1
|
Chavez-Ortiz P, Larsen J, Olmedo-Alvarez G, García-Oliva F. Control of inorganic and organic phosphorus molecules on microbial activity, and the stoichiometry of nutrient cycling in soils in an arid, agricultural ecosystem. PeerJ 2024; 12:e18140. [PMID: 39329143 PMCID: PMC11426319 DOI: 10.7717/peerj.18140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Background The dynamics of carbon (C), nitrogen (N), and phosphorus (P) in soils determine their fertility and crop growth in agroecosystems. These dynamics depend on microbial metabolism, which in turn depends on nutrient availability. Farmers typically apply either mineral or organic fertilizers to increase the availability of nutrients in soils. Phosphorus, which usually limits plant growth, is one of the most applied nutrients. Our knowledge is limited regarding how different forms of P impact the ability of microbes in soils to produce the enzymes required to release nutrients, such as C, N and P from different substrates. Methods In this study, we used the arable layer of a calcareous soil obtained from an alfalfa cropland in Cuatro Cienegas, México, to perform an incubation experiment, where five different phosphate molecules were added as treatments substrates: three organic molecules (RNA, adenine monophosphate (AMP) and phytate) and two inorganic molecules (calcium phosphate and ammonium phosphate). Controls did not receive added phosphorus. We measured nutrient dynamics and soil microbial activity after 19 days of incubation. Results Different P molecules affected potential microbial C mineralization (CO2-C) and enzyme activities, specifically in the organic treatments. P remained immobilized in the microbial biomass (Pmic) regardless of the source of P, suggesting that soil microorganisms were limited by phosphorus. Higher mineralization rates in soil amended with organic P compounds depleted dissolved organic carbon and increased nitrification. The C:N:P stoichiometry of the microbial biomass implied a change in the microbial community which affected the carbon use efficiency (CUE), threshold elemental ratio (TER), and homeostasis. Conclusion Different organic and inorganic sources of P affect soil microbial community structure and metabolism. This modifies the dynamics of soil C, N and P. These results highlight the importance of considering the composition of organic matter and phosphate compounds used in agriculture since their impact on the microbial activity of the soil can also affect plant productivity.
Collapse
Affiliation(s)
- Pamela Chavez-Ortiz
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico, Ciudad de México, Mexico
| | - John Larsen
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| | - Gabriela Olmedo-Alvarez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N., Irapuato, Guanajuato, Mexico
| | - Felipe García-Oliva
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| |
Collapse
|
2
|
Felsl A, Brokatzky D, Kröger C, Heermann R, Fuchs TM. Hierarchic regulation of a metabolic pathway: H-NS, CRP, and SsrB control myo-inositol utilization by Salmonella enterica. Microbiol Spectr 2024; 12:e0272423. [PMID: 38095474 PMCID: PMC10783015 DOI: 10.1128/spectrum.02724-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/07/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE The capacity to utilize myo-inositol (MI) as sole carbon and energy source is widespread among bacteria, among them the intestinal pathogen S. Typhimurium. This study elucidates the complex and hierarchical regulation that underlies the utilization of MI by S. Typhimurium under substrate limitation. A total of seven regulatory factors have been identified so far, allowing the pathogen an environment-dependent, efficient, and fine-tuned regulation of a metabolic property that provides growth advantages in different environments.
Collapse
Affiliation(s)
- Angela Felsl
- Lehrstuhl für Mikrobielle Ökologie, ZIEL-Institute for Food and Health, School of Life Science, Technische Universität München, Freising, Germany
| | - Dominik Brokatzky
- Lehrstuhl für Mikrobielle Ökologie, ZIEL-Institute for Food and Health, School of Life Science, Technische Universität München, Freising, Germany
| | - Carsten Kröger
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Ralf Heermann
- Johannes Gutenberg University Mainz, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Thilo M. Fuchs
- Lehrstuhl für Mikrobielle Ökologie, ZIEL-Institute for Food and Health, School of Life Science, Technische Universität München, Freising, Germany
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| |
Collapse
|
3
|
Weber M, Fuchs TM. Metabolism in the Niche: a Large-Scale Genome-Based Survey Reveals Inositol Utilization To Be Widespread among Soil, Commensal, and Pathogenic Bacteria. Microbiol Spectr 2022; 10:e0201322. [PMID: 35924911 PMCID: PMC9430895 DOI: 10.1128/spectrum.02013-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022] Open
Abstract
Phytate is the main phosphorus storage molecule of plants and is therefore present in large amounts in the environment and in the diet of humans and animals. Its dephosphorylated form, the polyol myo-inositol (MI), can be used by bacteria as a sole carbon and energy source. The biochemistry and regulation of MI degradation were deciphered in Bacillus subtilis and Salmonella enterica, but a systematic survey of this catabolic pathway has been missing until now. For a comprehensive overview of the distribution of MI utilization, we analyzed 193,757 bacterial genomes, representing a total of 24,812 species, for the presence, organization, and taxonomic prevalence of inositol catabolic gene clusters (IolCatGCs). The genetic capacity for MI degradation was detected in 7,384 (29.8%) of all species for which genome sequences were available. IolCatGC-positive species were particularly found among Actinobacteria and Proteobacteria and to a much lesser extent in Bacteroidetes. IolCatGCs are very diverse in terms of gene number and functions, whereas the order of core genes is highly conserved on the phylum level. We predict that 111 animal pathogens, more than 200 commensals, and 430 plant pathogens or rhizosphere bacteria utilize MI, underscoring that IolCatGCs provide a growth benefit within distinct ecological niches. IMPORTANCE This study reveals that the capacity to utilize inositol is unexpectedly widespread among soil, commensal, and pathogenic bacteria. We assume that this yet-neglected metabolism plays a pivotal role in the microbial turnover of phytate and inositols. The bioinformatic tool established here enables predicting to which extent and genetic variance a bacterial determinant is present in all genomes sequenced so far.
Collapse
Affiliation(s)
- Michael Weber
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Thilo M. Fuchs
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| |
Collapse
|
4
|
Yoshida KI, Shirae Y, Nishimura R, Fukui K, Ishikawa S. Identification of a repressor for the two iol operons required for inositol catabolism in Geobacillus kaustophilus. MICROBIOLOGY-SGM 2020; 167. [PMID: 33320079 DOI: 10.1099/mic.0.001008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Geobacillus kaustophilus HTA426, a thermophilic Gram-positive bacterium, feeds on inositol as its sole carbon source, and an iol gene cluster required for inositol catabolism has been postulated with reference to the iol genes in Bacillus subtilis. The iol gene cluster of G. kaustophilus comprises two tandem operons induced in the presence of inositol; however, the mechanism underlying this induction remains unclear. B. subtilis iolQ is known to be involved in the regulation of iolX encoding scyllo-inositol dehydrogenase, and its homologue in HTA426 was found two genes upstream of the first gene (gk1899) of the iol gene cluster and was termed iolQ in G. kaustophilus. When iolQ was inactivated in G. kaustophilus, not only cellular myo-inositol dehydrogenase activity due to gk1899 expression but also the transcription of the two iol operons became constitutive. IolQ was produced and purified as a C-terminal histidine (His)-tagged fusion protein in Escherichia coli and subjected to an in vitro gel electrophoresis mobility shift assay to examine its DNA-binding property. It was observed that IolQ bound to the DNA fragments containing each of the two iol promoter regions and that DNA binding was antagonized by myo-inositol. Moreover, DNase I footprinting analyses identified two tandem binding sites of IolQ within each of the iol promoter regions. By comparing the sequences of the binding sites, a consensus sequence for IolQ binding was deduced to form a palindrome of 5'-RGWAAGCGCTTSCY-3' (where R=A or G, W=A or T, S=G or C, and Y=C or T). IolQ functions as a transcriptional repressor regulating the induction of the two iol operons responding to myo-inositol.
Collapse
Affiliation(s)
- Ken-Ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| | - Yusuke Shirae
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| | - Ryo Nishimura
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| | - Kaho Fukui
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| | - Shu Ishikawa
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| |
Collapse
|
5
|
Whole-Genome-Based Survey for Polyphyletic Serovars of Salmonella enterica subsp. enterica Provides New Insights into Public Health Surveillance. Int J Mol Sci 2020; 21:ijms21155226. [PMID: 32718035 PMCID: PMC7432358 DOI: 10.3390/ijms21155226] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Serotyping has traditionally been considered the basis for surveillance of Salmonella, but it cannot distinguish distinct lineages sharing the same serovar that vary in host range, pathogenicity and epidemiology. However, polyphyletic serovars have not been extensively investigated. Public health microbiology is currently being transformed by whole-genome sequencing (WGS) data, which promote the lineage determination using a more powerful and accurate technique than serotyping. The focus in this study is to survey and analyze putative polyphyletic serovars. The multi-locus sequence typing (MLST) phylogenetic analysis identified four putative polyphyletic serovars, namely, Montevideo, Bareilly, Saintpaul, and Muenchen. Whole-genome-based phylogeny and population structure highlighted the polyphyletic nature of Bareilly and Saintpaul and the multi-lineage nature of Montevideo and Muenchen. The population of these serovars was defined by extensive genetic diversity, the open pan genome and the small core genome. Source niche metadata revealed putative existence of lineage-specific niche adaptation (host-preference and environmental-preference), exhibited by lineage-specific genomic contents associated with metabolism and transport. Meanwhile, differences in genetic profiles relating to virulence and antimicrobial resistance within each lineage may contribute to pathogenicity and epidemiology. The results also showed that recombination events occurring at the H1-antigen loci may be an important reason for polyphyly. The results presented here provide the genomic basis of simple, rapid, and accurate identification of phylogenetic lineages of these serovars, which could have important implications for public health.
Collapse
|
6
|
Müller J, Spriewald S, Stecher B, Stadler E, Fuchs TM. Evolutionary Stability of Salmonella Competition with the Gut Microbiota: How the Environment Fosters Heterogeneity in Exploitative and Interference Competition. J Mol Biol 2019; 431:4732-4748. [PMID: 31260689 DOI: 10.1016/j.jmb.2019.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 11/27/2022]
Abstract
Following ingestion, gastrointestinal pathogens compete against the gastrointestinal microbiota and overcome host immune defenses in order to cause infections. Besides employing direct killing mechanisms, the commensal microbiota occupies metabolic niches to outcompete invading pathogens. Salmonella enterica serovar Typhimurium (S. Typhimurium) uses several strategies to successfully colonize the gut and establish infection, of which an increasing number is based on phenotypic heterogeneity within the S. Typhimurium population. The utilization of myo-inositol (MI) and the production of colicin confer a selective advantage over the microbiota in terms of exploitative and interference competition, respectively. In this review, we summarize the genetic basis underlying bistability of MI catabolism and colicin production. As demonstrated by single-cell analyses, a stochastic switch in the expression of the genes responsible for colicin production and MI degradation constitutes the heterogeneity of the two phenotypes. Both genetic systems are tightly regulated to avoid their expression under non-appropriate conditions and possible detrimental effects on bacterial fitness. Moreover, evolutionary mechanisms underlying formation and stability of these phenotypes in S. Typhimurium are discussed. We propose that both MI catabolism and colicin production create a bet-hedging strategy, which provides an adaptive benefit for S. Typhimurium in the fluctuating environment of the mammalian gut.
Collapse
Affiliation(s)
- Johannes Müller
- Technische Universität München, Centre for Mathematical Sciences, Boltzmannstr. 3, 85747 Garching, Germany; Institute for Computational Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Stefanie Spriewald
- Max von Pettenkofer-Institute, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer-Institute, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany
| | - Eva Stadler
- Technische Universität München, Centre for Mathematical Sciences, Boltzmannstr. 3, 85747 Garching, Germany
| | - Thilo M Fuchs
- Friedrich-Loeffler-Institut, Institut für Molekulare Pathogenese, Naumburger Str. 96a, 07743 Jena, Germany.
| |
Collapse
|
7
|
Kröger C, Rothhardt JE, Brokatzky D, Felsl A, Kary SC, Heermann R, Fuchs TM. The small RNA RssR regulates myo-inositol degradation by Salmonella enterica. Sci Rep 2018; 8:17739. [PMID: 30531898 PMCID: PMC6288124 DOI: 10.1038/s41598-018-35784-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 10/08/2018] [Indexed: 12/25/2022] Open
Abstract
Small noncoding RNAs (sRNAs) with putative regulatory functions in gene expression have been identified in the enteropathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). Two sRNAs are encoded by the genomic island GEI4417/4436 responsible for myo-inositol (MI) degradation, suggesting a role in the regulation of this metabolic pathway. We show that a lack of the sRNA STnc2160, termed RssR, results in a severe growth defect in minimal medium (MM) with MI. In contrast, the second sRNA STnc1740 was induced in the presence of glucose, and its overexpression slightly attenuated growth in the presence of MI. Constitutive expression of RssR led to an increased stability of the reiD mRNA, which encodes an activator of iol genes involved in MI utilization, via interaction with its 5′-UTR. SsrB, a response regulator contributing to the virulence properties of salmonellae, activated rssR transcription by binding the sRNA promoter. In addition, the absence of the RNA chaperone Hfq resulted in strongly decreased levels of RssR, attenuated S. Typhimurium growth with MI, and reduced expression of several iol genes required for MI degradation. Considered together, the extrinsic RssR allows fine regulation of cellular ReiD levels and thus of MI degradation by acting on the reiD mRNA stability.
Collapse
Affiliation(s)
- Carsten Kröger
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Johannes E Rothhardt
- Lehrstuhl für Mikrobielle Ökologie, ZIEL - Institute for Food & Health, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Dominik Brokatzky
- Lehrstuhl für Mikrobielle Ökologie, ZIEL - Institute for Food & Health, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Angela Felsl
- Lehrstuhl für Mikrobielle Ökologie, ZIEL - Institute for Food & Health, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Stefani C Kary
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Ralf Heermann
- Biozentrum, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152, Martinsried/München, Germany
| | - Thilo M Fuchs
- Lehrstuhl für Mikrobielle Ökologie, ZIEL - Institute for Food & Health, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany. .,Friedrich-Loeffler-Institut, Institut für molekulare Pathogenese, Naumburger Str. 96a, 07743, Jena, Germany.
| |
Collapse
|
8
|
Killiny N, Jones SE. Metabolic alterations in the nymphal instars of Diaphorina citri induced by Candidatus Liberibacter asiaticus, the putative pathogen of huanglongbing. PLoS One 2018; 13:e0191871. [PMID: 29370262 PMCID: PMC5785020 DOI: 10.1371/journal.pone.0191871] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/12/2018] [Indexed: 11/24/2022] Open
Abstract
Currently, huanglongbing is the most damaging disease of citrus causing huge economic losses. The disease is caused by the Gram-negative bacterium Candidatus Liberibacter asiaticus (CLas). The pathogen is transmitted in a persistent propagative circulative manner within its vector, the Asian citrus psyllid, Diaphorina citri. Exploring the metabolic alteration in the vector may lead to a better understanding of the nutritional needs of CLas and to designing an artificial medium for culturing the pathogen. It has been shown that the nymphal stages have a greater role in transmission mainly because they feed on plants more actively than adults. In this study, we carried out an untargeted comparative metabolomic analysis for healthy and CLas-infected 4th / 5th instar nymphs. The metabolic analysis was performed using trimethylsilylation and methyl chloroformate derivatization followed by Gas Chromatography-Mass Spectrometry (GC-MS). Overall, the changes in the nymph metabolism due to the infection with CLas were more pronounced than in adults, as we previously published. Nymphs reared on CLas-infected Valencia sweet orange were higher in many metabolites, mainly those of the TCA cycle, C16 and C18 fatty acids, glucose, sucrose, L-proline, L-serine, pyroglutamic acid, saccharic acid, threonic acid and myo-inositol than those reared on healthy plants. In contrast, CLas-infected nymphs were lower in putrescine, glycine, L -phenylalanine, L -tyrosine, L -valine, and chiro-inositol. The information provided from this study may contribute in acceleration of the availability of CLas in culture and consequent screening of antibacterial compounds to discover a definitive solution for huanglongbing.
Collapse
Affiliation(s)
- Nabil Killiny
- Citrus Research and Education Center, Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| | - Shelley E Jones
- Citrus Research and Education Center, Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| |
Collapse
|
9
|
High binding affinity of repressor IolR avoids costs of untimely induction of myo-inositol utilization by Salmonella Typhimurium. Sci Rep 2017; 7:44362. [PMID: 28290506 PMCID: PMC5349611 DOI: 10.1038/srep44362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/31/2017] [Indexed: 01/08/2023] Open
Abstract
Growth of Salmonella enterica serovar Typhimurium strain 14028 with myo-inositol (MI) is characterized by a bistable phenotype that manifests with an extraordinarily long (34 h) and variable lag phase. When cells were pre-grown in minimal medium with MI, however, the lag phase shortened drastically to eight hours, and to six hours in the absence of the regulator IolR. To unravel the molecular mechanism behind this phenomenon, we investigated this repressor in more detail. Flow cytometry analysis of the iolR promoter at a single cell level demonstrated bistability of its transcriptional activation. Electrophoretic mobility shift assays were used to narrow the potential binding region of IolR and identified at least two binding sites in most iol gene promoters. Surface plasmon resonance spectroscopy quantified IolR binding and indicated its putative oligomerization and high binding affinity towards specific iol gene promoters. In competitive assays, the iolR deletion mutant, in which iol gene repression is abolished, showed a severe growth disadvantage of ~15% relative to the parental strain in rich medium. We hypothesize that the strong repression of iol gene transcription is required to maintain a balance between metabolic flexibility and fitness costs, which follow the inopportune induction of an unusual metabolic pathway.
Collapse
|
10
|
Turskaya AL, Ul’danova AA, Stepanov AV, Bukin YS, Verkhoturov VV, Gaida BK, Markova YA. Formation of Pectobacterium carotovorum biofilms depending of the carbon source. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717010143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Genetic Characterization of the Galactitol Utilization Pathway of Salmonella enterica Serovar Typhimurium. J Bacteriol 2017; 199:JB.00595-16. [PMID: 27956522 DOI: 10.1128/jb.00595-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/25/2016] [Indexed: 12/26/2022] Open
Abstract
Galactitol degradation by salmonellae remains underinvestigated, although this metabolic capability contributes to growth in animals (R. R. Chaudhuri et al., PLoS Genet 9:e1003456, 2013, https://doi.org/10.1371/journal.pgen.1003456). The genes responsible for this metabolic capability are part of a 9.6-kb gene cluster that spans from gatY to gatR (STM3253 to STM3262) and encodes a phosphotransferase system, four enzymes, and a transporter of the major facilitator superfamily. Genome comparison revealed the presence of this genetic determinant in nearly all Salmonella strains. The generation time of Salmonella enterica serovar Typhimurium strain ST4/74 was higher in minimal medium with galactitol than with glucose. Knockout of STM3254 and gatC resulted in a growth-deficient phenotype of S Typhimurium, with galactitol as the sole carbon source. Partial deletion of gatR strongly reduced the lag phase of growth with galactitol, whereas strains overproducing GatR exhibited a near-zero growth phenotype. Luciferase reporter assays demonstrated strong induction of the gatY and gatZ promoters, which control all genes of this cluster except gatR, in the presence of galactitol but not glucose. Purified GatR bound to these two main gat gene cluster promoters as well as to its own promoter, demonstrating that this autoregulated repressor controls galactitol degradation. Surface plasmon resonance spectroscopy revealed distinct binding properties of GatR toward the three promoters, resulting in a model of differential gat gene expression. The cyclic AMP receptor protein (CRP) bound these promoters with similarly high affinities, and a mutant lacking crp showed severe growth attenuation, demonstrating that galactitol utilization is subject to catabolite repression. Here, we provide the first genetic characterization of galactitol degradation in Salmonella, revealing novel insights into the regulation of this dissimilatory pathway. IMPORTANCE The knowledge of how pathogens adapt their metabolism to the compartments encountered in hosts is pivotal to our understanding of bacterial infections. Recent research revealed that enteropathogens have adapted specific metabolic pathways that contribute to their virulence properties, for example, by helping to overcome limitations in nutrient availability in the gut due to colonization resistance. The capability of Salmonella enterica serovar Typhimurium to degrade galactitol has already been demonstrated to play a role in vivo, but it has not been investigated so far on the genetic level. To our knowledge, this is the first molecular description of the galactitol degradation pathway of a pathogen.
Collapse
|
12
|
Hellinckx J, Fuchs TM. Hysteresis in myo-inositol utilization by Salmonella Typhimurium. Microbiologyopen 2016; 6. [PMID: 28027601 PMCID: PMC5387303 DOI: 10.1002/mbo3.431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/28/2016] [Accepted: 11/15/2016] [Indexed: 11/07/2022] Open
Abstract
Growth of Salmonella enterica serovar Typhimurium strain 14028 with myo‐inositol (MI) as the sole carbon and energy source is characterized by a bistable phenotype that manifests in a growth phenotype with an extraordinarily long and length‐variable lag phase. However, in the presence of hydrogen carbonate, in the absence of IolR that represses the MI degradation pathway, or if cells are already adapted to minimal medium (MM) with MI, the lag phase is drastically shortened, and the bistable phenotype is abolished. We hypothesized that memory development or hysteresis is a further characteristic of MI degradation by S. Typhimurium; therefore, we investigated the transition from a short to a long lag phase in more detail. Growth experiments demonstrated that memory on the population level is successively lost within approximately 8 hr after cells, which had been adapted to MI utilization, were transferred to lysogeny broth (LB) medium. Flow cytometry (FC) analysis using a chromosomal fusion to PiolE, a promoter controlling the expression of the enzymatic genes iolE and iolG involved in MI degradation, indicated a gradual reversion within a few hours from a population in the “ON” status with respect to iolE transcription to one that is mainly in the “OFF” status. Growth and FC experiments revealed that IolR does not affect hysteresis.
Collapse
Affiliation(s)
- Jessica Hellinckx
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung ZIEL, Technische Universität München, Freising, Germany
| | - Thilo M Fuchs
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung ZIEL, Technische Universität München, Freising, Germany.,Friedrich-Loeffler-Institut, Institut für Molekulare Pathogenese, Jena, Germany
| |
Collapse
|
13
|
Staib L, Fuchs TM. Regulation of fucose and 1,2-propanediol utilization by Salmonella enterica serovar Typhimurium. Front Microbiol 2015; 6:1116. [PMID: 26528264 PMCID: PMC4600919 DOI: 10.3389/fmicb.2015.01116] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022] Open
Abstract
After ingestion, Salmonella enterica serovar Typhimurium (S. Typhimurium) encounters a densely populated, competitive environment in the gastrointestinal tract. To escape nutrient limitation caused by the intestinal microbiota, this pathogen has acquired specific metabolic traits to use compounds that are not metabolized by the commensal bacteria. For example, the utilization of 1,2-propanediol (1,2-PD), a product of the fermentation of L-fucose, which is present in foods of herbal origin and is also a terminal sugar of gut mucins. Under anaerobic conditions and in the presence of tetrathionate, 1,2-PD can serve as an energy source for S. Typhimurium. Comprehensive database analysis revealed that the 1,2-PD and fucose utilization operons are present in all S. enterica serovars sequenced thus far. The operon, consisting of 21 genes, is expressed as a single polycistronic mRNA. As demonstrated here, 1,2-PD was formed and further used when S. Typhimurium strain 14028 was grown with L-fucose, and the gene fucA encoding L-fuculose-1-phosphate aldolase was required for this growth. Using promoter fusions, we monitored the expression of the propanediol utilization operon that was induced at very low concentrations of 1,2-PD and was inhibited by the presence of D-glucose.
Collapse
Affiliation(s)
| | - Thilo M. Fuchs
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung Institute for Food and Health, Technische Universität MünchenFreising, Germany
| |
Collapse
|