1
|
Zhang L, Adyari B, Ma C, Cao M, Gad M, Abdel-Gawad FK, Hu A. Unveiling the critical role of overlooked consumer protist-bacteria interactions in antibiotic resistance gene dissemination in urban sewage systems. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136767. [PMID: 39662352 DOI: 10.1016/j.jhazmat.2024.136767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/09/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Antibiotic resistance genes (ARGs) are emerging contaminants of significant concern due to their role in facilitating the spread of antibiotic resistance, especially high-risk ARGs, which are characterized by high human accessibility, gene mobility, pathogenicity, and clinical availability. Studies have shown that cross-domain interactions, such as those between consumer protists (consumers) and bacteria, can influence bacterial diversity, distribution, and function through top-down control. The consumers-bacteria interactions may also affect the occurrence and distribution of ARGs, yet this has been scarcely explored in field investigations. We conducted a city-scale investigation of ARGs, protists, and bacterial communities across each unit of the urban sewage system (USS), including 49 sewage pumping stations (SW), as well as influent (IF), activated sludge (AS), and effluent (EF) from seven wastewater treatment plants. Interestingly, consumers-bacteria interactions, as indicated by indices of bipartite relevance networks (i.e., connectedness and cohesion), increased from SW and IF to AS and EF. Structural equation modelling (SEM) revealed that consumers-bacteria interactions had a greater influence on the abundance of total ARGs and high-risk ARGs than seasonal or environmental factors. Notably, the total effects of consumers-bacteria interactions in SEM were significant (P < 0.05) and comparable in both IF and EF, even with the decrease in ARG abundance from IF to EF. This suggests a potential risk of ARG spread to the environment, facilitated by consumer protists in the EF. Additionally, the relevance network also demonstrated an increasing trend in the relationships between consumer protists and potential hosts of high-risk ARGs from raw sewage (SW and IF) to AS and EF. Overall, this study emphasizes the importance of integrating multitrophic microbial interactions to better understand and mitigate the dissemination of ARGs in sewage systems.
Collapse
Affiliation(s)
- Lanping Zhang
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bob Adyari
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Department of Environmental Engineering, Universitas Pertamina, Jakarta 12220, Indonesia
| | - Cong Ma
- Xiamen Municipal Environmental Technology Co., Ltd., Xiamen 361001, China
| | - Meixian Cao
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mahmoud Gad
- Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Fagr Kh Abdel-Gawad
- Center of Excellence for Research and Applied Studies on Climate Change and Sustainable Development (C3SD-NRC), National Research Centre, Dokki, Giza 12622, Egypt
| | - Anyi Hu
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Carbon Neutral Innovation Research Center, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
2
|
Leprevost L, Jünger S, Lippens G, Guillaume C, Sicoli G, Oliveira L, Falcone E, de Santis E, Rivera-Millot A, Billon G, Stellato F, Henry C, Antoine R, Zirah S, Dubiley S, Li Y, Jacob-Dubuisson F. A widespread family of ribosomal peptide metallophores involved in bacterial adaptation to metal stress. Proc Natl Acad Sci U S A 2024; 121:e2408304121. [PMID: 39602266 PMCID: PMC11626156 DOI: 10.1073/pnas.2408304121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Ribosomally synthesized and posttranslationally modified peptides (RiPPs) are a structurally diverse group of natural products that bacteria employ in their survival strategies. Herein, we characterized the structure, the biosynthetic pathway, and the mode of action of a RiPP family called bufferins. With thousands of homologous biosynthetic gene clusters throughout the bacterial phylogenetic tree, bufferins form by far the largest family of RiPPs modified by multinuclear nonheme iron-dependent oxidases (MNIO, DUF692 family). Using Caulobacter vibrioides bufferins as a model, we showed that the conserved Cys residues of their precursors are transformed into 5-thiooxazoles, further expanding the reaction range of MNIO enzymes. This rare modification is installed in conjunction with a partner protein of the DUF2063 family. Bufferin precursors are rare examples of bacterial RiPPs found to feature an N-terminal Sec signal peptide allowing them to be exported by the ubiquitous Sec pathway. We reveal that bufferins are involved in copper homeostasis, and their metal-binding propensity requires the thiooxazole heterocycles. Bufferins enhance bacterial growth under copper stress by complexing excess metal ions. Our study thus describes a large family of RiPP metallophores and unveils a widespread but overlooked metal homeostasis mechanism in bacteria.
Collapse
Affiliation(s)
- Laura Leprevost
- Univ. Lille, CNRS, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille, LilleF-59000, France
| | - Sophie Jünger
- Unit Molecules of Communication and Adaptation of Microorganisms, UMR 7245 CNRS, Museum National d'Histoire Naturelle, Paris75005, France
| | - Guy Lippens
- Toulouse Biotechnology Institute, CNRS/Institut National de la Recherche en Agronomie, Alimentation et Environnement/Institut National des Sciences Appliquées, Toulouse31077, France
| | - Céline Guillaume
- Unit Molecules of Communication and Adaptation of Microorganisms, UMR 7245 CNRS, Museum National d'Histoire Naturelle, Paris75005, France
| | - Giuseppe Sicoli
- CNRS, UMR 8516 Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Université de Lille, LilleF-59000, France
| | - Lydie Oliveira
- Institut National de la Recherche en Agronomie, Alimentation et Environnement-AgroParisTech-Université Paris-Saclay, Microbiologie des aliments au service de la santé, Jouy-en Josas78352, France
| | - Enrico Falcone
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, Toulouse31077, France
| | - Emiliano de Santis
- Department of Physics, University of Rome Tor Vergata and Istituto Nazionale di Fisica Nucleare, Rome00133, Italy
| | - Alex Rivera-Millot
- Univ. Lille, CNRS, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille, LilleF-59000, France
| | - Gabriel Billon
- CNRS, UMR 8516 Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Université de Lille, LilleF-59000, France
| | - Francesco Stellato
- Department of Physics, University of Rome Tor Vergata and Istituto Nazionale di Fisica Nucleare, Rome00133, Italy
| | - Céline Henry
- Institut National de la Recherche en Agronomie, Alimentation et Environnement-AgroParisTech-Université Paris-Saclay, Microbiologie des aliments au service de la santé, Jouy-en Josas78352, France
| | - Rudy Antoine
- Univ. Lille, CNRS, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille, LilleF-59000, France
| | - Séverine Zirah
- Unit Molecules of Communication and Adaptation of Microorganisms, UMR 7245 CNRS, Museum National d'Histoire Naturelle, Paris75005, France
| | - Svetlana Dubiley
- Toulouse Biotechnology Institute, CNRS/Institut National de la Recherche en Agronomie, Alimentation et Environnement/Institut National des Sciences Appliquées, Toulouse31077, France
| | - Yanyan Li
- Unit Molecules of Communication and Adaptation of Microorganisms, UMR 7245 CNRS, Museum National d'Histoire Naturelle, Paris75005, France
| | - Françoise Jacob-Dubuisson
- Univ. Lille, CNRS, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille, LilleF-59000, France
| |
Collapse
|
3
|
Bagheri S, Saboury AA, Saso L. Sequence of Molecular Events in the Development of Alzheimer's Disease: Cascade Interactions from Beta-Amyloid to Other Involved Proteins. Cells 2024; 13:1293. [PMID: 39120323 PMCID: PMC11312137 DOI: 10.3390/cells13151293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Alzheimer's disease is the primary neurodegenerative disease affecting the elderly population. Despite the first description of its pathology over a century ago, its precise cause and molecular mechanism remain unknown. Numerous factors, including beta-amyloid, tau protein, the APOEε4 gene, and different metals, have been extensively investigated in relation to this disease. However, none of them have been proven to have a decisive causal relationship. Furthermore, no single theory has successfully integrated these puzzle pieces thus far. In this review article, we propose the most probable molecular mechanism for AD, which clearly shows the relationship between the main aspects of the disease, and addresses fundamental questions such as: Why is aging the major risk factor for the disease? Are amyloid plaques and tau tangles the causes or consequences of AD? Why are the distributions of senile plaques and tau tangles in the brain different and independent of each other? Why is the APOEε4 gene a risk factor for AD? Finally, why is the disease more prevalent in women?
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
4
|
Yu Y, Li YP, Ren K, Hao X, Fru EC, Rønn R, Rivera WL, Becker K, Feng R, Yang J, Rensing C. A brief history of metal recruitment in protozoan predation. Trends Microbiol 2024; 32:465-476. [PMID: 38103995 DOI: 10.1016/j.tim.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023]
Abstract
Metals and metalloids are used as weapons for predatory feeding by unicellular eukaryotes on prokaryotes. This review emphasizes the role of metal(loid) bioavailability over the course of Earth's history, coupled with eukaryogenesis and the evolution of the mitochondrion to trace the emergence and use of the metal(loid) prey-killing phagosome as a feeding strategy. Members of the genera Acanthamoeba and Dictyostelium use metals such as zinc (Zn) and copper (Cu), and possibly metalloids, to kill their bacterial prey after phagocytosis. We provide a potential timeline on when these capacities first evolved and how they correlate with perceived changes in metal(loid) bioavailability through Earth's history. The origin of phagotrophic eukaryotes must have postdated the Great Oxidation Event (GOE) in agreement with redox-dependent modification of metal(loid) bioavailability for phagotrophic poisoning. However, this predatory mechanism is predicted to have evolved much later - closer to the origin of the multicellular metazoans and the evolutionary development of the immune systems.
Collapse
Affiliation(s)
- Yanshuang Yu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuan-Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kexin Ren
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiuli Hao
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Ernest Chi Fru
- Centre for Geobiology and Geochemistry, School of Earth and Ocean Sciences, Cardiff University, CF10 3AT Cardiff, UK
| | - Regin Rønn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Windell L Rivera
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Karsten Becker
- Friedrich Loeffler-Institute for Medical Microbiology, University Medicine Greifswald, D-17489 Greifswald, Germany
| | - Renwei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
5
|
Rivera-Millot A, Harrison LB, Veyrier FJ. Copper management strategies in obligate bacterial symbionts: balancing cost and benefit. Emerg Top Life Sci 2024; 8:29-35. [PMID: 38095549 PMCID: PMC10903467 DOI: 10.1042/etls20230113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 02/23/2024]
Abstract
Bacteria employ diverse mechanisms to manage toxic copper in their environments, and these evolutionary strategies can be divided into two main categories: accumulation and rationalization of metabolic pathways. The strategies employed depend on the bacteria's lifestyle and environmental context, optimizing the metabolic cost-benefit ratio. Environmental and opportunistically pathogenic bacteria often possess an extensive range of copper regulation systems in order to respond to variations in copper concentrations and environmental conditions, investing in diversity and/or redundancy as a safeguard against uncertainty. In contrast, obligate symbiotic bacteria, such as Neisseria gonorrhoeae and Bordetella pertussis, tend to have specialized and more parsimonious copper regulation systems designed to function in the relatively stable host environment. These evolutionary strategies maintain copper homeostasis even in challenging conditions like encounters within phagocytic cells. These examples highlight the adaptability of bacterial copper management systems, tailored to their specific lifestyles and environmental requirements, in the context of an evolutionary the trade-off between benefits and energy costs.
Collapse
Affiliation(s)
- Alex Rivera-Millot
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, Quebec H7V 1B7, Canada
| | - Luke B. Harrison
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, Quebec H7V 1B7, Canada
| | - Frédéric J. Veyrier
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, Quebec H7V 1B7, Canada
| |
Collapse
|
6
|
Contreras-Moreno FJ, Moraleda-Muñoz A, Marcos-Torres FJ, Cuéllar V, Soto MJ, Pérez J, Muñoz-Dorado J. Siderophores and competition for iron govern myxobacterial predation dynamics. THE ISME JOURNAL 2024; 18:wrae077. [PMID: 38696719 PMCID: PMC11388931 DOI: 10.1093/ismejo/wrae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Bacterial predators are decisive organisms that shape microbial ecosystems. In this study, we investigated the role of iron and siderophores during the predatory interaction between two rhizosphere bacteria: Myxococcus xanthus, an epibiotic predator, and Sinorhizobium meliloti, a bacterium that establishes nitrogen-fixing symbiosis with legumes. The results show that iron enhances the motility of the predator and facilitates its predatory capability, and that intoxication by iron is not used by the predator to prey, although oxidative stress increases in both bacteria during predation. However, competition for iron plays an important role in the outcome of predatory interactions. Using combinations of predator and prey mutants (nonproducers and overproducers of siderophores), we have investigated the importance of competition for iron in predation. The results demonstrate that the competitor that, via the production of siderophores, obtains sufficient iron for growth and depletes metal availability for the opponent will prevail in the interaction. Consequently, iron fluctuations in soils may modify the composition of microbial communities by altering the activity of myxobacterial predators. In addition, siderophore overproduction during predation can alter soil properties, affecting the productivity and sustainability of agricultural operations.
Collapse
Affiliation(s)
| | - Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| | | | - Virginia Cuéllar
- Departamento de Biotecnología y Protección Ambiental, Estación Experimental del Zaidín, CSIC, E-18008 Granada, Spain
| | - María José Soto
- Departamento de Biotecnología y Protección Ambiental, Estación Experimental del Zaidín, CSIC, E-18008 Granada, Spain
| | - Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| |
Collapse
|
7
|
Shi Y, Ma L, Zhou M, He Z, Zhao Y, Hong J, Zou X, Zhang L, Shu L. Copper stress shapes the dynamic behavior of amoebae and their associated bacteria. THE ISME JOURNAL 2024; 18:wrae100. [PMID: 38848278 PMCID: PMC11197307 DOI: 10.1093/ismejo/wrae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 06/06/2024] [Indexed: 06/09/2024]
Abstract
Amoeba-bacteria interactions are prevalent in both natural ecosystems and engineered environments. Amoebae, as essential consumers, hold significant ecological importance within ecosystems. Besides, they can establish stable symbiotic associations with bacteria. Copper plays a critical role in amoeba predation by either killing or restricting the growth of ingested bacteria in phagosomes. However, certain symbiotic bacteria have evolved mechanisms to persist within the phagosomal vacuole, evading antimicrobial defenses. Despite these insights, the impact of copper on the symbiotic relationships between amoebae and bacteria remains poorly understood. In this study, we investigated the effects of copper stress on amoebae and their symbiotic relationships with bacteria. Our findings revealed that elevated copper concentration adversely affected amoeba growth and altered cellular fate. Symbiont type significantly influenced the responses of the symbiotic relationships to copper stress. Beneficial symbionts maintained stability under copper stress, but parasitic symbionts exhibited enhanced colonization of amoebae. Furthermore, copper stress favored the transition of symbiotic relationships between amoebae and beneficial symbionts toward the host's benefit. Conversely, the pathogenic effects of parasitic symbionts on hosts were exacerbated under copper stress. This study sheds light on the intricate response mechanisms of soil amoebae and amoeba-bacteria symbiotic systems to copper stress, providing new insights into symbiotic dynamics under abiotic factors. Additionally, the results underscore the potential risks of copper accumulation in the environment for pathogen transmission and biosafety.
Collapse
Affiliation(s)
- Yijing Shi
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Lu Ma
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Zhou
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanchen Zhao
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Junyue Hong
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinyue Zou
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
8
|
Liu C, Wang Y, Zhou Z, Wang S, Wei Z, Ravanbakhsh M, Shen Q, Xiong W, Kowalchuk GA, Jousset A. Protist predation promotes antimicrobial resistance spread through antagonistic microbiome interactions. THE ISME JOURNAL 2024; 18:wrae169. [PMID: 39259188 PMCID: PMC11453101 DOI: 10.1093/ismejo/wrae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Antibiotic resistance has grown into a major public health threat. In this study, we reveal predation by protists as an overlooked driver of antibiotic resistance dissemination in the soil microbiome. While previous studies have primarily focused on the distribution of antibiotic resistance genes, our work sheds light on the pivotal role of soil protists in shaping antibiotic resistance dynamics. Using a combination of metagenomics and controlled experiments in this study, we demonstrate that protists cause an increase in antibiotic resistance. We mechanistically link this increase to a fostering of antimicrobial activity in the microbiome. Protist predation gives a competitive edge to bacteria capable of producing antagonistic secondary metabolites, which secondary metabolites promote in turn antibiotic-resistant bacteria. This study provides insights into the complex interplay between protists and soil microbiomes in regulating antibiotic resistance dynamics. This study highlights the importance of top-down control on the spread of antibiotic resistance and directly connects it to cross-kingdom interactions within the microbiome. Managing protist communities may become an important tool to control outbreaks of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Chen Liu
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Yijin Wang
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Zeyuan Zhou
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Shimei Wang
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Zhong Wei
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Mohammadhossein Ravanbakhsh
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Wu Xiong
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alexandre Jousset
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
9
|
Ma L, Zhang L, Zhang S, Zhou M, Huang W, Zou X, He Z, Shu L. Soil protists are more resilient to the combined effect of microplastics and heavy metals than bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167645. [PMID: 37806593 DOI: 10.1016/j.scitotenv.2023.167645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Heavy metals and micro-/nanoplastic pollution seriously threaten the environment and ecosystems. While many studies investigated their effects on diverse microbes, few studies have focused on soil protists, and it is unclear how soil protists respond to the combined effect of micro-/nanoplastics and heavy metals. This study investigated how soil protistan and bacterial communities respond to single or combined copper and micro-/nanoplastics. The bacterial community exhibited an instantaneous response to single copper pollution, whereas the combined pollution resulted in a hysteresis effect on the protistan community. Single and combined pollution inhibited the predation of protists and changed the construction of ecological networks. Though single and combined pollution did not significantly affect the overall community structure, the exposure experiment indicated that combined pollution harmed soil amoeba's fitness. These findings offer valuable new insights into the toxic effects of single and combined pollution of copper and plastics on soil protistan and bacterial communities. Additionally, this study shows that sequencing-based analyses cannot fully reflect pollutants' adverse effects, and both culture-independent and dependent methods are needed to reveal the impact of pollutants on soil microbes.
Collapse
Affiliation(s)
- Lu Ma
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Siyi Zhang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Zhou
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Huang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinyue Zou
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
10
|
Kim LW, Osorio-Castillo V. Quantitative Analysis of the Inactivation Process of Internalized Bacteria in Dictyostelium Cells. Methods Mol Biol 2024; 2814:89-96. [PMID: 38954199 DOI: 10.1007/978-1-0716-3894-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The understanding of the inactivation process of ingested bacteria by phagocytes is a key focus in the field of host-pathogen interactions. Dictyostelium is a model organism that has been at the forefront of uncovering the mechanisms underlying this type of interaction. In this study, we describe an assay designed to measure the inactivation of Klebsiella aerogenes in the phagosomes of Dictyostelium discoideum.
Collapse
Affiliation(s)
- Lou W Kim
- Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| | - Victor Osorio-Castillo
- Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| |
Collapse
|
11
|
Hossain S, Morey JR, Neville SL, Ganio K, Radin JN, Norambuena J, Boyd JM, McDevitt CA, Kehl-Fie TE. Host subversion of bacterial metallophore usage drives copper intoxication. mBio 2023; 14:e0135023. [PMID: 37737591 PMCID: PMC10653882 DOI: 10.1128/mbio.01350-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/02/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE During infection, bacteria must overcome the dual threats of metal starvation and intoxication. This work reveals that the zinc-withholding response of the host sensitizes S. aureus to copper intoxication. In response to zinc starvation, S. aureus utilizes the metallophore staphylopine. The current work revealed that the host can leverage the promiscuity of staphylopine to intoxicate S. aureus during infection. Significantly, staphylopine-like metallophores are produced by a wide range of pathogens, suggesting that this is a conserved weakness that the host can leverage to toxify invaders with copper. Moreover, it challenges the assumption that the broad-spectrum metal binding of metallophores is inherently beneficial to bacteria.
Collapse
Affiliation(s)
- Saika Hossain
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jacqueline R. Morey
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Stephanie L. Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jana N. Radin
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Jeff M. Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Christopher A. McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas E. Kehl-Fie
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
12
|
O'Brien H, Davoodian T, Johnson MDL. The promise of copper ionophores as antimicrobials. Curr Opin Microbiol 2023; 75:102355. [PMID: 37406562 PMCID: PMC10529258 DOI: 10.1016/j.mib.2023.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023]
Abstract
Antibiotic-resistant microbe-mediated deaths are a major worldwide health issue. Unfortunately, due to microbial adaptation to develop resistance, some antibiotics are nullified early in their usage, and worse, resistance is detected before they can even be prescribed. Copper's toxicity since antiquity against microbes at the host-pathogen interface offers a fascinating weapon to fight antimicrobial resistance. Here, we briefly review why copper is so effective, how drugs that work with copper are effective antimicrobials, and how compounds such as these could reinvigorate investment in antimicrobial development.
Collapse
Affiliation(s)
- Henrik O'Brien
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Talish Davoodian
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Michael D L Johnson
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA; Valley Fever Center for Excellence, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA; BIO5 Institute, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA; Asthma and Airway Disease Research Center, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA.
| |
Collapse
|
13
|
Lin C, Li LJ, Ren K, Zhou SYD, Isabwe A, Yang LY, Neilson R, Yang XR, Cytryn E, Zhu YG. Phagotrophic protists preserve antibiotic-resistant opportunistic human pathogens in the vegetable phyllosphere. ISME COMMUNICATIONS 2023; 3:94. [PMID: 37660098 PMCID: PMC10475086 DOI: 10.1038/s43705-023-00302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Food safety of leafy greens is an emerging public health issue as they can harbor opportunistic human pathogens (OHPs) and expose OHPs to consumers. Protists are an integral part of phyllosphere microbial ecosystems. However, our understanding of protist-pathogen associations in the phyllosphere and their consequences on public health remains poor. Here, we examined phyllosphere protists, human pathogen marker genes (HPMGs), and protist endosymbionts from four species of leafy greens from major supermarkets in Xiamen, China. Our results showed that Staphylococcus aureus and Klebsiella pneumoniae were the dominant human pathogens in the vegetable phyllosphere. The distribution of HPMGs and protistan communities differed between vegetable species, of which Chinese chive possessed the most diverse protists and highest abundance of HPMGs. HPMGs abundance positively correlated with the diversity and relative abundance of phagotrophic protists. Whole genome sequencing further uncovered that most isolated phyllosphere protists harbored multiple OHPs which carried antibiotic resistance genes, virulence factors, and metal resistance genes and had the potential to HGT. Colpoda were identified as key phagotrophic protists which positively linked to OHPs and carried diverse resistance and virulence potential endosymbiont OHPs including Pseudomonas nitroreducens, Achromobacter xylosoxidans, and Stenotrophomonas maltophilia. We highlight that phyllosphere protists contribute to the transmission of resistant OHPs through internalization and thus pose risks to the food safety of leafy greens and human health. Our study provides insights into the protist-OHP interactions in the phyllosphere, which will help in food safety surveillance and human health.
Collapse
Affiliation(s)
- Chenshuo Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Li-Juan Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Kexin Ren
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Shu-Yi-Dan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
| | - Alain Isabwe
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Le-Yang Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Eddie Cytryn
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Institute, Agriculture Research Organization, 7528809, Rishon Lezion, Israel
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.
| |
Collapse
|
14
|
Hossain S, Morey JR, Neville SL, Ganio K, Radin JN, Norambuena J, Boyd JM, McDevitt CA, Kehl-Fie TE. Host subversion of bacterial metallophore usage drives copper intoxication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542972. [PMID: 37398167 PMCID: PMC10312489 DOI: 10.1101/2023.05.30.542972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Microorganisms can acquire metal ions in metal-limited environments using small molecules called metallophores. While metals and their importers are essential, metals can also be toxic, and metallophores have limited ability to discriminate metals. The impact of the metallophore-mediated non-cognate metal uptake on bacterial metal homeostasis and pathogenesis remains to be defined. The globally significant pathogen Staphylococcus aureus uses the Cnt system to secrete the metallophore staphylopine in zinc-limited host niches. Here, we show that staphylopine and the Cnt system facilitate bacterial copper uptake, potentiating the need for copper detoxification. During in vivo infection, staphylopine usage increased S. aureus susceptibility to host-mediated copper stress, indicating that the innate immune response can harness the antimicrobial potential of altered elemental abundances in host niches. Collectively, these observations show that while the broad-spectrum metal-chelating properties of metallophores can be advantageous, the host can exploit these properties to drive metal intoxication and mediate antibacterial control. IMPORTANCE During infection bacteria must overcome the dual threats of metal starvation and intoxication. This work reveals that the zinc-withholding response of the host sensitizes Staphylococcus aureus to copper intoxication. In response to zinc starvation S. aureus utilizes the metallophore staphylopine. The current work revealed that the host can leverage the promiscuity of staphylopine to intoxicate S. aureus during infection. Significantly, staphylopine-like metallophores are produced by a wide range of pathogens, suggesting that this is a conserved weakness that the host can leverage to toxify invaders with copper. Moreover, it challenges the assumption that the broad-spectrum metal binding of metallophores is inherently beneficial to bacteria.
Collapse
Affiliation(s)
- Saika Hossain
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jacqueline R Morey
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Stephanie L Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Jana N Radin
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
15
|
Lv Z, Xu M, Liu Y, Rønn R, Rensing C, Liu S, Gao S, Liao H, Liu YR, Chen W, Zhu YG, Huang Q, Hao X. Phagotrophic Protists Modulate Copper Resistance of the Bacterial Community in Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3590-3601. [PMID: 36811608 DOI: 10.1021/acs.est.2c07136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Protist predation is a crucial biotic driver modulating bacterial populations and functional traits. Previous studies using pure cultures have demonstrated that bacteria with copper (Cu) resistance exhibited fitness advantages over Cu-sensitive bacteria under the pressure of protist predation. However, the impact of diverse natural communities of protist grazers on bacterial Cu resistance in natural environments remains unknown. Here, we characterized the communities of phagotrophic protists in long-term Cu-contaminated soils and deciphered their potential ecological impacts on bacterial Cu resistance. Long-term field Cu pollution increased the relative abundances of most of the phagotrophic lineages in Cercozoa and Amoebozoa but reduced the relative abundance of Ciliophora. After accounting for soil properties and Cu pollution, phagotrophs were consistently identified as the most important predictor of the Cu-resistant (CuR) bacterial community. Phagotrophs positively contributed to the abundance of a Cu resistance gene (copA) through influencing the cumulative relative abundance of Cu-resistant and -sensitive ecological clusters. Microcosm experiments further confirmed the promotion effect of protist predation on bacterial Cu resistance. Our results indicate that the selection by protist predation can have a strong impact on the CuR bacterial community, which broadens our understanding of the ecological function of soil phagotrophic protists.
Collapse
Affiliation(s)
- Zhenguang Lv
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Regin Rønn
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Song Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shenghan Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Liao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
16
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
17
|
Abstract
Copper is essential to most living beings but also highly toxic and as such is an important player at the host-pathogen interface. Bacteria have thus developed homeostatic mechanisms to tightly control its intracellular concentration. Known Cu export and import systems are under transcriptional control, whereas posttranscriptional regulatory mechanisms are yet to be characterized. We identified a three-gene operon, bp2923-bfrG-bp2921, downregulated by copper and notably encoding a TonB-dependent transporter in Bordetella pertussis. We show here that the protein encoded by the first gene, which is a member of the DUF2946 protein family, represents a new type of upstream Open Reading Frame (uORF) involved in posttranscriptional regulation of the downstream genes. In the absence of copper, the entire operon is transcribed and translated. Perception of copper by the nascent bp2923-coded protein via its conserved CXXC motif triggers Rho-dependent transcription termination between the first and second genes by relieving translation arrest on a conserved C-terminal RAPP motif. Homologs of bp2923 are widespread in bacterial genomes, where they head operons predicted to participate in copper homeostasis. This work has thus unveiled a new mode of genetic regulation by a transition metal and identified a regulatory function for a member of an uncharacterized family of bacterial proteins that we have named CruR, for copper-responsive upstream regulator.
Collapse
|
18
|
Yu H, He Z, He Z, Yan Q, Shu L. Soil Amoebae Affect Iron and Chromium Reduction through Preferential Predation between Two Metal-Reducing Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9052-9062. [PMID: 35544746 DOI: 10.1021/acs.est.1c08069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soil protists are essential but often overlooked in soil and could impact microbially driven element cycling in natural ecosystems. However, how protists influence heavy metal cycling in soil remains poorly understood. In this study, we used a model protist, Dictyostelium discoideum, to explore the effect of interactions between soil amoeba and metal-reducing bacteria on the reduction of soil Fe(III) and Cr(VI). We found that D. discoideum could preferentially prey on the Fe(III)-reducing bacterium Shewanella decolorationis S12 and significantly decrease its biomass. Surprisingly, this predation pressure also stimulated the activity of a single S. decolorationis S12 bacterium to reduce Fe(III) by enhancing the content of electron-transfer protein cyt c, intracellular ATP synthesis, and reactive oxygen species (e.g., H2O2). We also found that D. discoideum could not prey on the Cr(VI)-reducing bacterium Brevibacillus laterosporus. In contrast, B. laterosporus became edible to amoebae in the presence of S. decolorationis S12, and their Cr(VI) reduction ability decreased under amoeba predation pressure. This study provides direct evidence that protists can affect the Cr and Fe cycling via the elective predation pressure on the metal-reducing bacteria, broadening our horizons of predation of protists on soil metal cycling.
Collapse
Affiliation(s)
- Huang Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhenzhen He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
19
|
Wu C, Chao Y, Shu L, Qiu R. Interactions between soil protists and pollutants: An unsolved puzzle. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128297. [PMID: 35077968 DOI: 10.1016/j.jhazmat.2022.128297] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Soil protists are essential but often overlooked in soils, although they play crucial functional roles in the terrestrial ecosystem. While soil protists have drawn increased attention to their functional role in soils, their interaction with soil pollutants remains unresolved. This review provides a first overview of the current understanding of interactions between soil protists and major pollutants (heavy metals, organic pollutants, nanoparticles, and soil pathogens). We summarize how soil pollutants affect protists and vice versa, showing that we are just beginning to understand their complex interactions. In addition, we identify five research gaps, including hidden diversity, adaptive mechanisms, species interactions, soil bioindicators and environmental applications, and we hope that our review will help promote and build research guidelines for the future. In conclusion, a better understanding of soil pollutant-protist interactions will significantly increase our knowledge of the pollution ecology in the soil and how soil organisms respond and adapt to environmental pollution, which will contribute to the bioremediation and environmental applications of protists in soil.
Collapse
Affiliation(s)
- Chenyuan Wu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
20
|
Antimicrobial Activity of Silver, Copper, and Zinc Ions/Poly(Acrylate/Itaconic Acid) Hydrogel Matrices. INORGANICS 2022. [DOI: 10.3390/inorganics10030038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The design and use of new potent and specific antimicrobial systems are of crucial importance in the medical field. This will help relieve, fight, and eradicate infections and thus improve human health. The use of metals in various forms as antimicrobial therapeutics has been known since ancient times. In this sense, polymeric hydrogel matrices as multifunctional materials and in combination with various metal forms can be a great alternative to conventional treatments for infections. Hydrogels possess high hydrophilicity, specific three-dimensional networks, fine biocompatibility, and cell adhesion and are therefore suitable as materials for the loading of active antimicrobial agents and acting in antimicrobial areas. The biocompatible nature of hydrogels’ matrices makes them a convenient starting platform to develop biocompatible, selective, active controlled-release antimicrobial materials. Hydrogels based on acrylate and itaconic acid were synthesized and loaded with silver (Ag+), copper (Cu2+), and zinc (Zn2+) ions as a controlled release and antimicrobial system to test release properties and antimicrobial activity in contact with microbes. The metal ions/hydrogel systems exhibited favorable biocompatibility, release profiles, and antimicrobial activity against methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus, Escherichia coli, and Candida albicans microbes, and have shown that they have the capacity to “fight” with the life-threatening infections. Antimicrobial activity depends on types of metal ions, the composition of polymeric matrices, as well as the types of microbes. Designed metal ions/poly(acrylate/itaconic acid) antimicrobial systems have shown to have good potential as antimicrobial therapeutics and suitable biomaterials for medical applications.
Collapse
|
21
|
Subirana MA, Riemschneider S, Hause G, Dobritzsch D, Schaumlöffel D, Herzberg M. High spatial resolution imaging of subcellular macro and trace element distribution during phagocytosis. Metallomics 2022; 14:6530650. [PMID: 35179212 DOI: 10.1093/mtomcs/mfac011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022]
Abstract
The bioavailability of trace elements in the course of evolution had an essential influence on the emergence of life itself. This is reflected in the co-evolution between eukaryotes and prokaryotes. In this study, the influence and cellular distribution of bioelements during phagocytosis at the host-pathogen interface was investigated using high-resolution nanoscale secondary ion mass spectrometry (NanoSIMS) and quantitative inductively coupled plasma mass spectrometry (ICP-MS). In the eukaryotic murine macrophages (RAW 264.7 cell line), the cellular Fe / Zn ratio was found to be balanced, whereas the dominance of iron in the prokaryotic cells of the pathogen Salmonella enterica Serovar Enteritidis was about 90% compared to zinc. This confirms the evolutionary increased zinc requirement of the eukaryotic animal cell. Using NanoSIMS, the Cs+ primary ion source allowed high spatial resolution mapping of cell morphology down to subcellular level. At a comparable resolution, several low abundant trace elements could be mapped during phagocytosis with a RF plasma O- primary ion source. An enrichment of copper and nickel could be detected in the prokaryotic cells. Surprisingly, an accumulation of cobalt in the area of nuclear envelope was observed indicating an interesting but still unknown distribution of this trace element in murine macrophages.
Collapse
Affiliation(s)
- Maria Angels Subirana
- CNRS, Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, 64000 Pau, France
| | - Sina Riemschneider
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany
| | - Gerd Hause
- Martin-Luther-University Halle-Wittenberg, Biozentrum, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Dirk Dobritzsch
- Martin-Luther-University Halle-Wittenberg, Core Facility - Proteomic Mass Spectrometry, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Dirk Schaumlöffel
- CNRS, Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, 64000 Pau, France.,Peoples' Friendship University of Russia (RUDN University), Mklukho-Maklaya str. 6, 117198 Moscow, Russia
| | - Martin Herzberg
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany
| |
Collapse
|
22
|
Virieux-Petit M, Hammer-Dedet F, Aujoulat F, Jumas-Bilak E, Romano-Bertrand S. From Copper Tolerance to Resistance in Pseudomonas aeruginosa towards Patho-Adaptation and Hospital Success. Genes (Basel) 2022; 13:genes13020301. [PMID: 35205346 PMCID: PMC8872213 DOI: 10.3390/genes13020301] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
The hospital environment constitutes a reservoir of opportunistic pathogens responsible for healthcare-associated infections (HCAI) such as Pseudomonas aeruginosa (Pa). Pa persistence within technological niches, the increasing emergence of epidemic high-risk clones in HCAI, the epidemiological link between plumbing strains and clinical strains, make it a major nosocomial pathogen. Therefore, understanding the mechanisms of Pa adaptation to hospital water systems would be useful in preventing HCAI. This review deciphers how copper resistance contributes to Pa adaptation and persistence in a hospital environment, especially within copper water systems, and ultimately to its success as a causative agent of HCAI. Numerous factors are involved in copper homeostasis in Pa, among which active efflux conferring copper tolerance, and copper-binding proteins regulating the copper compartmentalization between periplasm and cytoplasm. The functional harmony of copper homeostasis is regulated by several transcriptional regulators. The genomic island GI-7 appeared as especially responsible for the copper resistance in Pa. Mechanisms of copper and antibiotic cross-resistance and co-resistance are also identified, with potential co-regulation processes between them. Finally, copper resistance of Pa confers selective advantages in colonizing and persisting in hospital environments but also appears as an asset at the host/pathogen interface that helps in HCAI occurrence.
Collapse
Affiliation(s)
- Maxine Virieux-Petit
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
| | - Florence Hammer-Dedet
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
| | - Fabien Aujoulat
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
| | - Estelle Jumas-Bilak
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
- Hospital Hygiene and Infection Control Team, University Hospital of Montpellier, 34093 Montpellier, France
| | - Sara Romano-Bertrand
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
- Hospital Hygiene and Infection Control Team, University Hospital of Montpellier, 34093 Montpellier, France
- UMR 5151 HSM, Equipe Pathogènes Hydriques Santé et Environnements, U.F.R. des Sciences Pharmaceutiques et Biologiques, Université Montpellier, 15, Avenue Charles Flahault, BP 14491, CEDEX 5, 34093 Montpellier, France
- Correspondence: ; Tel.: +33-4-11-75-94-30
| |
Collapse
|
23
|
Probable Reasons for Neuron Copper Deficiency in the Brain of Patients with Alzheimer’s Disease: The Complex Role of Amyloid. INORGANICS 2022. [DOI: 10.3390/inorganics10010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease is a progressive neurodegenerative disorder that eventually leads the affected patients to die. The appearance of senile plaques in the brains of Alzheimer’s patients is known as a main symptom of this disease. The plaques consist of different components, and according to numerous reports, their main components include beta-amyloid peptide and transition metals such as copper. In this disease, metal dyshomeostasis leads the number of copper ions to simultaneously increase in the plaques and decrease in neurons. Copper ions are essential for proper brain functioning, and one of the possible mechanisms of neuronal death in Alzheimer’s disease is the copper depletion of neurons. However, the reason for the copper depletion is as yet unknown. Based on the available evidence, we suggest two possible reasons: the first is copper released from neurons (along with beta-amyloid peptides), which is deposited outside the neurons, and the second is the uptake of copper ions by activated microglia.
Collapse
|
24
|
Hyre A, Casanova-Hampton K, Subashchandrabose S. Copper Homeostatic Mechanisms and Their Role in the Virulence of Escherichia coli and Salmonella enterica. EcoSal Plus 2021; 9:eESP00142020. [PMID: 34125582 PMCID: PMC8669021 DOI: 10.1128/ecosalplus.esp-0014-2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Copper is an essential micronutrient that also exerts toxic effects at high concentrations. This review summarizes the current state of knowledge on copper handling and homeostasis systems in Escherichia coli and Salmonella enterica. We describe the mechanisms by which transcriptional regulators, efflux pumps, detoxification enzymes, metallochaperones, and ancillary copper response systems orchestrate cellular response to copper stress. E. coli and S. enterica are important pathogens of humans and animals. We discuss the critical role of copper during killing of these pathogens by macrophages and in nutritional immunity at the bacterial-pathogen-host interface. In closing, we identify opportunities to advance our understanding of the biological roles of copper in these model enteric bacterial pathogens.
Collapse
Affiliation(s)
- Amanda Hyre
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Kaitlin Casanova-Hampton
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Sargurunathan Subashchandrabose
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
25
|
T. T. Luu H, Esteban GF, Butt AA, Green ID. Effects of Copper and the Insecticide Cypermethrin on a Soil Ciliate (Protozoa: Ciliophora) Community. Protist 2021; 173:125855. [DOI: 10.1016/j.protis.2021.125855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
|
26
|
Belcher T, Dubois V, Rivera-Millot A, Locht C, Jacob-Dubuisson F. Pathogenicity and virulence of Bordetella pertussis and its adaptation to its strictly human host. Virulence 2021; 12:2608-2632. [PMID: 34590541 PMCID: PMC8489951 DOI: 10.1080/21505594.2021.1980987] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The highly contagious whooping cough agent Bordetella pertussis has evolved as a human-restricted pathogen from a progenitor which also gave rise to Bordetella parapertussis and Bordetella bronchiseptica. While the latter colonizes a broad range of mammals and is able to survive in the environment, B. pertussis has lost its ability to survive outside its host through massive genome decay. Instead, it has become a highly successful human pathogen by the acquisition of tightly regulated virulence factors and evolutionary adaptation of its metabolism to its particular niche. By the deployment of an arsenal of highly sophisticated virulence factors it overcomes many of the innate immune defenses. It also interferes with vaccine-induced adaptive immunity by various mechanisms. Here, we review data from invitro, human and animal models to illustrate the mechanisms of adaptation to the human respiratory tract and provide evidence of ongoing evolutionary adaptation as a highly successful human pathogen.
Collapse
Affiliation(s)
- Thomas Belcher
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Violaine Dubois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Alex Rivera-Millot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Françoise Jacob-Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
27
|
Petitjean M, Juarez P, Meunier A, Daguindau E, Puja H, Bertrand X, Valot B, Hocquet D. The rise and the fall of a Pseudomonas aeruginosa endemic lineage in a hospital. Microb Genom 2021; 7. [PMID: 34473016 PMCID: PMC8715434 DOI: 10.1099/mgen.0.000629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The biological features that allow a pathogen to survive in the hospital environment are mostly unknown. The extinction of bacterial epidemics in hospitals is mostly attributed to changes in medical practice, including infection control, but the role of bacterial adaptation has never been documented. We analysed a collection of Pseudomonas aeruginosa isolates belonging to the Besançon Epidemic Strain (BES), responsible for a 12year nosocomial outbreak, using a genotype-to-phenotype approach. Bayesian analysis estimated the emergence of the clone in the hospital 5 years before its opening, during the creation of its water distribution network made of copper. BES survived better than the reference strains PAO1 and PA14 in a copper solution due to a genomic island containing 13 metal-resistance genes and was specifically able to proliferate in the ubiquitous amoeba Vermamoeba vermiformis. Mutations affecting amino-acid metabolism, antibiotic resistance, lipopolysaccharide biosynthesis, and regulation were enriched during the spread of BES. Seven distinct regulatory mutations attenuated the overexpression of the genes encoding the efflux pump MexAB-OprM over time. The fitness of BES decreased over time in correlation with its genome size. Overall, the resistance to inhibitors and predators presumably aided the proliferation and propagation of BES in the plumbing system of the hospital. The pathogen further spread among patients via multiple routes of contamination. The decreased prevalence of patients infected by BES mirrored the parallel and convergent genomic evolution and reduction that affected bacterial fitness. Along with infection control measures, this may have participated in the extinction of BES in the hospital setting.
Collapse
Affiliation(s)
- Marie Petitjean
- Hygiène Hospitalière, Centre Hospitalier Universitaire, 25030 Besançon, France.,UMR CNRS 6249, Université de Bourgogne Franche-Comté, 25030 Besançon, France
| | - Paulo Juarez
- UMR CNRS 6249, Université de Bourgogne Franche-Comté, 25030 Besançon, France
| | - Alexandre Meunier
- Hygiène Hospitalière, Centre Hospitalier Universitaire, 25030 Besançon, France
| | - Etienne Daguindau
- UMR INSERM 1098, Université de Bourgogne Franche-Comté, 25030 Besançon, France
| | - Hélène Puja
- UMR CNRS 6249, Université de Bourgogne Franche-Comté, 25030 Besançon, France
| | - Xavier Bertrand
- Hygiène Hospitalière, Centre Hospitalier Universitaire, 25030 Besançon, France.,UMR CNRS 6249, Université de Bourgogne Franche-Comté, 25030 Besançon, France
| | - Benoit Valot
- UMR CNRS 6249, Université de Bourgogne Franche-Comté, 25030 Besançon, France.,Bioinformatique et Big Data au Service de la Santé, UFR Science de la Santé, Université de Bourgogne Franche-Comté, 25030 Besançon, France
| | - Didier Hocquet
- Hygiène Hospitalière, Centre Hospitalier Universitaire, 25030 Besançon, France.,UMR CNRS 6249, Université de Bourgogne Franche-Comté, 25030 Besançon, France.,Bioinformatique et Big Data au Service de la Santé, UFR Science de la Santé, Université de Bourgogne Franche-Comté, 25030 Besançon, France.,Centre de Ressources Biologiques - Filière Microbiologique de Besançon, Centre Hospitalier Universitaire, 25030 Besançon, France
| |
Collapse
|
28
|
Radosa S, Sprague JL, Lau SH, Tóth R, Linde J, Krüger T, Sprenger M, Kasper L, Westermann M, Kniemeyer O, Hube B, Brakhage AA, Gácser A, Hillmann F. The fungivorous amoeba Protostelium aurantium targets redox homeostasis and cell wall integrity during intracellular killing of Candida parapsilosis. Cell Microbiol 2021; 23:e13389. [PMID: 34460149 DOI: 10.1111/cmi.13389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/08/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022]
Abstract
Predatory interactions among microbes are major evolutionary driving forces for biodiversity. The fungivorous amoeba Protostelium aurantium has a wide fungal food spectrum including foremost pathogenic members of the genus Candida. Here we show that upon phagocytic ingestion by the amoeba, Candida parapsilosis is confronted with an oxidative burst and undergoes lysis within minutes of processing in acidified phagolysosomes. On the fungal side, a functional genomic approach identified copper and redox homeostasis as primary targets of amoeba predation, with the highly expressed copper exporter gene CRP1 and the peroxiredoxin gene PRX1 contributing to survival when encountered with P. aurantium. The fungicidal activity was largely retained in intracellular vesicles of the amoebae. Following their isolation, the content of these vesicles induced immediate killing and lysis of C. parapsilosis in vitro. Proteomic analysis identified 56 vesicular proteins from P. aurantium. Although completely unknown proteins were dominant, many of them could be categorised as hydrolytic enzymes targeting the fungal cell wall, indicating that fungal cell wall structures are under selection pressure by predatory phagocytes in natural environments. TAKE AWAY: The amoeba Protostelium aurantium feeds on fungi, such as Candida parapsilosis. Ingested yeast cells are exposed to reactive oxygen species. A copper exporter and a peroxiredoxin contribute to fungal defence. Yeast cells undergo intracellular lysis. Lysis occurs via a cocktail of hydrolytic enzymes from intracellular vesicles.
Collapse
Affiliation(s)
- Silvia Radosa
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Jakob L Sprague
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.,Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Siu-Hin Lau
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Jörg Linde
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Marcel Sprenger
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.,Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | | | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Bernhard Hube
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.,Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A Brakhage
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.,Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Falk Hillmann
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| |
Collapse
|
29
|
Amaro F, Martín-González A. Microbial warfare in the wild-the impact of protists on the evolution and virulence of bacterial pathogens. Int Microbiol 2021; 24:559-571. [PMID: 34365574 DOI: 10.1007/s10123-021-00192-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
During the long history of co-evolution with protists, bacteria have evolved defense strategies to avoid grazing and survive phagocytosis. These mechanisms allow bacteria to exploit phagocytic cells as a protective niche in which to escape from environmental stress and even replicate. Importantly, these anti-grazing mechanisms can function as virulence factors when bacteria infect humans. Here, we discuss how protozoan predation exerts a selective pressure driving bacterial virulence and shaping their genomes, and how bacteria-protist interactions might contribute to the spread of antibiotic resistance as well. We provide examples to demonstrate that besides being voracious bacterial predators, protozoa can serve as melting pots where intracellular organisms exchange genetic information, or even "training grounds" where some pathogens become hypervirulent after passing through. In this special issue, we would like to emphasize the tremendous impact of bacteria-protist interactions on human health and the potential of amoebae as model systems to study biology and evolution of a variety of pathogens. Besides, a better understanding of bacteria-protist relationships will help us expand our current understanding of bacterial virulence and, likely, how pathogens emerge.
Collapse
Affiliation(s)
- Francisco Amaro
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Ana Martín-González
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University of Madrid, 28040, Madrid, Spain
| |
Collapse
|
30
|
Li YP, Fekih IB, Fru EC, Moraleda-Munoz A, Li X, Rosen BP, Yoshinaga M, Rensing C. Antimicrobial Activity of Metals and Metalloids. Annu Rev Microbiol 2021; 75:175-197. [PMID: 34343021 DOI: 10.1146/annurev-micro-032921-123231] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Competition shapes evolution. Toxic metals and metalloids have exerted selective pressure on life since the rise of the first organisms on the Earth, which has led to the evolution and acquisition of resistance mechanisms against them, as well as mechanisms to weaponize them. Microorganisms exploit antimicrobial metals and metalloids to gain competitive advantage over other members of microbial communities. This exerts a strong selective pressure that drives evolution of resistance. This review describes, with a focus on arsenic and copper, how microorganisms exploit metals and metalloids for predation and how metal- and metalloid-dependent predation may have been a driving force for evolution of microbial resistance against metals and metalloids. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yuan Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 35002, China;
| | - Ibtissem Ben Fekih
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 35002, China;
| | - Ernest Chi Fru
- Centre for Geobiology and Geochemistry, School of Earth and Ocean Sciences, Cardiff University, CF10 3AT Cardiff, United Kingdom
| | - Aurelio Moraleda-Munoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada 18071, Spain
| | - Xuanji Li
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 35002, China;
| |
Collapse
|
31
|
Forouzandeh A, Blavi L, Abdelli N, Melo-Duran D, Vidal A, Rodríguez M, Monteiro ANTR, Pérez JF, Darwich L, Solà-Oriol D. Effects of dicopper oxide and copper sulfate on growth performance and gut microbiota in broilers. Poult Sci 2021; 100:101224. [PMID: 34157560 PMCID: PMC8237351 DOI: 10.1016/j.psj.2021.101224] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 03/04/2021] [Accepted: 04/14/2021] [Indexed: 01/04/2023] Open
Abstract
An experiment was conducted to determine the effects of two sources of copper (Cu) from copper sulfate (CuSO4) and dicopper oxide (Cu2O, CoRouge) at three levels of inclusion (15, 75, and 150 mg/kg) on growth performance and gut microbiota of broilers. A total of 840 one-d-old male chickens (Ross 308) were weighed and randomly allocated to seven dietary treatments: negative control (NC, a basal diet without Cu addition), and the NC supplemented with 15, 75, or 150 mg Cu/kg from CuSO4 or Cu2O (12 replicate pens/treatment, 10 chicks per pen). Broilers were challenged by reusing an old litter with high concentrations in Clostridium perfringens to promote necrotic enteritis. Broiler performance was registered at d 21, 35, and 42. Excreta samples were collected at d 14, 28, and 42 for antimicrobial resistance (AMR) analyses. At d 43, one broiler per pen was euthanized to obtain ileal content for microbial characterization. Body weight d 35 and daily gain d 42 improved (P < 0.05) in Cu2O as Cu dose inclusion increased from 15 mg/kg to 150 mg/kg. Supplementation of 150 mg/kg of Cu from Cu2O decreased the abundance (P < 0.01) of some families such as Streptococcaceae and Corynebacteriaceae and increased the abundance (P < 0.05) of some commensal bacteria like Clostridiaceae and Peptostreptococcaceae. Phenotypic AMR was not different among treatments on d 14 and 28. Isolated Enterococcus spp. from broilers fed the NC diet on d 42 showed higher (P < 0.05) resistance to enrofloxacin, gentamicin, and chloramphenicol compared with Cu treatments. By contrast, the isolated Escherichia coli from broilers fed 150 mg/kg of Cu, either from CuSO4 or Cu2O, showed higher (P < 0.05) resistance to streptomycin and chloramphenicol compared to the NC. This study suggests that supplementing 150 mg/kg of Cu from Cu2O establishes changes in the gut microbiota by regulating the bacterial population in the ileum, which may explain the positive impact on broilers' growth performance.
Collapse
Affiliation(s)
- A Forouzandeh
- Animal Nutrition and Welfare Service (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - L Blavi
- Animal Nutrition and Welfare Service (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - N Abdelli
- Animal Nutrition and Welfare Service (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - D Melo-Duran
- Animal Nutrition and Welfare Service (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - A Vidal
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | - J F Pérez
- Animal Nutrition and Welfare Service (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - L Darwich
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - D Solà-Oriol
- Animal Nutrition and Welfare Service (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
32
|
Rivera-Millot A, Slupek S, Chatagnon J, Roy G, Saliou JM, Billon G, Alaimo V, Hot D, Salomé-Desnoulez S, Locht C, Antoine R, Jacob-Dubuisson F. Streamlined copper defenses make Bordetella pertussis reliant on custom-made operon. Commun Biol 2021; 4:46. [PMID: 33420409 PMCID: PMC7794356 DOI: 10.1038/s42003-020-01580-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Copper is both essential and toxic to living beings, which tightly controls its intracellular concentration. At the host-pathogen interface, copper is used by phagocytic cells to kill invading microorganisms. We investigated copper homeostasis in Bordetella pertussis, which lives in the human respiratory mucosa and has no environmental reservoir. B. pertussis has considerably streamlined copper homeostasis mechanisms relative to other Gram-negative bacteria. Its single remaining defense line consists of a metallochaperone diverted for copper passivation, CopZ, and two peroxide detoxification enzymes, PrxGrx and GorB, which together fight stresses encountered in phagocytic cells. Those proteins are encoded by an original, composite operon assembled in an environmental ancestor, which is under sensitive control by copper. This system appears to contribute to persistent infection in the nasal cavity of B. pertussis-infected mice. Combining responses to co-occurring stresses in a tailored operon reveals a strategy adopted by a host-restricted pathogen to optimize survival at minimal energy expenditure.
Collapse
Affiliation(s)
- Alex Rivera-Millot
- grid.463727.30000 0004 0386 3856Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Stéphanie Slupek
- grid.463727.30000 0004 0386 3856Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Jonathan Chatagnon
- grid.463727.30000 0004 0386 3856Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Gauthier Roy
- grid.463727.30000 0004 0386 3856Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Michel Saliou
- grid.410463.40000 0004 0471 8845Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, F-59000 Lille, France
| | - Gabriel Billon
- grid.503422.20000 0001 2242 6780Univ. Lille, CNRS, UMR 8516 – LASIRE – Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l’Environnement, F-59000 Lille, France
| | - Véronique Alaimo
- grid.503422.20000 0001 2242 6780Univ. Lille, CNRS, UMR 8516 – LASIRE – Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l’Environnement, F-59000 Lille, France
| | - David Hot
- grid.410463.40000 0004 0471 8845Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, F-59000 Lille, France
| | - Sophie Salomé-Desnoulez
- grid.463727.30000 0004 0386 3856Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France ,grid.503422.20000 0001 2242 6780Bio Imaging Center Lille platform (BICeL), Univ. Lille, Lille, France
| | - Camille Locht
- grid.463727.30000 0004 0386 3856Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Rudy Antoine
- grid.463727.30000 0004 0386 3856Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Françoise Jacob-Dubuisson
- grid.463727.30000 0004 0386 3856Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
33
|
Abstract
Amoebae are protists that have complicated relationships with bacteria, covering the whole spectrum of symbiosis. Amoeba-bacterium interactions contribute to the study of predation, symbiosis, pathogenesis, and human health. Given the complexity of their relationships, it is necessary to understand the ecology and evolution of their interactions. In this paper, we provide an updated review of the current understanding of amoeba-bacterium interactions. We start by discussing the diversity of amoebae and their bacterial partners. We also define three types of ecological interactions between amoebae and bacteria and discuss their different outcomes. Finally, we focus on the implications of amoeba-bacterium interactions on human health, horizontal gene transfer, drinking water safety, and the evolution of symbiosis. In conclusion, amoeba-bacterium interactions are excellent model systems to investigate a wide range of scientific questions. Future studies should utilize advanced techniques to address research gaps, such as detecting hidden diversity, lack of amoeba genomes, and the impacts of amoeba predation on the microbiome.
Collapse
|
34
|
Hao X, Zhu J, Rensing C, Liu Y, Gao S, Chen W, Huang Q, Liu YR. Recent advances in exploring the heavy metal(loid) resistant microbiome. Comput Struct Biotechnol J 2020; 19:94-109. [PMID: 33425244 PMCID: PMC7771044 DOI: 10.1016/j.csbj.2020.12.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/18/2022] Open
Abstract
Heavy metal(loid)s exert selective pressure on microbial communities and evolution of metal resistance determinants. Despite increasing knowledge concerning the impact of metal pollution on microbial community and ecological function, it is still a challenge to identify a consistent pattern of microbial community composition along gradients of elevated metal(loid)s in natural environments. Further, our current knowledge of the microbial metal resistome at the community level has been lagging behind compared to the state-of-the-art genetic profiling of bacterial metal resistance mechanisms in a pure culture system. This review provides an overview of the core metal resistant microbiome, development of metal resistance strategies, and potential factors driving the diversity and distribution of metal resistance determinants in natural environments. The impacts of biotic factors regulating the bacterial metal resistome are highlighted. We finally discuss the advances in multiple technologies, research challenges, and future directions to better understand the interface of the environmental microbiome with the metal resistome. This review aims to highlight the diversity and wide distribution of heavy metal(loid)s and their corresponding resistance determinants, helping to better understand the resistance strategy at the community level.
Collapse
Affiliation(s)
- Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding authors at: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiaojiao Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ying Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shenghan Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding authors at: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
35
|
Abstract
Copper (Cu) is an essential metal for bacterial physiology but in excess it is bacteriotoxic. To limit Cu levels in the cytoplasm, most bacteria possess a transcriptionally responsive system for Cu export. In the Gram-positive human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]), this system is encoded by the copYAZ operon. This study demonstrates that although the site of GAS infection represents a Cu-rich environment, inactivation of the copA Cu efflux gene does not reduce virulence in a mouse model of invasive disease. In vitro, Cu treatment leads to multiple observable phenotypes, including defects in growth and viability, decreased fermentation, inhibition of glyceraldehyde-3-phosphate dehydrogenase (GapA) activity, and misregulation of metal homeostasis, likely as a consequence of mismetalation of noncognate metal-binding sites by Cu. Surprisingly, the onset of these effects is delayed by ∼4 h even though expression of copZ is upregulated immediately upon exposure to Cu. Further biochemical investigations show that the onset of all phenotypes coincides with depletion of intracellular glutathione (GSH). Supplementation with extracellular GSH replenishes the intracellular pool of this thiol and suppresses all the observable effects of Cu treatment. These results indicate that GSH buffers excess intracellular Cu when the transcriptionally responsive Cu export system is overwhelmed. Thus, while the copYAZ operon is responsible for Cu homeostasis, GSH has a role in Cu tolerance and allows bacteria to maintain metabolism even in the presence of an excess of this metal ion.IMPORTANCE The control of intracellular metal availability is fundamental to bacterial physiology. In the case of copper (Cu), it has been established that rising intracellular Cu levels eventually fill the metal-sensing site of the endogenous Cu-sensing transcriptional regulator, which in turn induces transcription of a copper export pump. This response caps intracellular Cu availability below a well-defined threshold and prevents Cu toxicity. Glutathione, abundant in many bacteria, is known to bind Cu and has long been assumed to contribute to bacterial Cu handling. However, there is some ambiguity since neither its biosynthesis nor uptake is Cu-regulated. Furthermore, there is little experimental support for this physiological role of glutathione beyond measuring growth of glutathione-deficient mutants in the presence of Cu. Our work with group A Streptococcus provides new evidence that glutathione increases the threshold of intracellular Cu availability that can be tolerated by bacteria and thus advances fundamental understanding of bacterial Cu handling.
Collapse
|
36
|
Salam LB. Unravelling the antibiotic and heavy metal resistome of a chronically polluted soil. 3 Biotech 2020; 10:238. [PMID: 32405442 PMCID: PMC7205953 DOI: 10.1007/s13205-020-02219-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
The antibiotic and heavy metal resistome of a chronically polluted soil (3S) obtained from an automobile workshop in Ilorin, Kwara State, Nigeria was deciphered via functional annotation of putative ORFs (open reading frames). Functional annotation of antibiotic and heavy metal resistance genes in 3S metagenome was conducted using the Comprehensive Antibiotic Resistance Database (CARD), Antibiotic Resistance Gene-annotation (ARG-ANNOT) and Antibacterial Biocide and Metal Resistance Gene Database (BacMet). Annotation revealed detection of resistance genes for 15 antibiotic classes with the preponderance of beta lactamases, mobilized colistin resistance determinant (mcr), glycopepetide and tetracycline resistance genes, the OqxBgb and OqxA RND-type multidrug efflux pumps, among others. The dominance of resistance genes for antibiotics effective against members of the Enterobacteriaceae indicate possible contamination with faecal materials. Annotation of heavy metal resistance genes revealed diverse resistance genes responsible for the uptake, transport, detoxification, efflux and regulation of copper, zinc, cadmium, nickel, chromium, cobalt, mercury, arsenic, iron, molybdenum and several others. Majority of the antibiotic and heavy metal resistance genes detected in this study are borne on mobile genetic elements, which facilitate their spread and dissemination in the polluted soil. The presence of the heavy metal resistance genes is strongly believed to play a major role in the proliferation of antibiotic resistance genes. This study has established that soil is a huge repertoire of antibiotic and heavy metal resistome and due to the intricate link between human, animals and the soil environment, it may be a major contributor to the proliferation of multidrug-resistant clinical pathogens.
Collapse
Affiliation(s)
- Lateef Babatunde Salam
- Microbiology Unit, Department of Biological Sciences, Summit University, Offa, Kwara Nigeria
| |
Collapse
|
37
|
Ducret V, Gonzalez MR, Leoni S, Valentini M, Perron K. The CzcCBA Efflux System Requires the CadA P-Type ATPase for Timely Expression Upon Zinc Excess in Pseudomonas aeruginosa. Front Microbiol 2020; 11:911. [PMID: 32477311 PMCID: PMC7242495 DOI: 10.3389/fmicb.2020.00911] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/17/2020] [Indexed: 11/13/2022] Open
Abstract
Zinc (Zn) is a trace element essential for life but can be toxic if present in excess. While cells have import systems to guarantee a vital Zn intracellular concentration, they also rely on export systems to avoid lethal Zn overload. In particular, the opportunistic pathogen Pseudomonas aeruginosa possesses four Zn export systems: CadA, CzcCBA, CzcD, and YiiP. In this work, we compare the importance for bacterial survival of each export system at high Zn concentrations. We show that the P-type ATPase CadA, and the efflux pump CzcCBA are the main efflux systems affecting the bacterium tolerance to Zn. In addition, cadA and czcCBA genes expression kinetics revealed a hierarchical organization and interdependence. In the presence of high Zn concentrations, cadA expression is very rapidly induced (<1 min), while czcCBA expression occurs subsequently (>15 min). Our present data show that the fast responsiveness of cadA to Zn excess is due to its transcriptional activator, CadR, which is constitutively present on its promoter and promptly activating cadA gene expression upon Zn binding. Moreover, we showed that CadA is essential for a timely induction of the CzcCBA efflux system. Finally, we observed an induction of cadA and czcCBA efflux systems upon phagocytosis of P. aeruginosa by macrophages, in which a toxic metal boost is discharged into the phagolysosome to intoxicate microbes. Importantly, we demonstrated that the regulatory link between induction of the CzcCBA system and the repression of the OprD porin responsible for carbapenem antibiotic resistance, is maintained in the macrophage environment.
Collapse
Affiliation(s)
- Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Manuel R Gonzalez
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Sara Leoni
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Martina Valentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
38
|
Tarrant E, P Riboldi G, McIlvin MR, Stevenson J, Barwinska-Sendra A, Stewart LJ, Saito MA, Waldron KJ. Copper stress in Staphylococcus aureus leads to adaptive changes in central carbon metabolism. Metallomics 2020; 11:183-200. [PMID: 30443649 PMCID: PMC6350627 DOI: 10.1039/c8mt00239h] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Copper toxicity has been a long-term selection pressure on bacteria due to its presence in the environment and its use as an antimicrobial agent by grazing protozoa, by phagocytic cells of the immune system, and in man-made medical and commercial products. There is recent evidence that exposure to increased copper stress may have been a key driver in the evolution and spread of methicillin-resistant Staphylococcus aureus, a globally important pathogen that causes significant mortality and morbidity worldwide. Yet it is unclear how S. aureus physiology is affected by copper stress or how it adapts in order to be able to grow in the presence of excess copper. Here, we have determined quantitatively how S. aureus alters its proteome during growth under copper stress conditions, comparing this adaptive response in two different types of growth regime. We found that the adaptive response involves induction of the conserved copper detoxification system as well as induction of enzymes of central carbon metabolism, with only limited induction of proteins involved in the oxidative stress response. Further, we identified a protein that binds copper inside S. aureus cells when stressed by copper excess. This copper-binding enzyme, a glyceraldehyde-3-phosphate dehydrogenase essential for glycolysis, is inhibited by copper in vitro and inside S. aureus cells. Together, our data demonstrate that copper stress leads to the inhibition of glycolysis in S. aureus, and that the bacterium adapts to this stress by altering its central carbon utilisation pathways.
Collapse
Affiliation(s)
- Emma Tarrant
- Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Contreras-Moreno FJ, Muñoz-Dorado J, García-Tomsig NI, Martínez-Navajas G, Pérez J, Moraleda-Muñoz A. Copper and Melanin Play a Role in Myxococcus xanthus Predation on Sinorhizobium meliloti. Front Microbiol 2020; 11:94. [PMID: 32117124 PMCID: PMC7010606 DOI: 10.3389/fmicb.2020.00094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
Myxococcus xanthus is a soil myxobacterium that exhibits a complex lifecycle with two multicellular stages: cooperative predation and development. During predation, myxobacterial cells produce a wide variety of secondary metabolites and hydrolytic enzymes to kill and consume the prey. It is known that eukaryotic predators, such as ameba and macrophages, introduce copper and other metals into the phagosomes to kill their prey by oxidative stress. However, the role of metals in bacterial predation has not yet been established. In this work, we have addressed the role of copper during predation of M. xanthus on Sinorhizobium meliloti. The use of biosensors, variable pressure scanning electron microscopy, high-resolution scanning transmission electron microscopy, and energy dispersive X ray analysis has revealed that copper accumulates in the region where predator and prey collide. This accumulation of metal up-regulates the expression of several mechanisms involved in copper detoxification in the predator (the P1B-ATPase CopA, the multicopper oxidase CuoA and the tripartite pump Cus2), and the production by the prey of copper-inducible melanin, which is a polymer with the ability to protect cells from oxidative stress. We have identified two genes in S. meliloti (encoding a tyrosinase and a multicopper oxidase) that participate in the biosynthesis of melanin. Analysis of prey survivability in the co-culture of M. xanthus and a mutant of S. meliloti in which the two genes involved in melanin biosynthesis have been deleted has revealed that this mutant is more sensitive to predation than the wild-type strain. These results indicate that copper plays a role in bacterial predation and that melanin is used by the prey to defend itself from the predator. Taking into consideration that S. meliloti is a nitrogen-fixing bacterium in symbiosis with legumes that coexists in soils with M. xanthus and that copper is a common metal found in this habitat as a consequence of several human activities, these results provide clear evidence that the accumulation of this metal in the soil may influence the microbial ecosystems by affecting bacterial predatory activities.
Collapse
Affiliation(s)
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Natalia Isabel García-Tomsig
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain.,Estación Experimental del Zaidín, Granada, Spain
| | | | - Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| |
Collapse
|
40
|
Espinoza-Vergara G, Hoque MM, McDougald D, Noorian P. The Impact of Protozoan Predation on the Pathogenicity of Vibrio cholerae. Front Microbiol 2020; 11:17. [PMID: 32038597 PMCID: PMC6985070 DOI: 10.3389/fmicb.2020.00017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
In the aquatic environment, Vibrio spp. interact with many living organisms that can serve as a replication niche, including heterotrophic protists, or protozoa. Protozoa engulf bacteria and package them into phagosomes where the cells are exposed to low pH, antimicrobial peptides, reactive oxygen/nitrogen species, proteolytic enzymes, and low concentrations of essential metal ions such as iron. However, some bacteria can resist these digestive processes. For example, Vibrio cholerae and Vibrio harveyi can resist intracellular digestion. In order to survive intracellularly, bacteria have acquired and/or developed specific factors that help them to resist the unfavorable conditions encountered inside of the phagosomes. Many of these intra-phagosomal factors used to kill and digest bacteria are highly conserved between eukaryotic cells and thus are also expressed by the innate immune system in the gastrointestinal tract as the first line of defense against bacterial pathogens. Since pathogenic bacteria have been shown to be hypervirulent after they have passed through protozoa, the resistance to digestion by protist hosts in their natural environment plays a key role in enhancing the infectious potential of pathogenic Vibrio spp. This review will investigate the current knowledge in interactions of bacteria with protozoa and human host to better understand the mechanisms used by both protozoa and human hosts to kill bacteria and the bacterial response to them.
Collapse
Affiliation(s)
- Gustavo Espinoza-Vergara
- Faculty of Science, The ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - M Mozammel Hoque
- Faculty of Science, The ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Diane McDougald
- Faculty of Science, The ithree Institute, University of Technology Sydney, Sydney, NSW, Australia.,Faculty of Science, Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Parisa Noorian
- Faculty of Science, The ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
41
|
Antoine R, Rivera-Millot A, Roy G, Jacob-Dubuisson F. Relationships Between Copper-Related Proteomes and Lifestyles in β Proteobacteria. Front Microbiol 2019; 10:2217. [PMID: 31608037 PMCID: PMC6769254 DOI: 10.3389/fmicb.2019.02217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/11/2019] [Indexed: 12/25/2022] Open
Abstract
Copper is an essential transition metal whose redox properties are used for a variety of enzymatic oxido-reductions and in electron transfer chains. It is also toxic to living beings, and therefore its cellular concentration must be strictly controlled. We have performed in silico analyses of the predicted proteomes of more than one hundred species of β proteobacteria to characterize their copper-related proteomes, including cuproproteins, i.e., proteins with active-site copper ions, copper chaperones, and copper-homeostasis systems. Copper-related proteomes represent between 0 and 1.48% of the total proteomes of β proteobacteria. The numbers of cuproproteins are globally proportional to the proteome sizes in all phylogenetic groups and strongly linked to aerobic respiration. In contrast, environmental bacteria have considerably larger proportions of copper-homeostasis systems than the other groups of bacteria, irrespective of their proteome sizes. Evolution toward commensalism, obligate, host-restricted pathogenesis or symbiosis is globally reflected in the loss of copper-homeostasis systems. In endosymbionts, defense systems and copper chaperones have disappeared, whereas residual cuproenzymes are electron transfer proteins for aerobic respiration. Lifestyle is thus a major determinant of the size and composition of the copper-related proteome, and it is particularly reflected in systems involved in copper homeostasis. Analyses of the copper-related proteomes of a number of species belonging to the Burkholderia, Bordetella, and Neisseria genera indicates that commensals are in the process of shedding their copper-homeostasis systems and chaperones to greater extents yet than pathogens.
Collapse
Affiliation(s)
| | | | | | - Françoise Jacob-Dubuisson
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
42
|
Robino E, Poirier AC, Amraoui H, Le Bissonnais S, Perret A, Lopez‐Joven C, Auguet J, Rubio TP, Cazevieille C, Rolland J, Héchard Y, Destoumieux‐Garzón D, Charrière GM. Resistance of the oyster pathogen
Vibrio tasmaniensis
LGP32 against grazing by
Vannella
sp. marine amoeba involves Vsm and CopA virulence factors. Environ Microbiol 2019; 22:4183-4197. [DOI: 10.1111/1462-2920.14770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/04/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Etienne Robino
- IHPE UMR 5244, CNRS, Ifremer, University of Montpellier, University of Perpignan Via Domitia Montpellier France
| | - Aurore C. Poirier
- IHPE UMR 5244, CNRS, Ifremer, University of Montpellier, University of Perpignan Via Domitia Montpellier France
| | - Hajar Amraoui
- IHPE UMR 5244, CNRS, Ifremer, University of Montpellier, University of Perpignan Via Domitia Montpellier France
| | - Sandra Le Bissonnais
- IHPE UMR 5244, CNRS, Ifremer, University of Montpellier, University of Perpignan Via Domitia Montpellier France
| | - Angélique Perret
- IHPE UMR 5244, CNRS, Ifremer, University of Montpellier, University of Perpignan Via Domitia Montpellier France
| | - Carmen Lopez‐Joven
- IHPE UMR 5244, CNRS, Ifremer, University of Montpellier, University of Perpignan Via Domitia Montpellier France
| | | | - Tristan P. Rubio
- IHPE UMR 5244, CNRS, Ifremer, University of Montpellier, University of Perpignan Via Domitia Montpellier France
| | | | - Jean‐Luc Rolland
- IHPE UMR 5244, CNRS, Ifremer, University of Montpellier, University of Perpignan Via Domitia Montpellier France
| | - Yann Héchard
- EBI UMR CNRS 7267, University of Poitiers Poitiers France
| | - Delphine Destoumieux‐Garzón
- IHPE UMR 5244, CNRS, Ifremer, University of Montpellier, University of Perpignan Via Domitia Montpellier France
| | - Guillaume M. Charrière
- IHPE UMR 5244, CNRS, Ifremer, University of Montpellier, University of Perpignan Via Domitia Montpellier France
| |
Collapse
|
43
|
Pérez J, Muñoz-Dorado J, Moraleda-Muñoz A. The complex global response to copper in the multicellular bacterium Myxococcus xanthus. Metallomics 2019; 10:876-886. [PMID: 29961779 DOI: 10.1039/c8mt00121a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The complex copper response of the multicellular proteobacterium M. xanthus includes structural genes similar to those described in other bacteria, such as P1B-type ATPases, multicopper oxidases, and heavy metal efflux systems. However, the two time-dependent expression profiles of the different copper systems are unique. There are a number of genes responsible for an immediate response, whose expression increases after the addition of copper, but rapidly decreases thereafter to basal levels. The regulatory element that controls this early response is CorE, a novel extracytoplasmic function σ factor that is activated by Cu2+ and inactivated by Cu+. Other genes are part of a maintenance response. These genes show a profile that slows up after the copper addition and reaches a plateau at 24-48 h incubation. Most of the genes involved in this response are encoded by the operon curA, which is regulated by the two-component system CorSR. Moreover, other genes involved in the maintenance response are regulated by different regulatory elements that remain unknown. Additionally, copper activates the transcription of the structural genes for carotenoid synthesis through a mechanism that requires the activation of the σ factor CarQ. Bearing in mind that M. xanthus is not very resistant to copper, it is speculated that the complexity of its copper response might be related to its complex life cycle.
Collapse
Affiliation(s)
- Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain.
| | | | | |
Collapse
|
44
|
Jeanvoine A, Meunier A, Puja H, Bertrand X, Valot B, Hocquet D. Contamination of a hospital plumbing system by persister cells of a copper-tolerant high-risk clone of Pseudomonas aeruginosa. WATER RESEARCH 2019; 157:579-586. [PMID: 30999256 DOI: 10.1016/j.watres.2019.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/30/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Pseudomonas aeruginosa (PA) is an important opportunistic pathogen that thrives best in the distal elements of plumbing and waste-water systems. Although nosocomial outbreaks of PA have been associated with water sources, the role of the plumbing system of healthcare premises as a reservoir for this pathogen is still unclear. MATERIALS AND METHODS We collected water samples from 12 technical areas, distant from any medical activity, in a teaching hospital in France once a week for 11 weeks. We used a method that resuscitates persister cells because of the nutrient-poor conditions and the presence of inhibitors (e.g. chlorine and copper ions). Briefly, water was sampled in sterile bottles containing 100 μM of the copper-ion chelating agent diethyldithiocarbamate (DDTC). A portion of the samples was immediately filtered through 0.45-μm membranes, deposited on R2A agar plates, and incubated seven days at 22 °C (following European recommendations). The remaining water was incubated 14 days at 22 °C and then filtered and cultured on R2A, blood-, or cetrimide-containing agar plates. PA isolates were identified by MS MALDI-TOF, genotyped by PFGE and WGS, and tested for survival in a 150 μg/L copper (II) sulphate solution. RESULTS Although the 12 water sampling points always tested negative with the recommended method, 67% were positive at least once for PA with the adapted method (i.e. with DDTC). The 14 PA persister isolates found throughout the plumbing system were clonal and belong to the high-risk clone ST308. Their genome harbours a 37-kb genomic island (GI-7) containing 13 genes linked to copper resistance. ST308 survived better in the copper solution than comparators that did not harbour GI-7 (P. aeruginosa strains PAO1, PA14, and ST235). The deletion of GI-7 in ST308 abrogated its tolerance to copper. The GI-7 nucleotide sequence shares 98% and 72% identity with sequences from the environmental species Pseudomonas putida and the phytopathogenic species Pseudomonas syringae, respectively. CONCLUSION We report the contamination of the plumbing system of a healthcare premises by persister cells of the high-risk clone P. aeruginosa ST308. New recommendations for the monitoring of water contamination should consider persister cells. The genomic island GI-7, which confers tolerance to copper, probably originates from Pseudomonas species found in copper-contaminated soils and plants. Agricultural practices may have an unexpected consequence, allowing copper-tolerant pathogens to survive in the hospital environment and contaminate fragile patients.
Collapse
Affiliation(s)
- Audrey Jeanvoine
- Laboratoire d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France; UMR CNRS 6249, Chrono-environnement, Université de Bourgogne Franche-Comté, Besançon, France
| | - Alexandre Meunier
- Laboratoire d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France
| | - Hélène Puja
- UMR CNRS 6249, Chrono-environnement, Université de Bourgogne Franche-Comté, Besançon, France
| | - Xavier Bertrand
- Laboratoire d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France; UMR CNRS 6249, Chrono-environnement, Université de Bourgogne Franche-Comté, Besançon, France
| | - Benoît Valot
- UMR CNRS 6249, Chrono-environnement, Université de Bourgogne Franche-Comté, Besançon, France
| | - Didier Hocquet
- Laboratoire d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France; UMR CNRS 6249, Chrono-environnement, Université de Bourgogne Franche-Comté, Besançon, France; Centre de Ressources Biologiques - Filière Microbiologique de Besançon, Centre Hospitalier Régional Universitaire, Besançon, France.
| |
Collapse
|
45
|
Sun S, Noorian P, McDougald D. Dual Role of Mechanisms Involved in Resistance to Predation by Protozoa and Virulence to Humans. Front Microbiol 2018; 9:1017. [PMID: 29867902 PMCID: PMC5967200 DOI: 10.3389/fmicb.2018.01017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Most opportunistic pathogens transit in the environment between hosts and the environment plays a significant role in the evolution of protective traits. The coincidental evolution hypothesis suggests that virulence factors arose as a response to other selective pressures rather for virulence per se. This idea is strongly supported by the elucidation of bacterial-protozoal interactions. In response to protozoan predation, bacteria have evolved various defensive mechanisms which may also function as virulence factors. In this review, we summarize the dual role of factors involved in both grazing resistance and human pathogenesis, and compare the traits using model intracellular and extracellular pathogens. Intracellular pathogens rely on active invasion, blocking of the phagosome and lysosome fusion and resistance to phagocytic digestion to successfully invade host cells. In contrast, extracellular pathogens utilize toxin secretion and biofilm formation to avoid internalization by phagocytes. The complexity and diversity of bacterial virulence factors whose evolution is driven by protozoan predation, highlights the importance of protozoa in evolution of opportunistic pathogens.
Collapse
Affiliation(s)
- Shuyang Sun
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Parisa Noorian
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Diane McDougald
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
46
|
Rensing C, Moodley A, Cavaco LM, McDevitt SF. Resistance to Metals Used in Agricultural Production. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0025-2017. [PMID: 29676247 PMCID: PMC11633777 DOI: 10.1128/microbiolspec.arba-0025-2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
Metals and metalloids have been used alongside antibiotics in livestock production for a long time. The potential and acute negative impact on the environment and human health of these livestock feed supplements has prompted lawmakers to ban or discourage the use of some or all of these supplements. This article provides an overview of current use in the European Union and the United States, detected metal resistance determinants, and the proteins and mechanisms responsible for conferring copper and zinc resistance in bacteria. A detailed description of the most common copper and zinc metal resistance determinants is given to illustrate not only the potential danger of coselecting antibiotic resistance genes but also the potential to generate bacterial strains with an increased potential to be pathogenic to humans. For example, the presence of a 20-gene copper pathogenicity island is highlighted since bacteria containing this gene cluster could be readily isolated from copper-fed pigs, and many pathogenic strains, including Escherichia coli O104:H4, contain this potential virulence factor, suggesting a potential link between copper supplements in livestock and the evolution of pathogens.
Collapse
Affiliation(s)
- Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Arshnee Moodley
- Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Lina M Cavaco
- Department for Bacteria, Parasites, and Fungi, Infectious Disease Preparedness, Statens Serum Institut and Faculty of Health and Medical Sciences, University of Copenhagen, 2300 Copenhagen, Denmark
| | | |
Collapse
|
47
|
Andrade LN, Siqueira TES, Martinez R, Darini ALC. Multidrug-Resistant CTX-M-(15, 9, 2)- and KPC-2-Producing Enterobacter hormaechei and Enterobacter asburiae Isolates Possessed a Set of Acquired Heavy Metal Tolerance Genes Including a Chromosomal sil Operon (for Acquired Silver Resistance). Front Microbiol 2018; 9:539. [PMID: 29628916 PMCID: PMC5876308 DOI: 10.3389/fmicb.2018.00539] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/08/2018] [Indexed: 11/23/2022] Open
Abstract
Bacterial resistance to antibiotics is concern in healthcare-associated infections. On the other hand, bacterial tolerance to other antimicrobials, like heavy metals, has been neglected and underestimated in hospital pathogens. Silver has long been used as an antimicrobial agent and it seems to be an important indicator of heavy metal tolerance. To explore this perspective, we searched for the presence of acquired silver resistance genes (sil operon: silE, silS, silR, silC, silF, silB, silA, and silP) and acquired extended-spectrum cephalosporin and carbapenem resistance genes (blaCTX−M and blaKPC) in Enterobacter cloacae Complex (EcC) (n = 27) and Enterobacter aerogenes (n = 8) isolated from inpatients at a general hospital. Moreover, the genetic background of the silA (silver-efflux pump) and the presence of other acquired heavy metal tolerance genes, pcoD (copper-efflux pump), arsB (arsenite-efflux pump), terF (tellurite resistance protein), and merA (mercuric reductase) were also investigated. Outstandingly, 21/27 (78%) EcC isolates harbored silA gene located in the chromosome. Complete sil operon was found in 19/21 silA-positive EcC isolates. Interestingly, 8/20 (40%) E. hormaechei and 5/6 (83%) E. asburiae co-harbored silA/pcoD genes and blaCTX−M−(15,2,or9) and/or blaKPC−2 genes. Frequent occurrences of arsB, terF, and merA genes were detected, especially in silA/pcoD-positive, multidrug-resistant (MDR) and/or CTX-M-producing isolates. Our study showed co-presence of antibiotic and heavy metal tolerance genes in MDR EcC isolates. In our viewpoint, there are few studies regarding to bacterial heavy metal tolerance and we call attention for more investigations and discussion about this issue in different hospital pathogens.
Collapse
Affiliation(s)
- Leonardo N Andrade
- Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Brazil
| | - Thiago E S Siqueira
- Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Brazil
| | - Roberto Martinez
- Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Brazil
| | - Ana Lucia C Darini
- Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
48
|
Gonzalez MR, Ducret V, Leoni S, Perron K. Pseudomonas aeruginosa zinc homeostasis: Key issues for an opportunistic pathogen. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:722-733. [PMID: 29410128 DOI: 10.1016/j.bbagrm.2018.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/26/2018] [Indexed: 12/13/2022]
Abstract
Zinc is an essential trace element for almost all living organisms. In the opportunistic bacterial pathogen Pseudomonas aeruginosa, zinc has been shown to play an important role in virulence, in colonization of the host organism and has also been shown to be involved in antibiotic resistance. P. aeruginosa possesses numerous systems enabling it to thrive in zinc-depleted conditions as well as high-zinc situations, two environments that are encountered during human infection. These capabilities account for its pathogenic strength. The main aim of this review is to focus on zinc homeostasis in P. aeruginosa and the genetic regulation of the systems involved. The interconnection with virulence, as well as the mechanism of co-regulation between metal and antibiotic resistance, are of prime interest for understanding the molecular mechanisms allowing P. aeruginosa to switch from its existence as a common environmental bacterium to a severe opportunistic pathogen. This article is part of a Special Issue entitled: Dynamic gene expression, edited by Prof. Patrick Viollier.
Collapse
Affiliation(s)
- Manuel R Gonzalez
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Sara Leoni
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva, Switzerland.
| |
Collapse
|
49
|
Buracco S, Peracino B, Andreini C, Bracco E, Bozzaro S. Differential Effects of Iron, Zinc, and Copper on Dictyostelium discoideum Cell Growth and Resistance to Legionella pneumophila. Front Cell Infect Microbiol 2018; 7:536. [PMID: 29379774 PMCID: PMC5770829 DOI: 10.3389/fcimb.2017.00536] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/26/2017] [Indexed: 12/29/2022] Open
Abstract
Iron, zinc, and copper play fundamental roles in eucaryotes and procaryotes, and their bioavailability regulates host-pathogen interactions. For intracellular pathogens, the source of metals is the cytoplasm of the host, which in turn manipulates intracellular metal traffic following pathogen recognition. It is established that iron is withheld from the pathogen-containing vacuole, whereas for copper and zinc the evidence is unclear. Most infection studies in mammals have concentrated on effects of metal deficiency/overloading at organismal level. Thus, zinc deficiency or supplementation correlate with high risk of respiratory tract infection or recovery from severe infection, respectively. Iron, zinc, and copper deficiency or overload affects lymphocyte proliferation/maturation, and thus the adaptive immune response. Whether they regulate innate immunity at macrophage level is open, except for iron. The early identification in a mouse mutant susceptible to mycobacterial infection of the iron transporter Nramp1 allowed dissecting Nramp1 role in phagocytes, from the social amoeba Dictyostelium to macrophages. Nramp1 regulates iron efflux from the phagosomes, thus starving pathogenic bacteria for iron. Similar studies for zinc or copper are scant, due to the large number of copper and zinc transporters. In Dictyostelium, zinc and copper transporters include 11 and 6 members, respectively. To assess the role of zinc or copper in Dictyostelium, cells were grown under conditions of metal depletion or excess and tested for resistance to Legionella pneumophila infection. Iron shortage or overload inhibited Dictyostelium cell growth within few generations. Surprisingly, zinc or copper depletion failed to affect growth. Zinc or copper overloading inhibited cell growth at, respectively, 50- or 500-fold the physiological concentration, suggesting very efficient control of their homeostasis, as confirmed by Inductively Coupled Plasma Mass Spectrometry quantification of cellular metals. Legionella infection was inhibited or enhanced in cells grown under iron shortage or overload, respectively, confirming a major role for iron in controlling resistance to pathogens. In contrast, zinc and copper depletion or excess during growth did not affect Legionella infection. Using Zinpyr-1 as fluorescent sensor, we show that zinc accumulates in endo-lysosomal vesicles, including phagosomes, and the contractile vacuole. Furthermore, we provide evidence for permeabilization of the Legionella-containing vacuole during bacterial proliferation.
Collapse
Affiliation(s)
- Simona Buracco
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Barbara Peracino
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Claudia Andreini
- Magnetic Resonance Center (CERM), University of Florence, Florence, Italy
| | - Enrico Bracco
- Department of Oncology, University of Torino, Turin, Italy
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| |
Collapse
|
50
|
Dunn JD, Bosmani C, Barisch C, Raykov L, Lefrançois LH, Cardenal-Muñoz E, López-Jiménez AT, Soldati T. Eat Prey, Live: Dictyostelium discoideum As a Model for Cell-Autonomous Defenses. Front Immunol 2018; 8:1906. [PMID: 29354124 PMCID: PMC5758549 DOI: 10.3389/fimmu.2017.01906] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
The soil-dwelling social amoeba Dictyostelium discoideum feeds on bacteria. Each meal is a potential infection because some bacteria have evolved mechanisms to resist predation. To survive such a hostile environment, D. discoideum has in turn evolved efficient antimicrobial responses that are intertwined with phagocytosis and autophagy, its nutrient acquisition pathways. The core machinery and antimicrobial functions of these pathways are conserved in the mononuclear phagocytes of mammals, which mediate the initial, innate-immune response to infection. In this review, we discuss the advantages and relevance of D. discoideum as a model phagocyte to study cell-autonomous defenses. We cover the antimicrobial functions of phagocytosis and autophagy and describe the processes that create a microbicidal phagosome: acidification and delivery of lytic enzymes, generation of reactive oxygen species, and the regulation of Zn2+, Cu2+, and Fe2+ availability. High concentrations of metals poison microbes while metal sequestration inhibits their metabolic activity. We also describe microbial interference with these defenses and highlight observations made first in D. discoideum. Finally, we discuss galectins, TNF receptor-associated factors, tripartite motif-containing proteins, and signal transducers and activators of transcription, microbial restriction factors initially characterized in mammalian phagocytes that have either homologs or functional analogs in D. discoideum.
Collapse
Affiliation(s)
- Joe Dan Dunn
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Cristina Bosmani
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Caroline Barisch
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Lyudmil Raykov
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Louise H Lefrançois
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Elena Cardenal-Muñoz
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Thierry Soldati
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|