1
|
Perochon A, Doohan FM. Trichothecenes and Fumonisins: Key Players in Fusarium-Cereal Ecosystem Interactions. Toxins (Basel) 2024; 16:90. [PMID: 38393168 PMCID: PMC10893083 DOI: 10.3390/toxins16020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Fusarium fungi produce a diverse array of mycotoxic metabolites during the pathogenesis of cereals. Some, such as the trichothecenes and fumonisins, are phytotoxic, acting as non-proteinaceous effectors that facilitate disease development in cereals. Over the last few decades, we have gained some depth of understanding as to how trichothecenes and fumonisins interact with plant cells and how plants deploy mycotoxin detoxification and resistance strategies to defend themselves against the producer fungi. The cereal-mycotoxin interaction is part of a co-evolutionary dance between Fusarium and cereals, as evidenced by a trichothecene-responsive, taxonomically restricted, cereal gene competing with a fungal effector protein and enhancing tolerance to the trichothecene and resistance to DON-producing F. graminearum. But the binary fungal-plant interaction is part of a bigger ecosystem wherein other microbes and insects have been shown to interact with fungal mycotoxins, directly or indirectly through host plants. We are only beginning to unravel the extent to which trichothecenes, fumonisins and other mycotoxins play a role in fungal-ecosystem interactions. We now have tools to determine how, when and where mycotoxins impact and are impacted by the microbiome and microfauna. As more mycotoxins are described, research into their individual and synergistic toxicity and their interactions with the crop ecosystem will give insights into how we can holistically breed for and cultivate healthy crops.
Collapse
Affiliation(s)
| | - Fiona M. Doohan
- UCD School of Biology and Environmental Science, UCD Earth Institute and UCD Institute of Food and Health, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
2
|
Zhao B, Yu H, Liu D, Wang J, Feng X, He F, Qi T, Du C, Wang L, Wang H, Li F. Combined Transcriptome and Metabolome Analysis Reveals Adaptive Defense Responses to DON Induction in Potato. Int J Mol Sci 2023; 24:ijms24098054. [PMID: 37175760 PMCID: PMC10179060 DOI: 10.3390/ijms24098054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Phytophthora infestans poses a serious threat to potato production, storage, and processing. Understanding plant immunity triggered by fungal elicitors is important for the effective control of plant diseases. However, the role of the potato stress response to Fusarium toxin deoxynivalenol (DON)-induced stress is still not fully understood. In this study, the metabolites of DON-treated potato tubers were studied for four time intervals using UPLC-MS/MS. We identified 676 metabolites, and differential accumulation metabolite analysis showed that alkaloids, phenolic acids, and flavonoids were the major differential metabolites that directly determined defense response. Transcriptome data showed that differentially expressed genes (DEGs) were significantly enriched in phenylpropane and flavonoid metabolic pathways. Weighted gene co-expression network analysis (WGCNA) identified many hub genes, some of which modulate plant immune responses. This study is important for understanding the metabolic changes, transcriptional regulation, and physiological responses of active and signaling substances during DON induction, and it will help to design defense strategies against Phytophthora infestans in potato.
Collapse
Affiliation(s)
- Biao Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Hang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Dan Liu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jiaqi Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xu Feng
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fumeng He
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Tianshuai Qi
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Chong Du
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Linlin Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Haifeng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Fenglan Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Wachowska U, Pluskota W, Jastrzębski JP, Głowacka K, Szablewska-Stuper K, Balcerzak M. A method for reducing the concentrations of Fusarium graminearum trichothecenes in durum wheat grain with the use of Debaryomyces hansenii. Int J Food Microbiol 2023; 397:110211. [PMID: 37105049 DOI: 10.1016/j.ijfoodmicro.2023.110211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/31/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023]
Abstract
Fusarium head blight (FHB), caused mainly by Fusarium graminearum, is one of the most dangerous diseases of durum wheat. This hemibiotrophic pathogen transitions from the biotrophic phase, during which it penetrates host tissues and secretes trichothecenes, to the necrotrophic phase which leads to the destruction of host tissues. Yeasts applied to spikes often reduce mycotoxin concentrations, but the underlying mechanisms have not been fully elucidated. Therefore, the aim of this study was to analyze the concentrations trichothecenes in durum wheat grain and changes in the F. graminearum transcriptome under the influence the Debaryomyces hansenii antagonistic yeast strain. Debaryomyces hansenii cells adhered to and formed cell aggregates/biofilm on the surface of spikes and pathogenic hyphae. Biological control suppressed the spread of F. graminearum by 90 % and decreased the content of deoxynivalenol (DON) in spikes by 31.2 %. Yeasts significantly reduced the expression of pathogen's genes encoding the rpaI subunit of RNA polymerase I and the activator of Hsp90 ATPase, but they had no effect on mRNA transcript levels of genes encoding the enzymes involved in the biosynthesis of trichothecenes. The yeast treatment reduced the number of F. graminearum operational taxonomic units (OTUs) nearly five-fold and increased the number of D. hansenii OTUs more than six-fold in the spike mycobiome. The mechanisms that suppress infections should be explored to develop effective biological methods for reducing the concentrations mycotoxins in wheat grain.
Collapse
Affiliation(s)
- Urszula Wachowska
- University of Warmia and Mazury, Department of Entomology, Phytopathology and Molecular Diagnostics, Poland.
| | - Wioletta Pluskota
- University of Warmia and Mazury, Department of Plant Physiology, Genetics and Biotechnology, Poland
| | - Jan Paweł Jastrzębski
- University of Warmia and Mazury, Department of Plant Physiology, Genetics and Biotechnology, Poland
| | - Katarzyna Głowacka
- University of Warmia and Mazury, Department of Plant Physiology, Genetics and Biotechnology, Poland
| | | | - Margaret Balcerzak
- Ottawa Research and Development Centre, Agriculture and Agri-Food, Canada
| |
Collapse
|
4
|
Valenti I, Tini F, Sevarika M, Agazzi A, Beccari G, Bellezza I, Ederli L, Grottelli S, Pasquali M, Romani R, Saracchi M, Covarelli L. Impact of Enniatin and Deoxynivalenol Co-Occurrence on Plant, Microbial, Insect, Animal and Human Systems: Current Knowledge and Future Perspectives. Toxins (Basel) 2023; 15:271. [PMID: 37104209 PMCID: PMC10144843 DOI: 10.3390/toxins15040271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Fusarium mycotoxins commonly contaminate agricultural products resulting in a serious threat to both animal and human health. The co-occurrence of different mycotoxins in the same cereal field is very common, so the risks as well as the functional and ecological effects of mycotoxins cannot always be predicted by focusing only on the effect of the single contaminants. Enniatins (ENNs) are among the most frequently detected emerging mycotoxins, while deoxynivalenol (DON) is probably the most common contaminant of cereal grains worldwide. The purpose of this review is to provide an overview of the simultaneous exposure to these mycotoxins, with emphasis on the combined effects in multiple organisms. Our literature analysis shows that just a few studies on ENN-DON toxicity are available, suggesting the complexity of mycotoxin interactions, which include synergistic, antagonistic, and additive effects. Both ENNs and DON modulate drug efflux transporters, therefore this specific ability deserves to be explored to better understand their complex biological role. Additionally, future studies should investigate the interaction mechanisms of mycotoxin co-occurrence on different model organisms, using concentrations closer to real exposures.
Collapse
Affiliation(s)
- Irene Valenti
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (I.V.); (M.P.); (M.S.)
| | - Francesco Tini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Milos Sevarika
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Alessandro Agazzi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy;
| | - Giovanni Beccari
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Ilaria Bellezza
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.B.); (S.G.)
| | - Luisa Ederli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Silvia Grottelli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.B.); (S.G.)
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (I.V.); (M.P.); (M.S.)
| | - Roberto Romani
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Marco Saracchi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (I.V.); (M.P.); (M.S.)
| | - Lorenzo Covarelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| |
Collapse
|
5
|
Biniaz Y, Tahmasebi A, Afsharifar A, Tahmasebi A, Poczai P. Meta-Analysis of Common and Differential Transcriptomic Responses to Biotic and Abiotic Stresses in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2022; 11:502. [PMID: 35214836 PMCID: PMC8877356 DOI: 10.3390/plants11040502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Environmental stresses adversely affect crop growth and yield, resulting in major losses to plants. These stresses occur simultaneously in nature, and we therefore conducted a meta-analysis in this study to identify differential and shared genes, pathways, and transcriptomic mechanisms involved in Arabidopsis response to biotic and abiotic stresses. The results showed a total of 436/21 significant up-/downregulated differentially expressed genes (DEGs) in response to biotic stresses, while 476 and 71 significant DEGs were respectively up- and downregulated in response to abiotic stresses in Arabidopsis thaliana. In addition, 21 DEGs (2.09%) were commonly regulated in response to biotic and abiotic stresses. Except for WRKY45 and ATXTH22, which were respectively up-/down- and down-/upregulated in response to biotic and abiotic stresses, other common DEGs were upregulated in response to all biotic and abiotic treatments. Moreover, the transcription factors (TFs) bHLH, MYB, and WRKY were the common TFs in response to biotic and abiotic stresses. In addition, ath-miR414 and ath-miR5658 were identified to be commonly expressed in response to both biotic and abiotic stresses. The identified common genes and pathways during biotic and abiotic stresses may provide potential candidate targets for the development of stress resistance breeding programs and for the genetic manipulation of crop plants.
Collapse
Affiliation(s)
- Yaser Biniaz
- Plant Virology Research Center, Faculty of Agriculture, Shiraz University, Shiraz 7144113131, Iran; (Y.B.); (A.A.)
| | - Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas 7916193145, Iran;
- Plant Protection Research Group, University of Hormozgan, Bandar Abbas 7916193145, Iran
| | - Alireza Afsharifar
- Plant Virology Research Center, Faculty of Agriculture, Shiraz University, Shiraz 7144113131, Iran; (Y.B.); (A.A.)
| | - Ahmad Tahmasebi
- Institute of Biotechnology, Faculty of Agriculture, Shiraz University, Shiraz 7144113131, Iran;
| | - Péter Poczai
- Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FI-00014 Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00065 Helsinki, Finland
- Institute of Advanced Studies Kőszeg (iASK), P.O. Box 4, H-9731 Kőszeg, Hungary
| |
Collapse
|
6
|
Mentges M, Glasenapp A, Boenisch M, Malz S, Henrissat B, Frandsen RJ, Güldener U, Münsterkötter M, Bormann J, Lebrun M, Schäfer W, Martinez‐Rocha AL. Infection cushions of Fusarium graminearum are fungal arsenals for wheat infection. MOLECULAR PLANT PATHOLOGY 2020; 21:1070-1087. [PMID: 32573086 PMCID: PMC7368127 DOI: 10.1111/mpp.12960] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/07/2020] [Accepted: 05/09/2020] [Indexed: 05/22/2023]
Abstract
Fusarium graminearum is one of the most destructive plant pathogens worldwide, causing fusarium head blight (FHB) on cereals. F. graminearum colonizes wheat plant surfaces with specialized unbranched hyphae called runner hyphae (RH), which develop multicelled complex appressoria called infection cushions (IC). IC generate multiple penetration sites, allowing the fungus to enter the plant cuticle. Complex infection structures are typical for several economically important plant pathogens, yet with unknown molecular basis. In this study, RH and IC formed on the surface of wheat paleae were isolated by laser capture microdissection. RNA-Seq-based transcriptomic analyses were performed on RH and IC and compared to mycelium grown in complete medium (MY). Both RH and IC displayed a high number of infection up-regulated genes (982), encoding, among others, carbohydrate-active enzymes (CAZymes: 140), putative effectors (PE: 88), or secondary metabolism gene clusters (SMC: 12 of 67 clusters). RH specifically up-regulated one SMC corresponding to aurofusarin biosynthesis, a broad activity antibiotic. IC specifically up-regulated 248 genes encoding mostly putative virulence factors such as 7 SMC, including the mycotoxin deoxynivalenol and the newly identified fusaoctaxin A, 33 PE, and 42 CAZymes. Furthermore, we studied selected candidate virulence factors using cellular biology and reverse genetics. Hence, our results demonstrate that IC accumulate an arsenal of proven and putative virulence factors to facilitate the invasion of epidermal cells.
Collapse
Affiliation(s)
- Michael Mentges
- Molekulare PhytopathologieInstitut für Pflanzenwissenschaften und MikrobiologieUniversität HamburgHamburgGermany
| | - Anika Glasenapp
- Molekulare PhytopathologieInstitut für Pflanzenwissenschaften und MikrobiologieUniversität HamburgHamburgGermany
| | - Marike Boenisch
- Molekulare PhytopathologieInstitut für Pflanzenwissenschaften und MikrobiologieUniversität HamburgHamburgGermany
| | - Sascha Malz
- Molekulare PhytopathologieInstitut für Pflanzenwissenschaften und MikrobiologieUniversität HamburgHamburgGermany
| | | | - Rasmus J.N. Frandsen
- Department of Biotechnology and BiomedicineTechnical University of DenmarkKgs. LyngbyDenmark
| | - Ulrich Güldener
- Department of BioinformaticsTechnical University of MunichTUM School of Life Sciences WeihenstephanFreisingGermany
| | - Martin Münsterkötter
- Institute of Bioinformatics and Systems BiologyMünchenGermany
- Present address:
Functional Genomics and BioinformaticsSopron UniversitySopronHungary
| | - Jörg Bormann
- Molekulare PhytopathologieInstitut für Pflanzenwissenschaften und MikrobiologieUniversität HamburgHamburgGermany
| | | | - Wilhelm Schäfer
- Molekulare PhytopathologieInstitut für Pflanzenwissenschaften und MikrobiologieUniversität HamburgHamburgGermany
| | - Ana Lilia Martinez‐Rocha
- Molekulare PhytopathologieInstitut für Pflanzenwissenschaften und MikrobiologieUniversität HamburgHamburgGermany
| |
Collapse
|
7
|
Liu Y, Lu S, Liu K, Wang S, Huang L, Guo L. Proteomics: a powerful tool to study plant responses to biotic stress. PLANT METHODS 2019; 15:135. [PMID: 31832077 PMCID: PMC6859632 DOI: 10.1186/s13007-019-0515-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/29/2019] [Indexed: 05/08/2023]
Abstract
In recent years, mass spectrometry-based proteomics has provided scientists with the tremendous capability to study plants more precisely than previously possible. Currently, proteomics has been transformed from an isolated field into a comprehensive tool for biological research that can be used to explain biological functions. Several studies have successfully used the power of proteomics as a discovery tool to uncover plant resistance mechanisms. There is growing evidence that indicates that the spatial proteome and post-translational modifications (PTMs) of proteins directly participate in the plant immune response. Therefore, understanding the subcellular localization and PTMs of proteins is crucial for a comprehensive understanding of plant responses to biotic stress. In this review, we discuss current approaches to plant proteomics that use mass spectrometry, with particular emphasis on the application of spatial proteomics and PTMs. The purpose of this paper is to investigate the current status of the field, discuss recent research challenges, and encourage the application of proteomics techniques to further research.
Collapse
Affiliation(s)
- Yahui Liu
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- National Institute of Metrology, Beijing, China
| | - Song Lu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Kefu Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Sheng Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Doppler M, Kluger B, Bueschl C, Steiner B, Buerstmayr H, Lemmens M, Krska R, Adam G, Schuhmacher R. Stable Isotope-Assisted Plant Metabolomics: Investigation of Phenylalanine-Related Metabolic Response in Wheat Upon Treatment With the Fusarium Virulence Factor Deoxynivalenol. FRONTIERS IN PLANT SCIENCE 2019; 10:1137. [PMID: 31736983 PMCID: PMC6831647 DOI: 10.3389/fpls.2019.01137] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/20/2019] [Indexed: 05/03/2023]
Abstract
The major Fusarium mycotoxin deoxynivalenol (DON) is a virulence factor in wheat and has also been shown to induce defense responses in host plant tissue. In this study, global and tracer labeling with 13C were combined to annotate the overall metabolome of wheat spikes and to evaluate the response of phenylalanine-related pathways upon treatment with DON. At anthesis, spikes of resistant and susceptible cultivars as well as two related near isogenic wheat lines (NILs) differing in the presence/absence of the major resistance QTL Fhb1 were treated with 1 mg DON or water (control), and samples were collected at 0, 12, 24, 48, and 96 h after treatment (hat). A total of 172 Phe-derived wheat constituents were detected with our untargeted approach employing 13C-labeled phenylalanine and subsequently annotated as flavonoids, lignans, coumarins, benzoic acid derivatives, hydroxycinnamic acid amides (HCAAs), as well as peptides. Ninety-six hours after the DON treatment, up to 30% of the metabolites biosynthesized from Phe showed significantly increased levels compared to the control samples. Major metabolic changes included the formation of precursors of compounds implicated in cell wall reinforcement and presumed antifungal compounds. In addition, also dipeptides, which presumably are products of proteolytic degradation of truncated proteins generated in the presence of the toxin, were significantly more abundant upon DON treatment. An in-depth comparison of the two NILs with correlation clustering of time course profiles revealed some 70 DON-responsive Phe derivatives. While several flavonoids had constitutively different abundance levels between the two NILs differing in resistance, other Phe-derived metabolites such as HCAAs and hydroxycinnamoyl quinates were affected differently in the two NILs after treatment with DON. Our results suggest a strong activation of the general phenylpropanoid pathway and that coumaroyl-CoA is mainly diverted towards HCAAs in the presence of Fhb1, whereas the metabolic route to monolignol(-conjugates), lignans, and lignin seems to be favored in the absence of the Fhb1 resistance quantitative trait loci.
Collapse
Affiliation(s)
- Maria Doppler
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Bernhard Kluger
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Christoph Bueschl
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Barbara Steiner
- Department of Agrobiotechnology (IFA-Tulln), Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Hermann Buerstmayr
- Department of Agrobiotechnology (IFA-Tulln), Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Marc Lemmens
- Department of Agrobiotechnology (IFA-Tulln), Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Rudolf Krska
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| |
Collapse
|
9
|
Su P, Guo X, Fan Y, Wang L, Yu G, Ge W, Zhao L, Ma X, Wu J, Li A, Wang H, Kong L. Application of Brachypodium genotypes to the analysis of type II resistance to Fusarium head blight (FHB). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:255-266. [PMID: 29807599 DOI: 10.1016/j.plantsci.2018.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
The resistance to Fusarium head blight (FHB) in wheat is mainly via the restrain of fungal expansion through spike rachis (type II resistance). In order to unravel the resistance mechanisms, Brachypodium distachyon 21 (Bd21), a monocotyledonous model plant, was previously proved to interact with F. graminearum, while the disease development in spike still needs to be explored in detail. Herein, it is found that the fungal spores mainly germinate on pistil of Bd21, then the hyphae rapidly extend to the bottom of floret and enter spike rachis, similar with the infection progress in wheat. However, structural difference of spike rachis was found between Brachypodium and wheat. It was found that the spread of the fungus through the rachis node of inoculated spikelets is an important index for the evaluation of type II FHB resistance in Brachypodium under optimal conditions at 28 °C and 50%-70% humidity. To verify the feasibility of this strategy, the transcription factor TaTGA2 was overexpressed in Bd21, and transgenic plants were found to show improved resistance to F. graminearum in both spikes and detached leaves, which was further supported by the increased disease severity when silencing TaTGA2 in the wheat cultivar "Sumai 3" or in tilling "Kronos" mutants. Except for Bd21, another 49 Brachypodium germplasms were further screened for FHB resistance, and three moderately susceptible germplasms, namely, PI 317418, W6-39284, and PI 254868, feasible for transformation, were determined to be better hosts than Bd21 when evaluating heterologous genes that positively regulate FHB resistance. The present study also observed variations in the levels of FHB resistance between coleoptiles and spikes or transgenic plants and natural germplasms.
Collapse
Affiliation(s)
- Peisen Su
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Xiuxiu Guo
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Yanhui Fan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Liang Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Guanghui Yu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Wenyang Ge
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Lanfei Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Anfei Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China.
| |
Collapse
|
10
|
Kind S, Schurack S, Hinsch J, Tudzynski P. Brachypodium distachyon as alternative model host system for the ergot fungus Claviceps purpurea. MOLECULAR PLANT PATHOLOGY 2018; 19:1005-1011. [PMID: 28452203 PMCID: PMC6638158 DOI: 10.1111/mpp.12563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/19/2017] [Indexed: 05/30/2023]
Abstract
To investigate its susceptibility to ergot infection, we inoculated Brachypodium distachyon with Claviceps purpurea and compared the infection symptoms with those on rye (Secale cereale). We showed that, after inoculation of Brachypodium with Claviceps, the same disease symptoms occurred in comparable temporal and spatial patterns to those on rye. The infection rate of Claviceps on this host was reduced compared with rye, but the disease could be surveyed by fungal genomic DNA quantification. Mutants of Claviceps which were virulence attenuated on rye were also affected on Brachypodium. We were able to show that pathogenesis-related gene expression changed in a typical manner for biotrophic pathogen attack. Our results indicated that the Claviceps-Brachypodium interaction was dependent on salicylic acid, cytokinin and auxin. We consider Brachypodium to be a suitable and useful alternative host; the increased sensitivity compared with rye will be valuable for the identification of infection mechanisms. Future progess in understanding the Claviceps-plant interaction will be facilitated by the use of a well-characterized model host system.
Collapse
Affiliation(s)
- Sabine Kind
- Institute for Biology and Biotechnology of PlantsWestphalian Wilhelms UniversitySchlossplatz 8, Muenster D‐48143Germany
| | - Selma Schurack
- Institute for Biology and Biotechnology of PlantsWestphalian Wilhelms UniversitySchlossplatz 8, Muenster D‐48143Germany
- Present address:
Chair of Terrestrial MicrobiologyCEPLAS/Institute of Botany, University of CologneZülpicher Straße 47a, Cologne D‐50674Germany.
| | - Janine Hinsch
- Institute for Biology and Biotechnology of PlantsWestphalian Wilhelms UniversitySchlossplatz 8, Muenster D‐48143Germany
| | - Paul Tudzynski
- Institute for Biology and Biotechnology of PlantsWestphalian Wilhelms UniversitySchlossplatz 8, Muenster D‐48143Germany
| |
Collapse
|
11
|
Kosová K, Chrpová J, Šantrůček J, Hynek R, Štěrbová L, Vítámvás P, Bradová J, Prášil IT. The effect of Fusarium culmorum infection and deoxynivalenol (DON) application on proteome response in barley cultivars Chevron and Pedant. J Proteomics 2017; 169:112-124. [PMID: 28713028 DOI: 10.1016/j.jprot.2017.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/09/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
Abstract
Fusarium head blight (FHB) disease adversely affects grain quality and final yield in small-grain cereals including barley. In the present study, the effect of an artificial infection with Fusarium culmorum and an application of deoxynivalenol (DON) on barley spikes of cultivars Chevron and Pedant during flowering was investigated at grain mid-dough stage (BBCH 73) 10days after pathogen inoculation (10 dai). Proteomic analysis using a two-dimensional differential gel electrophoresis (2D-DIGE) technique coupled with LC-MS/MS investigated 98 protein spots revealing quantitative or qualitative differences between the experimental variants. Protein functional annotation of 93 identified protein spots revealed that most affected functional groups represent storage proteins (globulins, hordeins), followed by proteins involved in carbohydrate metabolism (α-amylase inhibitor, β-amylase, glycolytic enzymes), amino acid metabolism (aminotransferases), defence response (chitinase, xylanase inhibitor, serpins, SGT1, universal stress protein USP), protein folding (chaperones, chaperonins), redox metabolism (ascorbate-glutathione cycle), and proteasome-dependent protein degradation. The obtained results indicate adverse effects of infection on plant proteome as well as an active plant response to pathogen as shown by enhanced levels of several inhibitors of pathogen-produced degradation enzymes (α-amylase inhibitor, xylanase inhibitor, serpins), chaperones, and other stress-related proteins (SGT1, USP). Genotypic differences were found in hordein abundance between Chevron and Pedant.
Collapse
Affiliation(s)
- Klára Kosová
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, 161 06 Prague 6 - Ruzyně, Czech Republic.
| | - Jana Chrpová
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, 161 06 Prague 6 - Ruzyně, Czech Republic
| | - Jiří Šantrůček
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Radovan Hynek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Lenka Štěrbová
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, 161 06 Prague 6 - Ruzyně, Czech Republic
| | - Pavel Vítámvás
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, 161 06 Prague 6 - Ruzyně, Czech Republic
| | - Jana Bradová
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, 161 06 Prague 6 - Ruzyně, Czech Republic
| | - Ilja Tom Prášil
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, 161 06 Prague 6 - Ruzyně, Czech Republic
| |
Collapse
|
12
|
Lionetti V, Fabri E, De Caroli M, Hansen AR, Willats WGT, Piro G, Bellincampi D. Three Pectin Methylesterase Inhibitors Protect Cell Wall Integrity for Arabidopsis Immunity to Botrytis. PLANT PHYSIOLOGY 2017; 173:1844-1863. [PMID: 28082716 PMCID: PMC5338656 DOI: 10.1104/pp.16.01185] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/11/2017] [Indexed: 05/18/2023]
Abstract
Infection by necrotrophs is a complex process that starts with the breakdown of the cell wall (CW) matrix initiated by CW-degrading enzymes and results in an extensive tissue maceration. Plants exploit induced defense mechanisms based on biochemical modification of the CW components to protect themselves from enzymatic degradation. The pectin matrix is the main CW target of Botrytis cinerea, and pectin methylesterification status is strongly altered in response to infection. The methylesterification of pectin is controlled mainly by pectin methylesterases (PMEs), whose activity is posttranscriptionally regulated by endogenous protein inhibitors (PMEIs). Here, AtPMEI10, AtPMEI11, and AtPMEI12 are identified as functional PMEIs induced in Arabidopsis (Arabidopsis thaliana) during B. cinerea infection. AtPMEI expression is strictly regulated by jasmonic acid and ethylene signaling, while only AtPMEI11 expression is controlled by PME-related damage-associated molecular patterns, such as oligogalacturonides and methanol. The decrease of pectin methylesterification during infection is higher and the immunity to B. cinerea is compromised in pmei10, pmei11, and pmei12 mutants with respect to the control plants. A higher stimulation of the fungal oxalic acid biosynthetic pathway also can contribute to the higher susceptibility of pmei mutants. The lack of PMEI expression does not affect hemicellulose strengthening, callose deposition, and the synthesis of structural defense proteins, proposed as CW-remodeling mechanisms exploited by Arabidopsis to resist CW degradation upon B. cinerea infection. We show that PME activity and pectin methylesterification are dynamically modulated by PMEIs during B. cinerea infection. Our findings point to AtPMEI10, AtPMEI11, and AtPMEI12 as mediators of CW integrity maintenance in plant immunity.
Collapse
Affiliation(s)
- Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie, Charles Darwin, Sapienza Università di Roma, 00185 Rome, Italy (V.L., E.F., D.B.);
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy (M.D.C., G.P.); and
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Copenhagen, Denmark (A.R.H., W.G.T.W.)
| | - Eleonora Fabri
- Dipartimento di Biologia e Biotecnologie, Charles Darwin, Sapienza Università di Roma, 00185 Rome, Italy (V.L., E.F., D.B.)
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy (M.D.C., G.P.); and
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Copenhagen, Denmark (A.R.H., W.G.T.W.)
| | - Monica De Caroli
- Dipartimento di Biologia e Biotecnologie, Charles Darwin, Sapienza Università di Roma, 00185 Rome, Italy (V.L., E.F., D.B.)
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy (M.D.C., G.P.); and
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Copenhagen, Denmark (A.R.H., W.G.T.W.)
| | - Aleksander R Hansen
- Dipartimento di Biologia e Biotecnologie, Charles Darwin, Sapienza Università di Roma, 00185 Rome, Italy (V.L., E.F., D.B.)
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy (M.D.C., G.P.); and
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Copenhagen, Denmark (A.R.H., W.G.T.W.)
| | - William G T Willats
- Dipartimento di Biologia e Biotecnologie, Charles Darwin, Sapienza Università di Roma, 00185 Rome, Italy (V.L., E.F., D.B.)
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy (M.D.C., G.P.); and
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Copenhagen, Denmark (A.R.H., W.G.T.W.)
| | - Gabriella Piro
- Dipartimento di Biologia e Biotecnologie, Charles Darwin, Sapienza Università di Roma, 00185 Rome, Italy (V.L., E.F., D.B.)
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy (M.D.C., G.P.); and
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Copenhagen, Denmark (A.R.H., W.G.T.W.)
| | - Daniela Bellincampi
- Dipartimento di Biologia e Biotecnologie, Charles Darwin, Sapienza Università di Roma, 00185 Rome, Italy (V.L., E.F., D.B.)
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy (M.D.C., G.P.); and
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Copenhagen, Denmark (A.R.H., W.G.T.W.)
| |
Collapse
|
13
|
Gordon CS, Rajagopalan N, Risseeuw EP, Surpin M, Ball FJ, Barber CJ, Buhrow LM, Clark SM, Page JE, Todd CD, Abrams SR, Loewen MC. Characterization of Triticum aestivum Abscisic Acid Receptors and a Possible Role for These in Mediating Fusairum Head Blight Susceptibility in Wheat. PLoS One 2016; 11:e0164996. [PMID: 27755583 PMCID: PMC5068739 DOI: 10.1371/journal.pone.0164996] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/04/2016] [Indexed: 01/31/2023] Open
Abstract
Abscisic acid (ABA) is a well-characterized plant hormone, known to mediate developmental aspects as well as both abiotic and biotic stress responses. Notably, the exogenous application of ABA has recently been shown to increase susceptibility to the fungal pathogen Fusarium graminearum, the causative agent of Fusarium head blight (FHB) in wheat and other cereals. However roles and mechanisms associated with ABA's modulation of pathogen responses remain enigmatic. Here the identification of putative ABA receptors from available genomic databases for Triticum aestivum (bread wheat) and Brachypodium distachyon (a model cereal) are reported. A number of these were cloned for recombinant expression and their functionality as ABA receptors confirmed by in vitro assays against protein phosphatases Type 2Cs. Ligand selectivity profiling of one of the wheat receptors (Ta_PYL2DS_FL) highlighted unique activities compared to Arabidopsis AtPYL5. Mutagenic analysis showed Ta_PYL2DS_FL amino acid D180 as being a critical contributor to this selectivity. Subsequently, a virus induced gene silencing (VIGS) approach was used to knockdown wheat Ta_PYL4AS_A (and similar) in planta, yielding plants with increased early stage resistance to FHB progression and decreased mycotoxin accumulation. Together these results confirm the existence of a family of ABA receptors in wheat and Brachypodium and present insight into factors modulating receptor function at the molecular level. That knockdown of Ta_PYL4AS_A (and similar) leads to early stage FHB resistance highlights novel targets for investigation in the future development of disease resistant crops.
Collapse
Affiliation(s)
- Cameron S. Gordon
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Rd., Saskatoon, SK, S7N 5E5, Canada
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | | | - Eddy P. Risseeuw
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Marci Surpin
- Valent BioSciences Corporation, 870 Technology Way, Libertyville, Illinois, 60048, United States of America
| | - Fraser J. Ball
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Carla J. Barber
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Leann M. Buhrow
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Shawn M. Clark
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Jonathan E. Page
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Chris D. Todd
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Suzanne R. Abrams
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada
| | - Michele C. Loewen
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Rd., Saskatoon, SK, S7N 5E5, Canada
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| |
Collapse
|
14
|
Pasquet JC, Changenet V, Macadré C, Boex-Fontvieille E, Soulhat C, Bouchabké-Coussa O, Dalmais M, Atanasova-Pénichon V, Bendahmane A, Saindrenan P, Dufresne M. A Brachypodium UDP-Glycosyltransferase Confers Root Tolerance to Deoxynivalenol and Resistance to Fusarium Infection. PLANT PHYSIOLOGY 2016; 172:559-74. [PMID: 27378816 PMCID: PMC5074643 DOI: 10.1104/pp.16.00371] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/27/2016] [Indexed: 05/18/2023]
Abstract
Fusarium head blight (FHB) is a cereal disease caused by Fusarium graminearum, a fungus able to produce type B trichothecenes on cereals, including deoxynivalenol (DON), which is harmful for humans and animals. Resistance to FHB is quantitative, and the mechanisms underlying resistance are poorly understood. Resistance has been related to the ability to conjugate DON into a glucosylated form, deoxynivalenol-3-O-glucose (D3G), by secondary metabolism UDP-glucosyltransferases (UGTs). However, functional analyses have never been performed within a single host species. Here, using the model cereal species Brachypodium distachyon, we show that the Bradi5g03300 UGT converts DON into D3G in planta. We present evidence that a mutation in Bradi5g03300 increases root sensitivity to DON and the susceptibility of spikes to F. graminearum, while overexpression confers increased root tolerance to the mycotoxin and spike resistance to the fungus. The dynamics of expression and conjugation suggest that the speed of DON conjugation rather than the increase of D3G per se is a critical factor explaining the higher resistance of the overexpressing lines. A detached glumes assay showed that overexpression but not mutation of the Bradi5g03300 gene alters primary infection by F. graminearum, highlighting the involvement of DON in early steps of infection. Together, these results indicate that early and efficient UGT-mediated conjugation of DON is necessary and sufficient to establish resistance to primary infection by F. graminearum and highlight a novel strategy to promote FHB resistance in cereals.
Collapse
Affiliation(s)
- Jean-Claude Pasquet
- IPS2, UMR9213/UMR1403, CNRS, INRA, UPSud, UPD, SPS, 91405 Orsay, France;INRA, UMR1318, IJPB, RD10, F-78000 Versailles, France;APT, IJPB, RD10, F-78000 Versailles, France; andINRA/UR1264 MycSA, Domaine de la Grande-Ferrade CS20032, 33883 Villenave d'Ornon cedex, France
| | - Valentin Changenet
- IPS2, UMR9213/UMR1403, CNRS, INRA, UPSud, UPD, SPS, 91405 Orsay, France;INRA, UMR1318, IJPB, RD10, F-78000 Versailles, France;APT, IJPB, RD10, F-78000 Versailles, France; andINRA/UR1264 MycSA, Domaine de la Grande-Ferrade CS20032, 33883 Villenave d'Ornon cedex, France
| | - Catherine Macadré
- IPS2, UMR9213/UMR1403, CNRS, INRA, UPSud, UPD, SPS, 91405 Orsay, France;INRA, UMR1318, IJPB, RD10, F-78000 Versailles, France;APT, IJPB, RD10, F-78000 Versailles, France; andINRA/UR1264 MycSA, Domaine de la Grande-Ferrade CS20032, 33883 Villenave d'Ornon cedex, France
| | - Edouard Boex-Fontvieille
- IPS2, UMR9213/UMR1403, CNRS, INRA, UPSud, UPD, SPS, 91405 Orsay, France;INRA, UMR1318, IJPB, RD10, F-78000 Versailles, France;APT, IJPB, RD10, F-78000 Versailles, France; andINRA/UR1264 MycSA, Domaine de la Grande-Ferrade CS20032, 33883 Villenave d'Ornon cedex, France
| | - Camille Soulhat
- IPS2, UMR9213/UMR1403, CNRS, INRA, UPSud, UPD, SPS, 91405 Orsay, France;INRA, UMR1318, IJPB, RD10, F-78000 Versailles, France;APT, IJPB, RD10, F-78000 Versailles, France; andINRA/UR1264 MycSA, Domaine de la Grande-Ferrade CS20032, 33883 Villenave d'Ornon cedex, France
| | - Oumaya Bouchabké-Coussa
- IPS2, UMR9213/UMR1403, CNRS, INRA, UPSud, UPD, SPS, 91405 Orsay, France;INRA, UMR1318, IJPB, RD10, F-78000 Versailles, France;APT, IJPB, RD10, F-78000 Versailles, France; andINRA/UR1264 MycSA, Domaine de la Grande-Ferrade CS20032, 33883 Villenave d'Ornon cedex, France
| | - Marion Dalmais
- IPS2, UMR9213/UMR1403, CNRS, INRA, UPSud, UPD, SPS, 91405 Orsay, France;INRA, UMR1318, IJPB, RD10, F-78000 Versailles, France;APT, IJPB, RD10, F-78000 Versailles, France; andINRA/UR1264 MycSA, Domaine de la Grande-Ferrade CS20032, 33883 Villenave d'Ornon cedex, France
| | - Vessela Atanasova-Pénichon
- IPS2, UMR9213/UMR1403, CNRS, INRA, UPSud, UPD, SPS, 91405 Orsay, France;INRA, UMR1318, IJPB, RD10, F-78000 Versailles, France;APT, IJPB, RD10, F-78000 Versailles, France; andINRA/UR1264 MycSA, Domaine de la Grande-Ferrade CS20032, 33883 Villenave d'Ornon cedex, France
| | - Abdelhafid Bendahmane
- IPS2, UMR9213/UMR1403, CNRS, INRA, UPSud, UPD, SPS, 91405 Orsay, France;INRA, UMR1318, IJPB, RD10, F-78000 Versailles, France;APT, IJPB, RD10, F-78000 Versailles, France; andINRA/UR1264 MycSA, Domaine de la Grande-Ferrade CS20032, 33883 Villenave d'Ornon cedex, France
| | - Patrick Saindrenan
- IPS2, UMR9213/UMR1403, CNRS, INRA, UPSud, UPD, SPS, 91405 Orsay, France;INRA, UMR1318, IJPB, RD10, F-78000 Versailles, France;APT, IJPB, RD10, F-78000 Versailles, France; andINRA/UR1264 MycSA, Domaine de la Grande-Ferrade CS20032, 33883 Villenave d'Ornon cedex, France
| | - Marie Dufresne
- IPS2, UMR9213/UMR1403, CNRS, INRA, UPSud, UPD, SPS, 91405 Orsay, France;INRA, UMR1318, IJPB, RD10, F-78000 Versailles, France;APT, IJPB, RD10, F-78000 Versailles, France; andINRA/UR1264 MycSA, Domaine de la Grande-Ferrade CS20032, 33883 Villenave d'Ornon cedex, France
| |
Collapse
|
15
|
do Amaral FP, Pankievicz VCS, Arisi ACM, de Souza EM, Pedrosa F, Stacey G. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria. PLANT MOLECULAR BIOLOGY 2016; 90:689-697. [PMID: 26873699 DOI: 10.1007/s11103-016-0449-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
Plant growth promoting rhizobacteria (PGPR) can associate and enhance the growth of important crop grasses. However, in most cases, the molecular mechanisms responsible for growth promotion are not known. Such research could benefit by the adoption of a grass model species that showed a positive response to bacterial inoculation and was amenable to genetic and molecular research methods. In this work we inoculated different genotypes of the model grass Brachypodium distachyon with two, well-characterized PGPR bacteria, Azospirillum brasilense and Herbaspirillum seropedicae, and evaluated the growth response. Plants were grown in soil under no nitrogen or with low nitrogen (i.e., 0.5 mM KNO3). A variety of growth parameters (e.g., shoot height, root length, number of lateral roots, fresh and dry weight) were measured 35 days after inoculation. The data indicate that plant genotype plays a very important role in determining the plant response to PGPR inoculation. A positive growth response was observed with only four genotypes grown under no nitrogen and three genotypes tested under low nitrogen. However, in contrast, relatively good root colonization was seen with most genotypes, as measured by drop plate counting and direct, microscopic examination of roots. In particular, the endophytic bacteria H. seropedicae showed strong epiphytic and endophytic colonization of roots.
Collapse
Affiliation(s)
- Fernanda P do Amaral
- Divisions of Plant Science and Biochemistry, C. S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211, USA
| | - Vânia C S Pankievicz
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, 81531-980, Brazil
| | - Ana Carolina M Arisi
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, 88034-001, Brazil
| | - Emanuel M de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, 81531-980, Brazil
| | - Fabio Pedrosa
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, 81531-980, Brazil
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, C. S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
16
|
O'Driscoll A, Doohan F, Mullins E. Exploring the utility of Brachypodium distachyon as a model pathosystem for the wheat pathogen Zymoseptoria tritici. BMC Res Notes 2015; 8:132. [PMID: 25888730 PMCID: PMC4397700 DOI: 10.1186/s13104-015-1097-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 03/26/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Zymoseptoria tritici, the causative organism of Septoria tritici blotch disease is a prevalent biotic stressor of wheat production, exerting substantial economic constraints on farmers, requiring intensive chemical control to protect yields. A hemibiotrophic pathogen with a long asymptomless phase of up to 11 days post inoculation (dpi) before a rapid switch to necrotrophy; a deficit exists in our understanding of the events occurring within the host during the two phases of infection. Brachypodium distachyon has demonstrated its potential as a model species for the investigation of fungal disease resistance in cereal and grass species. The aim of this study was to assess the physical interaction between Z. tritici (strain IPO323) and B. distachyon and examine its potential as a model pathosystem for Z. tritici. RESULTS Septoria tritici blotch symptoms developed on the wheat cultivar Riband from 12 dpi with pycnidial formation abundant by 20 dpi. Symptoms on B. distachyon ecotype Bd21-1 were visible from 1 dpi: characteristic pale, water soaked lesions which developed into blotch-like lesions by 4 dpi. These lesions then became necrotic with chlorotic regions expanding up to 7 dpi. Sporulation on B. distachyon tissues was not observed and no evidence of fungal penetration could be obtained, indicating that Z. tritici was unable to complete its life cycle within B. distachyon ecotypes. However, observation of host responses to the Z. tritici strain IPO323 in five B. distachyon ecotypes revealed a variation in resistance responses, ranging from immunity to a chlorotic/necrotic phenotype. CONCLUSIONS The observed interactions suggest that B. distachyon is an incompatible host for Z. tritici infection, with STB symptom development on B. distachyon comparable to that observed during the early infection stages on the natural host, wheat. However first visible symptoms occurred more rapidly on B. distachyon; from 1 dpi in comparison to 12 dpi in wheat. Consequently, we propose that the interaction between B. distachyon and Z. tritici as observed in this study could serve as a suitable model pathosystem with which to investigate mechanisms underpinning an incompatible host response to Z. tritici.
Collapse
Affiliation(s)
- Aoife O'Driscoll
- Department of Crop Science, Teagasc Research Centre, Oak Park, Carlow, Ireland.
- UCD Earth Institute and UCD School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Fiona Doohan
- UCD Earth Institute and UCD School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Ewen Mullins
- Department of Crop Science, Teagasc Research Centre, Oak Park, Carlow, Ireland.
| |
Collapse
|
17
|
Fitzgerald TL, Powell JJ, Schneebeli K, Hsia MM, Gardiner DM, Bragg JN, McIntyre CL, Manners JM, Ayliffe M, Watt M, Vogel JP, Henry RJ, Kazan K. Brachypodium as an emerging model for cereal-pathogen interactions. ANNALS OF BOTANY 2015; 115:717-31. [PMID: 25808446 PMCID: PMC4373291 DOI: 10.1093/aob/mcv010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/03/2014] [Accepted: 12/22/2014] [Indexed: 05/22/2023]
Abstract
BACKGROUND Cereal diseases cause tens of billions of dollars of losses annually and have devastating humanitarian consequences in the developing world. Increased understanding of the molecular basis of cereal host-pathogen interactions should facilitate development of novel resistance strategies. However, achieving this in most cereals can be challenging due to large and complex genomes, long generation times and large plant size, as well as quarantine and intellectual property issues that may constrain the development and use of community resources. Brachypodium distachyon (brachypodium) with its small, diploid and sequenced genome, short generation time, high transformability and rapidly expanding community resources is emerging as a tractable cereal model. SCOPE Recent research reviewed here has demonstrated that brachypodium is either susceptible or partially susceptible to many of the major cereal pathogens. Thus, the study of brachypodium-pathogen interactions appears to hold great potential to improve understanding of cereal disease resistance, and to guide approaches to enhance this resistance. This paper reviews brachypodium experimental pathosystems for the study of fungal, bacterial and viral cereal pathogens; the current status of the use of brachypodium for functional analysis of cereal disease resistance; and comparative genomic approaches undertaken using brachypodium to assist characterization of cereal resistance genes. Additionally, it explores future prospects for brachypodium as a model to study cereal-pathogen interactions. CONCLUSIONS The study of brachypodium-pathogen interactions appears to be a productive strategy for understanding mechanisms of disease resistance in cereal species. Knowledge obtained from this model interaction has strong potential to be exploited for crop improvement.
Collapse
Affiliation(s)
- Timothy L Fitzgerald
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Jonathan J Powell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Katharina Schneebeli
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - M Mandy Hsia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Donald M Gardiner
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Jennifer N Bragg
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - C Lynne McIntyre
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - John M Manners
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Mick Ayliffe
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Michelle Watt
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - John P Vogel
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Robert J Henry
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| |
Collapse
|
18
|
Falter C, Ellinger D, von Hülsen B, Heim R, Voigt CA. Simple preparation of plant epidermal tissue for laser microdissection and downstream quantitative proteome and carbohydrate analysis. FRONTIERS IN PLANT SCIENCE 2015; 6:194. [PMID: 25870605 PMCID: PMC4375982 DOI: 10.3389/fpls.2015.00194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/11/2015] [Indexed: 05/08/2023]
Abstract
The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape - liquid cover glass technique (ACT) for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection (LM) coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the ACT for simple leaf epidermis preparation and the compatibility to LM and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant-microbe interaction with their potential outreach into crop breeding.
Collapse
Affiliation(s)
| | | | | | | | - Christian A. Voigt
- *Correspondence: Christian A. Voigt, Phytopathology and Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| |
Collapse
|