1
|
A J, Reddy B, Eapen SJ, Javed M, M A, A K. Pathogenomics Insights into Phytophthora capsici and Phytophthora tropicalis -Sibling Species Causing Black Pepper Foot Rot: Genomic Architecture, Metabolic Pathways, and Effector Diversity. Gene 2025; 947:149328. [PMID: 39952485 DOI: 10.1016/j.gene.2025.149328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Foot rot disease in black pepper, caused by Phytophthora species, is a major threat to cultivation. Along with the well-known Phytophthora capsici, a newly identified species, Phytophthora tropicalis, has also been implicated. Comparative genome analysis of P. capsici 05-06 from Kerala (80.51 Mb, 626 scaffolds) and P. tropicalis 98-93 from Karnataka (73.54 Mb, 302 scaffolds) revealed similar GC content (∼50.5%) and gene counts (19,639 and 17,716, respectively). Genomic ANI analysis clustered them with P. capsici LT1534-B, suggesting a species complex. Both species contain transposable elements (19.35% and 21.31%), indicating adaptive evolution. Pathway mapping highlights roles in carbohydrate metabolism, carbohydrate-active enzymes (CAZymes: 575 and 566), energy production, effector biosynthesis, and molecular signaling. The presence of unique protein families and shared orthologous genes underscores their pathogenic potential. These findings enhance understanding of their evolution and pathogenicity, aiding in the development of targeted management strategies for black pepper foot rot.
Collapse
Affiliation(s)
- Jeevalatha A
- Division of Crop Protection, ICAR-Indian Institute of Spices Research, Kozhikode 673012, Kerala, India.
| | - Bhaskar Reddy
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Santhosh J Eapen
- Division of Crop Protection, ICAR-Indian Institute of Spices Research, Kozhikode 673012, Kerala, India
| | - Mohammed Javed
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Anandaraj M
- Division of Crop Protection, ICAR-Indian Institute of Spices Research, Kozhikode 673012, Kerala, India
| | - Kumar A
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
2
|
Kroll E, Bayon C, Rudd J, Armer VJ, Magaji-Umashankar A, Ames R, Urban M, Brown NA, Hammond-Kosack K. A conserved fungal Knr4/Smi1 protein is crucial for maintaining cell wall stress tolerance and host plant pathogenesis. PLoS Pathog 2025; 21:e1012769. [PMID: 39787257 PMCID: PMC11717356 DOI: 10.1371/journal.ppat.1012769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/22/2024] [Indexed: 01/12/2025] Open
Abstract
Filamentous plant pathogenic fungi pose significant threats to global food security, particularly through diseases like Fusarium Head Blight (FHB) and Septoria Tritici Blotch (STB) which affects cereals. With mounting challenges in fungal control and increasing restrictions on fungicide use due to environmental concerns, there is an urgent need for innovative control strategies. Here, we present a comprehensive analysis of the stage-specific infection process of Fusarium graminearum in wheat spikes by generating a dual weighted gene co-expression network (WGCN). Notably, the network contained a mycotoxin-enriched fungal module (F12) that exhibited a significant correlation with a detoxification gene-enriched wheat module (W12). This correlation in gene expression was validated through quantitative PCR. By examining a fungal module with genes highly expressed during early symptomless infection that was correlated to a wheat module enriched in oxidative stress genes, we identified a gene encoding FgKnr4, a protein containing a Knr4/Smi1 disordered domain. Through comprehensive analysis, we confirmed the pivotal role of FgKnr4 in various biological processes, including oxidative stress tolerance, cell cycle stress tolerance, morphogenesis, growth, and pathogenicity. Further studies confirmed the observed phenotypes are partially due to the involvement of FgKnr4 in regulating the fungal cell wall integrity pathway by modulating the phosphorylation of the MAP-kinase MGV1. Orthologues of the FgKnr4 gene are widespread across the fungal kingdom but are absent in other Eukaryotes, suggesting the protein has potential as a promising intervention target. Encouragingly, the restricted growth and highly reduced virulence phenotypes observed for ΔFgknr4 were replicated upon deletion of the orthologous gene in the wheat fungal pathogen Zymoseptoria tritici. Overall, this study demonstrates the utility of an integrated network-level analytical approach to pinpoint genes of high interest to pathogenesis and disease control.
Collapse
Affiliation(s)
- Erika Kroll
- Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
- Department of Life Sciences, University of Bath, Bath, Somerset, United Kingdom
| | - Carlos Bayon
- Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Jason Rudd
- Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Victoria J. Armer
- Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Anjana Magaji-Umashankar
- Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Ryan Ames
- Biosciences and Living Systems Institute, University of Exeter, Devon, Exeter, United Kingdom
| | - Martin Urban
- Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Neil A. Brown
- Department of Life Sciences, University of Bath, Bath, Somerset, United Kingdom
| | - Kim Hammond-Kosack
- Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| |
Collapse
|
3
|
Shi XL, Yang J, Zhang Y, Qin P, Zhou HY, Chen YZ. The photoactivated antifungal activity and possible mode of action of sodium pheophorbide a on Diaporthe mahothocarpus causing leaf spot blight in Camellia oleifera. Front Microbiol 2024; 15:1403478. [PMID: 38939192 PMCID: PMC11208333 DOI: 10.3389/fmicb.2024.1403478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Sodium pheophorbide a (SPA) is a natural plant-derived photosensitizer, with high photoactivated antifungal activity against some phytopathogenic fungi. However, its fungicidal effect on Diaporthe mahothocarpus, a novel pathogen that causes Camellia oleifera leaf spot blight, is unclear. Methods In the present study, we explored its inhibitory effects on spore germination and mycelial growth of D. mahothocarpus. Then we determined its effects on the cell membrane, mycelial morphology, redox homeostasis, and cell death through bioassay. Finally, RNA-seq was used further to elucidate its mode of action at the transcriptional level. Results We found that SPA effectively inhibited the growth of D. mahothocarpus, with half-maximal effective concentrations to inhibit mycelial growth and spore germination of 1.059 and 2.287 mg/mL, respectively. After 1.0 mg/mL SPA treatment, the conductivity and malondialdehyde content of D. mahothocarpus were significantly increased. Scanning electron microscopy and transmission electron microscopy indicated that SPA significantly affected the morphology and ultrastructure of D. mahothocarpus hyphae, revealing that SPA can destroy the mycelial morphology and cell structure, especially the cell membrane of D. mahothocarpus. Furthermore, transcriptome analysis revealed that SPA significantly suppressed the expression of genes involved in morphology, cell membrane permeability, and oxidative stress. Then, we also found that SPA significantly promoted the accumulation of reactive oxygen species (ROS) in of D. mahothocarpus, while it decreased the content of reduced glutathione, inhibited the enzyme activities of superoxide dismutase and catalase, and exacerbated DNA damage. Annexin V-FITC/PI staining also confirmed that 1.0 mg/mL SPA could significantly induce apoptosis and necrosis. Discussion Generally, SPA can induce ROS-mediated oxidative stress and cell death, thus destroying the cell membrane and hyphal morphology, and ultimately inhibiting mycelial growth, which indicates that SPA has multiple modes of action, providing a scientific basis for the use of SPA as an alternative plant-derived photoactivated fungicide against C. oleifera leaf spot blight.
Collapse
Affiliation(s)
- Xu-Long Shi
- College of Forestry, Guizhou University, Guiyang, China
| | - Jing Yang
- College of Forestry, Guizhou University, Guiyang, China
| | - Yu Zhang
- College of Forestry, Guizhou University, Guiyang, China
| | - Piao Qin
- College of Forestry, Guizhou University, Guiyang, China
| | - He-Ying Zhou
- College of Forestry, Guizhou University, Guiyang, China
| | - Yun-Ze Chen
- School of Biological Sciences, Guizhou Education University, Guiyang, China
| |
Collapse
|
4
|
Li Z, Shi CH, Huang Y, Wang HC, Li WH, Cai LT. Phenotypic analysis and genome sequence of Rhizopus oryzae strain Y5, the causal agent of tobacco pole rot. Front Microbiol 2023; 13:1031023. [PMID: 36687611 PMCID: PMC9846616 DOI: 10.3389/fmicb.2022.1031023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Rhizopus oryzae is a destructive pathogen that frequently causes tobacco pole rot in curing chambers. Phenotypic characterization of the pathogen was conducted to provide basic biological and pathological information using Biolog Phenotype MicroArray (PM). In addition, the Y5 strain of R. oryzae was sequenced using Illumina HiSeq and Pacific Biosciences (PacBio) technologies. Using PM plates 1-8, 758 growth conditions were tested. Results indicated that R. oryzae could metabolize 54.21% of tested carbon sources, 86.84% of nitrogen sources, 100% of sulfur sources, and 98.31% of phosphorus sources. About 37 carbon compounds, including D-xylose, N-acetyl-D-glucosamine, D-sorbitol, β-methyl-D-glucoside, D-galactose, L-arabinose, and D-cellobiose, significantly supported the growth of the pathogen. PM 3 indicated the active nitrogen sources, including Gly-Asn, Ala-Asp., Ala-Gln, and uric acid. PM 6-8 showed 285 different nitrogen pathways, indicating that different combinations of different amino acids support the growth of the pathogen. Genome sequencing results showed that the R. oryzae Y5 strain had raw data assembled into 2,271 Mbp with an N50 value of 10,563 bp. A genome sequence of 50.3 Mb was polished and assembled into 53 contigs with an N50 length of 1,785,794 bp, maximum contig length of 3,223,184 bp, and a sum of contig lengths of 51,182,778 bp. A total of 12,680 protein-coding genes were predicted using the Nonredundant, Gene Ontology, Clusters of Orthologous Groups, Kyoto Encyclopedia of Genes and Genomes, and SWISS-PROT databases. The genome sequence and annotation resources of R. oryzae provided a reference for studying its biological characteristics, trait-specific genes, pathogen-host interaction, pathogen evolution, and population genetic diversity. The phenomics and genome of R. oryzae will provide insights into microfungal biology, pathogen evolution, and the genetic diversity of epidemics.
Collapse
Affiliation(s)
- Zhen Li
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China,Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Cai-hua Shi
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China,School of Food Science and Technology & School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China,*Correspondence: Cai-hua Shi,
| | - Yang Huang
- China Tobacco Sichuan Industrial Corporation Technical Centre, Chengdu, China
| | - Han-cheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China,Han-cheng Wang,
| | - Wen-hong Li
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Liu-ti Cai
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Cao Y, Chen J, Xie X, Liu S, Jiang Y, Pei M, Wu Q, Qi P, Du L, Peng B, Lan J, Wu F, Feng K, Zhang Y, Fang Y, Liu M, Jaber MY, Wang Z, Olsson S, Lu G, Li Y. Characterization of two infection-induced transcription factors of Magnaporthe oryzae reveals their roles in regulating early infection and effector expression. MOLECULAR PLANT PATHOLOGY 2022; 23:1200-1213. [PMID: 35430769 PMCID: PMC9276953 DOI: 10.1111/mpp.13224] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/03/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The initial stage of rice blast fungus, Magnaporthe oryzae, infection, before 36 h postinoculation, is a critical timespan for deploying pathogen effectors to overcome the host's defences and ultimately cause the disease. However, how this process is regulated at the transcription level remains largely unknown. This study functionally characterized two M. oryzae Early Infection-induced Transcription Factor genes (MOEITF1 and MOEITF2) and analysed their roles in this process. Target gene deletion and mutant phenotype analysis showed that the mutants Δmoeitf1 and Δmoeitf2 were only defective for infection growth but not for vegetative growth, asexual/sexual sporulation, conidial germination, and appressoria formation. Gene expression analysis of 30 putative effectors revealed that most effector genes were down-regulated in mutants, implying a potential regulation by the transcription factors. Artificial overexpression of two severely down-regulated effectors, T1REP and T2REP, in the mutants partially restored the pathogenicity of Δmoeitf1 and Δmoeitf2, respectively, indicating that these are directly regulated. Yeast one-hybrid assay and electrophoretic mobility shift assay indicated that Moeitf1 specifically bound the T1REP promoter and Moeitf2 specifically bound the T2REP promoter. Both T1REP and T2REP were predicted to be secreted during infection, and the mutants of T2REP were severely reduced in pathogenicity. Our results indicate crucial roles for the fungal-specific Moeitf1 and Moeitf2 transcription factors in regulating an essential step in M. oryzae early establishment after penetrating rice epidermal cells, highlighting these as possible targets for disease control.
Collapse
Affiliation(s)
- Yiyang Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jia Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xuze Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shenghua Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yue Jiang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Mengtian Pei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qianfei Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Pengfei Qi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lili Du
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Baoyi Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jianwu Lan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Fan Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ke Feng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yifei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yu Fang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Muxing Liu
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjingChina
| | - Mohammed Y. Jaber
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Present address:
Department of Plant Production and ProtectionFaculty of Agriculture and Veterinary MedicineAn‐Najah National UniversityNablusPalestine
| | - Zonghua Wang
- Institue of OceanographyMinjiang UniversityFuzhouChina
| | - Stefan Olsson
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Plant Immunity CenterHaixia Institute of Science and Technology, College of Life Science, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ya Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
6
|
Reddy B, Mehta S, Prakash G, Sheoran N, Kumar A. Structured Framework and Genome Analysis of Magnaporthe grisea Inciting Pearl Millet Blast Disease Reveals Versatile Metabolic Pathways, Protein Families, and Virulence Factors. J Fungi (Basel) 2022; 8:jof8060614. [PMID: 35736098 PMCID: PMC9225118 DOI: 10.3390/jof8060614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/10/2022] [Accepted: 05/06/2022] [Indexed: 12/19/2022] Open
Abstract
Magnaporthe grisea (T.T. Herbert) M.E. Barr is a major fungal phytopathogen that causes blast disease in cereals, resulting in economic losses worldwide. An in-depth understanding of the basis of virulence and ecological adaptation of M. grisea is vital for devising effective disease management strategies. Here, we aimed to determine the genomic basis of the pathogenicity and underlying biochemical pathways in Magnaporthe using the genome sequence of a pearl millet-infecting M. grisea PMg_Dl generated by dual NGS techniques, Illumina NextSeq 500 and PacBio RS II. The short and long nucleotide reads could be draft assembled in 341 contigs and showed a genome size of 47.89 Mb with the N50 value of 765.4 Kb. Magnaporthe grisea PMg_Dl showed an average nucleotide identity (ANI) of 86% and 98% with M. oryzae and Pyricularia pennisetigena, respectively. The gene-calling method revealed a total of 10,218 genes and 10,184 protein-coding sequences in the genome of PMg_Dl. InterProScan of predicted protein showed a distinct 3637 protein families and 695 superfamilies in the PMg_Dl genome. In silico virulence analysis revealed the presence of 51VFs and 539 CAZymes in the genome. The genomic regions for the biosynthesis of cellulolytic endo-glucanase and beta-glucosidase, as well as pectinolytic endo-polygalacturonase, pectin-esterase, and pectate-lyases (pectinolytic) were detected. Signaling pathways modulated by MAPK, PI3K-Akt, AMPK, and mTOR were also deciphered. Multicopy sequences suggestive of transposable elements such as Type LTR, LTR/Copia, LTR/Gypsy, DNA/TcMar-Fot1, and Type LINE were recorded. The genomic resource presented here will be of use in the development of molecular marker and diagnosis, population genetics, disease management, and molecular taxonomy, and also provide a genomic reference for ascomycetous genome investigations in the future.
Collapse
Affiliation(s)
- Bhaskar Reddy
- Division of Plant Pathology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi 110012, India; (G.P.); (N.S.)
- Correspondence: (B.R.); (A.K.)
| | - Sahil Mehta
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| | - Ganesan Prakash
- Division of Plant Pathology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi 110012, India; (G.P.); (N.S.)
| | - Neelam Sheoran
- Division of Plant Pathology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi 110012, India; (G.P.); (N.S.)
| | - Aundy Kumar
- Division of Plant Pathology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi 110012, India; (G.P.); (N.S.)
- Correspondence: (B.R.); (A.K.)
| |
Collapse
|
7
|
Reddy B, Kumar A, Mehta S, Sheoran N, Chinnusamy V, Prakash G. Hybrid de novo genome-reassembly reveals new insights on pathways and pathogenicity determinants in rice blast pathogen Magnaporthe oryzae RMg_Dl. Sci Rep 2021; 11:22922. [PMID: 34824307 PMCID: PMC8616942 DOI: 10.1038/s41598-021-01980-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/01/2021] [Indexed: 01/20/2023] Open
Abstract
Blast disease incited by Magnaporthe oryzae is a major threat to sustain rice production in all rice growing nations. The pathogen is widely distributed in all rice paddies and displays rapid aerial transmissions, and seed-borne latent infection. In order to understand the genetic variability, host specificity, and molecular basis of the pathogenicity-associated traits, the whole genome of rice infecting Magnaporthe oryzae (Strain RMg_Dl) was sequenced using the Illumina and PacBio (RSII compatible) platforms. The high-throughput hybrid assembly of short and long reads resulted in a total of 375 scaffolds with a genome size of 42.43 Mb. Furthermore, comparative genome analysis revealed 99% average nucleotide identity (ANI) with other oryzae genomes and 83% against M. grisea, and 73% against M. poe genomes. The gene calling identified 10,553 genes with 10,539 protein-coding sequences. Among the detected transposable elements, the LTR/Gypsy and Type LINE showed high occurrence. The InterProScan of predicted protein sequences revealed that 97% protein family (PFAM), 98% superfamily, and 95% CDD were shared among RMg_Dl and reference 70-15 genome, respectively. Additionally, 550 CAZymes with high GH family content/distribution and cell wall degrading enzymes (CWDE) such endoglucanase, beta-glucosidase, and pectate lyase were also deciphered in RMg_Dl. The prevalence of virulence factors determination revealed that 51 different VFs were found in the genome. The biochemical pathway such as starch and sucrose metabolism, mTOR signaling, cAMP signaling, MAPK signaling pathways related genes were identified in the genome. The 49,065 SNPs, 3267 insertions and 3611 deletions were detected, and majority of these varinats were located on downstream and upstream region. Taken together, the generated information will be useful to develop a specific marker for diagnosis, pathogen surveillance and tracking, molecular taxonomy, and species delineation which ultimately leads to device improved management strategies for blast disease.
Collapse
Affiliation(s)
- Bhaskar Reddy
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Sahil Mehta
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Neelam Sheoran
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ganesan Prakash
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
8
|
Zhou Q, Zhang H, Wang S. Artificial intelligence, big data, and blockchain in food safety. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2021-0299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Food safety plays an essential role in our daily lives, and it becomes serious with the development of worldwide trade. To tackle the food safety issues, many advanced technologies have been developed to monitor the process of the food industry (FI) to ensure food safety, including the process of food production, processing, transporting, storage, and retailing. These technologies are often referred to as artificial intelligence (AI), big data, and blockchain, which have been widely applied in many research areas. In this review, we introduce these technologies and their applications in the food safety domain. Firstly, basic concepts of these technologies are presented. Then, applications for food safety from a data perspective based on these technologies are analyzed. Finally, future challenges of the applications of AI, big data, and blockchain are discussed.
Collapse
Affiliation(s)
- Qinqin Zhou
- College of Food Science and Engineering, Nanjing University of Finance and Economics , Nanjing 210023 , China
| | - Hao Zhang
- College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing 210016 , China
| | - Suya Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics , Nanjing 210023 , China
| |
Collapse
|
9
|
Prathi NB, Durga Rani CV, Balachandran SM, Prakasam V, Chandra Mohan Y, Nagalakshmi S, Srivastava SK, Sundaram RM, Mangrauthia SK. Genome-Wide Expression Profiling of Small RNAs in Indian Strain of Rhizoctonia solani AG1-1A Reveals Differential Regulation of milRNAs during Pathogenesis and Crosstalk of Gene Regulation. J Fungi (Basel) 2021; 7:jof7070561. [PMID: 34356939 PMCID: PMC8304579 DOI: 10.3390/jof7070561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/26/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Rhizoctonia solani AG1-1A is a necrotrophic fungus that causes sheath blight disease in rice. The reliable resistant source against this phytopathogenic fungus is not available in the gene pool of rice. Better understanding of pathogen genomics and gene regulatory networks are critical to devise alternate strategies for developing resistance against this noxious pathogen. In this study, miRNA-like RNAs (milRNAs) of an Indian strain of R. solani were identified by deep sequencing of small RNAs. We identified 128 known and 22 novel milRNAs from 20,963,123 sequence reads. These milRNAs showed 1725 target genes in the fungal genome which include genes associated with growth, development, pathogenesis and virulence of R. solani. Notably, these fungal milRNAs showed their target genes in host (rice) genome also which were later verified by qRT-PCR. The host target genes are associated with auxin metabolism, hypersensitive response, defense genes, and genes related to growth and development of rice. Osa-vacuolar-sorting receptor precursor: Rhi-milR-13, Osa-KANADI1:Rhi-milR-124, Osa-isoflavone reductase: Rhi-milR-135, Osa-nuclear transcription factor Y:Rhi-milR-131, Osa-NB-ARC domain containing protein: Rhi-milR-18, and Osa-OsFBX438: Rhi-milR-142 are notable potential regulons of host target genes: fungal milRNAs that need to be investigated for better understanding of the crosstalk of RNAi pathways between R. solani and rice. The detailed expression analysis of 17 milRNAs by qRT-PCR was analysed during infection at different time points of inoculation, at different growth stages of the host, in four different genotypes of the host, and also in four different strains of fungi which revealed differential regulation of milRNAs associated with pathogenesis and virulence. This study highlights several important findings on fungal milRNAs which need to be further studied and characterized to decipher the gene expression and regulation of this economically important phytopathogen.
Collapse
Affiliation(s)
- Naresh Babu Prathi
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad 500030, India; (N.B.P.); (C.V.D.R.); (Y.C.M.)
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research, Hyderabad 500030, India; (S.M.B.); (V.P.); (S.N.); (R.M.S.)
| | - Chagamreddy Venkata Durga Rani
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad 500030, India; (N.B.P.); (C.V.D.R.); (Y.C.M.)
| | - Sena Munuswamy Balachandran
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research, Hyderabad 500030, India; (S.M.B.); (V.P.); (S.N.); (R.M.S.)
| | - Vellaisamy Prakasam
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research, Hyderabad 500030, India; (S.M.B.); (V.P.); (S.N.); (R.M.S.)
| | - Yeshala Chandra Mohan
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad 500030, India; (N.B.P.); (C.V.D.R.); (Y.C.M.)
| | - Sanivarapu Nagalakshmi
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research, Hyderabad 500030, India; (S.M.B.); (V.P.); (S.N.); (R.M.S.)
| | - Sunil K. Srivastava
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, Alipur, Delhi 110036, India;
| | - Raman Meenakshi Sundaram
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research, Hyderabad 500030, India; (S.M.B.); (V.P.); (S.N.); (R.M.S.)
| | - Satendra K. Mangrauthia
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research, Hyderabad 500030, India; (S.M.B.); (V.P.); (S.N.); (R.M.S.)
- Correspondence: or ; Tel.: +91-40-24591342
| |
Collapse
|
10
|
Guo J, Song X, Zheng C, Sun S, Zhuang B, Tao B. Transcriptome analysis and identification of candidate genes involved in glyphosate resistance in the fungus Fusarium verticillioides. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:658-669. [PMID: 34218722 DOI: 10.1080/03601234.2021.1936990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glyphosate is a broad-spectrum herbicide that has been widely used for nonselective weed control in soybean fields. In the present study, RNA-seq of an Fusarium verticillioides isolate exhibiting resistance to 120 mM glyphosate revealed gene expression occurring in the presence of glyphosate and led to the identification and screening of candidate genes. A transcriptome analysis revealed 5,548 and 5,361 differentially expressed genes (DEGs) in the glyphosate resistant (GR) Fusarium verticillioides isolate treated with 45 and 90 mM glyphosate, respectively. The gene ontology (GO) pathways associated with these differentially expressed genes primarily included metabolic process, amine metabolic process, cellular aromatic compound metabolism and stress response. The primary Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways included biosynthesis of secondary metabolites, carbon metabolism, glycolysis/gluconeogenesis, and nitrogen metabolism. The glyphosate degradation-related gene fv04, which belongs to the 3-isopropylalate dehydratase of the aconitase superfamily, was cloned to generate the prokaryotic expression vector pET-29b-fv04, which could be stably expressed in E. coli and promote the degradation of 52.3% of 500 mg/L glyphosate in 72 h. The results of the present study provide new ideas and insights for the acquisition of glyphosate resistance resources.
Collapse
Affiliation(s)
- Jing Guo
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Xiuli Song
- Lingnan Normal University, Zhan Jiang, Guang Dong, PR China
| | - Caiyue Zheng
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Shiqi Sun
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Baolong Zhuang
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Bo Tao
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| |
Collapse
|
11
|
Tibpromma S, Dong Y, Ranjitkar S, Schaefer DA, Karunarathna SC, Hyde KD, Jayawardena RS, Manawasinghe IS, Bebber DP, Promputtha I, Xu J, Mortimer PE, Sheng J. Climate-Fungal Pathogen Modeling Predicts Loss of Up to One-Third of Tea Growing Areas. Front Cell Infect Microbiol 2021; 11:610567. [PMID: 33996616 PMCID: PMC8116803 DOI: 10.3389/fcimb.2021.610567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/29/2021] [Indexed: 01/09/2023] Open
Abstract
Climate change will affect numerous crops in the future; however, perennial crops, such as tea, are particularly vulnerable. Climate change will also strongly influence fungal pathogens. Here, we predict how future climatic conditions will impact tea and its associated pathogens. We collected data on the three most important fungal pathogens of tea (Colletotrichum acutatum, Co. camelliae, and Exobasidium vexans) and then modeled distributions of tea and these fungal pathogens using current and projected climates. The models show that baseline tea-growing areas will become unsuitable for Camellia sinensis var. sinensis (15 to 32% loss) and C. sinensis var. assamica (32 to 34% loss) by 2050. Although new areas will become more suitable for tea cultivation, existing and potentially new fungal pathogens will present challenges in these areas, and they are already under other land-use regimes. In addition, future climatic scenarios suitable range of fungal species and tea suitable cultivation (respectively in CSS and CSA) growing areas are Co. acutatum (44.30%; 31.05%), Co. camelliae (13.10%; 10.70%), and E. vexans (10.20%; 11.90%). Protecting global tea cultivation requires innovative approaches that consider fungal genomics as part and parcel of plant pathology.
Collapse
Affiliation(s)
- Saowaluck Tibpromma
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- World Agroforestry Centre, East and Central Asia, Kunming, China
- Centre for Mountain Futures, Kunming Institute of Botany, Kunming, China
| | - Yang Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, China
| | - Sailesh Ranjitkar
- Centre for Mountain Futures, Kunming Institute of Botany, Kunming, China
- N. Gene Solution of Natural Innovation, Kathmandu, Nepal
| | - Douglas A. Schaefer
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
| | - Samantha C. Karunarathna
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- World Agroforestry Centre, East and Central Asia, Kunming, China
- Centre for Mountain Futures, Kunming Institute of Botany, Kunming, China
| | - Kevin D. Hyde
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | | | | | - Daniel P. Bebber
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jianchu Xu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- World Agroforestry Centre, East and Central Asia, Kunming, China
- Centre for Mountain Futures, Kunming Institute of Botany, Kunming, China
| | - Peter E. Mortimer
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
| | - Jun Sheng
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
12
|
Xue A, Robbins N, Cowen LE. Advances in fungal chemical genomics for the discovery of new antifungal agents. Ann N Y Acad Sci 2020; 1496:5-22. [PMID: 32860238 DOI: 10.1111/nyas.14484] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Invasive fungal infections have escalated from a rare curiosity to a major cause of human mortality around the globe. This is in part due to a scarcity in the number of antifungal drugs available to combat mycotic disease, making the discovery of novel bioactive compounds and determining their mode of action of utmost importance. The development and application of chemical genomic assays using the model yeast Saccharomyces cerevisiae has provided powerful methods to identify the mechanism of action of diverse molecules in a living cell. Furthermore, complementary assays are continually being developed in fungal pathogens, most notably Candida albicans and Cryptococcus neoformans, to elucidate compound mechanism of action directly in the pathogen of interest. Collectively, the suite of chemical genetic assays that have been developed in multiple fungal species enables the identification of candidate drug target genes, as well as genes involved in buffering drug target pathways, and genes involved in general cellular responses to small molecules. In this review, we examine current yeast chemical genomic assays and highlight how such resources provide powerful tools that can be utilized to bolster the antifungal pipeline.
Collapse
Affiliation(s)
- Alice Xue
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Lichtner FJ, Jurick WM, Ayer KM, Gaskins VL, Villani SM, Cox KD. A Genome Resource for Several North American Venturia inaequalis Isolates with Multiple Fungicide Resistance Phenotypes. PHYTOPATHOLOGY 2020; 110:544-546. [PMID: 31729927 DOI: 10.1094/phyto-06-19-0222-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The apple scab pathogen, Venturia inaequalis, is among the most economically important fungal pathogens that affects apples. Fungicide applications are an essential part of disease management. Implementation of cultural practices and genetic sources of resistance in the host are vital components of scab management. This is the first presentation of multiple, high quality, well-annotated genomes of four North American V. inaequalis isolates having both sensitive and multiple fungicide resistance phenotypes. We envision that these isolates will enable investigations into fungicide resistance mechanisms, exploring fungal virulence factors and delineating phylogenomic relationships among apple scab isolates from around the world.
Collapse
Affiliation(s)
- Franz J Lichtner
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831
- Food Quality Laboratory, U.S. Department of Agriculture-Agriculture Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705
| | - Wayne M Jurick
- Food Quality Laboratory, U.S. Department of Agriculture-Agriculture Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705
| | - Katrin M Ayer
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | - Verneta L Gaskins
- Food Quality Laboratory, U.S. Department of Agriculture-Agriculture Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705
| | - Sara M Villani
- Department of Entomology and Plant Pathology, Mountain Horticulture and Crops Research & Extension Center, North Carolina State University, Mills River, NC 28759
| | - Kerik D Cox
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| |
Collapse
|
14
|
Tang L, Mo J, Guo T, Huang S, Li Q, Ning P, Hsiang T. In vitro antifungal activity of dimethyl trisulfide against Colletotrichum gloeosporioides from mango. World J Microbiol Biotechnol 2019; 36:4. [PMID: 31832786 DOI: 10.1007/s11274-019-2781-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 12/01/2019] [Indexed: 02/02/2023]
Abstract
Colletotrichum gloeosporioides, one of the main agents of mango anthracnose, causes latent infections in unripe mango, and leads to huge economic losses during storage and transport. Dimethyl trisulfide (DMTS), one of the main volatile compounds produced by some microorganisms or plants, has shown antifungal activity against some phytopathogens in previous studies, but its effects on C. gloeosporioides and mechanisms of action have not been well characterized. In fumigation trials of conidia and mycelia of C. gloeosporioides for 2, 4, 6, 8, or 10 h, at a concentration of 100 μL/L of air space in vitro, DMTS caused serious damage to the integrity of plasma membranes, which significantly reduced the survival rate of spores, and resulted in abnormal hyphal morphology. Moreover, DMTS caused deterioration of subcellular structures of conidia and mycelia, such as cell walls, plasma membranes, Golgi bodies, and mitochondria, and contributed to leakage of protoplasm, thus promoting vacuole formation. In addition, to better understand the molecular mechanisms of the antifungal activity, the global gene expression profiles of isolate C. gloeosporioides TD3 treated in vitro with DMTS at a concentration of 100 μL/L of air for 0 h (Control), 1 h, or 3 h were investigated by RNA sequencing (RNA-seq), and over 62 Gb clean reads were generated from nine samples. Similar expressional patterns for nine differentially expressed genes (DEGs) in both RNA-seq and qRT-PCR assays showed the reliability of the RNA-seq data. In comparison to the non-treated control groups, we found DMTS suppressed expression of β-1, 3-D-glucan, chitin, sterol biosynthesis-related genes, and membrane protein-related genes. These genes related to the formation of fungal cell walls and plasma membranes might be associated with the toxicity of DMTS against C. gloeosporioides. This is the first study demonstrating antifungal activity of DMTS against C. gloeosporioides on mango by direct damage of conidia and hyphae, thus providing a novel tool for postharvest control of mango anthracnose.
Collapse
Affiliation(s)
- Lihua Tang
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China.,The Key Lab for Biology of Crop Diseases and Insect Pests of Guangxi, Nanning, 530007, Guangxi, China
| | - Jianyou Mo
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China.,The Key Lab for Biology of Crop Diseases and Insect Pests of Guangxi, Nanning, 530007, Guangxi, China
| | - Tangxun Guo
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China.,The Key Lab for Biology of Crop Diseases and Insect Pests of Guangxi, Nanning, 530007, Guangxi, China
| | - Suiping Huang
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China.,The Key Lab for Biology of Crop Diseases and Insect Pests of Guangxi, Nanning, 530007, Guangxi, China
| | - Qili Li
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China. .,The Key Lab for Biology of Crop Diseases and Insect Pests of Guangxi, Nanning, 530007, Guangxi, China.
| | - Ping Ning
- Guangxi Agricultural Vocational College, Nanning, 530007, Guangxi, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
15
|
Xu Q, Ye X, Ma X, Li H, Tang H, Tang Y, Liu Z. Engineering a peptide aptamer to target calmodulin for the inhibition of Magnaporthe oryzae. Fungal Biol 2019; 123:489-496. [PMID: 31196518 DOI: 10.1016/j.funbio.2019.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/21/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Abstract
To develop an antimicrobial agent for preventing the devasting damage caused by rice blast, a novel peptide aptamer was identified to interact with calmodulin (CaM) for the inhibition of the spore development in the pathogen Magnaporthe oryzae. A peptide aptamer designated as SNP-D4, consisted of the scaffold protein Staphylococcus aureus nuclease (SN) and an exposed surface loop of 16 random amino acids, was screened from the constructed peptide aptamer libraries by bacterial two-hybrid system using CaM of M. oryzae as the bait. The preliminary inhibition in the sporulation development was observed after treating with the crude extracts expressing SNP-D4. The inhibition efficacies of the purified SNP-D4 were quantified at the stages of conidial germination, germ tube elongation, and appressorium formation in M. oryzae. The binding affinity analysis revealed that SNP-D4 interacted with CaM at a dissociation constant (Kd) of about 20 μM. Moreover, the N-terminus of CaM was identified as the key binding region.
Collapse
Affiliation(s)
- Qi Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xing Ye
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xiang Ma
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Hong Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Hongqian Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yanqiong Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Zhu Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| |
Collapse
|
16
|
Derbyshire MC, Gohari AM, Mehrabi R, Kilaru S, Steinberg G, Ali S, Bailey A, Hammond-Kosack K, Kema GHJ, Rudd JJ. Phosphopantetheinyl transferase (Ppt)-mediated biosynthesis of lysine, but not siderophores or DHN melanin, is required for virulence of Zymoseptoria tritici on wheat. Sci Rep 2018; 8:17069. [PMID: 30459352 PMCID: PMC6244202 DOI: 10.1038/s41598-018-35223-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022] Open
Abstract
Zymoseptoria tritici is the causal agent of Septoria tritici blotch (STB) disease of wheat. Z. tritici is an apoplastic fungal pathogen, which does not penetrate plant cells at any stage of infection, and has a long initial period of symptomless leaf colonisation. During this phase it is unclear to what extent the fungus can access host plant nutrients or communicate with plant cells. Several important primary and secondary metabolite pathways in fungi are regulated by the post-translational activator phosphopantetheinyl transferase (Ppt) which provides an essential co-factor for lysine biosynthesis and the activities of non-ribosomal peptide synthases (NRPS) and polyketide synthases (PKS). To investigate the relative importance of lysine biosynthesis, NRPS-based siderophore production and PKS-based DHN melanin biosynthesis, we generated deletion mutants of ZtPpt. The ∆ZtPpt strains were auxotrophic for lysine and iron, non-melanised and non-pathogenic on wheat. Deletion of the three target genes likely affected by ZtPpt loss of function (Aar- lysine; Nrps1-siderophore and Pks1- melanin), highlighted that lysine auxotrophy was the main contributing factor for loss of virulence, with no reduction caused by loss of siderophore production or melanisation. This reveals Ppt, and the lysine biosynthesis pathway, as potential targets for fungicides effective against Z. tritici.
Collapse
Affiliation(s)
- Mark C Derbyshire
- BioIntercations and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, UK.,Centre for Crop and Disease Management, Curtin University, Perth, Australia
| | - Amir Mirzadi Gohari
- Department of Plant Pathology, Faculty of Agricultural Sciences and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.,Wageningen University and Research, Wageningen Plant Research, PO Box 16, 6700AA, Wageningen, The Netherlands
| | - Rahim Mehrabi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | | | | | - Solaf Ali
- Technical College of Health, Sulaimani Polytechnic University, Qrga, Wrme Street, Mardin 327, Alley 76, Sulaimaniyah, Kurdistan Region of Iraq, Sulaimani Governorate, Iraq
| | - Andy Bailey
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, UK
| | - Kim Hammond-Kosack
- BioIntercations and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Gert H J Kema
- Wageningen University and Research, Wageningen Plant Research, PO Box 16, 6700AA, Wageningen, The Netherlands. .,Wageningen University and Research, Laboratory of Phytopathology, PO box 16, 6700AA, Wageningen, The Netherlands.
| | - Jason J Rudd
- BioIntercations and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, UK.
| |
Collapse
|
17
|
Vallières C, Raulo R, Dickinson M, Avery SV. Novel Combinations of Agents Targeting Translation That Synergistically Inhibit Fungal Pathogens. Front Microbiol 2018; 9:2355. [PMID: 30349511 PMCID: PMC6186996 DOI: 10.3389/fmicb.2018.02355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022] Open
Abstract
A range of fungicides or antifungals are currently deployed to control fungi in agriculture or medicine, but resistance to current agents is growing so new approaches and molecular targets are urgently needed. Recently, different aminoglycoside antibiotics combined with particular transport inhibitors were found to produce strong, synergistic growth-inhibition of fungi, by synergistically increasing the error rate of mRNA translation. Here, focusing on translation fidelity as a novel target for combinatorial antifungal treatment, we tested the hypothesis that alternative combinations of agents known to affect the availability of functional amino acids would synergistically inhibit growth of major fungal pathogens. We screened 172 novel combinations against three phytopathogens (Rhizoctonia solani, Zymoseptoria tritici, and Botrytis cinerea) and three human pathogens (Cryptococcus neoformans, Candida albicans, and Aspergillus fumigatus), showing that 48 combinations inhibited strongly the growth of the pathogens; the growth inhibition effect was significantly greater with the agents combined than by a simple product of their individual effects at the same doses. Of these, 23 combinations were effective against more than one pathogen, including combinations comprising food-and-drug approved compounds, e.g., quinine with bicarbonate, and quinine with hygromycin. These combinations [fractional inhibitory combination (FIC) index ≤0.5] gave up to 100% reduction of fungal growth yield at concentrations of agents which, individually, had negligible effect. No synergy was evident against bacterial, plant or mammalian cells, indicating specificity for fungi. Mode-of-action analyses for quinine + hygromycin indicated that synergistic mistranslation was the antifungal mechanism. That mechanism was not universal as bicarbonate exacerbated quinine action by increasing drug uptake. The study unveils chemical combinations and a target process with potential for control of diverse fungal pathogens, and suggests repurposing possibilities for several current therapeutics.
Collapse
Affiliation(s)
- Cindy Vallières
- School of Life Sciences, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| | - Roxane Raulo
- School of Life Sciences, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| | - Matthew Dickinson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| |
Collapse
|
18
|
Hellin P, King R, Urban M, Hammond-Kosack KE, Legrève A. The adaptation of Fusarium culmorum to DMI Fungicides Is Mediated by Major Transcriptome Modifications in Response to Azole Fungicide, Including the Overexpression of a PDR Transporter (FcABC1). Front Microbiol 2018; 9:1385. [PMID: 29997598 PMCID: PMC6028722 DOI: 10.3389/fmicb.2018.01385] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/06/2018] [Indexed: 11/13/2022] Open
Abstract
Fusarium culmorum is a fungal pathogen causing economically important diseases on a variety of crops. Fungicides can be applied to control this species with triazoles being the most efficient molecules. F. culmorum strains resistant to these molecules have been reported, but the underlying resistance mechanisms remain unknown. In this study, a tebuconazole-adapted F. culmorum strain was developed with a level of fitness similar to its parental strain. The adapted strain showed cross-resistance to all demethylation inhibitors (DMIs), but not to other classes of fungicides tested. RNA-Seq analysis revealed high transcriptomic differences between the resistant strain and its parental strain after tebuconazole treatment. Among these changes, FcABC1 (FCUL_06717), a pleiotropic drug resistance transporter, had a 30-fold higher expression level upon tebuconazole treatment in the adapted strains as compared to the wild-type strain. The implication of this transporter in triazole resistance was subsequently confirmed in field strains harboring distinct levels of sensitivity to triazoles. FcABC1 is present in other species/genera, including F. graminearum in which it is known to be necessary for azole resistance. No difference in FcABC1 sequences, including the surrounding regions, were found when comparing the resistant strain to the wild-type strain. Fusarium culmorum is therefore capable to adapt to triazole pressure by overexpressing a drug resistance transporter when submitted to triazoles and the same mechanism is anticipated to occur in other species.
Collapse
Affiliation(s)
- Pierre Hellin
- Earth and Life Institute, Applied Microbiology, Phytopathology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Robert King
- Department of Computational and Systems Biology, Rothamsted Research, Harpenden, United Kingdom
| | - Martin Urban
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Kim E. Hammond-Kosack
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Anne Legrève
- Earth and Life Institute, Applied Microbiology, Phytopathology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
19
|
Zuo C, Zhang W, Chen Z, Chen B, Huang Y. RNA Sequencing Reveals that Endoplasmic Reticulum Stress and Disruption of Membrane Integrity Underlie Dimethyl Trisulfide Toxicity against Fusarium oxysporum f. sp. cubense Tropical Race 4. Front Microbiol 2017; 8:1365. [PMID: 28790985 PMCID: PMC5522862 DOI: 10.3389/fmicb.2017.01365] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/05/2017] [Indexed: 11/24/2022] Open
Abstract
Fusarium wilt of banana, a destructive disease that affects banana production, is caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). In a previous study, we confirmed the strong inhibitory effects of Chinese leek (Allium tuberosum) on the incidence of this disease. Sulfur compounds are the primary antifungal constituents of Chinese leek. Among these, dimethyl trisulfide (DT) was the most abundant and exhibited the strongest inhibition of Foc TR4 growth and development. In the present study, the global gene expression profiles of Foc TR4 isolates treated with DT at 4,000-folds dilution (concentration of 1/4,000, v/v) for 1.5, 6, and 12 h were investigated by using RNA sequencing. The expression patterns of 15 DEGs were validated based on quantitative real-time PCR (qRT-PCR) assay. Untreated sample presented 2,556, 1,691, and 1,150 differentially expressed genes (DEGs) at 1.5, 6, and 12 h after the onset of the experiment, respectively, whereas DT-treated isolates presented 2,823, 3,546, and 6,197 DEGs. Based on Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, DEGs involved in endoplasmic reticulum (ER), glycosylation, and steroid biosynthesis were significantly inhibited by DT exposure. The similar expressional patterns of 15 DEGs between RNA-seq and qRT-PCR assays indicated the reliability of the RNA-seq data. In conclusion, ER stress related to glycosylation inhibition and damage to cell membrane integrity might contribute to the toxicity of DT against Foc TR4. As the results presented here evidenced changes in gene expression associated with DT exposure, which might be used to develop new approaches for controlling FWB.
Collapse
Affiliation(s)
- Cunwu Zuo
- College of Horticulture, Gansu Agricultural UniversityLanzhou, China
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural SciencesGuangzhou, China
| | - Weina Zhang
- College of Horticulture, Gansu Agricultural UniversityLanzhou, China
| | - Zhongjian Chen
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural SciencesGuangzhou, China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural UniversityLanzhou, China
| | - Yonghong Huang
- College of Horticulture, Qingdao Agricultural UniversityQingdao, China
| |
Collapse
|
20
|
Iquebal MA, Tomar RS, Parakhia MV, Singla D, Jaiswal S, Rathod VM, Padhiyar SM, Kumar N, Rai A, Kumar D. Draft whole genome sequence of groundnut stem rot fungus Athelia rolfsii revealing genetic architect of its pathogenicity and virulence. Sci Rep 2017; 7:5299. [PMID: 28706242 PMCID: PMC5509663 DOI: 10.1038/s41598-017-05478-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/30/2017] [Indexed: 12/24/2022] Open
Abstract
Groundnut (Arachis hypogaea L.) is an important oil seed crop having major biotic constraint in production due to stem rot disease caused by fungus, Athelia rolfsii causing 25–80% loss in productivity. As chemical and biological combating strategies of this fungus are not very effective, thus genome sequencing can reveal virulence and pathogenicity related genes for better understanding of the host-parasite interaction. We report draft assembly of Athelia rolfsii genome of ~73 Mb having 8919 contigs. Annotation analysis revealed 16830 genes which are involved in fungicide resistance, virulence and pathogenicity along with putative effector and lethal genes. Secretome analysis revealed CAZY genes representing 1085 enzymatic genes, glycoside hydrolases, carbohydrate esterases, carbohydrate-binding modules, auxillary activities, glycosyl transferases and polysaccharide lyases. Repeat analysis revealed 11171 SSRs, LTR, GYPSY and COPIA elements. Comparative analysis with other existing ascomycotina genome predicted conserved domain family of WD40, CYP450, Pkinase and ABC transporter revealing insight of evolution of pathogenicity and virulence. This study would help in understanding pathogenicity and virulence at molecular level and development of new combating strategies. Such approach is imperative in endeavour of genome based solution in stem rot disease management leading to better productivity of groundnut crop in tropical region of world.
Collapse
Affiliation(s)
- M A Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Rukam S Tomar
- Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India
| | - M V Parakhia
- Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India
| | - Deepak Singla
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - V M Rathod
- Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India
| | - S M Padhiyar
- Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India
| | - Neeraj Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India.
| |
Collapse
|
21
|
Abstract
A wide range of fungicides (or antifungals) are used in agriculture and medicine, with activities against a spectrum of fungal pathogens. Unfortunately, the evolution of fungicide resistance has become a major issue. Therefore, there is an urgent need for new antifungal treatments. Certain metals have been used for decades as efficient fungicides in agriculture. However, concerns over metal toxicity have escalated over this time. Recent studies have revealed that metals like copper and chromate can impair functions required for the fidelity of protein synthesis in fungi. This occurs through different mechanisms, based on targeting of iron-sulphur cluster integrity or competition for uptake with amino acid precursors. Moreover, chromate at least acts synergistically with other agents known to target translation fidelity, like aminoglycoside antibiotics, causing dramatic and selective growth inhibition of several fungal pathogens of humans and plants. As such synergy allows the application of decreased amounts of metals for effective inhibition, it lessens concerns about nonspecific toxicity and opens new possibilities for metal applications in combinatorial fungicides targeting protein synthesis.
Collapse
Affiliation(s)
- Cindy Vallières
- School of Life Sciences, University of Nottingham University Park, Nottingham, United Kingdom
| | - Simon V Avery
- School of Life Sciences, University of Nottingham University Park, Nottingham, United Kingdom.
| |
Collapse
|
22
|
Structure-based virtual screening of hypothetical inhibitors of the enzyme longiborneol synthase—a potential target to reduce Fusarium head blight disease. J Mol Model 2016; 22:163. [DOI: 10.1007/s00894-016-3021-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/27/2016] [Indexed: 01/12/2023]
|
23
|
Brown NA, Urban M, Hammond-Kosack KE. The trans-kingdom identification of negative regulators of pathogen hypervirulence. FEMS Microbiol Rev 2016; 40:19-40. [PMID: 26468211 PMCID: PMC4703069 DOI: 10.1093/femsre/fuv042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/30/2015] [Accepted: 09/03/2015] [Indexed: 01/08/2023] Open
Abstract
Modern society and global ecosystems are increasingly under threat from pathogens, which cause a plethora of human, animal, invertebrate and plant diseases. Of increasing concern is the trans-kingdom tendency for increased pathogen virulence that is beginning to emerge in natural, clinical and agricultural settings. The study of pathogenicity has revealed multiple examples of convergently evolved virulence mechanisms. Originally described as rare, but increasingly common, are interactions where a single gene deletion in a pathogenic species causes hypervirulence. This review utilised the pathogen-host interaction database (www.PHI-base.org) to identify 112 hypervirulent mutations from 37 pathogen species, and subsequently interrogates the trans-kingdom, conserved, molecular, biochemical and cellular themes that cause hypervirulence. This study investigates 22 animal and 15 plant pathogens including 17 bacterial and 17 fungal species. Finally, the evolutionary significance and trans-kingdom requirement for negative regulators of hypervirulence and the implication of pathogen hypervirulence and emerging infectious diseases on society are discussed.
Collapse
Affiliation(s)
- Neil A Brown
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | - Martin Urban
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | - Kim E Hammond-Kosack
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| |
Collapse
|
24
|
Moreno-Martinez E, Vallieres C, Holland SL, Avery SV. Novel, Synergistic Antifungal Combinations that Target Translation Fidelity. Sci Rep 2015; 5:16700. [PMID: 26573415 PMCID: PMC4648087 DOI: 10.1038/srep16700] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/19/2015] [Indexed: 11/23/2022] Open
Abstract
There is an unmet need for new antifungal or fungicide treatments, as resistance to existing treatments grows. Combination treatments help to combat resistance. Here we develop a novel, effective target for combination antifungal therapy. Different aminoglycoside antibiotics combined with different sulphate-transport inhibitors produced strong, synergistic growth-inhibition of several fungi. Combinations decreased the respective MICs by ≥8-fold. Synergy was suppressed in yeast mutants resistant to effects of sulphate-mimetics (like chromate or molybdate) on sulphate transport. By different mechanisms, aminoglycosides and inhibition of sulphate transport cause errors in mRNA translation. The mistranslation rate was stimulated up to 10-fold when the agents were used in combination, consistent with this being the mode of synergistic action. A range of undesirable fungi were susceptible to synergistic inhibition by the combinations, including the human pathogens Candida albicans, C. glabrata and Cryptococcus neoformans, the food spoilage organism Zygosaccharomyces bailii and the phytopathogens Rhizoctonia solani and Zymoseptoria tritici. There was some specificity as certain fungi were unaffected. There was no synergy against bacterial or mammalian cells. The results indicate that translation fidelity is a promising new target for combinatorial treatment of undesirable fungi, the combinations requiring substantially decreased doses of active components compared to each agent alone.
Collapse
Affiliation(s)
- Elena Moreno-Martinez
- School of Life Sciences, University of Nottingham University Park, Nottingham NG7 2RD, UK
| | - Cindy Vallieres
- School of Life Sciences, University of Nottingham University Park, Nottingham NG7 2RD, UK
| | - Sara L Holland
- School of Life Sciences, University of Nottingham University Park, Nottingham NG7 2RD, UK
| | - Simon V Avery
- School of Life Sciences, University of Nottingham University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
25
|
Augmenting the Activity of Monoterpenoid Phenols against Fungal Pathogens Using 2-Hydroxy-4-methoxybenzaldehyde that Target Cell Wall Integrity. Int J Mol Sci 2015; 16:26850-70. [PMID: 26569223 PMCID: PMC4661847 DOI: 10.3390/ijms161125988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 10/27/2015] [Accepted: 11/02/2015] [Indexed: 12/15/2022] Open
Abstract
Disruption of cell wall integrity system should be an effective strategy for control of fungal pathogens. To augment the cell wall disruption efficacy of monoterpenoid phenols (carvacrol, thymol), antimycotic potency of benzaldehyde derivatives that can serve as chemosensitizing agents were evaluated against strains of Saccharomyces cerevisiae wild type (WT), slt2Δ and bck1Δ (mutants of the mitogen-activated protein kinase (MAPK) and MAPK kinase kinase, respectively, in the cell wall integrity pathway). Among fourteen compounds investigated, slt2Δ and bck1Δ showed higher susceptibility to nine benzaldehydes, compared to WT. Differential antimycotic activity of screened compounds indicated "structure-activity relationship" for targeting the cell wall integrity, where 2-hydroxy-4-methoxybenzaldehyde (2H4M) exhibited the highest antimycotic potency. The efficacy of 2H4M as an effective chemosensitizer to monoterpenoid phenols (viz., 2H4M + carvacrol or thymol) was assessed in yeasts or filamentous fungi (Aspergillus, Penicillium) according to European Committee on Antimicrobial Susceptibility Testing or Clinical Laboratory Standards Institute M38-A protocols, respectively. Synergistic chemosensitization greatly lowers minimum inhibitory or fungicidal concentrations of the co-administered compounds. 2H4M also overcame the tolerance of two MAPK mutants (sakAΔ, mpkCΔ) of Aspergillus fumigatus to fludioxonil (phenylpyrrole fungicide). Collectively, 2H4M possesses chemosensitizing capability to magnify the efficacy of monoterpenoid phenols, which improves target-based (viz., cell wall disruption) antifungal intervention.
Collapse
|
26
|
Berne S, Kovačič L, Sova M, Kraševec N, Gobec S, Križaj I, Komel R. Benzoic acid derivatives with improved antifungal activity: Design, synthesis, structure–activity relationship (SAR) and CYP53 docking studies. Bioorg Med Chem 2015; 23:4264-4276. [DOI: 10.1016/j.bmc.2015.06.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 01/29/2023]
|
27
|
Sang H, Hulvey J, Popko JT, Lopes J, Swaminathan A, Chang T, Jung G. A pleiotropic drug resistance transporter is involved in reduced sensitivity to multiple fungicide classes in Sclerotinia homoeocarpa (F.T. Bennett). MOLECULAR PLANT PATHOLOGY 2015; 16:251-61. [PMID: 25040464 PMCID: PMC6638355 DOI: 10.1111/mpp.12174] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Dollar spot, caused by Sclerotinia homoeocarpa, is a prevalent turfgrass disease, and the fungus exhibits widespread fungicide resistance in North America. In a previous study, an ABC-G transporter, ShatrD, was associated with practical field resistance to demethylation inhibitor (DMI) fungicides. Mining of ABC-G transporters, also known as pleiotropic drug resistance (PDR) transporters, from RNA-Seq data gave an assortment of transcripts, several with high sequence similarity to functionally characterized transporters from Botrytis cinerea, and others with closest blastx hits from Aspergillus and Monilinia. In addition to ShatrD, another PDR transporter showed significant over-expression in replicated RNA-Seq data, and in a collection of field-resistant isolates, as measured by quantitative polymerase chain reaction. These isolates also showed reduced sensitivity to unrelated fungicide classes. Using a yeast complementation system, we sought to test the hypothesis that this PDR transporter effluxes DMI as well as chemically unrelated fungicides. The transporter (ShPDR1) was cloned into the Gal1 expression vector and transformed into a yeast PDR transporter deletion mutant, AD12345678. Complementation assays indicated that ShPDR1 complemented the mutant in the presence of propiconazole (DMI), iprodione (dicarboximide) and boscalid (SDHI, succinate dehydrogenase inhibitor). Our results indicate that the over-expression of ShPDR1 is correlated with practical field resistance to DMI fungicides and reduced sensitivity to dicarboximide and SDHI fungicides. These findings highlight the potential for the eventual development of a multidrug resistance phenotype in this pathogen. In addition, this study presents a pipeline for the discovery and validation of fungicide resistance genes using de novo next-generation sequencing and molecular biology techniques in an unsequenced plant pathogenic fungus.
Collapse
Affiliation(s)
- Hyunkyu Sang
- Stockbridge School of Agriculture, University of Massachusetts, 230 Stockbridge Rd., Amherst, MA, 01003-9320, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Hull CM, Purdy NJ, Moody SC. Mitigation of human-pathogenic fungi that exhibit resistance to medical agents: can clinical antifungal stewardship help? Future Microbiol 2015; 9:307-25. [PMID: 24762306 DOI: 10.2217/fmb.13.160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reducing indiscriminate antimicrobial usage to combat the expansion of multidrug-resistant human-pathogenic bacteria is fundamental to clinical antibiotic stewardship. In contrast to bacteria, fungal resistance traits are not understood to be propagated via mobile genetic elements, and it has been proposed that a global explosion of resistance to medical antifungals is therefore unlikely. Clinical antifungal stewardship has focused instead on reducing the drug toxicity and high costs associated with medical agents. Mitigating the problem of human-pathogenic fungi that exhibit resistance to antimicrobials is an emergent issue. This article addresses the extent to which clinical antifungal stewardship could influence the scale and epidemiology of resistance to medical antifungals both now and in the future. The importance of uncharted selection pressure exerted by agents outside the clinical setting (agricultural pesticides, industrial xenobiotics, biocides, pharmaceutical waste and others) on environmentally ubiquitous spore-forming molds that are lesserstudied but increasingly responsible for drug-refractory infections is considered.
Collapse
Affiliation(s)
- Claire M Hull
- Swansea University, College of Medicine, Institute of Life Science: Microbes & Immunity, SA2 8PP, Wales, UK
| | | | | |
Collapse
|
29
|
Urban M, Pant R, Raghunath A, Irvine AG, Pedro H, Hammond-Kosack KE. The Pathogen-Host Interactions database (PHI-base): additions and future developments. Nucleic Acids Res 2015; 43:D645-55. [PMID: 25414340 PMCID: PMC4383963 DOI: 10.1093/nar/gku1165] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/30/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022] Open
Abstract
Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s).
Collapse
Affiliation(s)
- Martin Urban
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Rashmi Pant
- Molecular Connections Private Limited, Basavanagudi, Bangalore 560 004, Karnataka, India
| | - Arathi Raghunath
- Molecular Connections Private Limited, Basavanagudi, Bangalore 560 004, Karnataka, India
| | - Alistair G Irvine
- Department of Computational and Systems Biology, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Helder Pedro
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Kim E Hammond-Kosack
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| |
Collapse
|
30
|
Lucas JA, Hawkins NJ, Fraaije BA. The evolution of fungicide resistance. ADVANCES IN APPLIED MICROBIOLOGY 2014; 90:29-92. [PMID: 25596029 DOI: 10.1016/bs.aambs.2014.09.001] [Citation(s) in RCA: 255] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fungicides are widely used in developed agricultural systems to control disease and safeguard crop yield and quality. Over time, however, resistance to many of the most effective fungicides has emerged and spread in pathogen populations, compromising disease control. This review describes the development of resistance using case histories based on four important diseases of temperate cereal crops: eyespot (Oculimacula yallundae and Oculimacula acuformis), Septoria tritici blotch (Zymoseptoria tritici), powdery mildew (Blumeria graminis), and Fusarium ear blight (a complex of Fusarium and Microdochium spp). The sequential emergence of variant genotypes of these pathogens with reduced sensitivity to the most active single-site fungicides, methyl benzimidazole carbamates, demethylation inhibitors, quinone outside inhibitors, and succinate dehydrogenase inhibitors illustrates an ongoing evolutionary process in response to the introduction and use of different chemical classes. Analysis of the molecular mechanisms and genetic basis of resistance has provided more rapid and precise methods for detecting and monitoring the incidence of resistance in field populations, but when or where resistance will occur remains difficult to predict. The extent to which the predictability of resistance evolution can be improved by laboratory mutagenesis studies and fitness measurements, comparison between pathogens, and reconstruction of evolutionary pathways is discussed. Risk models based on fungal life cycles, fungicide properties, and exposure to the fungicide are now being refined to take account of additional traits associated with the rate of pathogen evolution. Experimental data on the selection of specific mutations or resistant genotypes in pathogen populations in response to fungicide treatments can be used in models evaluating the most effective strategies for reducing or preventing resistance. Resistance management based on robust scientific evidence is vital to prolong the effective life of fungicides and safeguard their future use in crop protection.
Collapse
Affiliation(s)
- John A Lucas
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Nichola J Hawkins
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Bart A Fraaije
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, UK
| |
Collapse
|
31
|
Oliver RP. A reassessment of the risk of rust fungi developing resistance to fungicides. PEST MANAGEMENT SCIENCE 2014; 70:1641-5. [PMID: 24616024 DOI: 10.1002/ps.3767] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 05/18/2023]
Abstract
Rust fungi are major pathogens of many annual and perennial crops. Crop protection is largely based on genetic and chemical control. Fungicide resistance is a significant issue that has affected many crop pathogens. Some pathogens have rapidly developed resistance and hence are regarded as high-risk species. Rust fungi have been classified as being low risk, in spite of sharing many relevant features with high-risk pathogens. An examination of the evidence suggests that rust fungi may be wrongly classified as low risk. Of the nine classes of fungicide to which resistance has developed, six are inactive against rusts. The three remaining classes are quinone outside inhibitors (QoIs), demethylation inhibitors (DMIs) and succinate dehydrogenase inhibitors (SDHIs). QoIs have been protected by a recently discovered intron that renders resistant mutants unviable. Low levels of resistance have developed to DMIs, but with limited field significance. Older SDHI fungicides were inactive against rusts. Some of the SDHIs introduced since 2003 are active against rusts, so it may be that insufficient time has elapsed for resistance to develop, especially as SDHIs are generally sold in mixtures with other actives. It would therefore seem prudent to increase the level of vigilance for possible cases of resistance to established and new fungicides in rusts.
Collapse
Affiliation(s)
- Richard P Oliver
- Australian Centre for Necrotrophic Fungal Pathogens, Curtin University, WA, Australia
| |
Collapse
|
32
|
Efficiency of different strategies for gene silencing in Botrytis cinerea. Appl Microbiol Biotechnol 2014; 98:9413-24. [PMID: 25293582 DOI: 10.1007/s00253-014-6087-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/05/2014] [Accepted: 09/07/2014] [Indexed: 12/31/2022]
Abstract
The generation of knock-out mutants in fungal pathogens by gene replacement and insertional mutagenesis is the classical method to validate virulence factors. An alternative strategy consists of silencing the candidate virulence gene by making use of the phenomenon of RNA interference (RNAi), adding features such as the possibility of generating knock-down mutants with variable expression levels of the target gene or the ability to simultaneously target multiple genes. Two different approaches have been assayed to generate knock-down mutants by RNAi in the phytopathogenic fungus Botrytis cinerea. In the first one, the single nitrate reductase gene in the B. cinerea genome, niaD, was silenced by transformation with a construct containing a 400-bp niaD fragment between two opposing promoters, so that a dsRNA fragment was generated. As an alternative approach, the mgfp4 gene coding for the green fluorescent protein (GFP) was silenced by transforming two different GFP-expressing strains of B. cinerea with a hairpin RNA (hpRNA)-expressing vector, containing two inverted copies of a 300-bp mgfp4 fragment separated by a spacer DNA. While the opposing dual-promoter strategy produced gene silencing in about half of the transformants assayed, the efficiency of the hpRNA-expressing vector was higher, inducing a decrease in GFP levels in more than 90 % of transformants. The degree of silencing achieved was high with both methods, but the hpRNA strategy resulted in a higher proportion of strongly silenced transformants.
Collapse
|
33
|
Physical methods for genetic transformation of fungi and yeast. Phys Life Rev 2014; 11:184-203. [DOI: 10.1016/j.plrev.2014.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 01/21/2014] [Indexed: 01/27/2023]
|
34
|
Fears R, Aro EM, Pais MS, ter Meulen V. How should we tackle the global risks to plant health? TRENDS IN PLANT SCIENCE 2014; 19:206-208. [PMID: 24698707 DOI: 10.1016/j.tplants.2014.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 06/03/2023]
Abstract
The introduction and spread of plant pests and diseases has significant consequences for agriculture, horticulture, forestry, and natural habitats. Opportunities arising from scientific advances must be better used to inform regulation of trade and underpin chemical and alternative controls and breeding of plants resistant to biotic stress.
Collapse
Affiliation(s)
- Robin Fears
- Biosciences Programme Secretariat, EASAC, German National Academy of Sciences Leopoldina, 06019 Halle, Germany
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20520 Turku, Finland.
| | - Maria Salome Pais
- Plant Systems Biology Laboratory, Centre of Biodiversity, Functional and Integrative Genomics, Science Faculty of Lisbon University, 1749-016 Lisbon, Portugal; Academy of Sciences of Lisbon, Lisbon, Portugal
| | - Volker ter Meulen
- Biosciences Programme Chairman, EASAC, German National Academy of Sciences, Leopoldina, 06019 Halle, Germany
| |
Collapse
|
35
|
Kim JH, Mahoney N, Chan KL, Campbell BC, Haff RP, Stanker LH. Use of benzo analogs to enhance antimycotic activity of kresoxim methyl for control of aflatoxigenic fungal pathogens. Front Microbiol 2014; 5:87. [PMID: 24639673 PMCID: PMC3945611 DOI: 10.3389/fmicb.2014.00087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 02/18/2014] [Indexed: 01/27/2023] Open
Abstract
The aim of this study was to examine two benzo analogs, octylgallate (OG) and veratraldehyde (VT), as antifungal agents against strains of Aspergillus parasiticus and A.flavus (toxigenic or atoxigenic). Both toxigenic and atoxigenic strains used were capable of producing kojic acid, another cellular secondary product. A. fumigatus was used as a genetic model for this study. When applied independently, OG exhibits considerably higher antifungal activity compared to VT. The minimum inhibitory concentrations (MICs) of OG were 0.3–0.5 mM, while that of VT were 3.0–5.0 mM in agar plate-bioassays. OG or VT in concert with the fungicide kresoxim methyl (Kre-Me; strobilurin) greatly enhanced sensitivity of Aspergillus strains to Kre-Me. The combination with OG also overcame the tolerance of A. fumigatus mitogen-activated protein kinase (MAPK) mutants to Kre-Me. The degree of compound interaction resulting from chemosensitization of the fungi by OG was determined using checkerboard bioassays, where synergistic activity greatly lowered MICs or minimum fungicidal concentrations. However, the control chemosensitizer benzohydroxamic acid, an alternative oxidase inhibitor conventionally applied in concert with strobilurin, did not achieve synergism. The level of antifungal or chemosensitizing activity was also “compound—strain” specific, indicating differential susceptibility of tested strains to OG or VT, and/or heat stress. Besides targeting the antioxidant system, OG also negatively affected the cell wall-integrity pathway, as determined by the inhibition of Saccharomyces cerevisiae cell wall-integrity MAPK pathway mutants. We concluded that certain benzo analogs effectively inhibit fungal growth. They possess chemosensitizing capability to increase efficacy of Kre-Me and thus, could reduce effective dosages of strobilurins and alleviate negative side effects associated with current antifungal practices. OG also exhibits moderate antiaflatoxigenic activity.
Collapse
Affiliation(s)
- Jong H Kim
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, USDA-ARS Albany, CA, USA
| | - Noreen Mahoney
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, USDA-ARS Albany, CA, USA
| | - Kathleen L Chan
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, USDA-ARS Albany, CA, USA
| | - Bruce C Campbell
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, USDA-ARS Albany, CA, USA
| | - Ronald P Haff
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, USDA-ARS Albany, CA, USA
| | - Larry H Stanker
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, USDA-ARS Albany, CA, USA
| |
Collapse
|
36
|
Abstract
Gene transfer has been identified as a prevalent and pervasive phenomenon and an important source of genomic innovation in bacteria. The role of gene transfer in microbial eukaryotes seems to be of a reduced magnitude but in some cases can drive important evolutionary innovations, such as new functions that underpin the colonization of different niches. The aim of this review is to summarize published cases that support the hypothesis that horizontal gene transfer (HGT) has played a role in the evolution of phytopathogenic traits in fungi and oomycetes. Our survey of the literature identifies 46 proposed cases of transfer of genes that have a putative or experimentally demonstrable phytopathogenic function. When considering the life-cycle steps through which a pathogen must progress, the majority of the HGTs identified are associated with invading, degrading, and manipulating the host. Taken together, these data suggest HGT has played a role in shaping how fungi and oomycetes colonize plant hosts.
Collapse
Affiliation(s)
- Darren Soanes
- Biosciences, University of Exeter, Exeter, EX4 4QD, United Kingdom;
| | | |
Collapse
|
37
|
FcStuA from Fusarium culmorum controls wheat foot and root rot in a toxin dispensable manner. PLoS One 2013; 8:e57429. [PMID: 23451228 PMCID: PMC3579838 DOI: 10.1371/journal.pone.0057429] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/22/2013] [Indexed: 11/19/2022] Open
Abstract
Fusarium culmorum is one of the most harmful pathogens of durum wheat and is the causal agent of foot and root rot (FRR) disease. F. culmorum produces the mycotoxin deoxynivalenol (DON) that is involved in the pathogenic process. The role of the gene FcStuA, a StuA ortholog protein with an APSES domain sharing 98.5% homology to the FgStuA protein (FGSG10129), was determined by functional characterisation of deletion mutants obtained from two F. culmorum wild-type strains, FcUk99 (a highly pathogenic DON producer) and Fc233B (unable to produce toxin and with a mild pathogenic behavior). The ΔFcStuA mutants originating from both strains showed common phenotypic characters including stunted vegetative growth, loss of hydrophobicity of the mycelium, altered pigmentation, decreased activity of polygalacturonic enzymes and catalases, altered and reduced conidiation, delayed conidial germination patterns and complete loss of pathogenicity towards wheat stem base/root tissue. Glycolytic process efficiency [measured as growth on glucose as sole carbon (C) source] was strongly impaired and growth was partially restored on glutamic acid. Growth on pectin-like sources ranked in between glucose and glutamic acid with the following order (the lowest to the highest growth): beechwood xylan, sugarbeet arabinan, polygalacturonic acid, citrus pectin, apple pectin, potato azogalactan. DON production in the mutants originating from FcUK99 strain was significantly decreased (−95%) in vitro. Moreover, both sets of mutants were unable to colonise non-cereal plant tissues, i.e. apple and tomato fruits and potato tubers. No differences between mutants, ectopic and wild-type strains were observed concerning the level of resistance towards four fungicides belonging to three classes, the demethylase inhibitors epoxiconazole and tebuconzole, the succinate dehydrogenase inhibitor isopyrazam and the cytochrome bc1 inhibitor trifloxystrobin. StuA, given its multiple functions in cell regulation and pathogenicity control, is proposed as a potential target for novel disease management strategies.
Collapse
|