1
|
Ziylan ZS, de Putter GJ, Roelofs M, van Dijl JM, Scheffers DJ, Walvoort MTC. Evaluation of Kdo-8-N 3 incorporation into lipopolysaccharides of various Escherichia coli strains. RSC Chem Biol 2023; 4:884-893. [PMID: 37920390 PMCID: PMC10619137 DOI: 10.1039/d3cb00110e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023] Open
Abstract
8-Azido-3,8-dideoxy-α/β-d-manno-oct-2-ulosonic acid (Kdo-8-N3) is a Kdo derivative used in metabolic labeling of lipopolysaccharide (LPS) structures found on the cell membrane of Gram-negative bacteria. Several studies have reported successful labeling of LPS using Kdo-8-N3 and visualization of LPS by a fluorescent reagent through click chemistry on a selection of Gram-negative bacteria such as Escherichia coli strains, Salmonella typhimurium, and Myxococcus xanthus. Motivated by the promise of Kdo-8-N3 to be useful in the investigation of LPS biosynthesis and cell surface labeling across different strains, we set out to explore the variability in nature and efficiency of LPS labeling using Kdo-8-N3 in a variety of E. coli strains and serotypes. We optimized the chemical synthesis of Kdo-8-N3 and subsequently used Kdo-8-N3 to metabolically label pathogenic E. coli strains from commercial and clinical origin. Interestingly, different extents of labeling were observed in different E. coli strains, which seemed to be dependent also on growth media, and the majority of labeled LPS appears to be of the 'rough' LPS variant, as visualized using SDS-PAGE and fluorescence microscopy. This knowledge is important for future application of Kdo-8-N3 in the study of LPS biosynthesis and dynamics, especially when working with clinical isolates.
Collapse
Affiliation(s)
- Zeynep Su Ziylan
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Geert-Jan de Putter
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Meike Roelofs
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 9700 RB Groningen The Netherlands
| | - Dirk-Jan Scheffers
- Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Marthe T C Walvoort
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7 9747 AG Groningen The Netherlands
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Saïdi F, Gamboa Marin OJ, Veytia-Bucheli JI, Vinogradov E, Ravicoularamin G, Jolivet NY, Kezzo AA, Ramirez Esquivel E, Panda A, Sharma G, Vincent S, Gauthier C, Islam ST. Evaluation of Azido 3-Deoxy-d- manno-oct-2-ulosonic Acid (Kdo) Analogues for Click Chemistry-Mediated Metabolic Labeling of Myxococcus xanthus DZ2 Lipopolysaccharide. ACS OMEGA 2022; 7:34997-35013. [PMID: 36211050 PMCID: PMC9535733 DOI: 10.1021/acsomega.2c03711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Metabolic labeling paired with click chemistry is a powerful approach for selectively imaging the surfaces of diverse bacteria. Herein, we explored the feasibility of labeling the lipopolysaccharide (LPS) of Myxococcus xanthus-a Gram-negative predatory social bacterium known to display complex outer membrane (OM) dynamics-via growth in the presence of distinct azido (-N3) analogues of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo). Determination of the LPS carbohydrate structure from strain DZ2 revealed the presence of one Kdo sugar in the core oligosaccharide, modified with phosphoethanolamine. The production of 8-azido-8-deoxy-Kdo (8-N3-Kdo) was then greatly improved over previous reports via optimization of the synthesis of its 5-azido-5-deoxy-d-arabinose precursor to yield gram amounts. The novel analogue 7-azido-7-deoxy-Kdo (7-N3-Kdo) was also synthesized, with both analogues capable of undergoing in vitro strain-promoted azide-alkyne cycloaddition (SPAAC) "click" chemistry reactions. Slower and faster growth of M. xanthus was displayed in the presence of 8-N3-Kdo and 7-N3-Kdo (respectively) compared to untreated cells, with differences also seen for single-cell gliding motility and type IV pilus-dependent swarm community expansion. While the surfaces of 8-N3-Kdo-grown cells were fluorescently labeled following treatment with dibenzocyclooctyne-linked fluorophores, the surfaces of 7-N3-Kdo-grown cells could not undergo fluorescent tagging. Activity analysis of the KdsB enzyme required to activate Kdo prior to its integration into nascent LPS molecules revealed that while 8-N3-Kdo is indeed a substrate of the enzyme, 7-N3-Kdo is not. Though a lack of M. xanthus cell aggregation was shown to expedite growth in liquid culture, 7-N3-Kdo-grown cells did not manifest differences in intrinsic clumping relative to untreated cells, suggesting that 7-N3-Kdo may instead be catabolized by the cells. Ultimately, these data provide important insights into the synthesis and cellular processing of valuable metabolic labels and establish a basis for the elucidation of fundamental principles of OM dynamism in live bacterial cells.
Collapse
Affiliation(s)
- Fares Saïdi
- Institut
National de la Recherche Scientifique (INRS)−Centre Armand-Frappier
Santé Biotechnologie (AFSB), Université
du Québec, Institut Pasteur International Network, Laval, Quebec H7V 1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Université Laval, Quebec, Quebec G1V 0A6, Canada
| | - Oscar Javier Gamboa Marin
- Institut
National de la Recherche Scientifique (INRS)−Centre Armand-Frappier
Santé Biotechnologie (AFSB), Université
du Québec, Institut Pasteur International Network, Laval, Quebec H7V 1B7, Canada
- Unité
Mixte de Recherche INRS-UQAC, INRS−Centre AFSB, Université du Québec à Chicoutimi
(UQAC), Chicoutimi, Quebec G7H 2B1, Canada
| | - José Ignacio Veytia-Bucheli
- Department
of Chemistry, Laboratory of Bio-Organic Chemistry−Namur Research
Institute for Life Sciences (NARILIS), University
of Namur (UNamur), Namur 5000, Belgium
| | - Evgeny Vinogradov
- Vaccine
Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Gokulakrishnan Ravicoularamin
- Institut
National de la Recherche Scientifique (INRS)−Centre Armand-Frappier
Santé Biotechnologie (AFSB), Université
du Québec, Institut Pasteur International Network, Laval, Quebec H7V 1B7, Canada
- Unité
Mixte de Recherche INRS-UQAC, INRS−Centre AFSB, Université du Québec à Chicoutimi
(UQAC), Chicoutimi, Quebec G7H 2B1, Canada
| | - Nicolas Y. Jolivet
- Institut
National de la Recherche Scientifique (INRS)−Centre Armand-Frappier
Santé Biotechnologie (AFSB), Université
du Québec, Institut Pasteur International Network, Laval, Quebec H7V 1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Université Laval, Quebec, Quebec G1V 0A6, Canada
| | - Ahmad A. Kezzo
- Institut
National de la Recherche Scientifique (INRS)−Centre Armand-Frappier
Santé Biotechnologie (AFSB), Université
du Québec, Institut Pasteur International Network, Laval, Quebec H7V 1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Université Laval, Quebec, Quebec G1V 0A6, Canada
| | - Eric Ramirez Esquivel
- Institut
National de la Recherche Scientifique (INRS)−Centre Armand-Frappier
Santé Biotechnologie (AFSB), Université
du Québec, Institut Pasteur International Network, Laval, Quebec H7V 1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Université Laval, Quebec, Quebec G1V 0A6, Canada
| | - Adyasha Panda
- Institute
of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka 560100, India
| | - Gaurav Sharma
- Institute
of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka 560100, India
| | - Stéphane
P. Vincent
- Department
of Chemistry, Laboratory of Bio-Organic Chemistry−Namur Research
Institute for Life Sciences (NARILIS), University
of Namur (UNamur), Namur 5000, Belgium
| | - Charles Gauthier
- Institut
National de la Recherche Scientifique (INRS)−Centre Armand-Frappier
Santé Biotechnologie (AFSB), Université
du Québec, Institut Pasteur International Network, Laval, Quebec H7V 1B7, Canada
- Unité
Mixte de Recherche INRS-UQAC, INRS−Centre AFSB, Université du Québec à Chicoutimi
(UQAC), Chicoutimi, Quebec G7H 2B1, Canada
| | - Salim T. Islam
- Institut
National de la Recherche Scientifique (INRS)−Centre Armand-Frappier
Santé Biotechnologie (AFSB), Université
du Québec, Institut Pasteur International Network, Laval, Quebec H7V 1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Université Laval, Quebec, Quebec G1V 0A6, Canada
| |
Collapse
|
4
|
Banahene N, Kavunja HW, Swarts BM. Chemical Reporters for Bacterial Glycans: Development and Applications. Chem Rev 2022; 122:3336-3413. [PMID: 34905344 PMCID: PMC8958928 DOI: 10.1021/acs.chemrev.1c00729] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacteria possess an extraordinary repertoire of cell envelope glycans that have critical physiological functions. Pathogenic bacteria have glycans that are essential for growth and virulence but are absent from humans, making them high-priority targets for antibiotic, vaccine, and diagnostic development. The advent of metabolic labeling with bioorthogonal chemical reporters and small-molecule fluorescent reporters has enabled the investigation and targeting of specific bacterial glycans in their native environments. These tools have opened the door to imaging glycan dynamics, assaying and inhibiting glycan biosynthesis, profiling glycoproteins and glycan-binding proteins, and targeting pathogens with diagnostic and therapeutic payload. These capabilities have been wielded in diverse commensal and pathogenic Gram-positive, Gram-negative, and mycobacterial species─including within live host organisms. Here, we review the development and applications of chemical reporters for bacterial glycans, including peptidoglycan, lipopolysaccharide, glycoproteins, teichoic acids, and capsular polysaccharides, as well as mycobacterial glycans, including trehalose glycolipids and arabinan-containing glycoconjugates. We cover in detail how bacteria-targeting chemical reporters are designed, synthesized, and evaluated, how they operate from a mechanistic standpoint, and how this information informs their judicious and innovative application. We also provide a perspective on the current state and future directions of the field, underscoring the need for interdisciplinary teams to create novel tools and extend existing tools to support fundamental and translational research on bacterial glycans.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | - Herbert W. Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | | |
Collapse
|
5
|
Nilsson I, Six DA. Metabolic Incorporation of Azido-Sugars into LPS to Enable Live-Cell Fluorescence Imaging. Methods Mol Biol 2022; 2548:267-278. [PMID: 36151503 DOI: 10.1007/978-1-0716-2581-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metabolic labeling of lipopolysaccharides (LPS) with the exogenous azido analog of 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) or Kdo-N3 allows for both live-cell and molecular analysis of the outer membrane composition and biosynthesis in different Gram-negative bacteria. Here, we describe Kdo-N3 incorporation into bacterial cells, followed by click labeling with a fluorescent dye. The fluorescently labeled LPS can be analyzed from lysed cells by SDS-PAGE and from intact cells by microscopy and flow cytometry. These methods have been applied to the Gram-negative bacteria Escherichia coli and Klebsiella pneumoniae, which possess the sialic acid transporter NanT that is also capable of transporting exogenous Kdo and Kdo analogs into the cytoplasm for incorporation into nascent LPS.
Collapse
Affiliation(s)
- Inga Nilsson
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - David A Six
- hemotune AG, Schlieren, Switzerland.
- Venatorx Pharmaceuticals, Inc., Malvern, PA, USA.
| |
Collapse
|
6
|
Zheng M, Zheng M, Epstein S, Harnagel AP, Kim H, Lupoli TJ. Chemical Biology Tools for Modulating and Visualizing Gram-Negative Bacterial Surface Polysaccharides. ACS Chem Biol 2021; 16:1841-1865. [PMID: 34569792 DOI: 10.1021/acschembio.1c00341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial cells present a wide diversity of saccharides that decorate the cell surface and help mediate interactions with the environment. Many Gram-negative cells express O-antigens, which are long sugar polymers that makeup the distal portion of lipopolysaccharide (LPS) that constitutes the surface of the outer membrane. This review highlights chemical biology tools that have been developed in recent years to facilitate the modulation of O-antigen synthesis and composition, as well as related bacterial polysaccharide pathways, and the detection of unique glycan sequences. Advances in the biochemistry and structural biology of O-antigen biosynthetic machinery are also described, which provide guidance for the design of novel chemical and biomolecular probes. Many of the tools noted here have not yet been utilized in biological systems and offer researchers the opportunity to investigate the complex sugar architecture of Gram-negative cells.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Maggie Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Samuel Epstein
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Alexa P. Harnagel
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Hanee Kim
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Tania J. Lupoli
- Department of Chemistry, New York University, New York, 10003 New York, United States
| |
Collapse
|
7
|
Zhang X, He Y, Wu Z, Liu G, Tao Y, Jin JM, Chen W, Tang SY. Whole-Cell Biosensors Aid Exploration of Vanillin Transmembrane Transport. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3114-3123. [PMID: 33666081 DOI: 10.1021/acs.jafc.0c07886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transcriptional regulatory protein (TRP)-based whole-cell biosensors are widely used nowadays. Here, they were demonstrated to have great potential application in screening cell efflux and influx pumps for small molecules. First, a vanillin whole-cell biosensor was developed by altering the specificity of a TRP, VanR, and strains with improved vanillin productions that were selected from a random genome mutagenesis library by using this biosensor as a high-throughput screening tool. A high intracellular vanillin concentration was found to accumulate due to the inactivation of the AcrA protein, indicating the involvement of this protein in vanillin efflux. Then, the application of this biosensor was extended to explore efflux and influx pumps, combined with directed genome evolution. Elevated intracellular vanillin levels resulting from efflux pump inactivation or influx pump overexpression could be rapidly detected by the whole-cell biosensor, markedly facilitating the identification of genome targets related to small-molecule transmembrane transport, which is of great importance in metabolic engineering.
Collapse
Affiliation(s)
- Xuanxuan Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang He
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhe Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoxia Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Ming Jin
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing 100048, China
| | - Wei Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang-Yan Tang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Coker JK, Moyne O, Rodionov DA, Zengler K. Carbohydrates great and small, from dietary fiber to sialic acids: How glycans influence the gut microbiome and affect human health. Gut Microbes 2021; 13:1-18. [PMID: 33615984 PMCID: PMC7899658 DOI: 10.1080/19490976.2020.1869502] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/20/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
Gut microbiome composition depends heavily upon diet and has strong ties to human health. Dietary carbohydrates shape the gut microbiome by providing a potent nutrient source for particular microbes. This review explores how dietary carbohydrates in general, including individual monosaccharides and complex polysaccharides, influence the gut microbiome with subsequent effects on host health and disease. In particular, the effects of sialic acids, a prominent and influential class of monosaccharides, are discussed. Complex plant carbohydrates, such as dietary fiber, generally promote microbial production of compounds beneficial to the host while preventing degradation of host carbohydrates from colonic mucus. In contrast, simple and easily digestible sugars such as glucose are often associated with adverse effects on health and the microbiome. The monosaccharide class of sialic acids exerts a powerful but nuanced effect on gut microbiota. Sialic acid consumption (in monosaccharide form, or as part of human milk oligosaccharides or certain animal-based foods) drives the growth of organisms with sialic acid metabolism capabilities. Minor chemical modifications of Neu5Ac, the most common form of sialic acid, can alter these effects. All aspects of carbohydrate composition are therefore relevant to consider when designing dietary therapeutic strategies to alter the gut microbiome.
Collapse
Affiliation(s)
- Joanna K Coker
- Department of Pediatrics, University of California, San Diego, La Jolla, USA
| | - Oriane Moyne
- Department of Pediatrics, University of California, San Diego, La Jolla, USA
| | - Dmitry A. Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| |
Collapse
|
9
|
Chieffi D, Fanelli F, Fusco V. Arcobacter butzleri: Up-to-date taxonomy, ecology, and pathogenicity of an emerging pathogen. Compr Rev Food Sci Food Saf 2020; 19:2071-2109. [PMID: 33337088 DOI: 10.1111/1541-4337.12577] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/19/2022]
Abstract
Arcobacter butzleri, recently emended to the Aliarcobacter butzleri comb. nov., is an emerging pathogen causing enteritis, severe diarrhea, septicaemia, and bacteraemia in humans and enteritis, stillbirth, and abortion in animals. Since its recognition as emerging pathogen on 2002, advancements have been made in elucidating its pathogenicity and epidemiology, also thanks to advent of genomics, which, moreover, contributed in emending its taxonomy. In this review, we provide an overview of the up-to-date taxonomy, ecology, and pathogenicity of this emerging pathogen. Moreover, the implication of A. butzleri in the safety of foods is pinpointed, and culture-dependent and independent detection, identification, and typing methods as well as strategies to control and prevent the survival and growth of this pathogen are provided.
Collapse
Affiliation(s)
- Daniele Chieffi
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy
| | - Vincenzina Fusco
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy
| |
Collapse
|
10
|
Nilsson I, Lee SY, Sawyer WS, Baxter Rath CM, Lapointe G, Six DA. Metabolic phospholipid labeling of intact bacteria enables a fluorescence assay that detects compromised outer membranes. J Lipid Res 2020; 61:870-883. [PMID: 32156718 PMCID: PMC7269758 DOI: 10.1194/jlr.ra120000654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/03/2020] [Indexed: 01/09/2023] Open
Abstract
Gram-negative bacteria possess an asymmetric outer membrane (OM) composed primarily of lipopolysaccharides (LPSs) on the outer leaflet and phospholipids (PLs) on the inner leaflet. The loss of this asymmetry due to mutations in the LPS biosynthesis or transport pathways causes the externalization of PLs to the outer leaflet of the OM and leads to OM permeability defects. Here, we used metabolic labeling to detect a compromised OM in intact bacteria. Phosphatidylcholine synthase expression in Escherichia coli allowed for the incorporation of exogenous propargylcholine into phosphatidyl(propargyl)choline and exogenous 1-azidoethyl-choline (AECho) into phosphatidyl(azidoethyl)choline (AEPC), as confirmed by LC/MS analyses. A fluorescent copper-free click reagent poorly labeled AEPC in intact wild-type cells but readily labeled AEPC from lysed cells. Fluorescence microscopy and flow cytometry analyses confirmed the absence of significant AEPC labeling from intact wild-type E. coli strains and revealed significant AEPC labeling in an E. coli LPS transport mutant (lptD4213) and an LPS biosynthesis mutant (E. coli lpxC101). Our results suggest that metabolic PL labeling with AECho is a promising tool for detecting a compromised bacterial OM, revealing aberrant PL externalization, and identifying or characterizing novel cell-active inhibitors of LPS biosynthesis or transport.
Collapse
Affiliation(s)
- Inga Nilsson
- Infectious Diseases Area Novartis Institutes for BioMedical Research, Emeryville, CA; Global Discovery Chemistry Novartis Institutes for BioMedical Research, Emeryville, CA
| | - Sheng Y Lee
- Infectious Diseases Area Novartis Institutes for BioMedical Research, Emeryville, CA
| | - William S Sawyer
- Infectious Diseases Area Novartis Institutes for BioMedical Research, Emeryville, CA
| | | | - Guillaume Lapointe
- Global Discovery Chemistry Novartis Institutes for BioMedical Research, Emeryville, CA
| | - David A Six
- Infectious Diseases Area Novartis Institutes for BioMedical Research, Emeryville, CA. mailto:
| |
Collapse
|
11
|
Bacterial carbohydrate diversity - a Brave New World. Curr Opin Chem Biol 2019; 53:1-8. [PMID: 31176085 DOI: 10.1016/j.cbpa.2019.04.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022]
Abstract
Glycans and glycoconjugates feature on the 'front line' of bacterial cells, playing critical roles in the mechanical and chemical stability of the microorganisms, and orchestrating interactions with the environment and all other living organisms. To negotiate such central tasks, bacterial glycomes incorporate a dizzying array of carbohydrate building blocks and non-carbohydrate modifications, which create opportunities for infinite structural variation. This review highlights some of the challenges and opportunities for the chemical biology community in the field of bacterial glycobiology.
Collapse
|
12
|
Calabretta PJ, Hodges HL, Kraft MB, Marando VM, Kiessling LL. Bacterial Cell Wall Modification with a Glycolipid Substrate. J Am Chem Soc 2019; 141:9262-9272. [PMID: 31081628 DOI: 10.1021/jacs.9b02290] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the ubiquity and importance of glycans in biology, methods to probe their structures in cells are limited. Mammalian glycans can be modulated using metabolic incorporation, a process in which non-natural sugars are taken up by cells, converted to nucleotide-sugar intermediates, and incorporated into glycans via biosynthetic pathways. These studies have revealed that glycan intermediates can be shunted through multiple pathways, and this complexity can be heightened in bacteria, as they can catabolize diverse glycans. We sought to develop a strategy that probes structures recalcitrant to metabolic incorporation and that complements approaches focused on nucleotide sugars. We reasoned that lipid-linked glycans, which are intermediates directly used in glycan biosynthesis, would offer an alternative. We generated synthetic arabinofuranosyl phospholipids to test this strategy in Corynebacterium glutamicum and Mycobacterium smegmatis, organisms that serve as models of Mycobacterium tuberculosis. Using a C. glutamicum mutant that lacks arabinan, we identified synthetic glycosyl donors whose addition restores cell wall arabinan, demonstrating that non-natural glycolipids can serve as biosynthetic intermediates and function in chemical complementation. The addition of an isotopically labeled glycan substrate facilitated cell wall characterization by NMR. Structural analysis revealed that all five known arabinofuranosyl transferases could process the exogenous lipid-linked sugar donor, allowing for the full recovery of the cell envelope. The lipid-based probe could also rescue wild-type cells treated with an inhibitor of cell wall biosynthesis. Our data indicate that surrogates of natural lipid-linked glycans can intervene in the cell's traditional workflow, indicating that biosynthetic incorporation is a powerful strategy for probing glycan structure and function.
Collapse
Affiliation(s)
- Phillip J Calabretta
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | | | | | - Victoria M Marando
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Laura L Kiessling
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
13
|
Fanelli F, Di Pinto A, Mottola A, Mule G, Chieffi D, Baruzzi F, Tantillo G, Fusco V. Genomic Characterization of Arcobacter butzleri Isolated From Shellfish: Novel Insight Into Antibiotic Resistance and Virulence Determinants. Front Microbiol 2019; 10:670. [PMID: 31057492 PMCID: PMC6477937 DOI: 10.3389/fmicb.2019.00670] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
Arcobacter (A.) butzleri is an emerging pathogenic microorganism, whose taxonomy has been recently suggested to be emended to the Aliarcobacter (Al.) butzleri comb. nov. Despite extensive taxonomic analysis, only few fragmented studies have investigated the occurrence and the prevalence of virulence and antibiotic resistance determinants of this species in strains isolated from shellfish. Herein we report for the first time the whole genome sequencing and genomic characterization of two A. butzleri strains isolated from shellfish, with particular reference to the antibiotic, heavy metals and virulence determinants. This study supported the taxonomic assignment of these strains to the Al. butzleri species, and allowed us to identify antibiotic and metal resistance along with virulence determinants, also additional to those previously reported for the only two A. butzleri strains from different environments genomically characterized. Moreover, both strains showed resistance to β-lactams, vanocomycin, tetracycline and erythromycin and susceptibility to aminoglycosides and ciprofloxacin. Beside enlarging the availability of genomic data to perform comparative studies aimed at correlating phenotypic differences associated with ecological niche and geographic distribution with the genetic diversity of A. butzleri spp., this study reports the endowment of antibiotic and heavy metal resistance and virulence determinants of these shellfish-isolated strains. This leads to hypothesize a relatively high virulence of A. butzleri isolated from shellfish and prompt the need for a wider genomic analysis and for in vitro and in vivo studies of more strains isolated from this and other ecological niches, to unravel the mechanism of pathogenicity of this species, and the potential risk associated to their consumption.
Collapse
Affiliation(s)
- Francesca Fanelli
- Institute of Sciences of Food Production (CNR-ISPA), National Research Council of Italy, Bari, Italy
| | - Angela Di Pinto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Anna Mottola
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppina Mule
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (CNR-IBIOM), National Research Council of Italy, Bari, Italy
| | - Daniele Chieffi
- Institute of Sciences of Food Production (CNR-ISPA), National Research Council of Italy, Bari, Italy
| | - Federico Baruzzi
- Institute of Sciences of Food Production (CNR-ISPA), National Research Council of Italy, Bari, Italy
| | - Giuseppina Tantillo
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzina Fusco
- Institute of Sciences of Food Production (CNR-ISPA), National Research Council of Italy, Bari, Italy
| |
Collapse
|