1
|
Erdem Aynur Z, Başbülbül G, Karaynir A, Bozdoğan B. Bacterial biofilm degradation by recombinant SpdAZ cloned from Streptococcus pyogenes ADUYE1. Microb Pathog 2025:107725. [PMID: 40414440 DOI: 10.1016/j.micpath.2025.107725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 05/16/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Nucleases break down nucleic acids into smaller pieces or monomers. These enzymes are important in many biological activities, such as obtaining nucleotides necessary for cell division, DNA repair and recombination, fragmenting DNA during apoptosis, as well as functioning as an infectious agent or contributing to host defense mechanisms and disrupting bacterial biofilm structures. Herein, a nuclease from Streptococcus pyogenes (S. pyogenes) ADUYE1, homologous to the spd3 gene and named as spdAZ, was cloned and heterologously expressed in Escherichia coli (E. coli). Total protein was extracted from transformed E. coli and recombinant SpdAZ (rSpdAZ) was purified using IMAC method. Sequencing analysis of the cloned gene showed 5 amino acid substitutions between Spd3 and SpdAZ. The DNAse activity of the purified rSpdAZ was tested on viral, bacterial and eukaryotic DNA as well as with DNase agar. The anti-biofilm activity of rSpdAZ was tested against biofilms formed by 8 bacterial isolates, including Pseudomonas aeruginosa, E. coli, methicillin-resistant Staphylococcus aureus (MRSA), and methicillin-resistant Staphylococcus epidermidis (MRSE). Our results showed that rSpdAZ exhibited nuclease activity on all the DNA samples tested. rSpdAZ enzyme was effective against the biofilms formed by all the tested bacteria. While the effect of rSpdAZ in reducing the mature biofilm layers ranged between 65% and 93%, its effect in preventing biofilm formation (i.e., pre-biofilm) was between 48% and 91%. Enzyme activity against mature biofilms occurred after 4 hours in all studied species Biofilm formation is one of the main problems to fight against bacteria by decreasing efficacy of the antibacterial agents used. Our data suggest that rSpdAZ may be used as an antibiofilm agent.
Collapse
Affiliation(s)
- Zeynep Erdem Aynur
- Aydın Adnan Menderes University, Recombinant DNA and Recombinant Protein Research Center (REDPROM), 09100, Aydin, Türkiye.
| | - Gamze Başbülbül
- Aydın Adnan Menderes University, Recombinant DNA and Recombinant Protein Research Center (REDPROM), 09100, Aydin, Türkiye; Aydın Adnan Menderes University, Faculty of Science Department of Biology, 09100 Aydin, Türkiye
| | - Abdulkerim Karaynir
- Aydın Adnan Menderes University, Recombinant DNA and Recombinant Protein Research Center (REDPROM), 09100, Aydin, Türkiye
| | - Bülent Bozdoğan
- Aydın Adnan Menderes University, Recombinant DNA and Recombinant Protein Research Center (REDPROM), 09100, Aydin, Türkiye; Aydın Adnan Menderes University, Faculty of Medicine Department of Medical Microbiology, 09100 Aydin, Türkiye
| |
Collapse
|
2
|
Hendricks AL, More KR, Devaraj A, Buzzo JR, Robledo-Avila FH, Partida-Sanchez S, Bakaletz LO, Goodman SD. Bacterial biofilm-derived H-NS protein acts as a defense against Neutrophil Extracellular Traps (NETs). NPJ Biofilms Microbiomes 2025; 11:58. [PMID: 40234459 PMCID: PMC12000423 DOI: 10.1038/s41522-025-00691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
Extracellular DNA (eDNA) is crucial for the structural integrity of bacterial biofilms as they undergo transformation from B-DNA to Z-DNA as the biofilm matures. This transition to Z-DNA increases biofilm rigidity and prevents binding by canonical B-DNA-binding proteins, including nucleases. One of the primary defenses against bacterial infections are Neutrophil Extracellular Traps (NETs), wherein neutrophils release their own eDNA to trap and kill bacteria. Here we show that H-NS, a bacterial nucleoid associated protein (NAP) that is also released during biofilm development, is able to incapacitate NETs. Indeed, when exposed to human derived neutrophils, H-NS prevented the formation of NETs and lead to NET eDNA retraction in previously formed NETs. NETs that were exposed to H-NS also lost their ability to kill free-living bacteria which made H-NS an attractive therapeutic candidate for the control of NET-related human diseases. A model of H-NS release from biofilms and NET incapacitation is discussed.
Collapse
Affiliation(s)
- A L Hendricks
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - K R More
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - A Devaraj
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - J R Buzzo
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - F H Robledo-Avila
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - S Partida-Sanchez
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH, USA
| | - L O Bakaletz
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH, USA
| | - S D Goodman
- Center for Microbe and Immunity Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Santoshi M, Tare P, Nagaraja V. Nucleoid-associated proteins of mycobacteria come with a distinctive flavor. Mol Microbiol 2025; 123:177-194. [PMID: 38922783 DOI: 10.1111/mmi.15287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
In every bacterium, nucleoid-associated proteins (NAPs) play crucial roles in chromosome organization, replication, repair, gene expression, and other DNA transactions. Their central role in controlling the chromatin dynamics and transcription has been well-appreciated in several well-studied organisms. Here, we review the diversity, distribution, structure, and function of NAPs from the genus Mycobacterium. We highlight the progress made in our understanding of the effects of these proteins on various processes and in responding to environmental stimuli and stress of mycobacteria in their free-living as well as during distinctive intracellular lifestyles. We project them as potential drug targets and discuss future studies to bridge the information gap with NAPs from well-studied systems.
Collapse
Affiliation(s)
- Meghna Santoshi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Priyanka Tare
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
4
|
Rodríguez-Miranda E, Reyes-Escogido MDL, Olmedo-Ramírez V, Jiménez-Garza O, López-Briones S, Hernández-Luna MA. Differential Expression of fimH, ihf, upaB, and upaH Genes in Biofilms- and Suspension-Grown Bacteria From Samples of Different Uropathogenic Strains of Escherichia coli. Int J Microbiol 2024; 2024:5235071. [PMID: 39703715 PMCID: PMC11658850 DOI: 10.1155/ijm/5235071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/27/2024] [Accepted: 11/30/2024] [Indexed: 12/21/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) strains are the main bacteria that cause urinary tract infections (UTIs). UPEC are a significant public health hazard due to their high proliferation, antibiotic resistance, and infection recurrence. The ability to form biofilms is a mechanism of antibiotic resistance, which requires the expression of different genes such as fimH, ihf, upaB, and upaH. Despite the relevance of biofilm formation in bacterial pathogenicity, differences in the expression level of these genes among bacterial growth conditions have been little studied. Here, we have characterized the expression of fimH, ihf, upaB, and upaH genes in biofilms and suspension-grown bacteria of different E. coli strains. These included the UPEC CFT073, the multidrug-resistant strain CDC-AR-0346, and clinical isolates obtained from UTI patients. The expression of fimH, ihf, upaB, and upaH was markedly heterogeneous in clinical isolates, both in terms of transcript levels and response to suspension or biofilm conditions. That expression pattern was distinct from the one in UPEC CFT073, where upaB and upaH were upregulated and ihf and fimH were slightly downregulated in biofilm. In conclusion, the data presented here show that the pattern of biofilm-associated genes in the clinical isolates from UTI patients is not fully related to the reference strain of UPEC CFT073. However, analysis of a larger number of samples is required.
Collapse
Affiliation(s)
- Esmeralda Rodríguez-Miranda
- Translational Biomedicine Laboratory, Department of Medicine and Nutrition, Health Sciences Division, University of Guanajuato, León, Guanajuato, Mexico
| | - María de Lourdes Reyes-Escogido
- Metabolism Laboratory, Department of Medicine and Nutrition, Health Sciences Division, University of Guanajuato, León, Guanajuato, Mexico
| | - Viridiana Olmedo-Ramírez
- Clinic Laboratory, Silao General Hospital, Ministry of Health of the State of Guanajuato, Silao, Guanajuato, Mexico
| | - Octavio Jiménez-Garza
- Health Sciences Institute, Autonomous University of Hidalgo State, Pachuca, Hidalgo, Mexico
| | - Sergio López-Briones
- Translational Biomedicine Laboratory, Department of Medicine and Nutrition, Health Sciences Division, University of Guanajuato, León, Guanajuato, Mexico
| | - Marco Antonio Hernández-Luna
- Translational Biomedicine Laboratory, Department of Medicine and Nutrition, Health Sciences Division, University of Guanajuato, León, Guanajuato, Mexico
| |
Collapse
|
5
|
Nielsen SM, Johnsen KK, Hansen LBS, Rikvold PD, Møllebjerg A, Palmén LG, Durhuus T, Schlafer S, Meyer RL. Large-scale screening identifies enzyme combinations that remove in situ grown oral biofilm. Biofilm 2024; 8:100229. [PMID: 39830521 PMCID: PMC11740801 DOI: 10.1016/j.bioflm.2024.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 01/22/2025] Open
Abstract
Bacteria in the oral cavity are responsible for the development of dental diseases such as caries and periodontitis, but it is becoming increasingly clear that the oral microbiome also benefits human health. Many oral care products on the market are antimicrobial, killing a large part of the oral microbiome but without removing the disease-causing biofilm. Instead, non-biocidal matrix-degrading enzymes may be used to selectively remove biofilm without harming the overall microbiome. The challenge of using enzymes to degrade biofilms is to match the narrow specificity of enzymes with the large structural diversity of extracellular polymeric substances that hold the biofilm together. In this study, we therefore perform a large-scale screening of single and multi-enzyme formulations to identify combinations of enzymes that most effectively remove dental biofilm. We tested >400 different treatment modalities using 44 different enzymes in combinations with up to six enzymes in each formulation, on in vitro biofilms inoculated with human saliva. Mutanase was the only enzyme capable of removing biofilm on its own. Multi-enzyme formulations removed up to 69 % of the biofilm volume, and the most effective formulations all contained mutanase. We shortlisted 10 enzyme formulations to investigate their efficacy against biofilms formed on glass slabs on dental splints worn by 9 different test subjects. Three of the ten formulations removed more than 50 % of the biofilm volume. If optimal enzyme concentration and exposure time can be reached in vivo, these enzyme combinations have potential to be used in novel non-biocidal oral care products for dental biofilm control.
Collapse
Affiliation(s)
- Signe Maria Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
- Novonesis A/S, Biologiens Vej 2, 2800, Kgs. Lyngby, Denmark
| | - Karina Kambourakis Johnsen
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus C, Denmark
| | | | - Pernille Dukanovic Rikvold
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus C, Denmark
- Novonesis A/S, Biologiens Vej 2, 2800, Kgs. Lyngby, Denmark
| | - Andreas Møllebjerg
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
- Novonesis A/S, Biologiens Vej 2, 2800, Kgs. Lyngby, Denmark
| | | | - Thomas Durhuus
- Novonesis A/S, Biologiens Vej 2, 2800, Kgs. Lyngby, Denmark
| | - Sebastian Schlafer
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus C, Denmark
- Department of Biology, Faculty of Natural Sciences, Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark
| | - Rikke Louise Meyer
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
- Department of Biology, Faculty of Natural Sciences, Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark
| |
Collapse
|
6
|
Gupta A, Guptasarma P. E. coli cells advance into phase-separated (biofilm-simulating) extracellular polymeric substance containing DNA, HU, and lipopolysaccharide. J Bacteriol 2024; 206:e0030924. [PMID: 39445815 PMCID: PMC11580401 DOI: 10.1128/jb.00309-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
We have previously shown that the nucleoid-associated protein, HU, uses its DNA-binding surfaces to bind to bacterial outer-membrane lipopolysaccharide (LPS), causing HU to act as a glue aiding the adherence of DNA to bacteria, e.g., in biofilms. We have also previously shown that HU and DNA coacervate into a state of liquid-liquid phase separation (LLPS), within bacterial cells and also in vitro. Here, we show that HU and free LPS (which is ordinarily shed by bacteria) also condense into a state of phase separation. Coacervates of HU, DNA, and free LPS are less liquid-like than coacervates of HU and DNA. Escherichia coli cells bearing LPS on their surfaces are shown to adhere to (as well as advance into) coacervates of HU and DNA. HU appears to play a role, therefore, in maintaining both intracellular and extracellular states of phase separation with DNA that are compatible with LPS and LPS-bearing E. coli, with LPS determining the liquidity of the biofilm-simulating coacervate. IMPORTANCE Understanding the constitution and behavior of biofilms is crucial to understanding how to deal with persistent biofilms. This study, together with other recent studies from our group, elucidates a novel aspect of the extracellular polymeric substance (EPS) of Escherichia coli biofilms, by creating a simulacrum of the EPS and then demonstrating that its formation involves liquid-liquid phase separation (LLPS) of HU, DNA, and lipopolysaccharide (LPS) components, with LPS determining the liquidity of this EPS simulacrum. The findings provide insight into the nature of biofilms and into how the interplay of HU, DNA, and LPS could modulate the structural integrity and functional dynamics of biofilms.
Collapse
Affiliation(s)
- Archit Gupta
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, SAS Nagar, Punjab, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, SAS Nagar, Punjab, India
| | - Purnananda Guptasarma
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, SAS Nagar, Punjab, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, SAS Nagar, Punjab, India
| |
Collapse
|
7
|
Du X, Li P, Fan C, Tian J, Lin Y, Xie J, Cheng J, Fu Y, Jiang D, Yuan M, Yu X, Tsuda K, Li B. Holliday junction resolvase RuvC targets biofilm eDNA and confers plant resistance to vascular pathogens. NATURE PLANTS 2024; 10:1710-1723. [PMID: 39384943 DOI: 10.1038/s41477-024-01817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
A biofilm lifestyle is critical for bacterial pathogens to colonize and protect themselves from host immunity and antimicrobial chemicals in plants and animals. The formation and regulation mechanisms of phytobacterial biofilm are still obscure. Here we found that the protein Ralstonia solanacearum resistance to ultraviolet C (RuvC) is highly abundant in biofilm and positively regulates pathogenicity by controlling systemic movement in tomato xylem. RuvC protein accumulates at the later stage of biofilm development and specifically targets Holliday junction (HJ)-like structures to disrupt the biofilm extracellular DNA (eDNA) lattice, thus facilitating biofilm dispersal. Recombinant RuvC protein can resolve extracellular HJ to prevent bacterial biofilm formation. Heterologous expression of R. solanacearum or Xanthomonas oryzae pv. oryzae RuvC with plant secretion signal in tomato or rice confers resistance to bacterial wilt or bacterial blight disease, respectively. Plant chloroplast-localized HJ resolvase monokaryotic chloroplast 1 (MOC1), which shares structural similarity with bacterial RuvC, shows a strong inhibitory effect on bacterial biofilm formation. Relocalization of SlMOC1 to apoplast in tomato roots leads to increased resistance to bacterial wilt. Our novel finding reveals a critical pathogenesis mechanism of R. solanacearum and provides an efficient biotechnology strategy to improve plant resistance to bacterial vascular disease.
Collapse
Affiliation(s)
- Xinya Du
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Pengyue Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Changqiu Fan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jingjing Tian
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiasen Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Daohong Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Meng Yuan
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Kenichi Tsuda
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Bo Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China.
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Morrison JJ, Madden EK, Banas DA, DiBiasio EC, Hansen M, Krogfelt KA, Rowley DC, Cohen PS, Camberg JL. Metabolic flux regulates growth transitions and antibiotic tolerance in uropathogenic Escherichia coli. J Bacteriol 2024; 206:e0016224. [PMID: 38814092 PMCID: PMC11332148 DOI: 10.1128/jb.00162-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024] Open
Abstract
Reducing growth and limiting metabolism are strategies that allow bacteria to survive exposure to environmental stress and antibiotics. During infection, uropathogenic Escherichia coli (UPEC) may enter a quiescent state that enables them to reemerge after the completion of successful antibiotic treatment. Many clinical isolates, including the well-characterized UPEC strain CFT073, also enter a metabolite-dependent, quiescent state in vitro that is reversible with cues, including peptidoglycan-derived peptides and amino acids. Here, we show that quiescent UPEC is antibiotic tolerant and demonstrate that metabolic flux in the tricarboxylic acid (TCA) cycle regulates the UPEC quiescent state via succinyl-CoA. We also demonstrate that the transcriptional regulator complex integration host factor and the FtsZ-interacting protein ZapE, which is important for E. coli division during stress, are essential for UPEC to enter the quiescent state. Notably, in addition to engaging FtsZ and late-stage cell division proteins, ZapE also interacts directly with TCA cycle enzymes in bacterial two-hybrid assays. We report direct interactions between the succinate dehydrogenase complex subunit SdhC, the late-stage cell division protein FtsN, and ZapE. These interactions may enable communication between oxidative metabolism and the cell division machinery in UPEC. Moreover, these interactions are conserved in an E. coli K-12 strain. This work suggests that there is coordination among the two fundamental and essential pathways that regulate overall growth, quiescence, and antibiotic susceptibility. IMPORTANCE Uropathogenic Escherichia coli (UPEC) are the leading cause of urinary tract infections (UTIs). Upon invasion into bladder epithelial cells, UPEC establish quiescent intracellular reservoirs that may lead to antibiotic tolerance and recurrent UTIs. Here, we demonstrate using an in vitro system that quiescent UPEC cells are tolerant to ampicillin and have decreased metabolism characterized by succinyl-CoA limitation. We identify the global regulator integration host factor complex and the cell division protein ZapE as critical modifiers of quiescence and antibiotic tolerance. Finally, we show that ZapE interacts with components of both the cell division machinery and the tricarboxylic acid cycle, and this interaction is conserved in non-pathogenic E. coli, establishing a novel link between cell division and metabolism.
Collapse
Affiliation(s)
- Josiah J. Morrison
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Ellen K. Madden
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Daniel A. Banas
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Eric C. DiBiasio
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Mads Hansen
- Department of Natural Science and Environment, Centre for Mathematical Modeling - Human Health and Disease, University of Roskilde, Roskilde, Denmark
| | - Karen A. Krogfelt
- Department of Natural Science and Environment, Centre for Mathematical Modeling - Human Health and Disease, University of Roskilde, Roskilde, Denmark
| | - David C. Rowley
- Department of Biomedical and Pharmaceutical Sciences, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Paul S. Cohen
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Jodi L. Camberg
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
9
|
Islam F, Mishra PP. Molecular Insight into the Structural Dynamics of Holliday Junctions Modulated by Integration Host Factor. J Phys Chem B 2024; 128:5642-5657. [PMID: 38812070 DOI: 10.1021/acs.jpcb.4c02997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The integration host factor (IHF) in Escherichia coli is a nucleoid-associated protein with multifaceted roles that encompass DNA packaging, viral DNA integration, and recombination. IHF binds to double-stranded DNA featuring a 13-base pair (bp) consensus sequence with high affinity, causing a substantial bend of approximately 160° upon binding. Although wild-type IHF (WtIHF) is principally involved in DNA bending to facilitate foreign DNA integration into the host genome, its engineered counterpart, single-chain IHF (ScIHF), was specifically designed for genetic engineering and biotechnological applications. Our study delves into the interactions of both IHF variants with Holliday junctions (HJs), pivotal intermediates in DNA repair, and homologous recombination. HJs are dynamic structures capable of adopting open or stacked conformations, with the open conformation facilitating processes such as branch migration and strand exchange. Using microscale thermophoresis, we quantitatively assessed the binding of IHF to four-way DNA junctions that harbor specific binding sequences H' and H1. Our findings demonstrate that both IHF variants exhibit a strong affinity for HJs, signifying a structure-based recognition mechanism. Circular dichroism (CD) experiments unveiled the impact of the protein on the junction's conformation. Furthermore, single-molecule Förster resonance energy transfer (smFRET) confirmed the influence of IHF on the junction's dynamicity. Intriguingly, our results revealed that WtIHF and ScIHF binding shifts the population toward the open conformation of the junction and stabilizes it in that state. In summary, our findings underscore the robust affinity of the IHF for HJs and its capacity to stabilize the open conformation of these junctions.
Collapse
Affiliation(s)
- Farhana Islam
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Padmaja Prasad Mishra
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
10
|
Bowden LC, Finlinson J, Jones B, Berges BK. Beyond the double helix: the multifaceted landscape of extracellular DNA in Staphylococcus aureus biofilms. Front Cell Infect Microbiol 2024; 14:1400648. [PMID: 38903938 PMCID: PMC11188362 DOI: 10.3389/fcimb.2024.1400648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Staphylococcus aureus forms biofilms consisting of cells embedded in a matrix made of proteins, polysaccharides, lipids, and extracellular DNA (eDNA). Biofilm-associated infections are difficult to treat and can promote antibiotic resistance, resulting in negative healthcare outcomes. eDNA within the matrix contributes to the stability, growth, and immune-evasive properties of S. aureus biofilms. eDNA is released by autolysis, which is mediated by murein hydrolases that access the cell wall via membrane pores formed by holin-like proteins. The eDNA content of S. aureus biofilms varies among individual strains and is influenced by environmental conditions, including the presence of antibiotics. eDNA plays an important role in biofilm development and structure by acting as an electrostatic net that facilitates protein-cell and cell-cell interactions. Because of eDNA's structural importance in biofilms and its ubiquitous presence among S. aureus isolates, it is a potential target for therapeutics. Treatment of biofilms with DNase can eradicate or drastically reduce them in size. Additionally, antibodies that target DNABII proteins, which bind to and stabilize eDNA, can also disperse biofilms. This review discusses the recent literature on the release, structure, and function of eDNA in S. aureus biofilms, in addition to a discussion of potential avenues for targeting eDNA for biofilm eradication.
Collapse
Affiliation(s)
| | | | | | - Bradford K. Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
11
|
Sharma DK, Rajpurohit YS. Multitasking functions of bacterial extracellular DNA in biofilms. J Bacteriol 2024; 206:e0000624. [PMID: 38445859 PMCID: PMC11025335 DOI: 10.1128/jb.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Bacterial biofilms are intricate ecosystems of microbial communities that adhere to various surfaces and are enveloped by an extracellular matrix composed of polymeric substances. Within the context of bacterial biofilms, extracellular DNA (eDNA) originates from cell lysis or is actively secreted, where it exerts a significant influence on the formation, stability, and resistance of biofilms to environmental stressors. The exploration of eDNA within bacterial biofilms holds paramount importance in research, with far-reaching implications for both human health and the environment. An enhanced understanding of the functions of eDNA in biofilm formation and antibiotic resistance could inspire the development of strategies to combat biofilm-related infections and improve the management of antibiotic resistance. This comprehensive review encapsulates the latest discoveries concerning eDNA, encompassing its origins, functions within bacterial biofilms, and significance in bacterial pathogenesis.
Collapse
Affiliation(s)
- Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Schools of Life Sciences, Homi Bhabha National Institute (DAE—Deemed University), Mumbai, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Schools of Life Sciences, Homi Bhabha National Institute (DAE—Deemed University), Mumbai, India
| |
Collapse
|
12
|
Mugunthan S, Wong LL, Winnerdy FR, Summers S, Bin Ismail MH, Foo YH, Jaggi TK, Meldrum OW, Tiew PY, Chotirmall SH, Rice SA, Phan AT, Kjelleberg S, Seviour T. RNA is a key component of extracellular DNA networks in Pseudomonas aeruginosa biofilms. Nat Commun 2023; 14:7772. [PMID: 38012164 PMCID: PMC10682433 DOI: 10.1038/s41467-023-43533-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
The extracellular matrix of bacterial biofilms consists of diverse components including polysaccharides, proteins and DNA. Extracellular RNA (eRNA) can also be present, contributing to the structural integrity of biofilms. However, technical difficulties related to the low stability of RNA make it difficult to understand the precise roles of eRNA in biofilms. Here, we show that eRNA associates with extracellular DNA (eDNA) to form matrix fibres in Pseudomonas aeruginosa biofilms, and the eRNA is enriched in certain bacterial RNA transcripts. Degradation of eRNA associated with eDNA led to a loss of eDNA fibres and biofilm viscoelasticity. Compared with planktonic and biofilm cells, the biofilm matrix was enriched in specific mRNA transcripts, including lasB (encoding elastase). The mRNA transcripts colocalised with eDNA fibres in the biofilm matrix, as shown by single molecule inexpensive FISH microscopy (smiFISH). The lasB mRNA was also observed in eDNA fibres in a clinical sputum sample positive for P. aeruginosa. Thus, our results indicate that the interaction of specific mRNAs with eDNA facilitates the formation of viscoelastic networks in the matrix of Pseudomonas aeruginosa biofilms.
Collapse
Affiliation(s)
- Sudarsan Mugunthan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Lan Li Wong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | | | - Stephen Summers
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
- St John's Island National Marine Laboratory c/o Tropical Marine Science Institute, National University of Singapore, 119227, Singapore
| | | | - Yong Hwee Foo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, Singapore, 636921, Singapore
| | - Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Oliver W Meldrum
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Pei Yee Tiew
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Scott A Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
- The iThree Institute, University of Technology Sydney, Sydney, 2007, Australia
- CSIRO, Agriculture and Food, Westmead and Microbiomes for One Systems Health, Canberra, Australia
| | - Anh Tuân Phan
- School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia.
| | - Thomas Seviour
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore.
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Aarhus, 8000, Denmark.
| |
Collapse
|
13
|
Kurbatfinski N, Kramer CN, Goodman SD, Bakaletz LO. ESKAPEE pathogens newly released from biofilm residence by a targeted monoclonal are sensitized to killing by traditional antibiotics. Front Microbiol 2023; 14:1202215. [PMID: 37564292 PMCID: PMC10410267 DOI: 10.3389/fmicb.2023.1202215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/30/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction The "silent" antimicrobial resistance (AMR) pandemic is responsible for nearly five million deaths annually, with a group of seven biofilm-forming pathogens, known as the ESKAPEE pathogens, responsible for 70% of these fatalities. Biofilm-resident bacteria, as they exist within the disease site, are canonically highly resistant to antibiotics. One strategy to counter AMR and improve disease resolution involves developing methods to disrupt biofilms. These methods aim to release bacteria from the protective biofilm matrix to facilitate their killing by antibiotics or immune effectors. Several laboratories working on such strategies have demonstrated that bacteria newly released from a biofilm display a transient phenotype of significantly increased susceptibility to antibiotics. Similarly, we developed an antibody-based approach for biofilm disruption directed against the two-membered DNABII family of bacterial DNA-binding proteins, which serve as linchpins to stabilize the biofilm matrix. The incubation of biofilms with α-DNABII antibodies rapidly collapses them to induce a population of newly released bacteria (NRel). Methods In this study, we used a humanized monoclonal antibody (HuTipMab) directed against protective epitopes of a DNABII protein to determine if we could disrupt biofilms formed by the high-priority ESKAPEE pathogens as visualized by confocal laser scanning microscopy (CLSM) and COMSTAT2 analysis. Then, we demonstrated the potentiated killing of the induced NRel by seven diverse classes of traditional antibiotics by comparative plate count. Results To this end, ESKAPEE biofilms were disrupted by 50%-79% using a single tested dose and treatment period with HuTipMab. The NRel of each biofilm were significantly more sensitive to killing than their planktonically grown counterparts (heretofore, considered to be the most sensitive to antibiotic-mediated killing), even when tested at a fraction of the MIC (1/250-1/2 MIC). Moreover, the bacteria that remained within the biofilms of two representative ESKAPEE pathogens after HuTipMab disruption were also significantly more susceptible to killing by antibiotics. Discussion New data presented in this study support our continued development of a combinatorial therapy wherein HuTipMab is delivered to a patient with recalcitrant disease due to an ESKAPEE pathogen to disrupt a pathogenic biofilm, along with a co-delivered dose of an antibiotic whose ability to rapidly kill the induced NRel has been demonstrated. This novel regimen could provide a more successful clinical outcome to those with chronic, recurrent, or recalcitrant diseases, while limiting further contribution to AMR.
Collapse
Affiliation(s)
- Nikola Kurbatfinski
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Cameron N. Kramer
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Steven D. Goodman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Lauren O. Bakaletz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
14
|
Wang X, Yu D, Chen L. Antimicrobial resistance and mechanisms of epigenetic regulation. Front Cell Infect Microbiol 2023; 13:1199646. [PMID: 37389209 PMCID: PMC10306973 DOI: 10.3389/fcimb.2023.1199646] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
The rampant use of antibiotics in animal husbandry, farming and clinical disease treatment has led to a significant issue with pathogen resistance worldwide over the past decades. The classical mechanisms of resistance typically investigate antimicrobial resistance resulting from natural resistance, mutation, gene transfer and other processes. However, the emergence and development of bacterial resistance cannot be fully explained from a genetic and biochemical standpoint. Evolution necessitates phenotypic variation, selection, and inheritance. There are indications that epigenetic modifications also play a role in antimicrobial resistance. This review will specifically focus on the effects of DNA modification, histone modification, rRNA methylation and the regulation of non-coding RNAs expression on antimicrobial resistance. In particular, we highlight critical work that how DNA methyltransferases and non-coding RNAs act as transcriptional regulators that allow bacteria to rapidly adapt to environmental changes and control their gene expressions to resist antibiotic stress. Additionally, it will delve into how Nucleolar-associated proteins in bacteria perform histone functions akin to eukaryotes. Epigenetics, a non-classical regulatory mechanism of bacterial resistance, may offer new avenues for antibiotic target selection and the development of novel antibiotics.
Collapse
Affiliation(s)
- Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- National Health Commission Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Donghong Yu
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- National Health Commission Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Lu Chen
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- National Health Commission Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| |
Collapse
|
15
|
Morrison JJ, Banas DA, Madden EK, DiBiasio EC, Rowley DC, Cohen PS, Camberg JL. Metabolic flux regulates growth transitions and antibiotic tolerance in uropathogenic Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540013. [PMID: 37215002 PMCID: PMC10197701 DOI: 10.1101/2023.05.09.540013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Reducing growth and limiting metabolism are strategies that allow bacteria to survive exposure to environmental stress and antibiotics. During infection, uropathogenic Escherichia coli (UPEC) may enter a quiescent state that enables them to reemerge after completion of successful antibiotic treatment. Many clinical isolates, including the well characterized UPEC strain CFT073, also enter a metabolite-dependent, quiescent state in vitro that is reversible with cues, including peptidoglycan-derived peptides and amino acids. Here, we show that quiescent UPEC is antibiotic tolerant and demonstrate that metabolic flux in the tricarboxylic acid (TCA) cycle regulates the UPEC quiescent state via succinyl-CoA. We also demonstrate that the transcriptional regulator complex IHF and the FtsZ-interacting protein ZapE, which is important for E. coli division during stress, are essential for UPEC to enter the quiescent state. Notably, in addition to engaging FtsZ and late-stage cell division proteins, ZapE also interacts directly with TCA cycle enzymes in bacterial two hybrid assays. We report direct interactions between succinate dehydrogenase complex subunit SdhC, the late-stage cell division protein FtsN, and ZapE. These interactions likely enable communication between oxidative metabolism and the cell division machinery in UPEC. Moreover, these interactions are conserved in an E. coli K-12 strain. This work suggests that there is coordination among the two fundamental and essential pathways that regulate overall growth, quiescence, and antibiotic susceptibility.
Collapse
Affiliation(s)
- Josiah J. Morrison
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, RI, 02881
| | - Daniel A. Banas
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, RI, 02881
| | - Ellen K. Madden
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, RI, 02881
| | - Eric C. DiBiasio
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, RI, 02881
| | - David C. Rowley
- Department of Biomedical & Pharmaceutical Sciences, The University of Rhode Island, Kingston, RI, 02881
| | - Paul S. Cohen
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, RI, 02881
| | - Jodi L. Camberg
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, RI, 02881
| |
Collapse
|
16
|
Yang W, Li Y, Boraschi D. Association between Microorganisms and Microplastics: How Does It Change the Host-Pathogen Interaction and Subsequent Immune Response? Int J Mol Sci 2023; 24:ijms24044065. [PMID: 36835476 PMCID: PMC9963316 DOI: 10.3390/ijms24044065] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 02/22/2023] Open
Abstract
Plastic pollution is a significant problem worldwide because of the risks it poses to the equilibrium and health of the environment as well as to human beings. Discarded plastic released into the environment can degrade into microplastics (MPs) due to various factors, such as sunlight, seawater flow, and temperature. MP surfaces can act as solid scaffolds for microorganisms, viruses, and various biomolecules (such as LPS, allergens, and antibiotics), depending on the MP characteristics of size/surface area, chemical composition, and surface charge. The immune system has efficient recognition and elimination mechanisms for pathogens, foreign agents, and anomalous molecules, including pattern recognition receptors and phagocytosis. However, associations with MPs can modify the physical, structural, and functional characteristics of microbes and biomolecules, thereby changing their interactions with the host immune system (in particular with innate immune cells) and, most likely, the features of the subsequent innate/inflammatory response. Thus, exploring differences in the immune response to microbial agents that have been modified by interactions with MPs is meaningful in terms of identifying new possible risks to human health posed by anomalous stimulation of immune reactivities.
Collapse
Affiliation(s)
- Wenjie Yang
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518071, China
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen 518055, China
| | - Yang Li
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518071, China
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen 518055, China
| | - Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518071, China
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen 518055, China
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Naples, Italy
- Stazione Zoologica Anton Dohrn, 80132 Naples, Italy
- Correspondence:
| |
Collapse
|
17
|
Integration Host Factor Binds DNA Holliday Junctions. Int J Mol Sci 2022; 24:ijms24010580. [PMID: 36614023 PMCID: PMC9820253 DOI: 10.3390/ijms24010580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Integration host factor (IHF) is a nucleoid-associated protein involved in DNA packaging, integration of viral DNA and recombination. IHF binds with nanomolar affinity to duplex DNA containing a 13 bp consensus sequence, inducing a bend of ~160° upon binding. We determined that IHF binds to DNA Four-way or Holliday junctions (HJ) with high affinity regardless of the presence of the consensus sequence, signifying a structure-based mechanism of recognition. Junctions, important intermediates in DNA repair and homologous recombination, are dynamic and can adopt either an open or stacked conformation, where the open conformation facilitates branch migration and strand exchange. Using ensemble and single molecule Förster resonance energy transfer (FRET) methods, we investigated IHF-induced changes in the population distribution of junction conformations and determined that IHF binding shifts the population to the open conformation. Further analysis of smFRET dynamics revealed that even in the presence of protein, the junctions remain dynamic as fast transitions are observed for the protein-bound open state. Protein binding alters junction conformational dynamics, as cross correlation analyses reveal the protein slows the transition rate at 1 mM Mg2+ but accelerates the transition rate at 10 mM Mg2+. Stopped flow kinetic experiments provide evidence for two binding steps, a rapid, initial binding step followed by a slower step potentially associated with a conformational change. These measurements also confirm that the protein remains bound to the junction during the conformer transitions and further suggest that the protein forms a partially dissociated state that allows junction arms to be dynamic. These findings, which demonstrate that IHF binds HJs with high affinity and stabilizes junctions in the open conformation, suggest that IHF may play multiple roles in the processes of integration and recombination in addition to stabilizing bacterial biofilms.
Collapse
|
18
|
Monoclonal antibodies that target extracellular DNABII proteins or the type IV pilus of nontypeable Haemophilus influenzae (NTHI) worked additively to disrupt 2-genera biofilms. Biofilm 2022; 4:100096. [PMID: 36532267 PMCID: PMC9747592 DOI: 10.1016/j.bioflm.2022.100096] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The biofilm state is the preferred lifestyle of bacteria in nature. Within a biofilm, the resident bacteria are protected from environmental stresses, antibiotics and other antimicrobials, including those due to multiple immune effectors of their host during conditions of disease. Thereby, biofilms contribute significantly to pathogenicity, recalcitrance to clearance and chronicity/recurrence of bacterial diseases, including diseases of the respiratory tract. In the absence of highly effective, biofilm-targeted therapeutics, antibiotics are commonly prescribed to attempt to treat these diseases, however, in light of the canonical resistance of biofilm-resident bacteria to antibiotic-mediated killing, this ineffectual practice often fails to resolve the diseased condition and contributes significantly to the global threat of rising antimicrobial resistance. Nontypeable Haemophilus influenzae is a common respiratory tract disease co-pathogen, often present in partnership with other airway pathogens. Herein we aspired to determine whether either of two monoclonal antibodies we developed, one specific for NTHI [directed against the majority subunit (PilA) of the type IV pilus (T4P) of NTHI] and the other able to act agnostically on all bacteria tested to date (directed against a structural protein of the biofilm matrix, a DNABII protein), were able to disrupt 2-genera biofilms wherein NTHI co-partnered with another respiratory tract pathogen. These monoclonals were tested singly as well as when within an antibody cocktail. The monoclonal directed against the NTHI antigen PilA was only effective on single species NTHI biofilms and not on single species biofilms formed by other unrelated species. However, when NTHI co-partnered with any of 5 respiratory tract pathogens tested here (Burkholderia cenocepacia, Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae or Moraxella catarrhalis), this exclusively NTHI-directed monoclonal was able to disrupt these 2-genera biofilms. Conversely, the monoclonal antibody directed against protective epitopes of a DNABII protein, significantly disrupted all single species and 2-genera biofilms, which reflected the universal presence of this structural protein in all tested biofilm matrices. However, greatest release of both pathogens from a 2-genera biofilm was uniformly achieved by incubation with a 1:1 cocktail of both monoclonals. These data support the use of an approach wherein patients with respiratory tract disease could be treated with a therapeutic monoclonal antibody cocktail to release NTHI and its common co-pathogens from the protective biofilm to be killed by either traditional antibiotics and/or host immune effectors.
Collapse
|
19
|
Kwasi DA, Babalola CP, Olubiyi OO, Hoffmann J, Uzochukwu IC, Okeke IN. Antibiofilm agents with therapeutic potential against enteroaggregative Escherichia coli. PLoS Negl Trop Dis 2022; 16:e0010809. [PMID: 36201560 PMCID: PMC9578610 DOI: 10.1371/journal.pntd.0010809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 10/18/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Enteroaggregative Escherichia coli (EAEC) is a predominant but neglected enteric pathogen implicated in infantile diarrhoea and nutrient malabsorption. There are no non-antibiotic approaches to dealing with persistent infection by these exceptional colonizers, which form copious biofilms. We screened the Medicines for Malaria Venture Pathogen Box for chemical entities that inhibit EAEC biofilm formation. METHODOLOGY We used EAEC strains, 042 and MND005E in a medium-throughput crystal violet-based antibiofilm screen. Hits were confirmed in concentration-dependence, growth kinetic and time course assays and activity spectra were determined against a panel of 25 other EAEC strains. Antibiofilm activity against isogenic EAEC mutants, molecular docking simulations and comparative genomic analysis were used to identify the mechanism of action of one hit. PRINCIPAL FINDINGS In all, five compounds (1.25%) reproducibly inhibited biofilm accumulation by at least one strain by 30-85% while inhibiting growth by under 10%. Hits exhibited potent antibiofilm activity at concentrations at least 10-fold lower than those reported for nitazoxanide, the only known EAEC biofilm inhibitor. Reflective of known EAEC heterogeneity, only one hit was active against both screen isolates, but three hits showed broad antibiofilm activity against a larger panel of strains. Mechanism of action studies point to the EAEC anti-aggregation protein (Aap), dispersin, as the target of compound MMV687800. CONCLUSIONS This study identified five compounds, not previously described as anti-adhesins or Gram-negative antibacterials, with significant EAEC antibiofilm activity. Molecule, MMV687800 targets the EAEC Aap. In vitro small-molecule inhibition of EAEC colonization opens a way to new therapeutic approaches against EAEC infection.
Collapse
Affiliation(s)
- David A. Kwasi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Chinedum P. Babalola
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
- Center for Drug Discovery, Development and Production, Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
| | - Olujide O. Olubiyi
- Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Jennifer Hoffmann
- Department of Biology, Haverford College, Haverford, Pennsylvania, United States of America
| | - Ikemefuna C. Uzochukwu
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University Awka, Anambra State, Nigeria
| | - Iruka N. Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
- Department of Biology, Haverford College, Haverford, Pennsylvania, United States of America
| |
Collapse
|
20
|
Stojkova P, Spidlova P. Bacterial nucleoid-associated protein HU as an extracellular player in host-pathogen interaction. Front Cell Infect Microbiol 2022; 12:999737. [PMID: 36081771 PMCID: PMC9445418 DOI: 10.3389/fcimb.2022.999737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
HU protein is a member of nucleoid-associated proteins (NAPs) and is an important regulator of bacterial virulence, pathogenesis and survival. NAPs are mainly DNA structuring proteins that influence several molecular processes by binding the DNA. HU´s indispensable role in DNA-related processes in bacteria was described. HU protein is a necessary bacterial transcription factor and is considered to be a virulence determinant as well. Less is known about its direct role in host-pathogen interactions. The latest studies suggest that HU protein may be secreted outside bacteria and be a part of the extracellular matrix. Moreover, HU protein can be internalized in a host cell after bacterial infection. Its role in the host cell is not well described and further studies are extremely needed. Existing results suggest the involvement of HU protein in host cell immune response modulation in bacterial favor, which can help pathogens resist host defense mechanisms. A better understanding of the HU protein’s role in the host cell will help to effective treatment development.
Collapse
|
21
|
Han J, Poma A. Molecular Targets for Antibody-Based Anti-Biofilm Therapy in Infective Endocarditis. Polymers (Basel) 2022; 14:3198. [PMID: 35956712 PMCID: PMC9370930 DOI: 10.3390/polym14153198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Infective endocarditis (IE) is a heart disease caused by the infection of heart valves, majorly caused by Staphilococcus aureus. IE is initiated by bacteria entering the blood circulation in favouring conditions (e.g., during invasive procedures). So far, the conventional antimicrobial strategies based on the usage of antibiotics remain the major intervention for treating IE. Nevertheless, the therapeutic efficacy of antibiotics in IE is limited not only by the bacterial drug resistance, but also by the formation of biofilms, which resist the penetration of antibiotics into bacterial cells. To overcome these drawbacks, the development of anti-biofilm treatments that can expose bacteria and make them more susceptible to the action of antibiotics, therefore resulting in reduced antimicrobial resistance, is urgently required. A series of anti-biofilm strategies have been developed, and this review will focus in particular on the development of anti-biofilm antibodies. Based on the results previously reported in the literature, several potential anti-biofilm targets are discussed, such as bacterial adhesins, biofilm matrix and bacterial toxins, covering their antigenic properties (with the identification of potential promising epitopes), functional mechanisms, as well as the antibodies already developed against these targets and, where feasible, their clinical translation.
Collapse
Affiliation(s)
- Jiahe Han
- UCL Institute of Cardiovascular Science, The Rayne Building, 5 University Street, London WC1E 6JF, UK
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, UCL Medical School, Rowland Hill Street, London NW3 2PF, UK
| |
Collapse
|
22
|
Amyloid-containing biofilms and autoimmunity. Curr Opin Struct Biol 2022; 75:102435. [PMID: 35863164 PMCID: PMC9847210 DOI: 10.1016/j.sbi.2022.102435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 01/21/2023]
Abstract
Bacteria are microscopic, single-celled organisms known for their ability to adapt to their environment. In response to stressful environmental conditions or in the presence of a contact surface, they commonly form multicellular aggregates called biofilms. Biofilms form on various abiotic or biotic surfaces through a dynamic stepwise process involving adhesion, growth, and extracellular matrix production. Biofilms develop on tissues as well as on implanted devices during infections, providing the bacteria with a mechanism for survival under harsh conditions including targeting by the immune system and antimicrobial therapy. Like pathogenic bacteria, members of the human microbiota can form biofilms. Biofilms formed by enteric bacteria contribute to several human diseases including autoimmune diseases and cancer. However, until recently the interactions of immune cells with biofilms had been mostly uncharacterized. Here, we will discuss how components of the enteric biofilm produced in vivo, specifically amyloid curli and extracellular DNA, could be interacting with the host's immune system causing an unpredicted immune response.
Collapse
|
23
|
Zhang S, Wang J, Fan Y, Meng W, Qian C, Liu P, Wei Y, Yuan C, Du Y, Yin Z. YciR, a Specific 3′-Phosphodiesterase, Plays a Role in the Pathogenesis of Uropathogenic Escherichia coli CFT073. Front Microbiol 2022; 13:910906. [PMID: 35923408 PMCID: PMC9339999 DOI: 10.3389/fmicb.2022.910906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Urinary tract infections (UTIs), with the characteristics of recurrence and resistance to antibiotics due to misuse, remain a common health and economic issue for patients. Uropathogenic Escherichia coli (UPEC), which is capable of evading the immune response by forming intracellular bacterial communities (IBCs) in the cytoplasm of bladder epithelial cells (BECs) after invasion, has been shown to be the prevailing cause of UTIs. Cyclic dimeric guanosine monophosphate (c-di-GMP) is a small molecule responsible for eliciting the innate immune response of the host only if it has not been degraded by some phosphodiesterases (PDEs), such as YciR. The relationship between YciR and c-di-GMP levels in UPEC is inconclusive. In this study, we investigated the gene expression profile of UPEC in BECs and identified yciR as an upregulated gene. Western blot revealed that YciR enhanced the virulence of UPEC by inhibiting the phosphorylation of NF-κB. The expression of yciR could be repressed by HupB in a directly binding manner. We identified YciR, a novel PDE, and defined its possible function in innate immune evasion. We also demonstrated that YciR is an HupB-dependent PDE that degrades c-di-GMP and that a low concentration of c-di-GMP might make NF-κB less phosphorylated, thereby reducing the host’s pro-inflammatory response. This is the first time that YciR has been identified as a virulence factor in the pathogenesis of UPEC. These findings further increase our understanding of the pathogenesis of UPEC and provide a theoretical basis for further studies.
Collapse
Affiliation(s)
- Si Zhang
- Ministry of Education (MOE) International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- College of Life Science, Nankai University, Tianjin, China
| | - Jingting Wang
- College of Life Science, Nankai University, Tianjin, China
| | - Yu Fan
- College of Life Science, Nankai University, Tianjin, China
| | - Wang Meng
- Tianjin First Central Hospital, Tianjin, China
| | - Chengqian Qian
- College of Life Science, Nankai University, Tianjin, China
| | - Peng Liu
- College of Life Science, Nankai University, Tianjin, China
| | - Yi Wei
- College of Life Science, Nankai University, Tianjin, China
| | - Chao Yuan
- Department of Sanitary Toxicology and Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yuhui Du
- Ministry of Education (MOE) International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Yuhui Du,
| | - Zhiqiu Yin
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai’an, China
- Zhiqiu Yin,
| |
Collapse
|
24
|
Quantification of Extracellular DNA Network Abundance and Architecture within Streptococcus gordonii Biofilms Reveals Modulatory Factors. Appl Environ Microbiol 2022; 88:e0069822. [PMID: 35695569 PMCID: PMC9275248 DOI: 10.1128/aem.00698-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Extracellular DNA (eDNA) is an important component of biofilm matrix that serves to maintain biofilm structural integrity, promotes genetic exchange within the biofilm, and provides protection against antimicrobial compounds. Advances in microscopy techniques have provided evidence of the cobweb- or lattice-like structures of eDNA within biofilms from a range of environmental niches. However, methods to reliably assess the abundance and architecture of eDNA remain lacking. This study aimed to address this gap by development of a novel, high-throughput image acquisition and analysis platform for assessment of eDNA networks in situ within biofilms. Utilizing Streptococcus gordonii as the model, the capacity for this imaging system to reliably detect eDNA networks and monitor changes in abundance and architecture (e.g., strand length and branch number) was verified. Evidence was provided of a synergy between glucans and eDNA matrices, while it was revealed that surface-bound nuclease SsnA could modify these eDNA structures under conditions permissive for enzymatic activity. Moreover, cross talk between the competence and hexaheptapeptide permease systems was shown to regulate eDNA release by S. gordonii. This novel imaging system can be applied across the wider field of biofilm research, with potential to significantly advance interrogation of the mechanisms by which the eDNA network architecture develops, how it can influence biofilm properties, and how it may be targeted for therapeutic benefit. IMPORTANCE Extracellular DNA (eDNA) is critical for maintaining the structural integrity of many microbial biofilms, making it an attractive target for the management of biofilms. However, our knowledge and targeting of eDNA are currently hindered by a lack of tools for the quantitative assessment of eDNA networks within biofilms. Here, we demonstrate use of a novel image acquisition and analysis platform with the capacity to reliably monitor the abundance and architecture of eDNA networks. Application of this tool to Streptococcus gordonii biofilms has provided new insights into how eDNA networks are stabilized within the biofilm and the pathways that can regulate eDNA release. This highlights how exploitation of this novel imaging system across the wider field of biofilm research has potential to significantly advance interrogation of the mechanisms by which the eDNA network architecture develops, how it can influence biofilm properties, and how it may be targeted for therapeutic benefit.
Collapse
|
25
|
Recent Strategies to Combat Biofilms Using Antimicrobial Agents and Therapeutic Approaches. Pathogens 2022; 11:pathogens11030292. [PMID: 35335616 PMCID: PMC8955104 DOI: 10.3390/pathogens11030292] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Biofilms are intricate bacterial assemblages that attach to diverse surfaces using an extracellular polymeric substance that protects them from the host immune system and conventional antibiotics. Biofilms cause chronic infections that result in millions of deaths around the world every year. Since the antibiotic tolerance mechanism in biofilm is different than that of the planktonic cells due to its multicellular structure, the currently available antibiotics are inadequate to treat biofilm-associated infections which have led to an immense need to find newer treatment options. Over the years, various novel antibiofilm compounds able to fight biofilms have been discovered. In this review, we have focused on the recent and intensively researched therapeutic techniques and antibiofilm agents used for biofilm treatment and grouped them according to their type and mode of action. We also discuss some therapeutic approaches that have the potential for future advancement.
Collapse
|
26
|
Goodman SD, Bakaletz LO. Bacterial Biofilms Utilize an Underlying Extracellular DNA Matrix Structure That Can Be Targeted for Biofilm Resolution. Microorganisms 2022; 10:microorganisms10020466. [PMID: 35208922 PMCID: PMC8878592 DOI: 10.3390/microorganisms10020466] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022] Open
Abstract
Bacterial biofilms contribute significantly to the antibiotic resistance, pathogenesis, chronicity and recurrence of bacterial infections. Critical to the stability and survival of extant biofilms is the extracellular DNA (eDNA)-dependent matrix which shields the resident bacteria from hostile environments, allows a sessile metabolic state, but also encourages productive interactions with biofilm-inclusive bacteria. Given the importance of the eDNA, approaches to this area of research have been to target not just the eDNA, but also the additional constituent structural components which appear to be widespread. Chief among these is a ubiquitous two-member family of bacterial nucleoid associated proteins (the DNABII proteins) responsible for providing structural integrity to the eDNA and thereby the biofilm. Moreover, this resultant novel eDNA-rich secondary structure can also be targeted for disruption. Here, we provide an overview of both what is known about the eDNA-dependent matrix, as well as the resultant means that have resulted in biofilm resolution. Results obtained to date have been highly supportive of continued development of DNABII-targeted approaches, which is encouraging given the great global need for improved methods to medically manage, or ideally prevent biofilm-dependent infections, which remains a highly prevalent burden worldwide.
Collapse
|
27
|
Rogers JV, Hall VL, McOsker CC. Crumbling the Castle: Targeting DNABII Proteins for Collapsing Bacterial Biofilms as a Therapeutic Approach to Treat Disease and Combat Antimicrobial Resistance. Antibiotics (Basel) 2022; 11:104. [PMID: 35052981 PMCID: PMC8773079 DOI: 10.3390/antibiotics11010104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/02/2022] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance (AMR) is a concerning global threat that, if not addressed, could lead to increases in morbidity and mortality, coupled with societal and financial burdens. The emergence of AMR bacteria can be attributed, in part, to the decreased development of new antibiotics, increased misuse and overuse of existing antibiotics, and inadequate treatment options for biofilms formed during bacterial infections. Biofilms are complex microbiomes enshrouded in a self-produced extracellular polymeric substance (EPS) that is a primary defense mechanism of the resident microorganisms against antimicrobial agents and the host immune system. In addition to the physical protective EPS barrier, biofilm-resident bacteria exhibit tolerance mechanisms enabling persistence and the establishment of recurrent infections. As current antibiotics and therapeutics are becoming less effective in combating AMR, new innovative technologies are needed to address the growing AMR threat. This perspective article highlights such a product, CMTX-101, a humanized monoclonal antibody that targets a universal component of bacterial biofilms, leading to pathogen-agnostic rapid biofilm collapse and engaging three modes of action-the sensitization of bacteria to antibiotics, host immune enablement, and the suppression of site-specific tissue inflammation. CMTX-101 is a new tool used to enhance the effectiveness of existing, relatively inexpensive first-line antibiotics to fight infections while promoting antimicrobial stewardship.
Collapse
Affiliation(s)
| | | | - Charles C. McOsker
- Clarametyx Biosciences, Inc., 1275 Kinnear Rd, Columbus, OH 43212, USA; (J.V.R.); (V.L.H.)
| |
Collapse
|
28
|
A Humanized Monoclonal Antibody Potentiates Killing by Antibiotics of Diverse Biofilm-Forming Respiratory Tract Pathogens. Antimicrob Agents Chemother 2022; 66:e0187721. [DOI: 10.1128/aac.01877-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New strategies to treat diseases wherein biofilms contribute significantly to pathogenesis are needed as biofilm-resident bacteria are highly recalcitrant to antibiotics due to physical biofilm architecture and a canonically quiescent metabolism, among many additional attributes. We, and others, have shown that when biofilms are dispersed or disrupted, bacteria released from biofilm residence are in a distinct physiologic state that, in part, renders these bacteria highly sensitive to killing by specific antibiotics. We sought to demonstrate the breadth of ability of a recently humanized monoclonal antibody against an essential biofilm structural element (DNABII protein) to disrupt biofilms formed by respiratory tract pathogens and potentiate antibiotic-mediated killing of bacteria released from biofilm residence.
Biofilms formed by six respiratory tract pathogens were significantly disrupted by the humanized monoclonal antibody in a dose- and time-dependent manner, as corroborated by CLSM imaging. Bacteria newly released from the biofilms of 3 of 6 species were significantly more sensitive than their planktonic counterparts to killing by 2 of 3 antibiotics currently used clinically and were now also equally as sensitive to killing by the 3
rd
antibiotic. The remaining 3 pathogens were significantly more susceptible to killing by all 3 antibiotics.
A humanized monoclonal antibody directed against protective epitopes of a DNABII protein effectively released six diverse respiratory tract pathogens from biofilm residence in a phenotypic state that was now as, or significantly more, sensitive to killing by three antibiotics currently indicated for use clinically. These data support this targeted, combinatorial, species-agnostic therapy to mitigate chronic bacterial diseases.
Collapse
|
29
|
Watson GD, Chan EW, Leake MC, Noy A. Structural interplay between DNA-shape protein recognition and supercoiling: The case of IHF. Comput Struct Biotechnol J 2022; 20:5264-5274. [PMID: 36212531 PMCID: PMC9519438 DOI: 10.1016/j.csbj.2022.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022] Open
|
30
|
Buzzo JR, Devaraj A, Gloag ES, Jurcisek JA, Robledo-Avila F, Kesler T, Wilbanks K, Mashburn-Warren L, Balu S, Wickham J, Novotny LA, Stoodley P, Bakaletz LO, Goodman SD. Z-form extracellular DNA is a structural component of the bacterial biofilm matrix. Cell 2021; 184:5740-5758.e17. [PMID: 34735796 DOI: 10.1016/j.cell.2021.10.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/03/2021] [Accepted: 10/12/2021] [Indexed: 12/30/2022]
Abstract
Biofilms are community architectures adopted by bacteria inclusive of a self-formed extracellular matrix that protects resident bacteria from diverse environmental stresses and, in many species, incorporates extracellular DNA (eDNA) and DNABII proteins for structural integrity throughout biofilm development. Here, we present evidence that this eDNA-based architecture relies on the rare Z-form. Z-form DNA accumulates as biofilms mature and, through stabilization by the DNABII proteins, confers structural integrity to the biofilm matrix. Indeed, substances known to drive B-DNA into Z-DNA promoted biofilm formation whereas those that drive Z-DNA into B-DNA disrupted extant biofilms. Importantly, we demonstrated that the universal bacterial DNABII family of proteins stabilizes both bacterial- and host-eDNA in the Z-form in situ. A model is proposed that incorporates the role of Z-DNA in biofilm pathogenesis, innate immune response, and immune evasion.
Collapse
Affiliation(s)
- John R Buzzo
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Aishwarya Devaraj
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Erin S Gloag
- Department of Orthopedics, Ohio State University, Columbus, OH 43210, USA
| | - Joseph A Jurcisek
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Theresa Kesler
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kathryn Wilbanks
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Lauren Mashburn-Warren
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Sabarathnam Balu
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Joseph Wickham
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Laura A Novotny
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Paul Stoodley
- Department of Orthopedics, Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH 43210, USA; National Centre for Advanced Tribology at Southampton, University of Southampton, Southampton S017 1BJ, UK
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH 43210, USA.
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
31
|
Li W, Thian ES, Wang M, Wang Z, Ren L. Surface Design for Antibacterial Materials: From Fundamentals to Advanced Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100368. [PMID: 34351704 PMCID: PMC8498904 DOI: 10.1002/advs.202100368] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/27/2021] [Indexed: 05/14/2023]
Abstract
Healthcare-acquired infections as well as increasing antimicrobial resistance have become an urgent global challenge, thus smart alternative solutions are needed to tackle bacterial infections. Antibacterial materials in biomedical applications and hospital hygiene have attracted great interest, in particular, the emergence of surface design strategies offer an effective alternative to antibiotics, thereby preventing the possible development of bacterial resistance. In this review, recent progress on advanced surface modifications to prevent bacterial infections are addressed comprehensively, starting with the key factors against bacterial adhesion, followed by varying strategies that can inhibit biofilm formation effectively. Furthermore, "super antibacterial systems" through pre-treatment defense and targeted bactericidal system, are proposed with increasing evidence of clinical potential. Finally, the advantages and future challenges of surface strategies to resist healthcare-associated infections are discussed, with promising prospects of developing novel antimicrobial materials.
Collapse
Affiliation(s)
- Wenlong Li
- Department of BiomaterialsState Key Lab of Physical Chemistry of Solid SurfaceCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Eng San Thian
- Department of Mechanical EngineeringNational University of SingaporeSingapore117576Singapore
| | - Miao Wang
- Department of BiomaterialsState Key Lab of Physical Chemistry of Solid SurfaceCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Zuyong Wang
- College of Materials Science and EngineeringHunan UniversityChangsha410082P. R. China
| | - Lei Ren
- Department of BiomaterialsState Key Lab of Physical Chemistry of Solid SurfaceCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| |
Collapse
|
32
|
Devaraj A, Novotny LA, Robledo-Avila FH, Buzzo JR, Mashburn-Warren L, Jurcisek JA, Tjokro NO, Partida-Sanchez S, Bakaletz LO, Goodman SD. The extracellular innate-immune effector HMGB1 limits pathogenic bacterial biofilm proliferation. J Clin Invest 2021; 131:e140527. [PMID: 34396989 DOI: 10.1172/jci140527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Herein, we describe an extracellular function of the vertebrate high-mobility group box 1 protein (HMGB1) in the proliferation of bacterial biofilms. Within host cells, HMGB1 functions as a DNA architectural protein, similar to the ubiquitous DNABII family of bacterial proteins; despite that, these proteins share no amino acid sequence identity. Extracellularly, HMGB1 induces a proinflammatory immune response, whereas the DNABII proteins stabilize the extracellular DNA-dependent matrix that maintains bacterial biofilms. We showed that when both proteins converged on extracellular DNA within bacterial biofilms, HMGB1, unlike the DNABII proteins, disrupted biofilms both in vitro (including the high-priority ESKAPEE pathogens) and in vivo in 2 distinct animal models, albeit with induction of a strong inflammatory response that we attenuated by a single engineered amino acid change. We propose a model where extracellular HMGB1 balances the degree of induced inflammation and biofilm containment without excessive release of biofilm-resident bacteria.
Collapse
Affiliation(s)
- Aishwarya Devaraj
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Laura A Novotny
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Frank H Robledo-Avila
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - John R Buzzo
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Lauren Mashburn-Warren
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Joseph A Jurcisek
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Natalia O Tjokro
- Division of Periodontology, Diagnostic Sciences, and Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
33
|
Yoshua SB, Watson GD, Howard JAL, Velasco-Berrelleza V, Leake MC, Noy A. Integration host factor bends and bridges DNA in a multiplicity of binding modes with varying specificity. Nucleic Acids Res 2021; 49:8684-8698. [PMID: 34352078 PMCID: PMC8421141 DOI: 10.1093/nar/gkab641] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022] Open
Abstract
Nucleoid-associated proteins (NAPs) are crucial in organizing prokaryotic DNA and regulating genes. Vital to these activities are complex nucleoprotein structures, however, how these form remains unclear. Integration host factor (IHF) is an Escherichia coli NAP that creates very sharp bends in DNA at sequences relevant to several functions including transcription and recombination, and is also responsible for general DNA compaction when bound non-specifically. We show that IHF–DNA structural multimodality is more elaborate than previously thought, and provide insights into how this drives mechanical switching towards strongly bent DNA. Using single-molecule atomic force microscopy and atomic molecular dynamics simulations we find three binding modes in roughly equal proportions: ‘associated’ (73° of DNA bend), ‘half-wrapped’ (107°) and ‘fully-wrapped’ (147°), only the latter occurring with sequence specificity. We show IHF bridges two DNA double helices through non-specific recognition that gives IHF a stoichiometry greater than one and enables DNA mesh assembly. We observe that IHF-DNA structural multiplicity is driven through non-specific electrostatic interactions that we anticipate to be a general NAP feature for physical organization of chromosomes.
Collapse
Affiliation(s)
- Samuel B Yoshua
- Department of Physics, University of York, York YO10 5DD, UK
| | - George D Watson
- Department of Physics, University of York, York YO10 5DD, UK
| | | | | | - Mark C Leake
- Department of Physics, University of York, York YO10 5DD, UK.,Department of Biology, University of York, York YO10 5DD, UK
| | - Agnes Noy
- Department of Physics, University of York, York YO10 5DD, UK
| |
Collapse
|
34
|
Sahoo A, Swain SS, Behera A, Sahoo G, Mahapatra PK, Panda SK. Antimicrobial Peptides Derived From Insects Offer a Novel Therapeutic Option to Combat Biofilm: A Review. Front Microbiol 2021; 12:661195. [PMID: 34248873 PMCID: PMC8265172 DOI: 10.3389/fmicb.2021.661195] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Biofilms form a complex layer with defined structures, that attach on biotic or abiotic surfaces, are tough to eradicate and tend to cause some resistance against most antibiotics. Several studies confirmed that biofilm-producing bacteria exhibit higher resistance compared to the planktonic form of the same species. Antibiotic resistance factors are well understood in planktonic bacteria which is not so in case of biofilm producing forms. This may be due to the lack of available drugs with known resistance mechanisms for biofilms. Existing antibiotics cannot eradicate most biofilms, especially of ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). Insects produce complex and diverse set of chemicals for survival and defense. Antimicrobial peptides (AMPs), produced by most insects, generally have a broad spectrum of activity and the potential to bypass the resistance mechanisms of classical antibiotics. Besides, AMPs may well act synergistically with classical antibiotics for a double-pronged attack on infections. Thus, AMPs could be promising alternatives to overcome medically important biofilms, decrease the possibility of acquired resistance and treatment of multidrug-resistant pathogens including ESKAPE. The present review focuses on insect-derived AMPs with special reference to anti-biofilm-based strategies. It covers the AMP composition, pathways and mechanisms of action, the formation of biofilms, impact of biofilms on human diseases, current strategies as well as therapeutic options to combat biofilm with antimicrobial peptides from insects. In addition, the review also illustrates the importance of bioinformatics tools and molecular docking studies to boost the importance of select bioactive peptides those can be developed as drugs, as well as suggestions for further basic and clinical research.
Collapse
Affiliation(s)
- Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences, SUM Hospital, Siksha O Anusandhan University, Bhubaneswar, India
| | - Shasank Sekhar Swain
- Division of Microbiology & NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Ayusman Behera
- Department of Zoology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, India
| | - Gunanidhi Sahoo
- Department of Zoology, Utkal University, Vani Vihar, Bhubaneswar, India
| | | | - Sujogya Kumar Panda
- Centre of Environment, Climate Change and Public Health, RUSA 2.0, Utkal University, Vani Vihar, Bhubaneswar, India
| |
Collapse
|
35
|
Deng Y, Liu SY, Chua SL, Khoo BL. The effects of biofilms on tumor progression in a 3D cancer-biofilm microfluidic model. Biosens Bioelectron 2021; 180:113113. [DOI: 10.1016/j.bios.2021.113113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022]
|
36
|
Lahiri D, Nag M, Banerjee R, Mukherjee D, Garai S, Sarkar T, Dey A, Sheikh HI, Pathak SK, Edinur HA, Pati S, Ray RR. Amylases: Biofilm Inducer or Biofilm Inhibitor? Front Cell Infect Microbiol 2021; 11:660048. [PMID: 33987107 PMCID: PMC8112260 DOI: 10.3389/fcimb.2021.660048] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/12/2021] [Indexed: 12/30/2022] Open
Abstract
Biofilm is a syntrophic association of sessile groups of microbial cells that adhere to biotic and abiotic surfaces with the help of pili and extracellular polymeric substances (EPS). EPSs also prevent penetration of antimicrobials/antibiotics into the sessile groups of cells. Hence, methods and agents to avoid or remove biofilms are urgently needed. Enzymes play important roles in the removal of biofilm in natural environments and may be promising agents for this purpose. As the major component of the EPS is polysaccharide, amylase has inhibited EPS by preventing the adherence of the microbial cells, thus making amylase a suitable antimicrobial agent. On the other hand, salivary amylase binds to amylase-binding protein of plaque-forming Streptococci and initiates the formation of biofilm. This review investigates the contradictory actions and microbe-associated genes of amylases, with emphasis on their structural and functional characteristics.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Ritwik Banerjee
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Dipro Mukherjee
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Sayantani Garai
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Tanmay Sarkar
- Department of Food Technology and Bio-Chemical Engineering, Jadavpur University, Kolkata, India.,Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Ankita Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| | - Hassan I Sheikh
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Sushil Kumar Pathak
- Department of Bioscience and Bioinformatics, Khallikote University, Berhampur, India
| | | | - Siddhartha Pati
- Centre of Excellence, Khallikote University, Berhampur, India.,Research Division, Association for Biodiversity Conservation and Research (ABC), Balasore, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| |
Collapse
|
37
|
Panlilio H, Rice CV. The role of extracellular DNA in the formation, architecture, stability, and treatment of bacterial biofilms. Biotechnol Bioeng 2021; 118:2129-2141. [PMID: 33748946 DOI: 10.1002/bit.27760] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/01/2020] [Accepted: 03/04/2021] [Indexed: 12/16/2022]
Abstract
Advances in biotechnology to treat and cure human disease have markedly improved human health and the development of modern societies. However, substantial challenges remain to overcome innate biological factors that thwart the activity and efficacy of pharmaceutical therapeutics. Until recently, the importance of extracellular DNA (eDNA) in biofilms was overlooked. New data reveal its extensive role in biofilm formation, adhesion, and structural integrity. Different approaches to target eDNA as anti-biofilm therapies have been proposed, but eDNA and the corresponding biofilm barriers are still difficult to disrupt. Therefore, more creative approaches to eradicate biofilms are needed. The production of eDNA often originates with the genetic material of bacterial cells through cell lysis. However, genomic DNA and eDNA are not necessarily structurally or compositionally identical. Variations are noteworthy because they dictate important interactions within the biofilm. Interactions between eDNA and biofilm components may as well be exploited as alternative anti-biofilm strategies. In this review, we discuss recent developments in eDNA research, emphasizing potential ways to disrupt biofilms. This review also highlights proteins, exopolysaccharides, and other molecules interacting with eDNA that can serve as anti-biofilm therapeutic targets. Overall, the array of diverse interactions with eDNA is important in biofilm structure, architecture, and stability.
Collapse
Affiliation(s)
- Hannah Panlilio
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Charles V Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
38
|
Fu W, Liu Y, Liu F, Liu C, Li J, Niu J, Han P, Xu D, Hou J, Ma Y, Feng J, Li Z, Mu R, Yang G. A Novel Autoantibody Induced by Bacterial Biofilm Conserved Components Aggravates Lupus Nephritis. Front Immunol 2021; 12:656090. [PMID: 33841441 PMCID: PMC8027312 DOI: 10.3389/fimmu.2021.656090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with multiple autoantibody production and often affects the kidneys, known as lupus nephritis. However, the mechanism underlying lupus nephritis development is unclear. Biofilms that protect bacteria from stress are ubiquitous in almost every environment. Here, we identified that a conserved peptide (HU1) derived from DNABII proteins, one of major bacterial biofilm components, was specifically recognized by sera from about 47% patients with SLE. Moreover, the serum anti-HU1 levels showed a significant positive correlation with lupus nephritis occurrence. Presence of antibodies against HU1 in pristane-induced mice aggravated lupus nephritis, although these antibodies also attenuated bacterial biofilm formation. We further identified that antibodies against HU1 cross-recognized protein disulfide isomerase (P4HB) located on the renal cell surface and inhibited the activities of this enzyme. Our findings reveal a novel mechanism underlying the development of lupus nephritis triggered by bacterial biofilms.
Collapse
Affiliation(s)
- Wenyan Fu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Yu Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Fangjie Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Chenghua Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Jingjing Li
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Jiali Niu
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Peng Han
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Dan Xu
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Jiaojiao Hou
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Jiannan Feng
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Rong Mu
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Guang Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| |
Collapse
|
39
|
Seviour T, Winnerdy FR, Wong LL, Shi X, Mugunthan S, Foo YH, Castaing R, Adav SS, Subramoni S, Kohli GS, Shewan HM, Stokes JR, Rice SA, Phan AT, Kjelleberg S. The biofilm matrix scaffold of Pseudomonas aeruginosa contains G-quadruplex extracellular DNA structures. NPJ Biofilms Microbiomes 2021; 7:27. [PMID: 33741996 PMCID: PMC7979868 DOI: 10.1038/s41522-021-00197-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/12/2021] [Indexed: 12/31/2022] Open
Abstract
Extracellular DNA, or eDNA, is recognised as a critical biofilm component; however, it is not understood how it forms networked matrix structures. Here, we isolate eDNA from static-culture Pseudomonas aeruginosa biofilms using ionic liquids to preserve its biophysical signatures of fluid viscoelasticity and the temperature dependency of DNA transitions. We describe a loss of eDNA network structure as resulting from a change in nucleic acid conformation, and propose that its ability to form viscoelastic structures is key to its role in building biofilm matrices. Solid-state analysis of isolated eDNA, as a proxy for eDNA structure in biofilms, reveals non-canonical Hoogsteen base pairs, triads or tetrads involving thymine or uracil, and guanine, suggesting that the eDNA forms G-quadruplex structures. These are less abundant in chromosomal DNA and disappear when eDNA undergoes conformation transition. We verify the occurrence of G-quadruplex structures in the extracellular matrix of intact static and flow-cell biofilms of P. aeruginosa, as displayed by the matrix to G-quadruplex-specific antibody binding, and validate the loss of G-quadruplex structures in vivo to occur coincident with the disappearance of eDNA fibres. Given their stability, understanding how extracellular G-quadruplex structures form will elucidate how P. aeruginosa eDNA builds viscoelastic networks, which are a foundational biofilm property.
Collapse
Affiliation(s)
- Thomas Seviour
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore. .,WATEC Aarhus University Centre for Water Technology, Aarhus, Denmark.
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lan Li Wong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xiangyan Shi
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sudarsan Mugunthan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yong Hwee Foo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Remi Castaing
- Materials and Chemical Characterisation Facility (MC2), University of Bath, Bath, UK
| | - Sunil S Adav
- Singapore Phenome Centre, Nanyang Technological University, Singapore, Singapore
| | - Sujatha Subramoni
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Gurjeet Singh Kohli
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Heather M Shewan
- School of Chemical Engineering, University of Queensland, Brisbane, QLD, Australia
| | - Jason R Stokes
- School of Chemical Engineering, University of Queensland, Brisbane, QLD, Australia
| | - Scott A Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,The iThree Institute, University of Technology Sydney, Sydney, NSW, Australia.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore. .,School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
40
|
Thakur B, Arora K, Gupta A, Guptasarma P. The DNA-binding protein HU is a molecular glue that attaches bacteria to extracellular DNA in biofilms. J Biol Chem 2021; 296:100532. [PMID: 33713701 PMCID: PMC8063757 DOI: 10.1016/j.jbc.2021.100532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
In biofilms, bacteria that possess a negatively charged surface are embedded within a matrix of polymers consisting mainly of negatively charged extracellular DNA (e-DNA). In all likelihood, a multivalent positively charged substance, for example, a basic protein, exists within biofilms to neutralize charge–charge repulsions and act as a ‘glue’ attaching negatively charged bacteria to negatively charged e-DNA; however, no protein capable of doing so has yet been identified. We decided to investigate whether a highly abundant nucleoid-associated histone-like protein (HU) happens to be the glue in question. In recent years, HU has been shown to possess qualities that could be considered desirable in the proposed glue, for example, (a) availability in association with e-DNA; (b) multivalent DNA binding; (c) non–sequence-specific DNA-binding; (d) enhancement of biofilm formation upon exogenous addition, and (e) disruption of biofilms, upon removal by HU–cognate antibodies. Geometric considerations suggest that basic residues in HU's canonical and noncanonical DNA-binding sites can interact with sugar-linked terminal phosphates in lipopolysaccharide (LPS) molecules in bacterial outer membranes. Here, using genetic, spectroscopic, biophysical–chemical, microscopy-based, and cytometry-based experiments, we demonstrate that HU's DNA-binding sites also bind to LPS, that this facilitates DNA–DNA, DNA–LPS, and LPS–LPS interactions, and that this facilitates bacterial clumping and attachment of bacteria to DNA. Exogenous addition of HU to bacteria in (nonshaken) cultures is shown to cause cells to become engulfed in a matrix of DNA, potentially arising from the lysis of bacteria with vulnerable cell walls (as they strain to grow, divide, and move away from each other, in opposition to the accreting influence of HUs).
Collapse
Affiliation(s)
- Bhishem Thakur
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Punjab, India
| | - Kanika Arora
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Punjab, India
| | - Archit Gupta
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Punjab, India
| | - Purnananda Guptasarma
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Punjab, India.
| |
Collapse
|
41
|
Novotny LA, Chiang T, Goodman SD, Elmaraghy CA, Bakaletz LO. Humanized Anti-DNABII Fab Fragments Plus Ofloxacin Eradicated Biofilms in Experimental Otitis Media. Laryngoscope 2021; 131:E2698-E2704. [PMID: 33666254 DOI: 10.1002/lary.29497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 02/01/2023]
Abstract
OBJECTIVES/HYPOTHESIS To evaluate the ability of humanized monoclonal antibody fragments directed against a bacterial DNABII protein plus ofloxacin delivered directly into the chinchilla middle ear via tympanostomy tube (TT) to enhance the ability of ofloxacin to eradicate biofilms formed by nontypeable Haemophilus influenzae (NTHI). STUDY DESIGN A blinded pre-clinical study of comparative efficacy of single versus combinatorial treatment strategies. METHODS NTHI was allowed to form biofilms in the middle ears of chinchillas prior to TT placement. Ofloxacin, humanized Fab fragments against a bacterial DNABII protein that disrupts biofilms or Fab fragments plus ofloxacin were instilled into the middle ear via TT. For two consecutive days, ofloxacin was delivered twice-a-day, Fab fragments were delivered once-a-day, or these treatments were combined. Relative biofilm resolution (as determined via two outcome measures) and eradication of viable NTHI were assessed 1-day later. RESULTS Whereas ofloxacin alone did not resolve biofilms or eradicate NTHI from the middle ear, delivery of Fab fragments significantly reduced both biofilms and NTHI burden over this short course of treatment. Notably, co-delivery of ofloxacin plus humanized Fab fragments eradicated both NTHI and biofilms from the middle ear, an enhanced outcome compared to receipt of either treatment alone. CONCLUSION This study demonstrated a powerful combinatorial approach to release bacteria from their protective biofilms and rapidly render them vulnerable to killing by a previously ineffective antibiotic. An approach to combine ofloxacin with humanized Fab fragments that disrupt biofilms has tremendous potential to quickly resolve chronic otorrhea suffered by children with chronic suppurative otitis media or chronic post-tympanostomy tube otorrhea and thereby improve their quality of life. LEVEL OF EVIDENCE NA Laryngoscope, 2021.
Collapse
Affiliation(s)
- Laura A Novotny
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| | - Tendy Chiang
- The Ohio State University College of Medicine, Columbus, Ohio, U.S.A.,Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, U.S.A.,Department of Pediatric Otolaryngology, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, U.S.A.,The Ohio State University College of Medicine, Columbus, Ohio, U.S.A
| | - Charles A Elmaraghy
- The Ohio State University College of Medicine, Columbus, Ohio, U.S.A.,Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, U.S.A.,Department of Pediatric Otolaryngology, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, U.S.A.,The Ohio State University College of Medicine, Columbus, Ohio, U.S.A.,Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, U.S.A
| |
Collapse
|
42
|
Viruega-Góngora VI, Acatitla-Jácome IS, Reyes-Carmona SR, Baca BE, Ramírez-Mata A. Spatio-temporal formation of biofilms and extracellular matrix analysis in Azospirillum brasilense. FEMS Microbiol Lett 2021; 367:5762672. [PMID: 32105306 DOI: 10.1093/femsle/fnaa037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/25/2020] [Indexed: 01/02/2023] Open
Abstract
Elucidation of biofilm structure formation in the plant growth-promoting rhizobacterium Azospirillum brasilense is necessary to gain a better understanding of the growth of cells within the extracellular matrix and its role in the colonization of plants of agronomic importance. We used immunofluorescence microscopy and confocal laser scanning microscopy to study spatio-temporal biofilm formation on an abiotic surface. Observations facilitated by fluorescence microscopy revealed the presence of polar flagellin, exopolysaccharides, outer major membrane protein (OmaA) and extracellular DNA in the Azospirillum biofilm matrix. In static culture conditions, the polar flagellum disaggregated after 3 days of biofilm growth, but exopolysaccharides were increasing. These findings suggest that the first step in biofilm formation may be attachment, in which the bacterium first makes contact with a surface through its polar flagellum. After attaching to the surface, the long flagella and OmaA intertwine the cells to form a network. These bacterial aggregates initiate biofilm development. The underlying mechanisms dictating how the biofilm matrix components of A. brasilense direct the overall morphology of the biofilm are not well known. The methods developed here might be useful in further studies that analyze the differential spatial regulation of genes encoding matrix components that drive biofilm construction.
Collapse
Affiliation(s)
- Víctor I Viruega-Góngora
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria Edif. IC11, Av. San Claudio S/N. Puebla Pue. México
| | - Iris S Acatitla-Jácome
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria Edif. IC11, Av. San Claudio S/N. Puebla Pue. México
| | - Sandra R Reyes-Carmona
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria Edif. IC11, Av. San Claudio S/N. Puebla Pue. México
| | - Beatriz E Baca
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria Edif. IC11, Av. San Claudio S/N. Puebla Pue. México
| | - Alberto Ramírez-Mata
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria Edif. IC11, Av. San Claudio S/N. Puebla Pue. México
| |
Collapse
|
43
|
Devaraj A, González JF, Eichar B, Thilliez G, Kingsley RA, Baker S, Allard MW, Bakaletz LO, Gunn JS, Goodman SD. Enhanced biofilm and extracellular matrix production by chronic carriage versus acute isolates of Salmonella Typhi. PLoS Pathog 2021; 17:e1009209. [PMID: 33465146 PMCID: PMC7815147 DOI: 10.1371/journal.ppat.1009209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/02/2020] [Indexed: 01/01/2023] Open
Abstract
Salmonella Typhi is the primary causative agent of typhoid fever; an acute systemic infection that leads to chronic carriage in 3–5% of individuals. Chronic carriers are asymptomatic, difficult to treat and serve as reservoirs for typhoid outbreaks. Understanding the factors that contribute to chronic carriage is key to development of novel therapies to effectively resolve typhoid fever. Herein, although we observed no distinct clustering of chronic carriage isolates via phylogenetic analysis, we demonstrated that chronic isolates were phenotypically distinct from acute infection isolates. Chronic carriage isolates formed significantly thicker biofilms with greater biomass that correlated with significantly higher relative levels of extracellular DNA (eDNA) and DNABII proteins than biofilms formed by acute infection isolates. Importantly, extracellular DNABII proteins include integration host factor (IHF) and histone-like protein (HU) that are critical to the structural integrity of bacterial biofilms. In this study, we demonstrated that the biofilm formed by a chronic carriage isolate in vitro, was susceptible to disruption by a specific antibody against DNABII proteins, a successful first step in the development of a therapeutic to resolve chronic carriage. Salmonella Typhi, a human restricted pathogen is the primary etiologic agent of typhoid fever, an acute systemic infection that has a global incidence of 21 million cases annually. Although the acute infection is resolved by antibiotics, 3–5% of individuals develop chronic carriage that is difficult to resolve with antibiotics. A majority of these indivuals serve as reservoirs for further spread of the disease. Understanding the differences between acute and chronic carrier strains is key to design novel targeted approaches to undermine carriage. Here, we demonstrated that chronic carrier strains although not genotypically distinct from acute strains, formed thicker biofilms with greater relative levels of extracellular eDNA and DNABII proteins than those formed by acute infection isolates. We also demonstrated that an antibody against DNABII proteins significantly disrupted biofilms formed by a chronic carrier strain and therefore supported development of therapeutic use of this antibody to attenuate chronic carriage.
Collapse
Affiliation(s)
- Aishwarya Devaraj
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Juan F. González
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Bradley Eichar
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | | | - Robert A. Kingsley
- Quadram Institute Bioscience, Norwich, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Marc W. Allard
- Food and Drug Administration-FDA, College Park, Maryland, United States of America
| | - Lauren O. Bakaletz
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - John S. Gunn
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
- Oral and GI Microbiology Research Affinity Group, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- * E-mail: (JSG); (SDG)
| | - Steven D. Goodman
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
- Oral and GI Microbiology Research Affinity Group, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- * E-mail: (JSG); (SDG)
| |
Collapse
|
44
|
Manoharadas S, Altaf M, Alrefaei AF, Devasia RM, Badjah Hadj AYM, Abuhasil MSA. Concerted dispersion of Staphylococcus aureus biofilm by bacteriophage and 'green synthesized' silver nanoparticles. RSC Adv 2021; 11:1420-1429. [PMID: 35424119 PMCID: PMC8693614 DOI: 10.1039/d0ra09725j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Staphylococcal biofilms predominantly cause persistent nosocomial infections. The widespread antibiotic resistance followed by its ability to form biofilm in biological and inert surfaces often contributes to major complications in patients and veterinary animals. Strategic importance of bacteriophage therapy against critical staphylococcal infections had been predicted ever since the advent of antibiotic resistant staphylococcal strains. The significance of metal nanoparticles in quenching biofilm associated bacteria was previously reported. In this study, we demonstrate a concerted action of ‘green synthesized’ silver nanoparticles and bacteriophages in removing pre-formed Staphylococcus aureus biofilms from an inert glass surface in a time dependent manner. Our results demonstrate, for the first time, the rapid co-operative dispersion of the bacterial biofilm. In addition, the synergistic activity of the nanoparticles and bacteriophages causes the loss of viability of the biofilm entrapped bacterial cells thus preventing establishment of a new infection and subsequent colonization. This work further opens up a platform for the combinational therapeutic approach with a variety of nanoparticles and bacteriophages against mono or poly bacterial biofilm in environmental, industrial or clinical settings. Formation of biofilm by Staphylococcus aureus ‘Rumba’ on untreated glass surface and a concerted disruption of the biofilm by silver nanoparticle and phage ϕ44AHJD.![]()
Collapse
Affiliation(s)
- Salim Manoharadas
- King Saud University, Department of Botany and Microbiology, Central Laboratory RM 55A College of Science Building 5, P.O. Box. 2454 Riyadh 11451 Saudi Arabia +966-14699665 +966-114689170
| | - Mohammad Altaf
- King Saud University, Department of Botany and Microbiology, Central Laboratory RM 55A College of Science Building 5, P.O. Box. 2454 Riyadh 11451 Saudi Arabia +966-14699665 +966-114689170.,King Saud University, Department of Chemistry, College of Science P.O. Box. 2454 Riyadh 11451 Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- King Saud University, Department of Zoology, College of Science P.O. Box. 2454 Riyadh 11451 Saudi Arabia
| | | | - Ahmed Yacine M Badjah Hadj
- King Saud University, Department of Chemistry, College of Science P.O. Box. 2454 Riyadh 11451 Saudi Arabia
| | - Mohammed Saeed Ali Abuhasil
- King Saud University, Department of Food Science and Nutrition, College of Agriculture and Food Science P.O. Box. 2454 Riyadh 11451 Saudi Arabia
| |
Collapse
|
45
|
Mokrzan EM, Ahearn CP, Buzzo JR, Novotny LA, Zhang Y, Goodman SD, Bakaletz LO. Nontypeable Haemophilus influenzae newly released (NRel) from biofilms by antibody-mediated dispersal versus antibody-mediated disruption are phenotypically distinct. Biofilm 2020; 2:100039. [PMID: 33447823 PMCID: PMC7798465 DOI: 10.1016/j.bioflm.2020.100039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023] Open
Abstract
Biofilms contribute significantly to the chronicity and recurrence of bacterial diseases due to the fact that biofilm-resident bacteria are highly recalcitrant to killing by host immune effectors and antibiotics. Thus, antibody-mediated release of bacteria from biofilm residence into the surrounding milieu supports a powerful strategy to resolve otherwise difficult-to-treat biofilm-associated diseases. In our prior work, we revealed that antibodies directed against two unique determinants of nontypeable Haemophilus influenzae (NTHI) [e.g. the Type IV pilus (T4P) or a bacterial DNABII DNA-binding protein, a species-independent target that provides structural integrity to bacterial biofilms] release biofilm-resident bacteria via discrete mechanisms. Herein, we now show that the phenotype of the resultant newly released (or NRel) NTHI is dependent upon the specific mechanism of release. We used flow cytometry, proteomic profiles, and targeted transcriptomics to demonstrate that the two NRel populations were significantly different not only from planktonically grown NTHI, but importantly, from each other despite genetic identity. Moreover, each NRel population had a distinct, significantly increased susceptibility to killing by either a sulfonamide or β-lactam antibiotic compared to planktonic NTHI, an observation consistent with their individual proteomes and further supported by relative differences in targeted gene expression. The distinct phenotypes of NTHI released from biofilms by antibodies directed against specific epitopes of T4P or DNABII binding proteins provide new opportunities to develop targeted therapeutic strategies for biofilm eradication and disease resolution.
Collapse
Affiliation(s)
- Elaine M Mokrzan
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Christian P Ahearn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - John R Buzzo
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Laura A Novotny
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Yan Zhang
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA.,The Ohio State University Comprehensive Cancer Center (OSUCCC - James), Columbus, OH, USA
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
46
|
Cacciatore I, Marinelli L. Patent evaluation of US2019338018 (A1) 2019-11-07 (antibody fragments for the treatment of biofilm-related disorders). Expert Opin Ther Pat 2020; 30:907-909. [PMID: 32970473 DOI: 10.1080/13543776.2020.1828864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION To date, microbial infections are also difficult to eradicate due to the increasing capability of bacteria to form a biofilm. In the era of antibiotic resistance, antibody-based approaches represent great promise in curing infective pathogens. The authors of US2019338018 patent propose a method for the treatment of biofilm-related disorders by using specific antibody fragments. AREAS COVERED The US2019338018 patent reports antibody fragments, pharmaceutical composition that contains it, and their application for the treatment of biofilm-linked disorders. Proof concept and preclinical results show that mAb mIhfB4NTHI Fab caused robust eradication of the biofilm in the middle ear lumen of chinchillas affected by Hemophilus influenzae infection. EXPERT OPINION Fab fragments of the US2019338018 patent are new in a general concept to treat bacterial biofilms and biofilm-linked disorders. However, pre-clinical data are only shown for the treatment with Fab fragments of infections caused by H. influenzae in the middle ear of chinchillas. There are no clinical trials that demonstrate that the treatment with Fab fragments may induce a disruption of biofilm produced by H. influenzae or other pathogens and an anti-inflammatory response in infected patients.
Collapse
Affiliation(s)
- Ivana Cacciatore
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara , Chieti, Italy
| | - Lisa Marinelli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara , Chieti, Italy
| |
Collapse
|
47
|
Jiang Y, Geng M, Bai L. Targeting Biofilms Therapy: Current Research Strategies and Development Hurdles. Microorganisms 2020; 8:microorganisms8081222. [PMID: 32796745 PMCID: PMC7465149 DOI: 10.3390/microorganisms8081222] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 01/05/2023] Open
Abstract
Biofilms are aggregate of microorganisms in which cells are frequently embedded within a self-produced matrix of extracellular polymeric substance (EPS) and adhere to each other and/or to a surface. The development of biofilm affords pathogens significantly increased tolerances to antibiotics and antimicrobials. Up to 80% of human bacterial infections are biofilm-associated. Dispersal of biofilms can turn microbial cells into their more vulnerable planktonic phenotype and improve the therapeutic effect of antimicrobials. In this review, we focus on multiple therapeutic strategies that are currently being developed to target important structural and functional characteristics and drug resistance mechanisms of biofilms. We thoroughly discuss the current biofilm targeting strategies from four major aspects—targeting EPS, dispersal molecules, targeting quorum sensing, and targeting dormant cells. We explain each aspect with examples and discuss the main hurdles in the development of biofilm dispersal agents in order to provide a rationale for multi-targeted therapy strategies that target the complicated biofilms. Biofilm dispersal is a promising research direction to treat biofilm-associated infections in the future, and more in vivo experiments should be performed to ensure the efficacy of these therapeutic agents before being used in clinic.
Collapse
|
48
|
Biofilm reactors for value-added products production: An in-depth review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101662] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Targeting a bacterial DNABII protein with a chimeric peptide immunogen or humanised monoclonal antibody to prevent or treat recalcitrant biofilm-mediated infections. EBioMedicine 2020; 59:102867. [PMID: 32651162 PMCID: PMC7502671 DOI: 10.1016/j.ebiom.2020.102867] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/02/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Chronic and recurrent bacterial diseases are recalcitrant to treatment due to the ability of the causative agents to establish biofilms, thus development of means to prevent or resolve these structures are greatly needed. Our approach targets the DNABII family of bacterial DNA-binding proteins, which serve as critical structural components within the extracellular DNA scaffold of biofilms formed by all bacterial species tested to date. DNABII-directed antibodies rapidly disrupt biofilms and release the resident bacteria which promote their subsequent clearance by either host immune effectors or antibiotics that are now effective at a notably reduced concentration. Methods: First, as a therapeutic approach, we used intact IgG or Fab fragments against a chimeric peptide immunogen designed to target protective epitopes within the DNA-binding tip domains of integration host factor to disrupt established biofilms in vitro and to mediate resolution of existing disease in vivo. Second, we performed preventative active immunisation with the chimeric peptide to induce the formation of antibody that blocks biofilm formation and disease development in a model of viral-bacterial superinfection. Further, toward the path for clinical use, we humanised a monoclonal antibody against the chimeric peptide immunogen, then characterised and validated that it maintained therapeutic efficacy. Findings: We demonstrated efficacy of each approach in two well-established pre-clinical models of otitis media induced by the prevalent respiratory tract pathogen nontypeable Haemophilus influenzae, a common biofilm disease. Interpretation: Collectively, our data revealed two approaches with substantive efficacy and potential for broad application to combat diseases with a biofilm component. Funding Supported by R01 DC011818 to LOB and SDG.
Collapse
|
50
|
Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol 2020; 28:668-681. [PMID: 32663461 DOI: 10.1016/j.tim.2020.03.016] [Citation(s) in RCA: 707] [Impact Index Per Article: 141.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 02/04/2023]
Abstract
Biofilms consist of microbial communities embedded in a 3D extracellular matrix. The matrix is composed of a complex array of extracellular polymeric substances (EPS) that contribute to the unique attributes of biofilm lifestyle and virulence. This ensemble of chemically and functionally diverse biomolecules is termed the 'matrixome'. The composition and mechanisms of EPS matrix formation, and its role in biofilm biology, function, and microenvironment are being revealed. This perspective article highlights recent advances about the multifaceted role of the 'matrixome' in the development, physical-chemical properties, and virulence of biofilms. We emphasize that targeting biofilm-specific conditions such as the matrixome could lead to precise and effective antibiofilm approaches. We also discuss the limited knowledge in the context of polymicrobial biofilms, and the need for more in-depth analyses of the EPS matrix in mixed communities that are associated with many human infectious diseases.
Collapse
Affiliation(s)
- L Karygianni
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine University of Zurich, Zurich, Switzerland
| | - Z Ren
- Department of Orthodontics, Divisions of Pediatric Dentistry and Community of Oral Health, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - H Koo
- Department of Orthodontics, Divisions of Pediatric Dentistry and Community of Oral Health, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA; Center for Innovation and Precision Dentistry, University of Pennsylvania School of Dental Medicine, School of Engineering and Applied Sciences, Philadelphia, PA, USA
| | - T Thurnheer
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine University of Zurich, Zurich, Switzerland.
| |
Collapse
|