1
|
Liu YJ, Wang X, Sun Y, Feng Y. Bacterial 5' UTR: A treasure-trove for post-transcriptional regulation. Biotechnol Adv 2025; 78:108478. [PMID: 39551455 DOI: 10.1016/j.biotechadv.2024.108478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
In bacteria, where gene transcription and translation occur concurrently, post-transcriptional regulation is acknowledged to be effective and precise. The 5' untranslated regions (5' UTRs) typically harbor diverse post-transcriptional regulatory elements, like riboswitches, RNA thermometers, small RNAs, and upstream open reading frames, that serve to modulate transcription termination, translation initiation, and mRNA stability. Consequently, exploring 5' UTR-derived regulatory elements is vital for synthetic biology and metabolic engineering. Over the past few years, the investigation of successive mechanisms has facilitated the development of various genetic tools from bacterial 5' UTRs. This review consolidates current understanding of 5' UTR regulatory functions, presents recent progress in 5' UTR-element design and screening, updates the tools and regulatory strategies developed, and highlights the challenges and necessity of establishing reliable bioinformatic analysis methods and non-model bacterial chassis in the future.
Collapse
Affiliation(s)
- Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoqing Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuman Sun
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Stark GF, Truchon AR, Wilhelm SW. Mobilome impacts on physiology in the widely used non-toxic mutant Microcystis aeruginosa PCC 7806 ΔmcyB and toxic wildtype. BMC Genomics 2024; 25:922. [PMID: 39363260 PMCID: PMC11448079 DOI: 10.1186/s12864-024-10839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024] Open
Abstract
The Microcystis mobilome is a well-known but understudied component of this bloom-forming cyanobacterium. Through genomic and transcriptomic comparisons, we found five families of transposases that altered the expression of genes in the well-studied toxigenic type-strain, Microcystis aeruginosa PCC 7086, and a non-toxigenic genetic mutant, Microcystis aeruginosa PCC 7806 ΔmcyB. Since its creation in 1997, the ΔmcyB strain has been used in comparative physiology studies against the wildtype strain by research labs throughout the world. Some differences in gene expression between what were thought to be otherwise genetically identical strains have appeared due to insertion events in both intra- and intergenic regions. In our ΔmcyB isolate, a sulfate transporter gene cluster (sbp-cysTWA) showed differential expression from the wildtype, which may have been caused by the insertion of a miniature inverted repeat transposable element (MITE) in the sulfate-binding protein gene (sbp). Differences in growth in sulfate-limited media also were also observed between the two isolates. This paper highlights how Microcystis strains continue to "evolve" in lab conditions and illustrates the importance of insertion sequences / transposable elements in shaping genomic and physiological differences between Microcystis strains thought otherwise identical. This study forces the necessity of knowing the complete genetic background of isolates in comparative physiological experiments, to facilitate the correct conclusions (and caveats) from experiments.
Collapse
Affiliation(s)
- Gwendolyn F Stark
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Alexander R Truchon
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN, USA.
| |
Collapse
|
3
|
Chakrabarty P, Sen R, Sengupta S. From parasites to partners: exploring the intricacies of host-transposon dynamics and coevolution. Funct Integr Genomics 2023; 23:278. [PMID: 37610667 DOI: 10.1007/s10142-023-01206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Transposable elements, often referred to as "jumping genes," have long been recognized as genomic parasites due to their ability to integrate and disrupt normal gene function and induce extensive genomic alterations, thereby compromising the host's fitness. To counteract this, the host has evolved a plethora of mechanisms to suppress the activity of the transposons. Recent research has unveiled the host-transposon relationships to be nuanced and complex phenomena, resulting in the coevolution of both entities. Transposition increases the mutational rate in the host genome, often triggering physiological pathways such as immune and stress responses. Current gene transfer technologies utilizing transposable elements have potential drawbacks, including off-target integration, induction of mutations, and modifications of cellular machinery, which makes an in-depth understanding of the host-transposon relationship imperative. This review highlights the dynamic interplay between the host and transposable elements, encompassing various factors and components of the cellular machinery. We provide a comprehensive discussion of the strategies employed by transposable elements for their propagation, as well as the mechanisms utilized by the host to mitigate their parasitic effects. Additionally, we present an overview of recent research identifying host proteins that act as facilitators or inhibitors of transposition. We further discuss the evolutionary outcomes resulting from the genetic interactions between the host and the transposable elements. Finally, we pose open questions in this field and suggest potential avenues for future research.
Collapse
Affiliation(s)
- Prayas Chakrabarty
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
| | - Raneet Sen
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
- Institute of Bioorganic Chemistry, Department of RNA Metabolism, Polish Academy of Sciences, Poznan, Poland
| | - Sugopa Sengupta
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
4
|
Kirsch JM, Ely S, Stellfox ME, Hullahalli K, Luong P, Palmer KL, Van Tyne D, Duerkop BA. Targeted IS-element sequencing uncovers transposition dynamics during selective pressure in enterococci. PLoS Pathog 2023; 19:e1011424. [PMID: 37267422 PMCID: PMC10266640 DOI: 10.1371/journal.ppat.1011424] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/14/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023] Open
Abstract
Insertion sequences (IS) are simple transposons implicated in the genome evolution of diverse pathogenic bacterial species. Enterococci have emerged as important human intestinal pathogens with newly adapted virulence potential and antibiotic resistance. These genetic features arose in tandem with large-scale genome evolution mediated by mobile elements. Pathoadaptation in enterococci is thought to be mediated in part by the IS element IS256 through gene inactivation and recombination events. However, the regulation of IS256 and the mechanisms controlling its activation are not well understood. Here, we adapt an IS256-specfic deep sequencing method to describe how chronic lytic phage infection drives widespread diversification of IS256 in E. faecalis and how antibiotic exposure is associated with IS256 diversification in E. faecium during a clinical human infection. We show through comparative genomics that IS256 is primarily found in hospital-adapted enterococcal isolates. Analyses of IS256 transposase gene levels reveal that IS256 mobility is regulated at the transcriptional level by multiple mechanisms in E. faecalis, indicating tight control of IS256 activation in the absence of selective pressure. Our findings reveal that stressors such as phages and antibiotic exposure drives rapid genome-scale transposition in the enterococci. IS256 diversification can therefore explain how selective pressures mediate evolution of the enterococcal genome, ultimately leading to the emergence of dominant nosocomial lineages that threaten human health.
Collapse
Affiliation(s)
- Joshua M. Kirsch
- Department of Immunology and Microbiology, University of Colorado–Anschutz Medical Campus, School of Medicine, Aurora, Colorado, United States of America
| | - Shannon Ely
- Department of Immunology and Microbiology, University of Colorado–Anschutz Medical Campus, School of Medicine, Aurora, Colorado, United States of America
| | - Madison E. Stellfox
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Karthik Hullahalli
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Phat Luong
- Department of Immunology and Microbiology, University of Colorado–Anschutz Medical Campus, School of Medicine, Aurora, Colorado, United States of America
| | - Kelli L. Palmer
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Daria Van Tyne
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado–Anschutz Medical Campus, School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
5
|
Lorenzetti APR, Kusebauch U, Zaramela LS, Wu WJ, de Almeida JPP, Turkarslan S, L. G. de Lomana A, Gomes-Filho JV, Vêncio RZN, Moritz RL, Koide T, Baliga NS. A Genome-Scale Atlas Reveals Complex Interplay of Transcription and Translation in an Archaeon. mSystems 2023; 8:e0081622. [PMID: 36912639 PMCID: PMC10134880 DOI: 10.1128/msystems.00816-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/10/2023] [Indexed: 03/14/2023] Open
Abstract
The scale of post-transcriptional regulation and the implications of its interplay with other forms of regulation in environmental acclimation are underexplored for organisms of the domain Archaea. Here, we have investigated the scale of post-transcriptional regulation in the extremely halophilic archaeon Halobacterium salinarum NRC-1 by integrating the transcriptome-wide locations of transcript processing sites (TPSs) and SmAP1 binding, the genome-wide locations of antisense RNAs (asRNAs), and the consequences of RNase_2099C knockout on the differential expression of all genes. This integrated analysis has discovered that 54% of all protein-coding genes in the genome of this haloarchaeon are likely targeted by multiple mechanisms for putative post-transcriptional processing and regulation, with about 20% of genes likely being regulated by combinatorial schemes involving SmAP1, asRNAs, and RNase_2099C. Comparative analysis of mRNA levels (transcriptome sequencing [RNA-Seq]) and protein levels (sequential window acquisition of all theoretical fragment ion spectra mass spectrometry [SWATH-MS]) for 2,579 genes over four phases of batch culture growth in complex medium generated additional evidence for the conditional post-transcriptional regulation of 7% of all protein-coding genes. We demonstrate that post-transcriptional regulation may act to fine-tune specialized and rapid acclimation to stressful environments, e.g., as a switch to turn on gas vesicle biogenesis to promote vertical relocation under anoxic conditions and modulate the frequency of transposition by insertion sequence (IS) elements of the IS200/IS605, IS4, and ISH3 families. Findings from this study are provided as an atlas in a public Web resource (https://halodata.systemsbiology.net). IMPORTANCE While the transcriptional regulation landscape of archaea has been extensively investigated, we currently have limited knowledge about post-transcriptional regulation and its driving mechanisms in this domain of life. In this study, we collected and integrated omics data from multiple sources and technologies to infer post-transcriptionally regulated genes and the putative mechanisms modulating their expression at the protein level in Halobacterium salinarum NRC-1. The results suggest that post-transcriptional regulation may drive environmental acclimation by regulating hallmark biological processes. To foster discoveries by other research groups interested in the topic, we extended our integrated data to the public in the form of an interactive atlas (https://halodata.systemsbiology.net).
Collapse
Affiliation(s)
- Alan P. R. Lorenzetti
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Institute for Systems Biology, Seattle, Washington, USA
| | | | - Lívia S. Zaramela
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, Washington, USA
| | - João P. P. de Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | - José V. Gomes-Filho
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo Z. N. Vêncio
- Department of Computation and Mathematics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Tie Koide
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA
- Lawrence Berkeley National Lab, Berkeley, California, USA
| |
Collapse
|
6
|
Carrier MC, Lalaouna D, Massé E. Hfq protein and GcvB small RNA tailoring of oppA target mRNA to levels allowing translation activation by MicF small RNA in Escherichia coli. RNA Biol 2023; 20:59-76. [PMID: 36860088 PMCID: PMC9988348 DOI: 10.1080/15476286.2023.2179582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Traffic of molecules across the bacterial membrane mainly relies on porins and transporters, whose expression must adapt to environmental conditions. To ensure bacterial fitness, synthesis and assembly of functional porins and transporters are regulated through a plethora of mechanisms. Among them, small regulatory RNAs (sRNAs) are known to be powerful post-transcriptional regulators. In Escherichia coli, the MicF sRNA is known to regulate only four targets, a very narrow targetome for a sRNA responding to various stresses, such as membrane stress, osmotic shock, or thermal shock. Using an in vivo pull-down assay combined with high-throughput RNA sequencing, we sought to identify new targets of MicF to better understand its role in the maintenance of cellular homoeostasis. Here, we report the first positively regulated target of MicF, the oppA mRNA. The OppA protein is the periplasmic component of the Opp ATP-binding cassette (ABC) oligopeptide transporter and regulates the import of short peptides, some of them bactericides. Mechanistic studies suggest that oppA translation is activated by MicF through a mechanism of action involving facilitated access to a translation-enhancing region in oppA 5'UTR. Intriguingly, MicF activation of oppA translation depends on cross-regulation by negative trans-acting effectors, the GcvB sRNA and the RNA chaperone protein Hfq.
Collapse
Affiliation(s)
- Marie-Claude Carrier
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - David Lalaouna
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Massé
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
7
|
Synthetic Genetic Interactions Reveal a Dense and Cryptic Regulatory Network of Small Noncoding RNAs in Escherichia coli. mBio 2022; 13:e0122522. [PMID: 35920556 PMCID: PMC9426594 DOI: 10.1128/mbio.01225-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Over the past 20 years, we have learned that bacterial small noncoding RNAs (sRNAs) can rapidly effect changes in gene expression in response to stress. However, the broader role and impact of sRNA-mediated regulation in promoting bacterial survival has remained elusive. Indeed, there are few examples where disruption of sRNA-mediated gene regulation results in a discernible change in bacterial growth or survival. The lack of phenotypes attributable to loss of sRNA function suggests that either sRNAs are wholly dispensable or functional redundancies mask the impact of deleting a single sRNA. We investigated synthetic genetic interactions among sRNA genes in Escherichia coli by constructing pairwise deletions in 54 genes, including 52 sRNAs. Some 1,373 double deletion strains were studied for growth defects under 32 different nutrient stress conditions and revealed 1,131 genetic interactions. In one example, we identified a profound synthetic lethal interaction between ArcZ and CsrC when E. coli was grown on pyruvate, lactate, oxaloacetate, or d-/l-alanine, and we provide evidence that the expression of ppsA is dysregulated in the double deletion background, causing the conditionally lethal phenotype. This work employs a unique platform for studying sRNA-mediated gene regulation and sheds new light on the genetic network of sRNAs that underpins bacterial growth.
Collapse
|
8
|
Brosse A, Boudry P, Walburger A, Magalon A, Guillier M. Synthesis of the NarP response regulator of nitrate respiration in Escherichia coli is regulated at multiple levels by Hfq and small RNAs. Nucleic Acids Res 2022; 50:6753-6768. [PMID: 35748881 PMCID: PMC9262595 DOI: 10.1093/nar/gkac504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Two-component systems (TCS) and small RNAs (sRNA) are widespread regulators that participate in the response and the adaptation of bacteria to their environments. TCSs and sRNAs mostly act at the transcriptional and post-transcriptional levels, respectively, and can be found integrated in regulatory circuits, where TCSs control sRNAs transcription and/or sRNAs post-transcriptionally regulate TCSs synthesis. In response to nitrate and nitrite, the paralogous NarQ-NarP and NarX-NarL TCSs regulate the expression of genes involved in anaerobic respiration of these alternative electron acceptors to oxygen. In addition to the previously reported repression of NarP synthesis by the SdsN137 sRNA, we show here that RprA, another Hfq-dependent sRNA, also negatively controls narP. Interestingly, the repression of narP by RprA actually relies on two independent mechanisms of control. The first is via the direct pairing of the central region of RprA to the narP translation initiation region and presumably occurs at the translation initiation level. In contrast, the second requires only the very 5' end of the narP mRNA, which is targeted, most likely indirectly, by the full-length or the shorter, processed, form of RprA. In addition, our results raise the possibility of a direct role of Hfq in narP control, further illustrating the diversity of post-transcriptional regulation mechanisms in the synthesis of TCSs.
Collapse
Affiliation(s)
- Anaïs Brosse
- UMR8261, CNRS, Université de Paris Cité, Institut de Biologie Physico-Chimique, 75005Paris, France
| | - Pierre Boudry
- UMR8261, CNRS, Université de Paris Cité, Institut de Biologie Physico-Chimique, 75005Paris, France
| | - Anne Walburger
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402Marseille, France
| | - Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402Marseille, France
| | - Maude Guillier
- To whom correspondence should be addressed. Tel: +33 01 58 41 51 49; Fax: +33 01 58 41 50 25;
| |
Collapse
|
9
|
Roca J, Santiago-Frangos A, Woodson SA. Diversity of bacterial small RNAs drives competitive strategies for a mutual chaperone. Nat Commun 2022; 13:2449. [PMID: 35508531 PMCID: PMC9068810 DOI: 10.1038/s41467-022-30211-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/06/2022] [Indexed: 12/17/2022] Open
Abstract
Hundreds of bacterial small RNAs (sRNAs) require the Hfq chaperone to regulate mRNA expression. Hfq is limiting, thus competition among sRNAs for binding to Hfq shapes the proteomes of individual cells. To understand how sRNAs compete for a common partner, we present a single-molecule fluorescence platform to simultaneously visualize binding and release of multiple sRNAs with Hfq. We show that RNA residents rarely dissociate on their own. Instead, clashes between residents and challengers on the same face of Hfq cause rapid exchange, whereas RNAs that recognize different surfaces may cohabit Hfq for several minutes before one RNA departs. The prevalence of these pathways depends on the structure of each RNA and how it interacts with Hfq. We propose that sRNA diversity creates many pairwise interactions with Hfq that allow for distinct biological outcomes: active exchange favors fast regulation whereas co-residence of dissimilar RNAs favors target co-recognition or target exclusion.
Collapse
Affiliation(s)
- Jorjethe Roca
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, 21218, USA
| | - Andrew Santiago-Frangos
- CMDB Program, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, 21218, USA.,Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Sarah A Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, 21218, USA.
| |
Collapse
|
10
|
Yu Z, Fu Y, Zhang W, Zhu L, Yin W, Chou SH, He J. The RNA Chaperone Protein Hfq Regulates the Characteristic Sporulation and Insecticidal Activity of Bacillus thuringiensis. Front Microbiol 2022; 13:884528. [PMID: 35479624 PMCID: PMC9037596 DOI: 10.3389/fmicb.2022.884528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Bacillus thuringiensis (Bt) is one of the most widely used bio-insecticides at present. It can produce many virulence factors and insecticidal crystal proteins during growth and sporulation. Hfq, on the other hand, is a bacterial RNA chaperone that can regulate the function of different kinds of RNAs, thereby affecting various bacterial phenotypes. To further explore the physiological functions of Hfq in Bt, we took BMB171 as the starting strain, knocked out one, two, or three hfq genes in its genome in different combinations, and compared the phenotypic differences between the deletion mutant strains and the starting strain. We did observe significant changes in several phenotypes, including motility, biofilm formation, sporulation, and insecticidal activity against cotton bollworm, among others. Afterward, we found through transcriptome studies that when all hfq genes were deleted, 32.5% of the genes in Bt were differentially transcribed, with particular changes in the sporulation-related and virulence-related genes. The above data demonstrated that Hfq plays a pivotal role in Bt and can regulate its various physiological functions. Our study on the regulatory mechanism of Hfq in Bt, especially the mining of the regulatory network of its sporulation and insecticidal activity, could lay a theoretical foundation for the better utilization of Bt as an effective insecticide.
Collapse
Affiliation(s)
- Zhaoqing Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yang Fu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Sudo N, Lee K, Sekine Y, Ohnishi M, Iyoda S. RNA-binding protein Hfq downregulates locus of enterocyte effacement-encoded regulators independent of small regulatory RNA in enterohemorrhagic Escherichia coli. Mol Microbiol 2021; 117:86-101. [PMID: 34411346 DOI: 10.1111/mmi.14799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) causes severe human diseases worldwide. The type 3 secretion system and effector proteins are essential for EHEC infection, and are encoded by the locus of enterocyte effacement (LEE). RNA-binding protein Hfq is essential for small regulatory RNA (sRNA)-mediated regulation at a posttranscriptional level and full virulence of many pathogenic bacteria. Although two early studies indicated that Hfq represses LEE expression by posttranscriptionally controlling the expression of genes grlRA and/or ler, both of which encode LEE regulators mediating a positive regulatory loop, the detailed molecular mechanism and biological significance remain unclear. Herein, we show that LEE overexpression was caused by defective RNA-binding activity of the Hfq distal face, which posttranscriptionally represses grlA and ler expression. In vitro analyses revealed that the Hfq distal face directly binds near the translational initiation site of grlA and ler mRNAs, and inhibits their translation. Taken together, we conclude that Hfq inhibits grlA and ler translation by binding their mRNAs through the distal face in an sRNA-independent manner. Additionally, we show that Hfq-mediated repression of LEE is critical for normal EHEC growth because all suppressor mutations that restored the growth defect in the hfq mutant abolished hfq deletion-induced overexpression of LEE.
Collapse
Affiliation(s)
- Naoki Sudo
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenichi Lee
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
12
|
Differential Chromosome- and Plasmid-Borne Resistance of Escherichia coli hfq Mutants to High Concentrations of Various Antibiotics. Int J Mol Sci 2021; 22:ijms22168886. [PMID: 34445592 PMCID: PMC8396180 DOI: 10.3390/ijms22168886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
The Hfq protein is a bacterial RNA chaperone, involved in many molecular interactions, including control of actions of various small RNA regulatory molecules. We found that the presence of Hfq was required for survival of plasmid-containing Escherichia coli cells against high concentrations of chloramphenicol (plasmid p27cmr), tetracycline (pSC101, pBR322) and ampicillin (pBR322), as hfq+ strains were more resistant to these antibiotics than the hfq-null mutant. In striking contrast, production of Hfq resulted in low resistance to high concentrations of kanamycin when the antibiotic-resistance marker was chromosome-borne, with deletion of hfq resulting in increasing bacterial survival. These results were observed both in solid and liquid medium, suggesting that antibiotic resistance is an intrinsic feature of these strains rather than a consequence of adaptation. Despite its major role as RNA chaperone, which also affects mRNA stability, Hfq was not found to significantly affect kan and tet mRNAs turnover. Nevertheless, kan mRNA steady-state levels were higher in the hfq-null mutant compared to the hfq+ strain, suggesting that Hfq can act as a repressor of kan expression.This observation does correlate with the enhanced resistance to high levels of kanamycin observed in the hfq-null mutant. Furthermore, dependency on Hfq for resistance to high doses of tetracycline was found to depend on plasmid copy number, which was only observed when the resistance marker was expressed from a low copy plasmid (pSC101) but not from a medium copy plasmid (pBR322). This suggests that Hfq may influence survival against high doses of antibiotics through mechanisms that remain to be determined. Studies with pBR322Δrom may also suggest an interplay between Hfq and Rom in the regulation of ColE1-like plasmid replication. Results of experiments with a mutant devoid of the part of the hfq gene coding for the C-terminal region of Hfq suggested that this region, as well as the N-terminal region, may be involved in the regulation of expression of antibiotic resistance in E. coli independently.
Collapse
|
13
|
Gómez-García G, Ruiz-Enamorado A, Yuste L, Rojo F, Moreno R. Expression of the ISPpu9 transposase of Pseudomonas putida KT2440 is regulated by two small RNAs and the secondary structure of the mRNA 5'-untranslated region. Nucleic Acids Res 2021; 49:9211-9228. [PMID: 34379788 PMCID: PMC8450116 DOI: 10.1093/nar/gkab672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/23/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022] Open
Abstract
Insertion sequences (ISs) are mobile genetic elements that only carry the information required for their own transposition. Pseudomonas putida KT2440, a model bacterium, has seven copies of an IS called ISPpu9 inserted into repetitive extragenic palindromic sequences. This work shows that the gene for ISPpu9 transposase, tnp, is regulated by two small RNAs (sRNAs) named Asr9 and Ssr9, which are encoded upstream and downstream of tnp, respectively. The tnp mRNA has a long 5′-untranslated region (5′-UTR) that can fold into a secondary structure that likely includes the ribosome-binding site (RBS). Mutations weakening this structure increased tnp mRNA translation. Asr9, an antisense sRNA complementary to the 5′-UTR, was shown to be very stable. Eliminating Asr9 considerably reduced tnp mRNA translation, suggesting that it helps to unfold this secondary structure, exposing the RBS. Ectopic overproduction of Asr9 increased the transposition frequency of a new ISPpu9 entering the cell by conjugation, suggesting improved tnp expression. Ssr9 has significant complementarity to Asr9 and annealed to it in vitro forming an RNA duplex; this would sequester it and possibly facilitate its degradation. Thus, the antisense Asr9 sRNA likely facilitates tnp expression, improving transposition, while Ssr9 might counteract Asr9, keeping tnp expression low.
Collapse
Affiliation(s)
- Guillermo Gómez-García
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid 28049, Spain
| | - Angel Ruiz-Enamorado
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid 28049, Spain
| | - Luis Yuste
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid 28049, Spain
| | - Fernando Rojo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid 28049, Spain
| | - Renata Moreno
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid 28049, Spain
| |
Collapse
|
14
|
Fu Y, Yu Z, Zhu L, Li Z, Yin W, Shang X, Chou SH, Tan Q, He J. The Multiple Regulatory Relationship Between RNA-Chaperone Hfq and the Second Messenger c-di-GMP. Front Microbiol 2021; 12:689619. [PMID: 34335515 PMCID: PMC8323549 DOI: 10.3389/fmicb.2021.689619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022] Open
Abstract
RNA chaperone protein Hfq is an important post-transcriptional regulator in bacteria, while c-di-GMP is a second messenger signaling molecule widely distributed in bacteria. Both factors have been found to play key roles in post-transcriptional regulation and signal transduction pathways, respectively. Intriguingly, the two factors show some common aspects in the regulation of certain physiological functions such as bacterial motility, biofilm formation, pathogenicity and so on. Therefore, there may be regulatory relationship between Hfq and c-di-GMP. For example, Hfq can directly regulate the activity of c-di-GMP metabolic enzymes or alter the c-di-GMP level through other systems, while c-di-GMP can indirectly enhance or inhibit the hfq gene expression through intermediate factors. In this article, after briefly introducing the Hfq and c-di-GMP regulatory systems, we will focus on the direct and indirect regulation reported between Hfq and c-di-GMP, aiming to compare and link the two regulatory systems to further study the complicated physiological and metabolic systems of bacteria, and to lay a solid foundation for drawing a more complete global regulatory network.
Collapse
Affiliation(s)
- Yang Fu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China.,State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoqing Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhou Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaodong Shang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qi Tan
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Park S, Prévost K, Heideman EM, Carrier MC, Azam MS, Reyer MA, Liu W, Massé E, Fei J. Dynamic interactions between the RNA chaperone Hfq, small regulatory RNAs, and mRNAs in live bacterial cells. eLife 2021; 10:64207. [PMID: 33616037 PMCID: PMC7987339 DOI: 10.7554/elife.64207] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/19/2021] [Indexed: 12/26/2022] Open
Abstract
RNA-binding proteins play myriad roles in regulating RNAs and RNA-mediated functions. In bacteria, the RNA chaperone Hfq is an important post-transcriptional gene regulator. Using live-cell super-resolution imaging, we can distinguish Hfq binding to different sizes of cellular RNAs. We demonstrate that under normal growth conditions, Hfq exhibits widespread mRNA-binding activity, with the distal face of Hfq contributing mostly to the mRNA binding in vivo. In addition, sRNAs can either co-occupy Hfq with the mRNA as a ternary complex, or displace the mRNA from Hfq in a binding face-dependent manner, suggesting mechanisms through which sRNAs rapidly access Hfq to induce sRNA-mediated gene regulation. Finally, our data suggest that binding of Hfq to certain mRNAs through its distal face can recruit RNase E to promote turnover of these mRNAs in a sRNA-independent manner, and such regulatory function of Hfq can be decoyed by sRNA competitors that bind strongly at the distal face. Messenger RNAs or mRNAs are molecules that the cell uses to transfer the information stored in the cell’s DNA so it can be used to make proteins. Bacteria can regulate their levels of mRNA molecules, and they can therefore control how many proteins are being made, by producing a different type of RNA called small regulatory RNAs or sRNAs. Each sRNA can bind to several specific mRNA targets, and lead to their degradation by an enzyme called RNase E. Certain bacterial RNA-binding proteins, such as Hfq, protect sRNAs from being degraded, and help them find their mRNA targets. Hfq is abundant in bacteria. It is critical for bacterial growth under harsh conditions and it is involved in the process through which pathogenic bacteria infect cells. However, it is outnumbered by the many different RNA molecules in the cell, which compete for binding to the protein. It is not clear how Hfq prioritizes the different RNAs, or how binding to Hfq alters RNA regulation. Park, Prévost et al. imaged live bacterial cells to see how Hfq binds to RNA strands of different sizes. The experiments revealed that, when bacteria are growing normally, Hfq is mainly bound to mRNA molecules, and it can recruit RNase E to speed up mRNA degradation without the need for sRNAs. Park, Prévost et al. also showed that sRNAs could bind to Hfq by either replacing the bound mRNA or co-binding alongside it. The sRNA molecules that strongly bind Hfq can compete against mRNA for binding, and thus slow down the degradation of certain mRNAs. Hfq could be a potential drug target for treating bacterial infections. Understanding how it interacts with other molecules in bacteria could provide help in the development of new therapeutics. These findings suggest that a designed RNA that binds strongly to Hfq could disrupt its regulatory roles in bacteria, killing them. This could be a feasible drug design opportunity to counter the emergence of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Seongjin Park
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Karine Prévost
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Canada
| | - Emily M Heideman
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Marie-Claude Carrier
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Canada
| | - Muhammad S Azam
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Matthew A Reyer
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, United States
| | - Wei Liu
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Eric Massé
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Canada
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, United States
| |
Collapse
|
16
|
Millar JA, Raghavan R. Modulation of Bacterial Fitness and Virulence Through Antisense RNAs. Front Cell Infect Microbiol 2021; 10:596277. [PMID: 33747974 PMCID: PMC7968456 DOI: 10.3389/fcimb.2020.596277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/30/2020] [Indexed: 01/22/2023] Open
Abstract
Regulatory RNAs contribute to gene expression control in bacteria. Antisense RNAs (asRNA) are a class of regulatory RNAs that are transcribed from opposite strands of their target genes. Typically, these untranslated transcripts bind to cognate mRNAs and rapidly regulate gene expression at the post-transcriptional level. In this article, we review asRNAs that modulate bacterial fitness and increase virulence. We chose examples that underscore the variety observed in nature including, plasmid- and chromosome-encoded asRNAs, a riboswitch-regulated asRNA, and asRNAs that require other RNAs or RNA-binding proteins for stability and activity. We explore how asRNAs improve bacterial fitness and virulence by modulating plasmid acquisition and maintenance, regulating transposon mobility, increasing resistance against bacteriophages, controlling flagellar production, and regulating nutrient acquisition. We conclude with a brief discussion on how this knowledge is helping to inform current efforts to develop new therapeutics.
Collapse
Affiliation(s)
- Jess A Millar
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Rahul Raghavan
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, United States.,Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
17
|
Irastortza-Olaziregi M, Amster-Choder O. Coupled Transcription-Translation in Prokaryotes: An Old Couple With New Surprises. Front Microbiol 2021; 11:624830. [PMID: 33552035 PMCID: PMC7858274 DOI: 10.3389/fmicb.2020.624830] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/18/2020] [Indexed: 01/17/2023] Open
Abstract
Coupled transcription-translation (CTT) is a hallmark of prokaryotic gene expression. CTT occurs when ribosomes associate with and initiate translation of mRNAs whose transcription has not yet concluded, therefore forming "RNAP.mRNA.ribosome" complexes. CTT is a well-documented phenomenon that is involved in important gene regulation processes, such as attenuation and operon polarity. Despite the progress in our understanding of the cellular signals that coordinate CTT, certain aspects of its molecular architecture remain controversial. Additionally, new information on the spatial segregation between the transcriptional and the translational machineries in certain species, and on the capability of certain mRNAs to localize translation-independently, questions the unanimous occurrence of CTT. Furthermore, studies where transcription and translation were artificially uncoupled showed that transcription elongation can proceed in a translation-independent manner. Here, we review studies supporting the occurrence of CTT and findings questioning its extent, as well as discuss mechanisms that may explain both coupling and uncoupling, e.g., chromosome relocation and the involvement of cis- or trans-acting elements, such as small RNAs and RNA-binding proteins. These mechanisms impact RNA localization, stability, and translation. Understanding the two options by which genes can be expressed and their consequences should shed light on a new layer of control of bacterial transcripts fate.
Collapse
Affiliation(s)
- Mikel Irastortza-Olaziregi
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
18
|
Ng Kwan Lim E, Sasseville C, Carrier MC, Massé E. Keeping Up with RNA-Based Regulation in Bacteria: New Roles for RNA Binding Proteins. Trends Genet 2020; 37:86-97. [PMID: 33077249 DOI: 10.1016/j.tig.2020.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/06/2023]
Abstract
RNA binding proteins (RBPs) are ubiquitously found in all kingdoms of life. They are involved in a plethora of regulatory events, ranging from direct regulation of gene expression to guiding modification of RNA molecules. As bacterial regulators, RBPs can act alone or in concert with RNA-based regulators, such as small regulatory RNAs (sRNAs), riboswitches, or clustered regularly interspaced short palindromic repeats (CRISPR) RNAs. Various functions of RBPs, whether dependent or not on an RNA regulator, have been described in the past. However, the past decade has been a fertile ground for the development of novel high-throughput methods. These methods acted as stepping-stones for the discovery of new functions of RBPs and helped in the understanding of the molecular mechanisms behind previously described regulatory events. Here, we present an overview of the recently identified roles of major bacterial RBPs from different model organisms. Moreover, the tight relationship between RBPs and RNA-based regulators will be explored.
Collapse
Affiliation(s)
- Evelyne Ng Kwan Lim
- Faculty of Medicine and Health Sciences, Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada
| | - Charles Sasseville
- Faculty of Medicine and Health Sciences, Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada
| | - Marie-Claude Carrier
- Faculty of Medicine and Health Sciences, Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada
| | - Eric Massé
- Faculty of Medicine and Health Sciences, Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada.
| |
Collapse
|
19
|
Widespread targeting of nascent transcripts by RsmA in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2020; 117:10520-10529. [PMID: 32332166 DOI: 10.1073/pnas.1917587117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the opportunistic pathogen Pseudomonas aeruginosa, RsmA is an RNA-binding protein that plays critical roles in the control of virulence, interbacterial interactions, and biofilm formation. Although RsmA is thought to exert its regulatory effects by binding full-length transcripts, the extent to which RsmA binds nascent transcripts has not been addressed. Moreover, which transcripts are direct targets of this key posttranscriptional regulator is largely unknown. Using chromatin immunoprecipitation coupled with high-throughput DNA sequencing, with cells grown in the presence and absence of the RNA polymerase inhibitor rifampicin, we identify hundreds of nascent transcripts that RsmA associates with in P. aeruginosa We also find that the RNA chaperone Hfq targets a subset of those nascent transcripts that RsmA associates with and that the two RNA-binding proteins can exert regulatory effects on common targets. Our findings establish that RsmA associates with many transcripts as they are being synthesized in P. aeruginosa, identify the transcripts targeted by RsmA, and suggest that RsmA and Hfq may act in a combinatorial fashion on certain transcripts. The binding of posttranscriptional regulators to nascent transcripts may be commonplace in bacteria where distinct regulators can function alone or in concert to achieve control over the translation of transcripts as soon as they emerge from RNA polymerase.
Collapse
|
20
|
Gao Q, Meng X, Gu H, Chen X, Yang H, Qiao Y, Guo X. Two Phenotype-Differentiated Acinetobacter baumannii Mutants That Survived in a Meropenem Selection Display Large Differences in Their Transcription Profiles. Front Microbiol 2019; 10:2308. [PMID: 31649648 PMCID: PMC6794425 DOI: 10.3389/fmicb.2019.02308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/20/2019] [Indexed: 11/13/2022] Open
Abstract
37662RM1 and 37662RM2 are two phenotypically different, carbapenem-resistant mutants of Acinetobacter baumannii 37662 isolate following selection with meropenem (MEM) at sub-inhibitory concentrations. 37662RM2 lacks capsule synthesis and shows dramatically increased biofilm formation, while 37662RM1 shows merely impaired capsule synthesis. Here we report that 37662RM1 and RM2 have transcription profiles that are different from those of their starting strain, 37662WT. There were far more differentially expressed genes in 37662RM2 than in 37662RM1. The capsule polysaccharide (CPS) synthesis-required genes (itrA2, gtr5, psaA, psaB, psaC, psaD, psaE, psaF, kpsS2, wzx, wzy, wza, wzb, and wzc) showed reduced transcription levels in 37662RM2, which may at least partially explain the loss of capsule synthesis. The csu operon genes responsible for pili assembly and their regulator genes bfmR-bfmS were over-expressed in 37662RM2. This result together with the established critical roles of these genes in biofilm formation provide solid evidence that up-regulation of csu and bfmR-bfmS should be considered responsible for the enhanced biofilm formation in 37662RM2. ISAba1 was found to insert into the intergenic region between the csu operon and the acrR gene and should be responsible for the significant up-regulation of acrR, which was proposed to be associated with biofilm formation. Genome sequencing revealed that the ISAba1 upstream bla OXA- 508 (a new member of bla OXA- 51-like) and acrR were duplicated, suggesting a replicative transposition event. Altogether, the phenotype divergence driven by MEM selection mainly occurs at the RNA level and the transposition of ISAba1 plays an important role in modulating gene expression to adapt to the environment.
Collapse
Affiliation(s)
- Qianqian Gao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaobin Meng
- Meizhou People's Hospital, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou, China
| | - Hanfu Gu
- Meizhou People's Hospital, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou, China
| | - Xueqin Chen
- Meizhou People's Hospital, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou, China
| | - Huaqing Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yangyang Qiao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xuemin Guo
- Meizhou People's Hospital, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou, China.,Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| |
Collapse
|
21
|
Chung CZ, Jaramillo JE, Ellis MJ, Bour DYN, Seidl LE, Jo DHS, Turk MA, Mann MR, Bi Y, Haniford DB, Duennwald ML, Heinemann IU. RNA surveillance by uridylation-dependent RNA decay in Schizosaccharomyces pombe. Nucleic Acids Res 2019; 47:3045-3057. [PMID: 30715470 PMCID: PMC6451125 DOI: 10.1093/nar/gkz043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
Uridylation-dependent RNA decay is a widespread eukaryotic pathway modulating RNA homeostasis. Terminal uridylyltransferases (Tutases) add untemplated uridyl residues to RNA 3'-ends, marking them for degradation by the U-specific exonuclease Dis3L2. In Schizosaccharomyces pombe, Cid1 uridylates a variety of RNAs. In this study, we investigate the prevalence and impact of uridylation-dependent RNA decay in S. pombe by transcriptionally profiling cid1 and dis3L2 deletion strains. We found that the exonuclease Dis3L2 represents a bottleneck in uridylation-dependent mRNA decay, whereas Cid1 plays a redundant role that can be complemented by other Tutases. Deletion of dis3L2 elicits a cellular stress response, upregulating transcription of genes involved in protein folding and degradation. Misfolded proteins accumulate in both deletion strains, yet only trigger a strong stress response in dis3L2 deficient cells. While a deletion of cid1 increases sensitivity to protein misfolding stress, a dis3L2 deletion showed no increased sensitivity or was even protective. We furthermore show that uridylyl- and adenylyltransferases cooperate to generate a 5'-NxAUUAAAA-3' RNA motif on dak2 mRNA. Our studies elucidate the role of uridylation-dependent RNA decay as part of a global mRNA surveillance, and we found that perturbation of this pathway leads to the accumulation of misfolded proteins and elicits cellular stress responses.
Collapse
Affiliation(s)
- Christina Z Chung
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Julia E Jaramillo
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Michael J Ellis
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Daniel Y N Bour
- Department of Pathology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Lauren E Seidl
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - David H S Jo
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Matthew A Turk
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Mitchell R Mann
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Yumin Bi
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - David B Haniford
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Martin L Duennwald
- Department of Pathology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| |
Collapse
|
22
|
Dos Santos RF, Arraiano CM, Andrade JM. New molecular interactions broaden the functions of the RNA chaperone Hfq. Curr Genet 2019; 65:1313-1319. [PMID: 31104083 DOI: 10.1007/s00294-019-00990-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/09/2023]
Abstract
The RNA chaperone Hfq is an important bacterial post-transcriptional regulator. Most studies on Hfq are focused on the role of this protein on small non-coding RNAs (sRNAs) and messenger RNAs (mRNAs). The most well-characterized function of Hfq is its role as RNA matchmaker, promoting the base-pairing between sRNAs and their mRNA targets. However, novel substrates and previous unrecognized functions of Hfq have now been identified, which expanded the regulatory spectrum of this protein. Hfq was recently found to bind rRNA and act as a new ribosome biogenesis factor, affecting rRNA processing, ribosome assembly, translational efficiency and translational fidelity. Hfq was also found to bind tRNAs, which could provide an additional mechanism for its role on the accuracy of protein synthesis. The list of substrates does not include RNA exclusively since Hfq was shown to bind DNA, playing an important role in DNA compaction. Additionally, Hfq is also capable to establish many protein-protein interactions. Overall, the functions of the RNA-binding protein Hfq have been expanded beyond its function in small RNA-mediated regulation. The identification of additional substrates and new functions provides alternative explanations for the importance of the chaperone Hfq as a global regulator.
Collapse
Affiliation(s)
- Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
23
|
Caulobacter crescentus Hfq structure reveals a conserved mechanism of RNA annealing regulation. Proc Natl Acad Sci U S A 2019; 116:10978-10987. [PMID: 31076551 PMCID: PMC6561178 DOI: 10.1073/pnas.1814428116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In many bacteria, the RNA chaperone protein Hfq binds to hundreds of small noncoding RNAs and improves their efficacy by aiding base pairing to target mRNAs. Hfq proteins contain a variable C-terminal domain (CTD), usually structurally disordered, which was recently demonstrated to inhibit Hfq from mediating nonspecific RNA annealing. We obtained a new structure that shows how this inhibition is achieved in Caulobacter crescentus Hfq. The structural data and chaperone assays provide an initial view of the little-known mechanism of small RNA regulation in Caulobacter. In addition, this work demonstrates how the Hfq CTD has evolved to meet the needs for species-specific selectivity in RNA binding and pairing of regulatory RNAs with cognate targets. We have solved the X-ray crystal structure of the RNA chaperone protein Hfq from the alpha-proteobacterium Caulobacter crescentus to 2.15-Å resolution, resolving the conserved core of the protein and the entire C-terminal domain (CTD). The structure reveals that the CTD of neighboring hexamers pack in crystal contacts, and that the acidic residues at the C-terminal tip of the protein interact with positive residues on the rim of Hfq, as has been recently proposed for a mechanism of modulating RNA binding. De novo computational models predict a similar docking of the acidic tip residues against the core of Hfq. We also show that C. crescentus Hfq has sRNA binding and RNA annealing activities and is capable of facilitating the annealing of certain Escherichia coli sRNA:mRNA pairs in vivo. Finally, we describe how the Hfq CTD and its acidic tip residues provide a mechanism to modulate annealing activity and substrate specificity in various bacteria.
Collapse
|
24
|
Morita T, Aiba H. Mechanism and physiological significance of autoregulation of the Escherichia coli hfq gene. RNA (NEW YORK, N.Y.) 2019; 25:264-276. [PMID: 30487269 PMCID: PMC6348989 DOI: 10.1261/rna.068106.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
The RNA chaperone Hfq plays a critical role in sRNA-mediated gene regulation in enteric bacteria. The major role of Hfq is to stimulate base-pairing between sRNAs and target mRNAs by binding both RNAs through three RNA-binding surfaces. To understand the post-transcriptional network exerted by Hfq and its associated sRNAs, it is important to know how the cellular concentration of Hfq is regulated. While an early study showed that hfq translation is repressed by Hfq, the detailed mechanism and biological significance of the hfq autoregulation remain to be studied. Here, we show that the synthesis of Hfq is strictly autoregulated to maintain the cellular concentration of Hfq within a limited range even when the hfq mRNA is overexpressed from a plasmid-borne hfq gene. Mutational and biochemical studies demonstrate that Hfq represses its own translation primarily by binding to the hfq mRNA through the distal face. The growth of cells harboring the hfq plasmid is markedly inhibited due to an increased Hfq level when the distal face of Hfq is mutated or the 5'-UTR of hfq is mutated. A mutation in the rim suppresses the growth inhibition caused by the distal face mutation, suggesting that the interaction of Hfq with undefined RNAs through the rim is responsible for the growth inhibition by the increased Hfq level. In addition, the data suggest that the hfq autoregulation operates not only in cells harboring a multicopy hfq gene but also in the wild-type cells.
Collapse
Affiliation(s)
- Teppei Morita
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Sciences, Suzuka, Mie, 513-8670, Japan
| | - Hiroji Aiba
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Sciences, Suzuka, Mie, 513-8670, Japan
| |
Collapse
|
25
|
Abstract
RNA-binding proteins chaperone the biological functions of noncoding RNA by reducing RNA misfolding, improving matchmaking between regulatory RNA and targets, and exerting quality control over RNP biogenesis. Recent studies of Escherichia coli CspA, HIV NCp, and E. coli Hfq are beginning to show how RNA-binding proteins remodel RNA structures. These different protein families use common strategies for disrupting or annealing RNA double helices, which can be used to understand the mechanisms by which proteins chaperone RNA-dependent regulation in bacteria.
Collapse
|
26
|
Zhang K, Yang XJ, Zhang TT, Li XL, Chen HY, Xu JJ. RNA chaperone assisted intramolecular annealing reaction towards oligouridylated RNA detection in cancer cells. Analyst 2019; 144:186-190. [PMID: 30393796 DOI: 10.1039/c8an01662c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proximity induced intramolecular nucleotide strand displacement, which can be simply performed in a single tube or in a complex cellular environment, is one of the key mechanisms for the detection of biological targets, especially for significant genetic molecules. The host factor for RNA phage Qb replication (Hfq), with two distinct single stranded RNA binding sites, has excellent properties as an affinity ligand in a proximity induced reaction. In this research, a versatile RNA chaperone-Hfq assisted RNA annealing strategy for the sensitive detection of the intermediate product, oligouridylated RNA, in a genetic regulation process was developed. Benefiting from the high binding affinity of Hfq for the probe and the target, the sensitive determination of oligouridylated RNA in cell lysis and human cervical cancer (HeLa) cells was successfully achieved. This study has also revealed that the Hfq assisted RNA annealing strategy can be further extended and applied in specific microRNA analysis, and RNA related tumorigenicity and disease diagnosis.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China. and Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Xue-Jiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Ting-Ting Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xiang-Ling Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
27
|
After the Fact(or): Posttranscriptional Gene Regulation in Enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 2018; 200:JB.00228-18. [PMID: 29967119 DOI: 10.1128/jb.00228-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To adapt to ever-changing environments, pathogens quickly alter gene expression. This can occur through transcriptional, posttranscriptional, or posttranslational regulation. Historically, transcriptional regulation has been thoroughly studied to understand pathogen niche adaptation, whereas posttranscriptional and posttranslational gene regulation has only relatively recently been appreciated to play a central role in bacterial pathogenesis. Posttranscriptional regulation may involve chaperones, nucleases, and/or noncoding small RNAs (sRNAs) and typically controls gene expression by altering the stability and/or translation of the target mRNA. In this review, we highlight the global importance of posttranscriptional regulation to enterohemorrhagic Escherichia coli (EHEC) gene expression and discuss specific mechanisms of how EHEC regulates expression of virulence factors critical to host colonization and disease progression. The low infectious dose of this intestinal pathogen suggests that EHEC is particularly well adapted to respond to the host environment.
Collapse
|
28
|
Santiago-Frangos A, Woodson SA. Hfq chaperone brings speed dating to bacterial sRNA. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1475. [PMID: 29633565 PMCID: PMC6002925 DOI: 10.1002/wrna.1475] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 11/11/2022]
Abstract
Hfq is a ubiquitous, Sm-like RNA binding protein found in most bacteria and some archaea. Hfq binds small regulatory RNAs (sRNAs), facilitates base pairing between sRNAs and their mRNA targets, and directly binds and regulates translation of certain mRNAs. Because sRNAs regulate many stress response pathways in bacteria, Hfq is essential for adaptation to different environments and growth conditions. The chaperone activities of Hfq arise from multipronged RNA binding by three different surfaces of the Hfq hexamer. The manner in which the structured Sm core of Hfq binds RNA has been well studied, but recent work shows that the intrinsically disordered C-terminal domain of Hfq modulates sRNA binding, creating a kinetic hierarchy of RNA competition for Hfq and ensuring the release of double-stranded sRNA-mRNA complexes. A combination of structural, biophysical, and genetic experiments reveals how Hfq recognizes its RNA substrates and plays matchmaker for sRNAs and mRNAs in the cell. The interplay between structured and disordered domains of Hfq optimizes sRNA-mediated post-transcriptional regulation, and is a common theme in RNA chaperones. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry.
Collapse
Affiliation(s)
- Andrew Santiago-Frangos
- Program in Cellular, Molecular and Developmental Biology and Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Sarah A Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
29
|
Westermann AJ. Regulatory RNAs in Virulence and Host-Microbe Interactions. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0002-2017. [PMID: 30003867 PMCID: PMC11633609 DOI: 10.1128/microbiolspec.rwr-0002-2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial regulatory RNAs are key players in adaptation to changing environmental conditions and response to diverse cellular stresses. However, while regulatory RNAs of bacterial pathogens have been intensely studied under defined conditions in vitro, characterization of their role during the infection of eukaryotic host organisms is lagging behind. This review summarizes our current understanding of the contribution of the different classes of regulatory RNAs and RNA-binding proteins to bacterial virulence and illustrates their role in infection by reviewing the mechanisms of some prominent representatives of each class. Emerging technologies are described that bear great potential for global, unbiased studies of virulence-related RNAs in bacterial model and nonmodel pathogens in the future. The review concludes by deducing common principles of RNA-mediated gene expression control of virulence programs in different pathogens, and by defining important open questions for upcoming research in the field.
Collapse
Affiliation(s)
- Alexander J Westermann
- Institute of Molecular Infection Biology, University of Würzburg
- Helmholtz Institute for RNA-Based Infection Research, D-97080 Würzburg, Germany
| |
Collapse
|
30
|
Kambara TK, Ramsey KM, Dove SL. Pervasive Targeting of Nascent Transcripts by Hfq. Cell Rep 2018; 23:1543-1552. [PMID: 29719264 PMCID: PMC5990048 DOI: 10.1016/j.celrep.2018.03.134] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/02/2018] [Accepted: 03/29/2018] [Indexed: 12/18/2022] Open
Abstract
Hfq is an RNA chaperone and an important post-transcriptional regulator in bacteria. Using chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq), we show that Hfq associates with hundreds of different regions of the Pseudomonas aeruginosa chromosome. These associations are abolished when transcription is inhibited, indicating that they reflect Hfq binding to transcripts during their synthesis. Analogous ChIP-seq analyses with the post-transcriptional regulator Crc reveal that it associates with many of the same nascent transcripts as Hfq, an activity we show is Hfq dependent. Our findings indicate that Hfq binds many transcripts co-transcriptionally in P. aeruginosa, often in concert with Crc, and uncover direct regulatory targets of these proteins. They also highlight a general approach for studying the interactions of RNA-binding proteins with nascent transcripts in bacteria. The binding of post-transcriptional regulators to nascent mRNAs may represent a prevalent means of controlling translation in bacteria where transcription and translation are coupled.
Collapse
Affiliation(s)
- Tracy K Kambara
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kathryn M Ramsey
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Andrade JM, Dos Santos RF, Chelysheva I, Ignatova Z, Arraiano CM. The RNA-binding protein Hfq is important for ribosome biogenesis and affects translation fidelity. EMBO J 2018; 37:embj.201797631. [PMID: 29669858 DOI: 10.15252/embj.201797631] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/28/2018] [Accepted: 03/13/2018] [Indexed: 11/09/2022] Open
Abstract
Ribosome biogenesis is a complex process involving multiple factors. Here, we show that the widely conserved RNA chaperone Hfq, which can regulate sRNA-mRNA basepairing, plays a critical role in rRNA processing and ribosome assembly in Escherichia coli Hfq binds the 17S rRNA precursor and facilitates its correct processing and folding to mature 16S rRNA Hfq assists ribosome assembly and associates with pre-30S particles but not with mature 30S subunits. Inactivation of Hfq strikingly decreases the pool of mature 70S ribosomes. The reduction in ribosome levels depends on residues located in the distal face of Hfq but not on residues found in the proximal and rim surfaces which govern interactions with the sRNAs. Our results indicate that Hfq-mediated regulation of ribosomes is independent of its function as sRNA-regulator. Furthermore, we observed that inactivation of Hfq compromises translation efficiency and fidelity, both features of aberrantly assembled ribosomes. Our work expands the functions of the Sm-like protein Hfq beyond its function in small RNA-mediated regulation and unveils a novel role of Hfq as crucial in ribosome biogenesis and translation.
Collapse
Affiliation(s)
- José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Irina Chelysheva
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
32
|
Durica-Mitic S, Göpel Y, Görke B. Carbohydrate Utilization in Bacteria: Making the Most Out of Sugars with the Help of Small Regulatory RNAs. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0013-2017. [PMID: 29573258 PMCID: PMC11633585 DOI: 10.1128/microbiolspec.rwr-0013-2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 12/11/2022] Open
Abstract
Survival of bacteria in ever-changing habitats with fluctuating nutrient supplies requires rapid adaptation of their metabolic capabilities. To this end, carbohydrate metabolism is governed by complex regulatory networks including posttranscriptional mechanisms that involve small regulatory RNAs (sRNAs) and RNA-binding proteins. sRNAs limit the response to substrate availability and set the threshold or time required for induction and repression of carbohydrate utilization systems. Carbon catabolite repression (CCR) also involves sRNAs. In Enterobacteriaceae, sRNA Spot 42 cooperates with the transcriptional regulator cyclic AMP (cAMP)-receptor protein (CRP) to repress secondary carbohydrate utilization genes when a preferred sugar is consumed. In pseudomonads, CCR operates entirely at the posttranscriptional level, involving RNA-binding protein Hfq and decoy sRNA CrcZ. Moreover, sRNAs coordinate fluxes through central carbohydrate metabolic pathways with carbohydrate availability. In Gram-negative bacteria, the interplay between RNA-binding protein CsrA and its cognate sRNAs regulates glycolysis and gluconeogenesis in response to signals derived from metabolism. Spot 42 and cAMP-CRP jointly downregulate tricarboxylic acid cycle activity when glycolytic carbon sources are ample. In addition, bacteria use sRNAs to reprogram carbohydrate metabolism in response to anaerobiosis and iron limitation. Finally, sRNAs also provide homeostasis of essential anabolic pathways, as exemplified by the hexosamine pathway providing cell envelope precursors. In this review, we discuss the manifold roles of bacterial sRNAs in regulation of carbon source uptake and utilization, substrate prioritization, and metabolism.
Collapse
Affiliation(s)
- Svetlana Durica-Mitic
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Yvonne Göpel
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Boris Görke
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
33
|
Ellis MJ, Carfrae LA, Macnair CR, Trussler RS, Brown ED, Haniford DB. Silent but deadly: IS200 promotes pathogenicity in Salmonella Typhimurium. RNA Biol 2017; 15:176-181. [PMID: 29120256 DOI: 10.1080/15476286.2017.1403001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Bacterial transposons were long thought of as selfish mobile genetic elements that propagate at the expense of 'host' bacterium fitness. However, limited transposition can benefit the host organism by promoting DNA rearrangements and facilitating horizontal gene transfer. Here we discuss and provide context for our recently published work which reported the surprising finding that an otherwise dormant transposon, IS200, encodes a regulatory RNA in Salmonella Typhimurium. This previous work identified a trans-acting sRNA that is encoded in the 5'UTR of IS200 transposase mRNA (tnpA). This sRNA represses expression of genes encoded within Salmonella Pathogenicity Island 1 (SPI-1), and accordingly limits invasion into non-phagocytic cells in vitro. We present new data here that shows IS200 elements are important for colonization of the mouse gastrointestinal tract. We discuss our previous and current findings in the context of transposon biology and suggest that otherwise 'silent' transposons may in fact play an important role in controlling host gene expression.
Collapse
Affiliation(s)
- Michael J Ellis
- a Department of Biochemistry , University of Western Ontario , London , ON Canada
| | - Lindsey A Carfrae
- b Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research , McMaster University , Hamilton , ON Canada
| | - Craig R Macnair
- b Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research , McMaster University , Hamilton , ON Canada
| | - Ryan S Trussler
- a Department of Biochemistry , University of Western Ontario , London , ON Canada
| | - Eric D Brown
- b Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research , McMaster University , Hamilton , ON Canada
| | - David B Haniford
- a Department of Biochemistry , University of Western Ontario , London , ON Canada
| |
Collapse
|
34
|
Kavita K, de Mets F, Gottesman S. New aspects of RNA-based regulation by Hfq and its partner sRNAs. Curr Opin Microbiol 2017; 42:53-61. [PMID: 29125938 PMCID: PMC10367044 DOI: 10.1016/j.mib.2017.10.014] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/15/2017] [Accepted: 10/19/2017] [Indexed: 12/30/2022]
Abstract
Hfq, an RNA chaperone, promotes the pairing of small RNAs (sRNAs) to target mRNAs, mediating post-transcriptional regulation of mRNA stability and translation. This regulation contributes to bacterial adaptation during stress and pathogenesis. Recent advances in sequencing techniques demonstrate the presence of sRNAs encoded not only in intergenic regions but also from the 3' and 5' UTRs of mRNAs, expanding sRNA regulatory networks. Additional layers of regulation by Hfq and its associated RNAs continue to be found. Newly identified RNA sponges modulate the activity of some sRNAs. A subset of sRNAs are proving to be bifunctional, able to pair with targets and also encoding small ORFs or binding other RNA binding proteins, such as CsrA. In addition, there are accumulating examples of Hfq inhibiting mRNA translation in the absence of sRNAs.
Collapse
Affiliation(s)
- Kumari Kavita
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Francois de Mets
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
35
|
Ellis MJ, Trussler RS, Charles O, Haniford DB. A transposon-derived small RNA regulates gene expression in Salmonella Typhimurium. Nucleic Acids Res 2017; 45:5470-5486. [PMID: 28335027 PMCID: PMC5435999 DOI: 10.1093/nar/gkx094] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/06/2017] [Indexed: 12/30/2022] Open
Abstract
Bacterial sRNAs play an important role in regulating many cellular processes including metabolism, outer membrane homeostasis and virulence. Although sRNAs were initially found in intergenic regions, there is emerging evidence that protein coding regions of the genome are a rich reservoir of sRNAs. Here we report that the 5΄UTR of IS200 transposase mRNA (tnpA) is processed to produce regulatory RNAs that affect expression of over 70 genes in Salmonella Typhimurium. We provide evidence that the tnpA derived sRNA base-pairs with invF mRNA to repress expression. As InvF is a transcriptional activator of SPI-1 encoded and other effector proteins, tnpA indirectly represses these genes. We show that deletion of IS200 elements in S. Typhimurium increases invasion in vitro and reduces growth rate, while over-expression of tnpA suppresses invasion. Our work indicates that tnpA acts as an sRNA ‘sponge’ that sets a threshold for activation of Salmonella pathogenicity island (SPI)-1 effector proteins and identifies a new class of ‘passenger gene’ for bacterial transposons, providing the first example of a bacterial transposon producing a regulatory RNA that controls host gene expression.
Collapse
Affiliation(s)
- Michael J Ellis
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ryan S Trussler
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Onella Charles
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - David B Haniford
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
36
|
Schulz EC, Seiler M, Zuliani C, Voigt F, Rybin V, Pogenberg V, Mücke N, Wilmanns M, Gibson TJ, Barabas O. Intermolecular base stacking mediates RNA-RNA interaction in a crystal structure of the RNA chaperone Hfq. Sci Rep 2017; 7:9903. [PMID: 28852099 PMCID: PMC5575007 DOI: 10.1038/s41598-017-10085-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/02/2017] [Indexed: 11/18/2022] Open
Abstract
The RNA-chaperone Hfq catalyses the annealing of bacterial small RNAs (sRNAs) with target mRNAs to regulate gene expression in response to environmental stimuli. Hfq acts on a diverse set of sRNA-mRNA pairs using a variety of different molecular mechanisms. Here, we present an unusual crystal structure showing two Hfq-RNA complexes interacting via their bound RNA molecules. The structure contains two Hfq6:A18 RNA assemblies positioned face-to-face, with the RNA molecules turned towards each other and connected via interdigitating base stacking interactions at the center. Biochemical data further confirm the observed interaction, and indicate that RNA-mediated contacts occur between Hfq-RNA complexes with various (ARN)X motif containing RNA sequences in vitro, including the stress response regulator OxyS and its target, fhlA. A systematic computational survey also shows that phylogenetically conserved (ARN)X motifs are present in a subset of sRNAs, some of which share similar modular architectures. We hypothesise that Hfq can co-opt RNA-RNA base stacking, an unanticipated structural trick, to promote the interaction of (ARN)X motif containing sRNAs with target mRNAs on a “speed-dating” fashion, thereby supporting their regulatory function.
Collapse
Affiliation(s)
- Eike C Schulz
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.,Hamburg Outstation, European Molecular Biology Laboratory, Hamburg, 22603, Germany.,Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Markus Seiler
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.,Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438, Frankfurt a.M., Germany
| | - Cecilia Zuliani
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Franka Voigt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.,Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Vladimir Rybin
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Vivian Pogenberg
- Hamburg Outstation, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| | - Norbert Mücke
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, 69120, Germany
| | - Matthias Wilmanns
- Hamburg Outstation, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Orsolya Barabas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.
| |
Collapse
|
37
|
Chen J, Gottesman S. Hfq links translation repression to stress-induced mutagenesis in E. coli. Genes Dev 2017; 31:1382-1395. [PMID: 28794186 PMCID: PMC5580658 DOI: 10.1101/gad.302547.117] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/17/2017] [Indexed: 01/08/2023]
Abstract
Here, Chen et al. show an example of Hfq repressing translation in the absence of sRNAs via major remodeling of the mRNA. They demonstrate that, by interacting with the mutS leader, Hfq serves as a critical switch that modulates bacteria from high-fidelity DNA replication to stress-induced mutagenesis. Mismatch repair (MMR) is a conserved mechanism exploited by cells to correct DNA replication errors both in growing cells and under nongrowing conditions. Hfq (host factor for RNA bacteriophage Qβ replication), a bacterial Lsm family RNA-binding protein, chaperones RNA–RNA interactions between regulatory small RNAs (sRNAs) and target messenger RNAs (mRNAs), leading to alterations of mRNA translation and/or stability. Hfq has been reported to post-transcriptionally repress the DNA MMR gene mutS in stationary phase, possibly limiting MMR to allow increased mutagenesis. Here we report that Hfq deploys dual mechanisms to control mutS expression. First, Hfq binds directly to an (AAN)3 motif within the mutS 5′ untranslated region (UTR), repressing translation in the absence of sRNA partners both in vivo and in vitro. Second, Hfq acts in a canonical pathway, promoting base-pairing of ArcZ sRNA with the mutS leader to inhibit translation. Most importantly, using pathway-specific mutS chromosomal alleles that specifically abrogate either regulatory pathway or both, we demonstrate that tight control of MutS levels in stationary phase contributes to stress-induced mutagenesis. By interacting with the mutS leader, Hfq serves as a critical switch that modulates bacteria from high-fidelity DNA replication to stress-induced mutagenesis.
Collapse
Affiliation(s)
- Jiandong Chen
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
38
|
Sonnleitner E, Prindl K, Bläsi U. The Pseudomonas aeruginosa CrcZ RNA interferes with Hfq-mediated riboregulation. PLoS One 2017; 12:e0180887. [PMID: 28686727 PMCID: PMC5501646 DOI: 10.1371/journal.pone.0180887] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022] Open
Abstract
The RNA chaperone Hfq regulates virulence and metabolism in the opportunistic pathogen Pseudomonas aeruginosa. During carbon catabolite repression (CCR) Hfq together with the catabolite repression control protein Crc can act as a translational repressor of catabolic genes. Upon relief of CCR, the level of the Hfq-titrating RNA CrcZ is increasing, which in turn abrogates Hfq-mediated translational repression. As the interdependence of Hfq-mediated and RNA based control mechanisms is poorly understood, we explored the possibility whether the regulatory RNA CrcZ can interfere with riboregulation. We first substantiate that the P. aeruginosa Hfq is proficient and required for riboregulation of the transcriptional activator gene antR by the small RNA PrrF1-2. Our studies further revealed that CrcZ can interfere with PrrF1-2/Hfq-mediated regulation of antR. The competition for Hfq can be rationalized by the higher affinity of Hfq for CrcZ than for antR mRNA.
Collapse
Affiliation(s)
- Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
- * E-mail:
| | - Konstantin Prindl
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
39
|
Abstract
Bacterial pathogens must endure or adapt to different environments and stresses during transmission and infection. Posttranscriptional gene expression control by regulatory RNAs, such as small RNAs and riboswitches, is now considered central to adaptation in many bacteria, including pathogens. The study of RNA-based regulation (riboregulation) in pathogenic species has provided novel insight into how these bacteria regulate virulence gene expression. It has also uncovered diverse mechanisms by which bacterial small RNAs, in general, globally control gene expression. Riboregulators as well as their targets may also prove to be alternative targets or provide new strategies for antimicrobials. In this article, we present an overview of the general mechanisms that bacteria use to regulate with RNA, focusing on examples from pathogens. In addition, we also briefly review how deep sequencing approaches have aided in opening new perspectives in small RNA identification and the study of their functions. Finally, we discuss examples of riboregulators in two model pathogens that control virulence factor expression or survival-associated phenotypes, such as stress tolerance, biofilm formation, or cell-cell communication, to illustrate how riboregulation factors into regulatory networks in bacterial pathogens.
Collapse
|
40
|
Parker A, Cureoglu S, De Lay N, Majdalani N, Gottesman S. Alternative pathways for Escherichia coli biofilm formation revealed by sRNA overproduction. Mol Microbiol 2017; 105:309-325. [PMID: 28470798 DOI: 10.1111/mmi.13702] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2017] [Indexed: 01/06/2023]
Abstract
Small regulatory RNAs have major roles in many regulatory circuits in Escherichia coli and other bacteria, including the transition from planktonic to biofilm growth. We tested Hfq-dependent sRNAs in E. coli for their ability, when overproduced, to inhibit or stimulate biofilm formation, in two different growth media. We identify two mutually exclusive pathways for biofilm formation. In LB, PgaA, encoding an adhesion export protein, played a critical role; biofilm was independent of the general stress factor RpoS or CsgD, regulator of curli and other biofilm genes. The PgaA-dependent pathway was stimulated upon overproduction of DsrA, via negative regulation of H-NS, or of GadY, likely by titration of CsrA. In yeast extract casamino acids (YESCA) media, biofilm was dependent on RpoS and CsgD, but independent of PgaA; RpoS appears to indirectly negatively regulate the PgaA-dependent pathway in YESCA medium. Deletions of most sRNAs had very little effect on biofilm, although deletion of hfq, encoding an RNA chaperone, was defective in both LB and YESCA. Deletion of ArcZ, a small RNA activator of RpoS, decreased biofilm in YESCA; only a portion of this defect could be bypassed by overproduction of RpoS. Overall, sRNAs highlight different pathways to biofilm formation.
Collapse
Affiliation(s)
- Ashley Parker
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Suanur Cureoglu
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Nicholas De Lay
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Nadim Majdalani
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| |
Collapse
|
41
|
Vandecraen J, Chandler M, Aertsen A, Van Houdt R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit Rev Microbiol 2017; 43:709-730. [PMID: 28407717 DOI: 10.1080/1040841x.2017.1303661] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transposable elements (TE), small mobile genetic elements unable to exist independently of the host genome, were initially believed to be exclusively deleterious genomic parasites. However, it is now clear that they play an important role as bacterial mutagenic agents, enabling the host to adapt to new environmental challenges and to colonize new niches. This review focuses on the impact of insertion sequences (IS), arguably the smallest TE, on bacterial genome plasticity and concomitant adaptability of phenotypic traits, including resistance to antibacterial agents, virulence, pathogenicity and catabolism. The direct consequence of IS transposition is the insertion of one DNA sequence into another. This event can result in gene inactivation as well as in modulation of neighbouring gene expression. The latter is usually mediated by de-repression or by the introduction of a complete or partial promoter located within the element. Furthermore, transcription and transposition of IS are affected by host factors and in some cases by environmental signals offering the host an adaptive strategy and promoting genetic variability to withstand the environmental challenges.
Collapse
Affiliation(s)
- Joachim Vandecraen
- a Microbiology Unit, Interdisciplinary Biosciences , Belgian Nuclear Research Centre (SCK•CEN) , Mol , Belgium.,b Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre , Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering , KU Leuven , Leuven , Belgium
| | - Michael Chandler
- c Laboratoire de Microbiologie et Génétique Moléculaires, Centre national de la recherche scientifique , Toulouse , France
| | - Abram Aertsen
- b Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre , Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering , KU Leuven , Leuven , Belgium
| | - Rob Van Houdt
- a Microbiology Unit, Interdisciplinary Biosciences , Belgian Nuclear Research Centre (SCK•CEN) , Mol , Belgium
| |
Collapse
|
42
|
Ducret V, Gonzalez MR, Scrignari T, Perron K. OprD Repression upon Metal Treatment Requires the RNA Chaperone Hfq in Pseudomonas aeruginosa. Genes (Basel) 2016; 7:genes7100082. [PMID: 27706108 PMCID: PMC5083921 DOI: 10.3390/genes7100082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/28/2016] [Indexed: 12/19/2022] Open
Abstract
The metal-specific CzcRS two-component system in Pseudomonas aeruginosa is involved in the repression of the OprD porin, causing in turn carbapenem antibiotic resistance in the presence of high zinc concentration. It has also been shown that CzcR is able to directly regulate the expression of multiple genes including virulence factors. CzcR is therefore an important regulator connecting (i) metal response, (ii) pathogenicity and (iii) antibiotic resistance in P. aeruginosa. Recent data have suggested that other regulators could negatively control oprD expression in the presence of zinc. Here we show that the RNA chaperone Hfq is a key factor acting independently of CzcR for the repression of oprD upon Zn treatment. Additionally, we found that an Hfq-dependent mechanism is necessary for the localization of CzcR to the oprD promoter, mediating oprD transcriptional repression. Furthermore, in the presence of Cu, CopR, the transcriptional regulator of the CopRS two-component system also requires Hfq for oprD repression. Altogether, these results suggest important roles for this RNA chaperone in the context of environment-sensing and antibiotic resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva 1211, Switzerland.
| | - Manuel R Gonzalez
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva 1211, Switzerland.
| | - Tiziana Scrignari
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva 1211, Switzerland.
- EPFL-SV-GHI-UPBLO, Lausanne 1015, Switzerland.
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva 1211, Switzerland.
| |
Collapse
|
43
|
Wroblewska Z, Olejniczak M. Hfq assists small RNAs in binding to the coding sequence of ompD mRNA and in rearranging its structure. RNA (NEW YORK, N.Y.) 2016; 22:979-94. [PMID: 27154968 PMCID: PMC4911921 DOI: 10.1261/rna.055251.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/01/2016] [Indexed: 05/23/2023]
Abstract
The bacterial protein Hfq participates in the regulation of translation by small noncoding RNAs (sRNAs). Several mechanisms have been proposed to explain the role of Hfq in the regulation by sRNAs binding to the 5'-untranslated mRNA regions. However, it remains unknown how Hfq affects those sRNAs that target the coding sequence. Here, the contribution of Hfq to the annealing of three sRNAs, RybB, SdsR, and MicC, to the coding sequence of Salmonella ompD mRNA was investigated. Hfq bound to ompD mRNA with tight, subnanomolar affinity. Moreover, Hfq strongly accelerated the rates of annealing of RybB and MicC sRNAs to this mRNA, and it also had a small effect on the annealing of SdsR. The experiments using truncated RNAs revealed that the contributions of Hfq to the annealing of each sRNA were individually adjusted depending on the structures of interacting RNAs. In agreement with that, the mRNA structure probing revealed different structural contexts of each sRNA binding site. Additionally, the annealing of RybB and MicC sRNAs induced specific conformational changes in ompD mRNA consistent with local unfolding of mRNA secondary structure. Finally, the mutation analysis showed that the long AU-rich sequence in the 5'-untranslated mRNA region served as an Hfq binding site essential for the annealing of sRNAs to the coding sequence. Overall, the data showed that the functional specificity of Hfq in the annealing of each sRNA to the ompD mRNA coding sequence was determined by the sequence and structure of the interacting RNAs.
Collapse
Affiliation(s)
- Zuzanna Wroblewska
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | - Mikolaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| |
Collapse
|
44
|
Updegrove TB, Zhang A, Storz G. Hfq: the flexible RNA matchmaker. Curr Opin Microbiol 2016; 30:133-138. [PMID: 26907610 PMCID: PMC4821791 DOI: 10.1016/j.mib.2016.02.003] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
Abstract
The RNA chaperone protein Hfq is critical to the function of small, base pairing RNAs in many bacteria. In the past few years, structures and modeling of wild type Hfq and assays of various mutants have documented that the homohexameric Hfq ring can contact RNA at four sites (proximal face, distal face, rim and C-terminal tail) and that different RNAs bind to these sites in various configurations. These studies together with novel in vitro and in vivo experimental approaches are beginning to give mechanistic insights into how Hfq acts to promote small RNA-mRNA pairing and indicate that flexibility is integral to the Hfq role in RNA matchmaking.
Collapse
Affiliation(s)
- Taylor B Updegrove
- Division of Molecular and Cellular Biology, NICHD, National Institutes of Health, 18 Library Dr MSC 5430, Bethesda, MD 20892-5430, USA
| | - Aixia Zhang
- Division of Molecular and Cellular Biology, NICHD, National Institutes of Health, 18 Library Dr MSC 5430, Bethesda, MD 20892-5430, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, NICHD, National Institutes of Health, 18 Library Dr MSC 5430, Bethesda, MD 20892-5430, USA.
| |
Collapse
|
45
|
Ellis MJ, Haniford DB. Riboregulation of bacterial and archaeal transposition. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:382-98. [DOI: 10.1002/wrna.1341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Michael J. Ellis
- Department of Biochemistry; University of Western Ontario; London Canada
| | - David B. Haniford
- Department of Biochemistry; University of Western Ontario; London Canada
| |
Collapse
|
46
|
Schu DJ, Zhang A, Gottesman S, Storz G. Alternative Hfq-sRNA interaction modes dictate alternative mRNA recognition. EMBO J 2015; 34:2557-73. [PMID: 26373314 DOI: 10.15252/embj.201591569] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/11/2015] [Indexed: 11/09/2022] Open
Abstract
Many bacteria use small RNAs (sRNAs) and the RNA chaperone Hfq to regulate mRNA stability and translation. Hfq, a ring-shaped homohexamer, has multiple faces that can bind both sRNAs and their mRNA targets. We find that Hfq has at least two distinct ways in which it interacts with sRNAs; these different binding properties have strong effects on the stability of the sRNA in vivo and the sequence requirements of regulated mRNAs. Class I sRNAs depend on proximal and rim Hfq sites for stability and turn over rapidly. Class II sRNAs are more stable and depend on the proximal and distal Hfq sites for stabilization. Using deletions and chimeras, we find that while Class I sRNAs regulate mRNA targets with previously defined ARN repeats, Class II sRNAs regulate mRNAs carrying UA-rich rim-binding sites. We discuss how these different binding modes may correlate with different roles in the cell, with Class I sRNAs acting as emergency responders and Class II sRNAs acting as silencers.
Collapse
Affiliation(s)
- Daniel J Schu
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, USA
| | - Aixia Zhang
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, USA
| | - Gisela Storz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| |
Collapse
|
47
|
Ellis MJ, Trussler RS, Haniford DB. A cis-encoded sRNA, Hfq and mRNA secondary structure act independently to suppress IS200 transposition. Nucleic Acids Res 2015; 43:6511-27. [PMID: 26044710 PMCID: PMC4513863 DOI: 10.1093/nar/gkv584] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/22/2015] [Indexed: 12/13/2022] Open
Abstract
IS200 is found throughout Enterobacteriaceae and transposes at a notoriously low frequency. In addition to the transposase protein (TnpA), IS200 encodes an uncharacterized Hfq-binding sRNA that is encoded opposite to the tnpA 5'UTR. In the current work we asked if this sRNA represses tnpA expression. We show here that the IS200 sRNA (named art200 for antisense regulator of transposase IS200) basepairs with tnpA to inhibit translation initiation. Unexpectedly, art200-tnpA pairing is limited to 40 bp, despite 90 nt of perfect complementarity. Additionally, we show that Hfq and RNA secondary structure in the tnpA 5'UTR each repress tnpA expression in an art200-independent manner. Finally, we show that disrupting translational control of tnpA expression leads to increased IS200 transposition in E. coli. The current work provides new mechanistic insight into why IS200 transposition is so strongly suppressed. The possibility of art200 acting in trans to regulate a yet-unidentified target is discussed as well as potential applications of the IS200 system for designing novel riboregulators.
Collapse
Affiliation(s)
- Michael J Ellis
- Department of Biochemistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Ryan S Trussler
- Department of Biochemistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - David B Haniford
- Department of Biochemistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| |
Collapse
|