possible Mechanisms. Front Pharmacol 2019; 10:844. [PMID: 31427964 PMCID: PMC6688122 DOI: 10.3389/fphar.2019.00844] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 07/01/2019] [Indexed: 12/23/2022] Open
Abstract
Coronary heart disease (CHD) remains a major cause of mortality with a huge economic burden on healthcare worldwide. Here, we conducted a systematic review to investigate the efficacy and safety of Chinese herbal medicine (CHM) for CHD based on high-quality randomized controlled trials (RCTs) and summarized its possible mechanisms according to animal-based researches. 27 eligible studies were identified in eight database searches from inception to June 2018. The methodological quality was assessed using seven-item checklist recommended by Cochrane Collaboration. All the data were analyzed using Rev-Man 5.3 software. As a result, the score of study quality ranged from 4 to 7 points. Meta-analyses showed CHM can significantly reduce the incidence of myocardial infarction and percutaneous coronary intervention, and cardiovascular mortality (P < 0.05), and increase systolic function of heart, the ST-segment depression, and clinical efficacy (P < 0.05). Adverse events were reported in 11 studies, and CHMs were well tolerated in patients with CHD. In addition, CHM exerted cardioprotection for CHD, possibly altering multiple signal pathways through anti-inflammatory, anti-oxidation, anti-apoptosis, improving the circulation, and regulating energy metabolism. In conclusion, the evidence available from present study revealed that CHMs are beneficial for CHD and are generally safe.
Collapse
Affiliation(s)
- Ke-Jian Zhang
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qun Zheng
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng-Chong Zhu
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiang Tong
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuang Zhuang
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia-Zhen Zhu
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Yi Bao
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yue-Yue Huang
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Wang
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
29
|
Shen J, Rastogi R, Geng X, Ding Y. Nicotinamide adenine dinucleotide phosphate oxidase activation and neuronal death after ischemic stroke. Neural Regen Res 2019; 14:948-953. [PMID: 30761998 PMCID: PMC6404502 DOI: 10.4103/1673-5374.250568] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is a multisubunit enzyme complex that utilizes nicotinamide adenine dinucleotide phosphate to produce superoxide anions and other reactive oxygen species. Under normal circumstances, reactive oxygen species mediate a number of important cellular functions, including the facilitation of adaptive immunity. In pathogenic circumstances, however, excess reactive oxygen species generated by NOX promotes apoptotic cell death. In ischemic stroke, in particular, it has been shown that both NOX activation and derangements in glucose metabolism result in increased apoptosis. Moreover, recent studies have established that glucose, as a NOX substrate, plays a vital role in the pathogenesis of reperfusion injury. Thus, NOX inhibition has the potential to mitigate the deleterious impact of hyperglycemia on stroke. In this paper, we provide an overview of this research, coupled with a discussion of its implications for the development of NOX inhibition as a strategy for the treatment of ischemic stroke. Both inhibition using apocynin, as well as the prospect of developing more specific inhibitors based on what is now understood of the biology of NOX assembly and activation, will be highlighted in the course of our discussion.
Collapse
Affiliation(s)
- Jiamei Shen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Radhika Rastogi
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA; Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
30
|
Liao W, Ma X, Li J, Li X, Guo Z, Zhou S, Sun H. A review of the mechanism of action of Dantonic® for the treatment of chronic stable angina. Biomed Pharmacother 2019; 109:690-700. [DOI: 10.1016/j.biopha.2018.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/30/2018] [Accepted: 10/03/2018] [Indexed: 01/04/2023] Open
|
31
|
Jiang S, Li T, Ji T, Yi W, Yang Z, Wang S, Yang Y, Gu C. AMPK: Potential Therapeutic Target for Ischemic Stroke. Theranostics 2018; 8:4535-4551. [PMID: 30214637 PMCID: PMC6134933 DOI: 10.7150/thno.25674] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023] Open
Abstract
5'-AMP-activated protein kinase (AMPK), a member of the serine/threonine (Ser/Thr) kinase group, is universally distributed in various cells and organs. It is a significant endogenous defensive molecule that responds to harmful stimuli, such as cerebral ischemia, cerebral hemorrhage, and, neurodegenerative diseases (NDD). Cerebral ischemia, which results from insufficient blood flow or the blockage of blood vessels, is a major cause of ischemic stroke. Ischemic stroke has received increased attention due to its '3H' effects, namely high mortality, high morbidity, and high disability. Numerous studies have revealed that activation of AMPK plays a protective role in the brain, whereas its action in ischemic stroke remains elusive and poorly understood. Based on existing evidence, we introduce the basic structure, upstream regulators, and biological roles of AMPK. Second, we analyze the relationship between AMPK and the neurovascular unit (NVU). Third, the actions of AMPK in different phases of ischemia and current therapeutic methods are discussed. Finally, we evaluate existing controversy and provide a detailed analysis, followed by ethical issues, potential directions, and further prospects of AMPK. The information complied here may aid in clinical and basic research of AMPK, which may be a potent drug candidate for ischemic stroke treatment in the future.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Ting Ji
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Simeng Wang
- Center for Human Nutrition, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Chunhu Gu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| |
Collapse
|
32
|
Peng JW, Liu Y, Meng G, Zhang JY, Yu LF. Effects of salvianolic acid on cerebral perfusion in patients after acute stroke: A single-center randomized controlled trial. Exp Ther Med 2018; 16:2600-2614. [PMID: 30186492 DOI: 10.3892/etm.2018.6444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/02/2018] [Indexed: 01/01/2023] Open
Abstract
Hypoperfusion following acute stroke is common in the infarct core and periphery tissues. The present study evaluated the efficacy of salvianolic acid (SA) on the cerebral perfusion of patients who had suffered from acute stroke using perfusion-weighted magnetic resonance imaging (PWI) to examine the blood perfusion of the affected brain tissue prior to and following treatment. Patients who were admitted to PLA 153 Central Hospital within 72 h of acute stroke symptom onset and had a Glasgow coma scale ≥5 were randomized into two groups: SA and control groups. Patients in the SA group were administered SA 0.13 g/day for 14 days. PWI was performed for all patients at admission and post-treatment. The National Institutes of Health Stroke Scale (NIHSS) and modified Rankin Scale (mRS) were applied to assess neurological function at admission and 3 months post treatment. A total of 159 patients were enrolled (85 patients in the SA group and 74 patients in the control group). A total of 62 patients in the SA group and 51 patients in the control group exhibited hypoperfusion in the ipsihemisphere of the diffusion-weighted magnetic resonance imaging (DWI) lesion. In addition, relative cerebral blood volume (rCBV), a ratio of the signal value of the region of interest in the same hemisphere of the DWI lesion to that of its mirror in the PWI CBV map, decreased significantly following treatment with SA compared with the control group in patients with hypoperfusion (P=0.02), which were indicated by PWI images at admission, in the DWI lesions or the surrounding areas. Additionally, there was no significant difference in patients with normal perfusion at admission in rCBV in DWI lesions or its surrounding area between the two groups at day 15. However, a significant improvement in NIHSS (P=0.001) and mRS (P=0.005) was indicated in the SA group compared with the control at day 90. The present study indicated that SA may improve the neurological dysfunction of patients with acute stroke, which may be explained by the increased perfusion of hypoperfused brain tissues.
Collapse
Affiliation(s)
- Jian-Wei Peng
- Department of Neurology, People's Liberation Army 153 Central Hospital, Zhengzhou, Henan 450041, P.R. China
| | - Yuan Liu
- Postgraduate Department, Xinxiang Medical College, Xinxiang, Henan 453003, P.R. China
| | - Gai Meng
- Department of Neurology, People's Liberation Army 153 Central Hospital, Zhengzhou, Henan 450041, P.R. China
| | - Jin-Yan Zhang
- Department of Neurology, People's Liberation Army 153 Central Hospital, Zhengzhou, Henan 450041, P.R. China
| | - Lian-Fang Yu
- Department of Radiology, People's Liberation Army 153 Central Hospital, Zhengzhou, Henan 450041, P.R. China
| |
Collapse
|
33
|
Li Q, Wang L, Li XY, Chen X, Lu B, Cheng L, Yan CG, Xu Y. Total Salvianolic Acid Balances Brain Functional Network Topology in Rat Hippocampi Overexpressing miR-30e. Front Neurosci 2018; 12:448. [PMID: 30026682 PMCID: PMC6041398 DOI: 10.3389/fnins.2018.00448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 01/20/2023] Open
Abstract
We investigated the therapeutic effects and underlying brain functional network topology mechanisms of total salvianolic acid (TSA) treatment for memory dysfunction by using miR-30e overexpression-induced memory deficit in rat hippocampi. Model rats were developed by lentivirus vectors carrying miR-30e into bilateral hippocampus CA1 region through stereo-surgery. Two weeks after surgery, TSA (20 or 10 mg/mL/kg) or saline were administrated for 14 consecutive days. Memory function was assessed by behavioral tests (Y maze and Morris water maze [MWM]); resting-state functional MRI (RS-fMRI); and molecular alterations of BCL-2, UBC9, and Caspase-3 in the hippocampus CA1 region, as detected by immunohistochemistry. Compared to controls, model rats exhibited significantly impaired working and long-term memory in the Y maze and MWM tests (p < 0.01). The brain functional network topology analyzed based on RS-fMRI data demonstrated that miR-30e disturbed the global integration and segregation balance of the brain (p < 0.01), and reduced edge strength between CA1 and the posterior cingulate, temporal lobe, and thalamus (p < 0.05, false discovery rate corrected). At the molecular level, BCL-2 and UBC9 were downregulated, while Caspase-3 was upregulated (p < 0.01). After TSA (20 mg/mL/kg) treatment, the biomarkers for behavioral performance, global integration and segregation, edge strength, and expression levels of BCL-2, UBC9, and Caspase3 returned to normal levels. The correlation analyses of these results showed that global brain functional network topologic parameters can be intermediate biomarkers correlated with both behavioral changes and molecular alterations. This indicated that the effects of TSA were achieved by inhibiting apoptosis of CA1 neurons to improve global functional network topology.
Collapse
Affiliation(s)
- Qi Li
- Drug Clinical Trial Institution, Taiyuan Center Hospital of Shanxi Medical University, Taiyuan, China
| | - Liang Wang
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,Shanxi Province Mental Health Center/Taiyuan Psychiatric Hospital, Taiyuan, China
| | - Xin-Yi Li
- Department of Neurology, Shanxi DaYi Hospital, Taiyuan, China
| | - Xiao Chen
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Bin Lu
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Long Cheng
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Chao-Gan Yan
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, China.,National Key Disciplines, Key Laboratory for Cellular Physiology of Ministry of Education, Department of Neurobiology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
34
|
Habtemariam S. Molecular Pharmacology of Rosmarinic and Salvianolic Acids: Potential Seeds for Alzheimer's and Vascular Dementia Drugs. Int J Mol Sci 2018; 19:E458. [PMID: 29401682 PMCID: PMC5855680 DOI: 10.3390/ijms19020458] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/20/2022] Open
Abstract
Both caffeic acid and 3,4-dihydroxyphenyllactic acid (danshensu) are synthesized through two distinct routs of the shikimic acid biosynthesis pathway. In many plants, especially the rosemary and sage family of Lamiaceae, these two compounds are joined through an ester linkage to form rosmarinic acid (RA). A further structural diversity of RA derivatives in some plants such as Salvia miltiorrhiza Bunge is a form of RA dimer, salvianolic acid-B (SA-B), that further give rise to diverse salvianolic acid derivatives. This review provides a comprehensive perspective on the chemistry and pharmacology of these compounds related to their potential therapeutic applications to dementia. The two common causes of dementia, Alzheimer's disease (AD) and stroke, are employed to scrutinize the effects of these compounds in vitro and in animal models of dementia. Key pharmacological mechanisms beyond the common antioxidant and anti-inflammatory effects of polyphenols are highlighted with emphasis given to amyloid beta (Aβ) pathologies among others and neuronal regeneration from stem cells.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
35
|
Effect of TTC Treatment on Immunohistochemical Quantification of Collagen IV in Rat Brains after Stroke. Transl Stroke Res 2018; 9:499-505. [PMID: 29313240 DOI: 10.1007/s12975-017-0604-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/30/2017] [Accepted: 12/27/2017] [Indexed: 12/21/2022]
Abstract
Although used extensively in stroke research, there is limited knowledge of how 2, 3, 5-triphenyltetrazolium chloride (TTC)-treated rat brain sections are altered and if they can be used for immunohistochemical quantification after staining with TTC. In the present study, we hypothesized that TTC treatment (TTC+) would not interfere with collagen IV immunohistochemical staining compared with non-TTC-treated (TTC-) brain slices. We further hypothesized that there would be no difference in autofluorescence or nonspecific secondary antibody fluorescence between TTC+ and TTC- brain slices. Coronal brain sections of male Wistar rats (n = 5/group) were either treated with TTC or not after middle cerebral artery occlusion or sham surgery, and processed for immunohistochemical staining with mouse anti-collagen IV as the primary antibody, and goat anti-IgM as the secondary antibody. Four images were taken in the cerebral cortex of the contralateral side of infarction in each brain slice using an Olympus BX50 fluorescence microscope, and average intensity of the entire image was quantified using the Metamorph software. Compared with TTC- brain slices, TTC+ brain slices showed a significantly lower autofluorescence (P < 0.05), but was unchanged for nonspecific secondary antibody fluorescence. In addition, TTC+ brain slices had similar collagen IV staining intensity compared with TTC- brain slices. These results demonstrate that TTC+ brain slices are usable for immunohistochemical quantification.
Collapse
|
36
|
Li S, Xie X, Li D, Yu Z, Tong L, Zhao Y. Simultaneous determination and tissue distribution studies of four phenolic acids in rat tissue by UFLC-MS/MS after intravenous administration of salvianolic acid for injection. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/29/2017] [Accepted: 10/25/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Shuang Li
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang People's Republic of China
| | - Xiuman Xie
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang People's Republic of China
| | - Dongxiang Li
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Pharmaceutical Analysis Institute; Tasly Academy; Tianjin People's Republic of China
| | - Zhiguo Yu
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang People's Republic of China
| | - Ling Tong
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Pharmaceutical Analysis Institute; Tasly Academy; Tianjin People's Republic of China
| | - Yunli Zhao
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang People's Republic of China
| |
Collapse
|
37
|
Chen Y, Yuan T, Zhang H, Yan Y, Wang D, Fang L, Lu Y, Du G. Activation of Nrf2 Attenuates Pulmonary Vascular Remodeling via Inhibiting Endothelial-to-Mesenchymal Transition: an Insight from a Plant Polyphenol. Int J Biol Sci 2017; 13:1067-1081. [PMID: 28924387 PMCID: PMC5599911 DOI: 10.7150/ijbs.20316] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022] Open
Abstract
The endothelial-to-mesenchymal transition (EndMT) has been demonstrated to be involved in pulmonary vascular remodeling. It is partly attributed to oxidative and inflammatory stresses in endothelial cells. In current study, we conducted a series of experiments to clarify the effect of salvianolic acid A (SAA), a kind of polyphenol compound, in the process of EndMT in human pulmonary arterial endothelial cells and in vivo therapeutic efficacy on vascular remodeling in monocrotaline (MCT)-induced EndMT. EndMT was induced by TGFβ1 in human pulmonary arterial endothelial cells (HPAECs). SAA significantly attenuated EndMT, simultaneously inhibited cell migration and reactive oxygen species (ROS) formation. In MCT-induced pulmonary arterial hypertension (PAH) model, SAA improved vascular function, decreased TGFβ1 level and inhibited inflammation. Mechanistically, SAA stimulated Nrf2 translocation and subsequent heme oxygenase-1 (HO-1) up-regulation. The effect of SAA on EndMT in vitro was abolished by ZnPP, a HO-1 inhibitor. In conclusion, this study indicates a deleterious impact of oxidative stress on EndMT. Polyphenol antioxidant treatment may provide an adjunctive action to alleviate pulmonary vascular remodeling via inhibiting EndMT.
Collapse
Affiliation(s)
- Yucai Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening
| | - Huifang Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
| | - Yu Yan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
| | - Danshu Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
| | - Lianhua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
| | - Yang Lu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening
| |
Collapse
|
38
|
Wang X, Xue GX, Liu WC, Shu H, Wang M, Sun Y, Liu X, Sun YE, Liu CF, Liu J, Liu W, Jin X. Melatonin alleviates lipopolysaccharide-compromised integrity of blood-brain barrier through activating AMP-activated protein kinase in old mice. Aging Cell 2017; 16:414-421. [PMID: 28156052 PMCID: PMC5334533 DOI: 10.1111/acel.12572] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2016] [Indexed: 11/26/2022] Open
Abstract
Blood–brain barrier (BBB) dysfunction is considered to be an early event in the pathogenesis of a variety of neurological diseases in old patients, and this could occur in old people even when facing common stress. However, the mechanism remains to be defined. In this study, we tested the hypothesis that decreased melatonin levels may account for the BBB disruption in old mice challenged with lipopolysaccharide (LPS), which mimicked the common stress of sepsis. Mice (24–28 months of age) received melatonin (10 mg kg−1 day−1, intraperitoneally, i.p.) or saline for one week before exposing to LPS (1 mg kg−1, i.p.). Evan's blue dye (EB) and immunoglobulin G (IgG) leakage were used to assess BBB permeability. Immunostaining and Western blot were used to detect protein expression and distribution. Our results showed that LPS significantly increased BBB permeability in old mice accompanied by the degradation of tight junction proteins occludin and claudin‐5, suppressed AMP‐activated protein kinase (AMPK) activation, and elevated gp91phox protein expression. Interestingly, administration of melatonin for one week significantly decreased LPS‐induced BBB disruption, AMPK suppression, and gp91phox upregualtion. Moreover, activation of AMPK with metformin significantly inhibited LPS‐induced gp91phox upregualtion in endothelial cells. Taken together, our findings demonstrate that melatonin alleviates LPS‐induced BBB disruption through activating AMPK and inhibiting gp91phox upregulation in old mice.
Collapse
Affiliation(s)
- Xiaona Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; The Second Affiliated Hospital of Soochow University; Suzhou 215004 China
| | - Gai-Xiu Xue
- Suzhou Municipal Hospital; Suzhou 215002 China
| | - Wen-Cao Liu
- Department of Emergency; Shanxi Provincial People's Hospital; Taiyuan 030001 China
| | - Hui Shu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; The Second Affiliated Hospital of Soochow University; Suzhou 215004 China
| | - Mengwei Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; The Second Affiliated Hospital of Soochow University; Suzhou 215004 China
| | - Yanyun Sun
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; The Second Affiliated Hospital of Soochow University; Suzhou 215004 China
| | - Xiaojing Liu
- Translational Center for Stem Cell Research; Tongji Hospital; Stem Cell Research Center; Tongji University School of Medicine; Shanghai 200065 China
| | - Yi Eve Sun
- Translational Center for Stem Cell Research; Tongji Hospital; Stem Cell Research Center; Tongji University School of Medicine; Shanghai 200065 China
- Department of Psychiatry and Biobehavioral Sciences; David Geffen School of Medicine; University of California, Los Angeles; Los Angeles CA 90095 USA
| | - Chun-Feng Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; The Second Affiliated Hospital of Soochow University; Suzhou 215004 China
- Department of Neurology; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases; The Second Affiliated Hospital of Soochow University; Soochow University; Suzhou 215004 China
| | - Jie Liu
- Translational Center for Stem Cell Research; Tongji Hospital; Stem Cell Research Center; Tongji University School of Medicine; Shanghai 200065 China
| | - Wenlan Liu
- The Central Laboratory; Shenzhen Second People's Hospital; the First Affiliated Hospital of Shenzhen University; Shenzhen 518035 China
| | - Xinchun Jin
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; The Second Affiliated Hospital of Soochow University; Suzhou 215004 China
| |
Collapse
|
39
|
Han JY, Li Q, Ma ZZ, Fan JY. Effects and mechanisms of compound Chinese medicine and major ingredients on microcirculatory dysfunction and organ injury induced by ischemia/reperfusion. Pharmacol Ther 2017; 177:146-173. [PMID: 28322971 DOI: 10.1016/j.pharmthera.2017.03.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microcirculation dysfunction and organ injury after ischemia and reperfusion (I/R) result from a complex pathologic process consisting of multiple links, with metabolism impairment in the ischemia phase and oxidative stress in the reperfusion phase as initiators, and any treatment targeting a single link is insufficient to cope with this. Compound Chinese medicine (CCM) has been applied in clinics in China and some Asian nations for >2000years. Studies over the past decades revealed the protective and therapeutic effect of CCMs and major ingredients on I/R-induced microcirculatory dysfunction and tissue injury in the heart, brain, liver, intestine, and so on. CCM contains diverse bioactive components with potential for energy metabolism regulation; antioxidant effect; inhibiting inflammatory cytokines release; adhesion molecule expression in leukocyte, platelet, and vascular endothelial cells; and the protection of thrombosis, albumin leakage, and mast cell degranulation. This review covers the major works with respect to the effects and underlying mechanisms of CCM and its ingredients on microcirculatory dysfunction and organ injury after I/R, providing novel ideas for dealing with this threat.
Collapse
Affiliation(s)
- Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China.
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Zhi-Zhong Ma
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| |
Collapse
|
40
|
Rastogi R, Geng X, Li F, Ding Y. NOX Activation by Subunit Interaction and Underlying Mechanisms in Disease. Front Cell Neurosci 2017; 10:301. [PMID: 28119569 PMCID: PMC5222855 DOI: 10.3389/fncel.2016.00301] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase (NOX) is an enzyme complex with the sole function of producing superoxide anion and reactive oxygen species (ROS) at the expense of NADPH. Vital to the immune system as well as cellular signaling, NOX is also involved in the pathologies of a wide variety of disease states. Particularly, it is an integral player in many neurological diseases, including stroke, TBI, and neurodegenerative diseases. Pathologically, NOX produces an excessive amount of ROS that exceed the body’s antioxidant ability to neutralize them, leading to oxidative stress and aberrant signaling. This prevalence makes it an attractive therapeutic target and as such, NOX inhibitors have been studied and developed to counter NOX’s deleterious effects. However, recent studies of NOX have created a better understanding of the NOX complex. Comprised of independent cytosolic subunits, p47-phox, p67-phox, p40-phox and Rac, and membrane subunits, gp91-phox and p22-phox, the NOX complex requires a unique activation process through subunit interaction. Of these subunits, p47-phox plays the most important role in activation, binding and translocating the cytosolic subunits to the membrane and anchoring to p22-phox to organize the complex for NOX activation and function. Moreover, these interactions, particularly that between p47-phox and p22-phox, are dependent on phosphorylation initiated by upstream processes involving protein kinase C (PKC). This review will look at these interactions between subunits and with PKC. It will focus on the interaction involving p47-phox with p22-phox, key in bringing the cytosolic subunits to the membrane. Furthermore, the implication of these interactions as a target for NOX inhibitors such as apocynin will be discussed as a potential avenue for further investigation, in order to develop more specific NOX inhibitors based on the inhibition of NOX assembly and activation.
Collapse
Affiliation(s)
- Radhika Rastogi
- Department of Neurosurgery, Wayne State University School of Medicine Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurosurgery, Wayne State University School of MedicineDetroit, MI, USA; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China; Department of Neurology, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of MedicineDetroit, MI, USA; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
41
|
Miao J, Sun W, Huang J, Liu X, Li S, Han X, Tong L, Sun G. Characterization of metabolites in rats after intravenous administration of salvianolic acid for injection by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. Biomed Chromatogr 2016; 30:1487-97. [PMID: 26910272 DOI: 10.1002/bmc.3710] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/20/2016] [Accepted: 02/14/2016] [Indexed: 11/10/2022]
Abstract
It is an essential requirement to clarify the metabolites of traditional Chinese medicine (TCM) injections, which contain numerous ingredients, to assess their safe and effective use in clinic. Salvianolic acid for injection (SAFI), made from hydrophilic phenolic acids in Salvia miltiorrhiza Bunge, has been widely used for the treatment of cerebrovascular diseases, but information on its metabolites in vivo is still lacking. In the present study, we aimed to holistically characterize the metabolites of the main active ingredients in rat plasma, bile, urine and feces following intravenous administration of SAFI. An ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS) method was developed. Combining information on retention behaviors, multistage mass spectra and literature data, a total of eight prototypes and 52 metabolites were tentatively characterized. Metabolites originated from rosmarinic acid and salvianolic acid B comprised the majority of identified compounds. Meanwhile, four metabolites derived from salvianolic acid D and five from salvianolic acid B are reported for the first time. This study revealed that methylation, sulfation and glucuronidation were the major metabolic pathways of phenolic acids in SAFI in vivo. Furthermore, the developed UPLC/Q-TOF-MS method could also benefit the metabolic investigation of extracts and preparations in TCM with hydrophilic ingredients. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jingzhuo Miao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Wanyang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Jingyi Huang
- Tasly R&D Institute, Tianjin Tasly Holding Group Co., Ltd., Tianjin, 300402, People's Republic of China
| | - Xiaolin Liu
- Tasly R&D Institute, Tianjin Tasly Holding Group Co., Ltd., Tianjin, 300402, People's Republic of China
| | - Shuming Li
- Tasly R&D Institute, Tianjin Tasly Holding Group Co., Ltd., Tianjin, 300402, People's Republic of China
| | - Xiaoping Han
- Qinghai Provincial Institute for Food and Drug Control, Xining, 810016, People's Republic of China
| | - Ling Tong
- Tasly R&D Institute, Tianjin Tasly Holding Group Co., Ltd., Tianjin, 300402, People's Republic of China
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| |
Collapse
|
42
|
Mu HN, Li Q, Pan CS, Liu YY, Yan L, Hu BH, Sun K, Chang X, Zhao XR, Fan JY, Han JY. Caffeic acid attenuates rat liver reperfusion injury through sirtuin 3-dependent regulation of mitochondrial respiratory chain. Free Radic Biol Med 2015; 85:237-49. [PMID: 25960048 DOI: 10.1016/j.freeradbiomed.2015.04.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/21/2015] [Accepted: 04/29/2015] [Indexed: 02/07/2023]
Abstract
Sirtuin 3 (Sirt3) plays critical roles in regulating mitochondrial oxidative metabolism. However, whether Sirt3 is involved in liver ischemia and reperfusion (I/R) injury remains elusive. Caffeic acid (CA) is a natural antioxidant derived from Salvia miltiorrhiza. Whether CA protects against liver I/R injury through regulating Sirt3 and the mitochondrial respiratory chain (MRC) is unclear. This study investigated the effect of CA on liver I/R injury, microcirculatory disturbance, and potential mechanisms, particularly focusing on Sirt3-dependent MRC. Liver I/R of male Sprague-Dawley rats was established by occlusion of portal area vessels for 30 min followed by 120 min of reperfusion. CA (15 mg/kg/h) was continuously infused via the femoral vein starting 30 min before ischemia. After I/R, Sirt3 expression, and MRC activity decreased, acetylation of NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9 and succinate dehydrogenase complex, subunit A, flavoprotein variant provoked, and the liver microcirculatory disturbance and injury were observed. Treatment with CA attenuated liver injury, inhibited Sirt3 down-expression, and up-regulated MRC activity. CA attenuated rat liver microcirculatory disturbance and oxidative injury through regulation of Sirt3 and the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Hong-Na Mu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Stasis and Phlegm of State Administration of Traditional Chinese Medicine, Beijing, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Stasis and Phlegm of State Administration of Traditional Chinese Medicine, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Stasis and Phlegm of State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Stasis and Phlegm of State Administration of Traditional Chinese Medicine, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Stasis and Phlegm of State Administration of Traditional Chinese Medicine, Beijing, China
| | - Bai-He Hu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Stasis and Phlegm of State Administration of Traditional Chinese Medicine, Beijing, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Stasis and Phlegm of State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xin Chang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Stasis and Phlegm of State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xin-Rong Zhao
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Stasis and Phlegm of State Administration of Traditional Chinese Medicine, Beijing, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Stasis and Phlegm of State Administration of Traditional Chinese Medicine, Beijing, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Stasis and Phlegm of State Administration of Traditional Chinese Medicine, Beijing, China.
| |
Collapse
|
43
|
Wang LY, Liu J, Li Y, Li B, Zhang YY, Jing ZW, Yu YN, Li HX, Guo SS, Zhao YJ, Wang Z, Wang YY. Time-dependent variation of pathways and networks in a 24-hour window after cerebral ischemia-reperfusion injury. BMC SYSTEMS BIOLOGY 2015; 9:11. [PMID: 25884595 PMCID: PMC4355473 DOI: 10.1186/s12918-015-0152-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 02/17/2015] [Indexed: 12/04/2022]
Abstract
Background Cerebral ischemia-reperfusion injury may simultaneously result in functional variation of multiple genes/pathways. However, most prior time-sequence studies on its pathomechanism only focused on a single gene or pathway. Our study aimed to systematically analyze the time-dependent variation in the expression of multiple pathways and networks within 24 h after cerebral ischemia-reperfusion injury. Results By uploading 374 ischemia-related genes into the MetaCore software, the variation in the expression of multiple pathways and networks in 3 h, 12 h, and 24 h after cerebral ischemia-reperfusion injury had been analyzed. The conserved TNFR1-signaling pathway, among the top 10 pathways, was consistently enriched in 3 h, 12 h, and 24 h groups. Three overlapping pathways were found between 3 h and 12 h groups; 2 between 12 h and 24 h groups; and 1 between 3 h and 24 h groups. Five, 4, and 6 non-overlapping pathways were observed in 3 h, 12 h, and 24 h groups, respectively. Apart from pathways reported by earlier studies, we identified a novel pathway related to the time-dependent development of cerebral ischemia pathogenesis. The process of apoptosis stimulation by external signals, among the top 10 processes, was consistently enriched in 3 h, 12 h, and 24 h groups; 2, 1, and 2 processes overlapped between 3 h and 12 h groups, 12 h and 24 h groups, and 3 h and 24 h groups, respectively. Four, 5, and 5 non-overlapping processes were found in 3 h, 12 h and 24 h groups, respectively. The presence of apoptotic processes was observed in all the 3 groups; while anti-apoptotic processes only existed in 3 h and 12 h groups. Additionally, according to node degree, network comparison identified 1, 8,and 5 important genes or proteins (e.g. Pyk2, PKC, E2F1, and VEGF-A) in 3 h, 12 h, and 24 h groups, respectively. The Jaccard similarity index revealed a higher level of similarity between 12 h and 24 h groups than that between 3 h and 12 h groups. Conclusion Time-dependent treatment can be utilized to reduce apoptosis, which may activate anti-apoptotic pathways within 12 h after cerebral ischemia-reperfusion injury. Pathway and network analyses may help identify novel pathways and genes implicated in disease pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0152-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-Ying Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Yuan Li
- Beijing University of Chinese Medicine, No. 11 East Road, North of 3rd Ring Road, Beijing, 100029, China.
| | - Bing Li
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Ying-Ying Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Zhi-Wei Jing
- China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Ya-Nan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Hai-Xia Li
- Guang'anmen Hospital, China Academy of China Medical Sciences, No.5 Beixiange, Beijing, 100053, China.
| | - Shan-Shan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Yi-Jun Zhao
- China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Yong-Yan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| |
Collapse
|