1
|
Pandi A, Malaichamy K, John Samuel K, Selvaraj D, Kasivelu G, Kolanthasamy E. Unveiling thrips morphology: A comparative analysis of microscopy-based ultrastructural, morphological, and molecular characterization of Thrips tabaci and Thrips parvispinus in onion. Microsc Res Tech 2024; 87:3003-3015. [PMID: 39118418 DOI: 10.1002/jemt.24653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/06/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024]
Abstract
The present study unveils the intricate details on the morphology of thrips through optical, field emission scanning electron microscopy (FE-SEM) and mitochondrial cytochrome oxidase I gene-based molecular identification tools. The variation in the morphological characters namely, antennae (seven-segmented with forked sensorium on third, fourth segments), ctenidia (paired ctenidia were present in 5th-8th abdominal segments laterally), pronotum (two pairs of posteroangular setae) were observed in both Thrips tabaci and Thrips parvispinus, respectively. Similarly, ocelli color (brown and red colored), ocellar setae (two and three pairs of ocellar setae on the head of T. tabaci and T. parvispinus, respectively. Irregular reticulate striations on metascutum and medial striations are present in the metanotum of T. parvispinus; forewings with 6 distal setae in the first vein and 15 distal setae in the second vein in T. tabaci and forewings of T. parvispinus with complete rows of setae in the first and second vein in T. parvispinus; abdomen with median dorsal setae present in the tergite of T. tabaci and presence of 6-12 discal setae in sternites III-VI segments, absence of discal setae on sternites II and VII in T. parvispinus were observed, respectively. Further, FE-SEM studies revealed that similar type of sensilla namely, sensilla basiconica (SBI, SBII, SBIII), sensilla chaetica (SChI, SChII), sensilla trichodea (ST), sensilla campaniformia (SCa), and sensilla cavity (SCav) were recorded in both the species and variations were observed in length of above sensilla of T. tabaci and T. parvispinus. Additionally, Bohm bristles (Bb) and microtrichia (Mt) on the antennal surface contributed to a comprehensive understanding of their ultrastructural features. The molecular characterization revealed a single ~450 bp nucleotide fragment with over 98% similarity for the confirmation of T. tabaci and T. parvispinus in concurrence with NCBI data. RESEARCH HIGHLIGHTS: Microscopy-based morphological and ultrastructural characterization of Thrips tabaci Lindeman and Thrips parvispinus Karny.
Collapse
Affiliation(s)
- Arunkumar Pandi
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Kannan Malaichamy
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Kennedy John Samuel
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Dineshkumar Selvaraj
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Govindaraju Kasivelu
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, India
| | | |
Collapse
|
2
|
Pandi A, Perumal R, John Samuel K, Subramanian J, Malaichamy K. Orthotospovirus iridimaculaflavi (iris yellow spot virus): An emerging threat to onion cultivation and its transmission by Thrips tabaci in India. Microb Pathog 2024; 193:106716. [PMID: 38848932 DOI: 10.1016/j.micpath.2024.106716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 06/09/2024]
Abstract
The yellow spot disease caused by the virus species Orthotospovirus iridimaculaflavi (Iris yellow spot virus-IYSV), belonging to the genus Orthotospovirus, the family Tospoviridae, order Bunyavirales and transmitted by Thrips tabaci Lindeman. At present, emerging as a major threat in onion (Allium cepa) in Tamil Nadu, India. The yellow spot disease incidence was found to be 53-73 % in six districts out of eight major onion-growing districts surveyed in Tamil Nadu during 2021-2023. Among the onion cultivars surveyed, the cultivar CO 5 was the most susceptible to IYSV. The population of thrips was nearly 5-9/plant during vegetative and flowering stages. The thrips infestation was 34-60 %. The tospovirus involved was confirmed as IYSV through DAS-ELISA, followed by molecular confirmation through RT-PCR using the nucleocapsid (N) gene. The predominant thrips species present in onion crops throughout the growing seasons was confirmed as Thrips tabaci based on the nucleotide sequence of the MtCOI gene. The mechanical inoculation of IYSV in different hosts viz., Vigna unguiculata, Gomphrena globosa, Chenopodium amaranticolor, Chenopodium quinoa and Nicotiana benthamiana resulted in chlorotic and necrotic lesion symptoms. The electron microscopic studies with partially purified sap from onion lesions revealed the presence of spherical to pleomorphic particles measuring 100-230 nm diameter. The transmission of IYSV was successful with viruliferous adult Thrips tabaci in cowpea (Cv. CO7), which matured from 1st instar larva fed on infected cowpea leaves (24 h AAP). Small brown necrotic symptoms were produced on inoculated plants after an interval of four weeks. The settling preference of non-viruliferous and viruliferous T. tabaci towards healthy and infected onion leaves resulted in the increased preference of non-viruliferous thrips towards infected (onion-61.33 % and viruliferous thrips towards healthy onion leaves (75.33 %). The study isolates shared 99-100 % identity at a nucleotide and amino acid level with Indian isolates of IYSV in the N gene. The multiple alignment of the amino acid sequence of the N gene of IYSV isolates collected from different locations and IYSV isolates from the database revealed amino acid substitution in the isolate ITPR4. All the IYSV isolates from India exhibited characteristic amino acid substitution of serine at the 6th position in the place of threonine in the isolates from Australia, Japan and USA. The phylogenetic analysis revealed the monophyletic origin of the IYSV isolates in India.
Collapse
Affiliation(s)
- Arunkumar Pandi
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Renukadevi Perumal
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| | | | - Jeyarani Subramanian
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Kannan Malaichamy
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| |
Collapse
|
3
|
Mahillon M, Brodard J, Schoen R, Botermans M, Dubuis N, Groux R, Pannell JR, Blouin AG, Schumpp O. Revisiting a pollen-transmitted ilarvirus previously associated with angular mosaic of grapevine. Virus Res 2024; 344:199362. [PMID: 38508402 PMCID: PMC10979282 DOI: 10.1016/j.virusres.2024.199362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
We report the characterization of a novel tri-segmented RNA virus infecting Mercurialis annua, a common crop weed and model species in plant science. The virus, named "Mercurialis latent virus" (MeLaV) was first identified in a mixed infection with the recently described Mercurialis orthotospovirus 1 (MerV1) on symptomatic plants grown in glasshouses in Lausanne (Switzerland). Both viruses were found to be transmitted by Thrips tabaci, which presumably help the inoculation of infected pollen in the case of MeLaV. Complete genome sequencing of the latter revealed a typical ilarviral architecture and close phylogenetic relationship with members of the Ilarvirus subgroup 1. Surprisingly, a short portion of MeLaV replicase was found to be identical to the partial sequence of grapevine angular mosaic virus (GAMV) reported in Greece in the early 1990s. However, we have compiled data that challenge the involvement of GAMV in angular mosaic of grapevine, and we propose alternative causal agents for this disorder. In parallel, three highly-conserved MeLaV isolates were identified in symptomatic leaf samples in The Netherlands, including a herbarium sample collected in 1991. The virus was also traced in diverse RNA sequencing datasets from 2013 to 2020, corresponding to transcriptomic analyses of M. annua and other plant species from five European countries, as well as metaviromics analyses of bees in Belgium. Additional hosts are thus expected for MeLaV, yet we argue that infected pollen grains have likely contaminated several sequencing datasets and may have caused the initial characterization of MeLaV as GAMV.
Collapse
Affiliation(s)
- Mathieu Mahillon
- Research group Virology, Bacteriology and Phytoplasmology, Department of Plant protection, Agroscope, Nyon, Switzerland
| | - Justine Brodard
- Research group Virology, Bacteriology and Phytoplasmology, Department of Plant protection, Agroscope, Nyon, Switzerland
| | - Ruben Schoen
- Netherlands Institute for Vectors, Invasive plants and Plant health (NIVIP), Netherlands Food and Consumer Product Safety Authority, Wageningen, The Netherlands
| | - Marleen Botermans
- Netherlands Institute for Vectors, Invasive plants and Plant health (NIVIP), Netherlands Food and Consumer Product Safety Authority, Wageningen, The Netherlands
| | - Nathalie Dubuis
- Research group Virology, Bacteriology and Phytoplasmology, Department of Plant protection, Agroscope, Nyon, Switzerland
| | - Raphaël Groux
- Research group Virology, Bacteriology and Phytoplasmology, Department of Plant protection, Agroscope, Nyon, Switzerland
| | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne (UNIL), Switzerland
| | - Arnaud G Blouin
- Research group Virology, Bacteriology and Phytoplasmology, Department of Plant protection, Agroscope, Nyon, Switzerland
| | - Olivier Schumpp
- Research group Virology, Bacteriology and Phytoplasmology, Department of Plant protection, Agroscope, Nyon, Switzerland.
| |
Collapse
|
4
|
Anum H, Tong Y, Cheng R. Different Preharvest Diseases in Garlic and Their Eco-Friendly Management Strategies. PLANTS (BASEL, SWITZERLAND) 2024; 13:267. [PMID: 38256820 PMCID: PMC10818302 DOI: 10.3390/plants13020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND garlic reproduces mainly through clove planting, as sexual reproduction via seeds is uncommon. Growers encounter challenges with pathogens due to the larger size and vegetative nature of seed cloves, as well as the storage conditions conducive to fungal growth. Some Phyto-pathogenic fungi, previously unrecognized as garlic infections, can remain latent within bulb tissues long after harvest. Although outwardly healthy, these infected bulbs may develop rot under specific conditions. AIM OF REVIEW planting diseased seed cloves can contaminate field soil, with some fungal and bacterial infections persisting for extended periods. The substantial size of seed cloves makes complete eradication of deeply ingrained infections difficult, despite the use of systemic fungicides during the preplanting and postharvest phases. Additionally, viruses, resistant to fungicides, persist in vegetative material. They are prevalent in much of the garlic used for planting, and their host vectors are difficult to eliminate. To address these challenges, tissue-culture techniques are increasingly employed to produce disease-free planting stock. Key scientific concepts of the review: garlic faces a concealed spectrum of diseases that pose a global challenge, encompassing fungal threats like Fusarium's vascular wilt and Alternaria's moldy rot, bacterial blights, and the elusive garlic yellow stripe virus. The struggle to eliminate deeply ingrained infections is exacerbated by the substantial size of seed cloves. Moreover, viruses persist in garlic seeds, spreading through carrier vectors, and remain unaffected by fungicides. This review emphasizes eco-friendly strategies to address these challenges, focusing on preventive measures, biocontrol agents, and plant extracts. Tissue-culture techniques emerge as a promising solution for generating disease-free garlic planting material. The review advocates for ongoing research to ensure sustainable garlic cultivation, recognizing the imperative of safeguarding this culinary staple from an array of fungal and viral threats.
Collapse
Affiliation(s)
- Hadiqa Anum
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.A.); (R.C.)
| | - Yuxin Tong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.A.); (R.C.)
- Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China
| | - Ruifeng Cheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.A.); (R.C.)
- Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|
5
|
Iftikhar R, Ghosh A, Pappu HR. Mitochondrial genetic diversity of Thrips tabaci (Thysanoptera: Thripidae) in onion growing regions of the United States. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1025-1032. [PMID: 37052543 DOI: 10.1093/jee/toad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 06/14/2023]
Abstract
Onion thrips (Thrips tabaci Lindeman, Thysanoptera: Thripidae) causes severe damage to many horticultural and agronomic crops worldwide. It also acts as a vector of several plant viruses. T. tabaci is a key pest of Allium cepa in the United States. However, there is limited information available on the genetic variation within and between T. tabaci populations in the United States and its key evolutionary parameters. In the current study, 83 T. tabaci specimens were collected from A. cepa from 15 different locations comprising four states of the United States. A total of 92 mtCOI gene sequences of T. tabaci from A. cepa were analyzed to understand the genetic diversity and structure of T. tabaci collected from onion host. Seven distinct haplotypes of T. tabaci infesting A. cepa were identified from the current collection, while nine T. tabaci sequences retrieved from GenBank comprised 5 haplotypes. Overall, 15 haplotypes of T. tabaci infesting A. cepa were identified in the world that includes the ten haplotypes in the United States. In the phylogenetic analysis, all the populations collected during the study clustered with thelytokous lineage, while T. tabaci sequences retrieved from GenBank corresponded to leek-associated arrhenotokous lineage. The highest genetic variation was found in Elba and Malheur populations with 3 haplotypes identified in each. The results suggest that haplotypes 1 and 7 are more frequently prevailing haplotypes in the north-western United States, with haplotype 1 being the predominant all over the country. The eastern United States appears to have a more diverse group of haplotypes. The populations from Hungary constituted distinct haplotypes and a haplotype from Kingston linked it with the predominant haplotype.
Collapse
Affiliation(s)
- Romana Iftikhar
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Amalendu Ghosh
- Advanced Center for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| |
Collapse
|
6
|
Parreño R, Rodríguez-Alcocer E, Martínez-Guardiola C, Carrasco L, Castillo P, Arbona V, Jover-Gil S, Candela H. Turning Garlic into a Modern Crop: State of the Art and Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:1212. [PMID: 36986902 PMCID: PMC10057115 DOI: 10.3390/plants12061212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Garlic is cultivated worldwide for the value of its bulbs, but its cultivation is challenged by the infertility of commercial cultivars and the accumulation of pathogens over time, which occurs as a consequence of vegetative (clonal) propagation. In this review, we summarize the state of the art of garlic genetics and genomics, highlighting recent developments that will lead to its development as a modern crop, including the restoration of sexual reproduction in some garlic strains. The set of tools available to the breeder currently includes a chromosome-scale assembly of the garlic genome and multiple transcriptome assemblies that are furthering our understanding of the molecular processes underlying important traits like the infertility, the induction of flowering and bulbing, the organoleptic properties and resistance to various pathogens.
Collapse
Affiliation(s)
- Ricardo Parreño
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Eva Rodríguez-Alcocer
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | | | - Lucía Carrasco
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Purificación Castillo
- Departamento I+D, Coopaman S.C.L., Carretera Peñas De San Pedro, km 1.6, 02006 Albacete, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, 12071 Castelló de la Plana, Spain
| | - Sara Jover-Gil
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| |
Collapse
|
7
|
Jeger MJ. Tolerance of plant virus disease: Its genetic, physiological, and epidemiological significance. Food Energy Secur 2022. [DOI: 10.1002/fes3.440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Michael John Jeger
- Department of Life Sciences, Silwood Park Imperial College London Ascot UK
| |
Collapse
|
8
|
Host Plant Association and Distribution of the Onion Thrips, Thrips tabaci Cryptic Species Complex. INSECTS 2022; 13:insects13030298. [PMID: 35323598 PMCID: PMC8952806 DOI: 10.3390/insects13030298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Onion thrips, Thrips tabaci Lindeman, 1889, is a key insect pest of several cultivated plant species around the world. Current genetic evidence suggests the existence of three lineages within the species; these lineages are different from each other in several aspects, including reproductive mode, ecological parameters, orthotospovirus transmission efficiency, host plants and distribution range. Despite its importance as a crop pest and the fact that it is one of the most studied thrips species, there is not a comprehensive review of plants in which evidence of breeding occurs among the lineages and the whole species complex. Since identifying the breeding sites of onion thrips has a direct impact on successful pest management strategies, in this paper, we aim to provide a literature review about the host plant association and distribution of the three onion thrips lineages. The results indicate that leek-associated 2 is the most widespread lineage by number of host plants and distribution; leek-associated 1 lineage is primarily found on onion crops and with localised distribution and the tobacco-associated lineage is only reported from tobacco in few locations. In addition, we present a list of host plants for the species, regardless of lineage: 391 plant species from 64 families. Abstract Onion thrips, Thrips tabaci Lindeman, 1889 (Thysanoptera: Thripidae) is a pest of economic importance traditionally treated as a polyphagous, cosmopolitan single species. Recent genetic evidence, however, suggests that it is rather a cryptic species complex of three lineages referred to by their host association and displaying different biological and ecological characteristics: leek-associated 1, leek-associated 2 and tobacco-associated. This study reviews host plant associations and distribution of the lineages of this cryptic species complex and discusses its consequences from an agronomical perspective. Overall, leek-associated 2 lineage has the broadest host range, including major crops from different plant families, and it is the only lineage with a confirmed worldwide distribution. Leek-associated 1 lineage shares some host plants with leek-associated 2. It is often found in Allium crops and its geographic distribution is limited to a few dozen countries. Finally, tobacco-associated lineage has only been collected from tobacco and their associated weeds in central and east Europe, and the Middle East. Additionally, this work presents a list of 391 plant species on which breeding and development of T. tabaci occurs, regardless of lineage. These host plant species belong to 64 different families, most importantly Asteraceae, Fabaceae, Brassicaceae, Poaceae, and Solanaceae.
Collapse
|
9
|
Hay F, Stricker S, Gossen BD, McDonald MR, Heck D, Hoepting C, Sharma S, Pethybridge S. Stemphylium Leaf Blight: A Re-Emerging Threat to Onion Production in Eastern North America. PLANT DISEASE 2021; 105:3780-3794. [PMID: 34546780 DOI: 10.1094/pdis-05-21-0903-fe] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stemphylium leaf blight (SLB), caused by Stemphylium vesicarium, is a foliar disease of onion worldwide, and has recently become an important disease in the northeastern United States and Ontario, Canada. The symptoms begin as small, tan to brown lesions on the leaves that can progress to defoliate plants. Crop loss occurs through reduced photosynthetic area, resulting in smaller, lower-quality bulbs. Leaf necrosis caused by SLB also can compromise bulb storage, as green leaves are required for the uptake of sprout inhibitors applied prior to harvest. The pathogen can overwinter on infested onion residue and infected volunteer plants. Asymptomatic weedy hosts near onion fields may also be a source of inoculum. Production of ascospores of the teleomorph (Pleospora allii) peaks in early spring in northeastern North America, often before the crop is planted, and declines rapidly as daily mean air temperatures rise. Conidia are usually present throughout the growing season. Application of fungicides is a standard practice for management of the complex of fungi that can cause foliar diseases of onion in this region. Recent assessments have shown that populations of S. vesicarium in New York and Ontario are resistant to at least three single-site mode-of-action fungicides. Three disease prediction systems have been developed and evaluated that may enable growers to reduce the frequency and/or number of fungicide applications, but the loss of efficacious fungicides due to resistance development within S. vesicarium populations threatens sustainability. The lack of commercially acceptable onion cultivars with sufficient resistance to reduce the number of fungicides for SLB also limits the ability to manage SLB effectively. Integrated disease management strategies for SLB are essential to maintain profitable, sustainable onion production across eastern North America.
Collapse
Affiliation(s)
- Frank Hay
- Cornell AgriTech, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, U.S.A
| | - Sara Stricker
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bruce D Gossen
- Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Mary Ruth McDonald
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Daniel Heck
- Cornell AgriTech, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, U.S.A
| | - Christy Hoepting
- Cornell Cooperative Extension, Cornell Vegetable Program, Albion, NY 14411, U.S.A
| | - Sandeep Sharma
- Cornell AgriTech, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, U.S.A
| | - Sarah Pethybridge
- Cornell AgriTech, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, U.S.A
| |
Collapse
|
10
|
Tabassum A, Ramesh SV, Zhai Y, Iftikhar R, Olaya C, Pappu HR. Viruses Without Borders: Global Analysis of the Population Structure, Haplotype Distribution, and Evolutionary Pattern of Iris Yellow Spot Orthotospovirus (Family Tospoviridae, Genus Orthotospovirus). Front Microbiol 2021; 12:633710. [PMID: 34616369 PMCID: PMC8488366 DOI: 10.3389/fmicb.2021.633710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Iris yellow spot, caused by Iris yellow spot orthotospovirus (IYSV) (Genus: Orthotospovirus, Family: Tospoviridae), is an important disease of Allium spp. The complete N gene sequences of 142 IYSV isolates of curated sequence data from GenBank were used to determine the genetic diversity and evolutionary pattern. In silico restriction fragment length polymorphism (RFLP) analysis, codon-based maximum likelihood studies, genetic differentiation and gene flow within the populations of IYSV genotypes were investigated. Bayesian phylogenetic analysis was carried out to estimate the evolutionary rate. In silico RFLP analysis of N gene sequences categorized IYSV isolates into two major genotypes viz., IYSV Netherlands (IYSVNL; 55.63%), IYSV Brazil (IYSVBR; 38.73%) and the rest fell in neither group [IYSV other (IYSVother; 5.63%)]. Phylogenetic tree largely corroborated the results of RFLP analysis and the IYSV genotypes clustered into IYSVNL and IYSVBR genotypes. Genetic diversity test revealed IYSVother to be more diverse than IYSVNL and IYSVBR. IYSVNL and IYSVBR genotypes are under purifying selection and population expansion, whereas IYSVother showed decreasing population size and hence appear to be under balancing selection. IYSVBR is least differentiated from IYSVother compared to IYSVNL genotype based on nucleotide diversity. Three putative recombinant events were found in the N gene of IYSV isolates based on RDP analysis, however, RAT substantiated two among them. The marginal likelihood mean substitution rate was 5.08 × 10–5 subs/site/year and 95% highest posterior density (HPD) substitution rate between 5.11 × 10–5 and 5.06 × 10–5. Findings suggest that IYSV continues to evolve using population expansion strategies. The substitution rates identified are similar to other plant RNA viruses.
Collapse
Affiliation(s)
- Afsha Tabassum
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - S V Ramesh
- Indian Council of Agricultural Research-Central Plantation Crops Research Institute, Kasaragod, India
| | - Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Romana Iftikhar
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Cristian Olaya
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
11
|
Zhang Z, Zheng K, Zhao L, Su X, Zheng X, Wang T. Occurrence, Distribution, Evolutionary Relationships, Epidemiology, and Management of Orthotospoviruses in China. Front Microbiol 2021; 12:686025. [PMID: 34421843 PMCID: PMC8371445 DOI: 10.3389/fmicb.2021.686025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Orthotospoviruses are responsible for serious crop losses worldwide. Orthotospoviral diseases have spread rapidly in China over the past 10 years and are now found in 19 provinces. Currently, 17 Orthotospovirus species have been reported in China, including eight newly identified species from this genus. The number of new highly pathogenic Orthotospovirus strains or species has increased, likely because of the virus species diversity, the wide range of available hosts, adaptation of the viruses to different climates, and multiple transmission routes. This review describes the distribution of Orthotospovirus species, host plants, typical symptoms of infection under natural conditions, the systemic infection of host plants, spatial clustering characteristics of virus particles in host cells, and the orthotospoviral infection cycle in the field. The evolutionary relationships of orthotospoviruses isolated from China and epidemiology are also discussed. In order to effectively manage orthotospoviral disease, future research needs to focus on deciphering the underlying mechanisms of systemic infection, studying complex/mixed infections involving the same or different Orthotospovirus species or other viruses, elucidating orthotospovirus adaptative mechanisms to multiple climate types, breeding virus-resistant plants, identifying new strains and species, developing early monitoring and early warning systems for plant infection, and studying infection transmission routes.
Collapse
Affiliation(s)
- Zhongkai Zhang
- Key Lab of Agricultural Biotechnology of Yunnan Province, Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | | | | | | | | | | |
Collapse
|
12
|
Detection and Distribution of Viruses Infecting Garlic Crops in Australia. PLANTS 2021; 10:plants10051013. [PMID: 34069491 PMCID: PMC8160985 DOI: 10.3390/plants10051013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/01/2021] [Accepted: 05/15/2021] [Indexed: 11/17/2022]
Abstract
The distribution of viruses in eastern Australian field garlic was evaluated. Detection assays were developed that involved generic RT-PCR for viruses in the Allexivirus, Carlavirus and Potyvirus genera followed by virus-specific colorimetric dot-blot hybridization. Assays targeted the potyviruses (onion yellow dwarf virus (OYDV), shallot yellow stripe virus (SYSV), and leek yellow stripe virus (LYSV)), the carlaviruses (garlic common latent virus (GCLV) and shallot latent virus (SLV)), and the allexiviruses (garlic viruses A, B, C, X (GarVA, -B, -C, -X) and shallot virus X (ShVX)). Virus incidence in crops was consistently high, with most plants infected with at least one virus from each genus. OYDV, LYSV, SLV, and GCLV were commonly detected. Three of the four allexiviruses were in all districts surveyed but varied in incidence, whereas ShVX and SYSV were not detected. There was no association between virus species complement and bulb size, indicating size is not a good predictor of the virus status of planting material. The variation of virus incidence across different Australian growing districts and in different cultivars implies multiple introductions of viruses rather than spread within the country. The genetic diversity observed within coat protein sequences of some virus species also supports multiple separate introductions.
Collapse
|
13
|
Iglesias L, Havey MJ, Nault BA. Management of Onion Thrips ( Thrips tabaci) in Organic Onion Production Using Multiple IPM Tactics. INSECTS 2021; 12:insects12030207. [PMID: 33804399 PMCID: PMC8000123 DOI: 10.3390/insects12030207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary Onion thrips (Thrips tabaci) is a major pest in organic onion production and effective integrated pest management strategies are lacking. Our objective was to evaluate pest management programs consisting of several different tactics: (1) two onion plant cultivars with semi-glossy leaves (“Rossa di Milano” and B5336AxB5351C) and one with waxy leaves (“Bradley”), (2) silver reflective and white plastic mulches, and (3) with or without an application of a biopesticide (spinosad + neem oil tank mix). Thrips densities were counted weekly and bulbs weighed at harvest. The application of the biopesticide had the most significant reduction in thrips densities and increase in yield. The cultivar “Rossa di Milano” had lower thrips densities compared with “Bradley” and B5336AxB5351C, but also had the lowest yield. Reflective mulch had lower thrips densities than white mulch but had no effect on yield. None of the other tactics provided any significant additional benefits to thrips management. While biopesticides will still be a key component to onion thrips management programs, their application frequency should be further optimized. Abstract Onion thrips (Thrips tabaci Lindeman) is a major pest in organic onion production and effective integrated pest management strategies are lacking. Our objective was to evaluate combinations of semi-glossy (“Rossa di Milano” and B5336AxB5351C) and waxy (“Bradley”) onion cultivars with reflective mulch, with or without biopesticides (spinosad + neem oil tank mix), to manage T. tabaci in organic onion production. Thrips densities were assessed weekly and bulbs graded and weighed at harvest. Onions sprayed with spinosad + neem oil had fewer T. tabaci (adults: 74% (2019); larvae: 40% (2018), 84% (2019) and produced higher yields (13% (2018), 23% (2019)) than onions that were unsprayed, regardless of mulch type or onion cultivar. “Rossa di Milano” had relatively fewer adult and larval thrips populations compared with “Bradley” (21% (2018), 32% (2019)) and B5336AxB5351C. However, “Rossa di Milano” had the lowest marketable yield in both years. Reflective mulch reduced densities on certain dates in both years compared to white mulch, but the largest and most consistent reduction only occurred in 2019. Reflective mulch had no impact on bulb yield. While spinosad + neem oil reduced thrips numbers and increased yield alone, none of the treatment combinations were effective at suppressing populations of thrips. Future T. tabaci management in organic onions will require optimization of the available effective biopesticides.
Collapse
Affiliation(s)
- Lindsy Iglesias
- Department of Entomology, Cornell University, Cornell AgriTech, 15 Castle Creek Dr., Geneva, NY 14456, USA;
| | - Michael J. Havey
- Vegetable Crops Research Unit, Department of Horticulture, Agricultural Research Service, U.S. Department of Agriculture, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706, USA;
| | - Brian A. Nault
- Department of Entomology, Cornell University, Cornell AgriTech, 15 Castle Creek Dr., Geneva, NY 14456, USA;
- Correspondence: ; Tel.: +1-315-787-2354
| |
Collapse
|
14
|
Zhou J, Tzanetakis IE. Soybean vein necrosis virus: an emerging virus in North America. Virus Genes 2019; 55:12-21. [PMID: 30542841 DOI: 10.1007/s11262-018-1618-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
Few diseases have emerged in such a short period of time as soybean vein necrosis. The disease is present in all major producing areas in North America, affecting one of the major row field instead of row crops for the United States. Because of the significance of soybean in the agricultural economy and the widespread presence of the disease, the causal agent, soybean vein necrosis virus has been studied by several research groups. Research in the past 10 years has focused on virus epidemiology, management, and effects on yield and seed quality. This communication provides a review of the current knowledge on the virus and the disease.
Collapse
Affiliation(s)
- Jing Zhou
- Division of Agriculture, Department of Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ioannis E Tzanetakis
- Division of Agriculture, Department of Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
15
|
Da Silva LA, Oliveira AS, Melo FL, Ardisson-Araújo DM, Resende FV, Resende RO, Ribeiro BM. A new virus found in garlic virus complex is a member of possible novel genus of the family Betaflexiviridae (order Tymovirales). PeerJ 2019; 7:e6285. [PMID: 30671312 PMCID: PMC6339470 DOI: 10.7717/peerj.6285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/14/2018] [Indexed: 01/23/2023] Open
Abstract
Plant vegetative propagation strategies for agricultural crops cause the accumulation of viruses, resulting in the formation of virus complexes or communities. The cultivation of garlic is based on vegetative propagation and more than 13 virus species from the genera Potyvirus, Allexivirus and Carlavirus have been reported. Aiming for an unbiased identification of viruses from a garlic germplasm collection in Brazil, total RNA from eight garlic cultivars was sequenced by high-throughput sequencing (HTS) technology. Although most viruses found in this study were previously reported, one of them did not belong to any known genera. This putative new virus was found in seven out of eight garlic cultivars and phylogenetic data positioned it as representative of an independent evolutionary lineage within family Betaflexiviridae. This virus has been tentatively named garlic yellow mosaic-associated virus (GYMaV), sharing highest nucleotide identities with African oil palm ringspot virus (genus Robigovirus) and potato virus T (genus Tepovirus) for the replicase gene, and with viruses classified within genus Foveavirus for the coat protein gene. Due to its high frequency in garlic cultivars, GYMaV should be considered in upcoming surveys of pathogens in this crop and in the development of virus-free garlic plants.
Collapse
Affiliation(s)
- Leonardo A. Da Silva
- Department of Cell Biology/Institute of Biological Sciences, University of Brasilia, Brasilia, Distrito Federal, Brazil
| | - Athos S. Oliveira
- Department of Cell Biology/Institute of Biological Sciences, University of Brasilia, Brasilia, Distrito Federal, Brazil
| | - Fernando L. Melo
- Department of Cell Biology/Institute of Biological Sciences, University of Brasilia, Brasilia, Distrito Federal, Brazil
| | - Daniel M.P. Ardisson-Araújo
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Francisco V. Resende
- Embrapa Hortaliças, Empresa Brasileira de Pesquisa Agropecuária, Brasilia, Distrito Federal, Brazil
| | - Renato O. Resende
- Department of Cell Biology/Institute of Biological Sciences, University of Brasilia, Brasilia, Distrito Federal, Brazil
| | - Bergmann M. Ribeiro
- Department of Cell Biology/Institute of Biological Sciences, University of Brasilia, Brasilia, Distrito Federal, Brazil
| |
Collapse
|
16
|
Hassani-Mehraban A, Dullemans AM, Verhoeven JTJ, Roenhorst JW, Peters D, van der Vlugt RAA, Kormelink R. Alstroemeria yellow spot virus (AYSV): a new orthotospovirus species within a growing Eurasian clade. Arch Virol 2019; 164:117-126. [PMID: 30288607 PMCID: PMC6347659 DOI: 10.1007/s00705-018-4027-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/28/2018] [Indexed: 12/31/2022]
Abstract
An orthotospovirus distinct from all other orthotospoviruses was isolated from naturally infected alstroemeria plants. Disease symptoms caused by this virus mainly consisted of yellow spots on the leaves based on which the name alstroemeria yellow spot virus (AYSV) was coined. A host range analysis was performed and a polyclonal antiserum was produced against purified AYSV ribonucleoproteins which only reacted with the homologous antigen and not with any other (established or tentative) orthotospovirus from a selection of American and Asian species. Upon thrips transmission assays the virus was successfully transmitted by a population of Thrips tabaci. The entire nucleotide sequence of the M and S RNA segments was elucidated by a conventional cloning and sequencing strategy, and contained 4797 respectively 2734 nucleotides (nt). Simultaneously, a next generation sequencing (NGS) approach (RNAseq) was employed and generated contigs covering the entire viral tripartite RNA genome. In addition to the M and S RNA nucleotide sequences, the L RNA (8865 nt) was obtained. The nucleocapsid (N) gene encoded by the S RNA of this virus consisted of 819 nucleotides with a deduced N protein of 272 amino acids and by comparative sequence alignments to other established orthotospovirus species showed highest homology (69.5% identity) to the N protein of polygonum ringspot virus. The data altogether support the proposal of AYSV as a new orthotospovirus species within a growing clade of orthotospoviruses that seem to share the Middle East basin as a region of origin.
Collapse
Affiliation(s)
- A Hassani-Mehraban
- Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - A M Dullemans
- Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - J Th J Verhoeven
- The National Plant Protection Organisation (NPPO) of the Netherlands, P.O. Box 9102, 6700 HC, Wageningen, The Netherlands
| | - J W Roenhorst
- The National Plant Protection Organisation (NPPO) of the Netherlands, P.O. Box 9102, 6700 HC, Wageningen, The Netherlands
| | - D Peters
- Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - R A A van der Vlugt
- Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - R Kormelink
- Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
17
|
Ahsan M, Ashfaq M. First Report of Iris yellow spot virus Infecting Garlic in Pakistan. PLANT DISEASE 2018; 102:PDIS01180188PDN. [PMID: 30064344 DOI: 10.1094/pdis-01-18-0188-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- M Ahsan
- Department of Plant Pathology, PMAS-Arid Agriculture University Rawalpindi, 46300, Pakistan
| | - M Ashfaq
- Department of Plant Pathology, PMAS-Arid Agriculture University Rawalpindi, 46300, Pakistan
| |
Collapse
|
18
|
Leach A, Fuchs M, Harding R, Schmidt-Jeffris R, Nault BA. Importance of Transplanted Onions Contributing to Late-Season Iris yellow spot virus Epidemics in New York. PLANT DISEASE 2018; 102:1264-1272. [PMID: 30673575 DOI: 10.1094/pdis-06-17-0793-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Iris yellow spot virus (IYSV) is an economically significant tospovirus of onion transmitted by onion thrips (Thrips tabaci Lindeman). IYSV epidemics in onion fields are common in New York; however, the role of various habitats contributing to viruliferous onion thrips populations and IYSV epidemics is not known. In a 2-year field study in New York, the abundance of dispersing onion thrips, including those determined to be viruliferous via reverse-transcriptase polymerase chain reaction, was recorded in habitats known to harbor both IYSV and its vector. Results showed that viruliferous thrips were encountered in all habitats; however, transplanted onion sites accounted for 49 to 51% of the total estimated numbers of viruliferous thrips. During early to midseason, transplanted onion sites had 9 to 11 times more viruliferous thrips than the other habitats. These results indicate that transplanted onion fields are the most important habitat for generating IYSV epidemics in all onion fields (transplanted and direct-seeded) in New York. Our findings suggest that onion growers should control onion thrips in transplanted fields early in the season to minimize risk of IYSV epidemics later in the season.
Collapse
Affiliation(s)
- Ashley Leach
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456
| | - Marc Fuchs
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station
| | - Riley Harding
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station
| | - Rebecca Schmidt-Jeffris
- Department of Plant and Environmental Sciences, Clemson University, Coastal Research and Education Center, Charleston, SC 29414
| | - Brian A Nault
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station
| |
Collapse
|
19
|
Yu C, Yang C, Song S, Yu Z, Zhou X, Wu J. Development of a sensitive Luminex xMAP-based microsphere immunoassay for specific detection of Iris yellow spot virus. Virol J 2018; 15:62. [PMID: 29615087 PMCID: PMC5883346 DOI: 10.1186/s12985-018-0952-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 02/28/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Iris yellow spot virus (IYSV) is an Orthotospovirus that infects most Allium species. Very few approaches for specific detection of IYSV from infected plants are available to date. We report the development of a high-sensitive Luminex xMAP-based microsphere immunoassay (MIA) for specific detection of IYSV. RESULTS The nucleocapsid (N) gene of IYSV was cloned and expressed in Escherichia coli to produce the His-tagged recombinant N protein. A panel of monoclonal antibodies (MAbs) against IYSV was generated by immunizing the mice with recombinant N protein. Five specific MAbs (16D9, 11C6, 7F4, 12C10, and 14H12) were identified and used for developing the Luminex xMAP-based MIA systems along with a polyclonal antibody against IYSV. Comparative analyses of their sensitivity and specificity in detecting IYSV from infected tobacco leaves identified 7F4 as the best-performed MAb in MIA. We then optimized the working conditions of Luminex xMAP-based MIA in specific detection of IYSV from infected tobacco leaves by using appropriate blocking buffer and proper concentration of biotin-labeled antibodies as well as the suitable ratio between the antibodies and the streptavidin R-phycoerythrin (SA-RPE). Under the optimized conditions the Luminex xMAP-based MIA was able to specifically detect IYSV with much higher sensitivity than conventional enzyme-linked immunosorbent assay (ELISA). Importantly, the Luminex xMAP-based MIA is time-saving and the whole procedure could be completed within 2.5 h. CONCLUSIONS We generated five specific MAbs against IYSV and developed the Luminex xMAP-based MIA method for specific detection of IYSV in plants. This assay provides a sensitive, high-specific, easy to perform and likely cost-effective approach for IYSV detection from infected plants, implicating potential broad usefulness of MIA in plant virus diagnosis.
Collapse
Affiliation(s)
- Cui Yu
- Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai, 200135, China.
| | - Cuiyun Yang
- Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai, 200135, China
| | - Shaoyi Song
- Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai, 200135, China
| | - Zixiang Yu
- Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai, 200135, China
| | - Xueping Zhou
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, 10094, China
| | - Jianxiang Wu
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
20
|
Trolinger JC, McGovern RJ, Elmer WH, Rechcigl NA, Shoemaker CM. Diseases of Chrysanthemum. HANDBOOK OF PLANT DISEASE MANAGEMENT 2018. [DOI: 10.1007/978-3-319-39670-5_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Xin M, Cao M, Liu W, Ren Y, Zhou X, Wang X. Two Negative-Strand RNA Viruses Identified in Watermelon Represent a Novel Clade in the Order Bunyavirales. Front Microbiol 2017; 8:1514. [PMID: 28848524 PMCID: PMC5552725 DOI: 10.3389/fmicb.2017.01514] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/27/2017] [Indexed: 12/22/2022] Open
Abstract
Two novel negative-sense, single-stranded (ss) RNA viruses were identified in watermelon plants and named watermelon crinkle leaf-associated virus 1 and 2 (WCLaV-1 and -2), respectively. The multipartite genomes consist of three RNA molecules of ~6.8, 1.4, and 1.3 kb. The genomes and the deduced proteins of RNA1 and RNA3 show features resembling those of members in the genus Phlebovirus and Tenuivirus; however, the predicted proteins encoded by RNA2 are related to the movement protein (MP) in the genus Ophiovirus and Emaravirus. Furthermore, these two viruses define a novel clade in the family Phenuiviridae, order Bunyavirales, which is phylogenetically related to the viruses in the above four genera. Moreover, after mechanical inoculation with WCLaV-1 seedlings of the natural host watermelon plants develop crinkling similar to those observed in the field. These findings enhance our understanding of the evolution and the classification of ssRNA viruses.
Collapse
Affiliation(s)
- Min Xin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing, China
| | - Mengji Cao
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest UniversityChongqing, China
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yingdang Ren
- Institute of Plant Protection, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
22
|
El-Shazly MA, Abd El-Wah A. Effect of Jojoba Seed Extract and Riboflavin in Preventing the Transmission of Iris Yellow Spot Virus (IYSV): Tospovirus by Thrips tabaci L. to Onion Plants in Egypt. INTERNATIONAL JOURNAL OF VIROLOGY 2016; 13:14-28. [DOI: 10.3923/ijv.2017.14.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
23
|
Abstract
The genus Tospovirus is unique within the family Bunyaviridae in that it is made up of viruses that infect plants. Initially documented over 100 years ago, tospoviruses have become increasingly important worldwide since the 1980s due to the spread of the important insect vector Frankliniella occidentalis and the discovery of new viruses. As a result, tospoviruses are now recognized globally as emerging agricultural diseases. Tospoviruses and their vectors, thrips species in the order Thysanoptera, represent a major problem for agricultural and ornamental crops that must be managed to avoid devastating losses. In recent years, the number of recognized species in the genus has increased rapidly, and our knowledge of the molecular interactions of tospoviruses with their host plants and vectors has expanded. In this review, we present an overview of the genus Tospovirus with particular emphasis on new understandings of the molecular plant-virus and vector-virus interactions as well as relationships among genus members.
Collapse
Affiliation(s)
- J E Oliver
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506;
| | - A E Whitfield
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506;
| |
Collapse
|
24
|
Turina M, Kormelink R, Resende RO. Resistance to Tospoviruses in Vegetable Crops: Epidemiological and Molecular Aspects. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:347-371. [PMID: 27296139 DOI: 10.1146/annurev-phyto-080615-095843] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
During the past three decades, the economic impact of tospoviruses has increased, causing high yield losses in a variety of crops and ornamentals. Owing to the difficulty in combating thrips vectors with insecticides, the best way to limit/prevent tospovirus-induced diseases involves a management strategy that includes virus resistance. This review briefly presents current tospovirus taxonomy, diversity, molecular biology, and cytopathology as an introduction to a more extensive description of the two main resistance genes employed against tospoviruses: the Sw5 gene in tomato and the Tsw in pepper. Natural and experimental resistance-breaking (RB) isolates allowed the identification of the viral avirulence protein triggering each of the two resistance gene products; epidemiology of RB isolates is discussed to reinforce the need for allelic variants and the need to search for new/alternative resistance genes. Ongoing efforts for alternative resistance strategies are described not only for Tomato spotted wilt virus (TSWV) in pepper and tomato but also for other vegetable crops heavily impacted by tospoviruses.
Collapse
Affiliation(s)
- Massimo Turina
- Institute for Sustainable Plant Protection, CNR Torino, 10135 Torino, Italy;
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Renato O Resende
- Department of Cell Biology, University of Brasília, 70910-900 Brasília, DF, Brazil
| |
Collapse
|