1
|
Guerra‐García A, Balarynová J, Smykal P, von Wettberg EJ, Noble SD, Bett KE. Genetic and transcriptomic analysis of lentil seed imbibition and dormancy in relation to its domestication. THE PLANT GENOME 2025; 18:e70021. [PMID: 40164967 PMCID: PMC11958875 DOI: 10.1002/tpg2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025]
Abstract
Seed dormancy is an adaptation that delays germination to prevent the start of this process during unsuitable conditions. It is crucial in wild species but its loss was selected during crop domestication to ensure a fast and uniform germination. Water uptake, or imbibition, is the first step of germination. In the Fabaceae family, seeds have physical dormancy, in which seed coats are impermeable to water. We used an interspecific cross between an elite lentil line (Lens culinaris) and a wild lentil (L. orientalis) to investigate the genetic basis of imbibition capacity through quantitative trait locus (QTL) mapping and by using RNA from embryos and seed coats at different development stages, and phenotypic data of seed coat thickness (SCT) and proportion of imbibed seeds (PIS). Both characteristics were consistent throughout different years and locations, suggesting a hereditary component. QTL results suggest that they are each controlled by relatively few loci. Differentially expressed genes (DEGs) within the QTL were considered candidate genes. Two glycosyl-hydrolase genes (a β-glucosidase and a β-galactosidase), which degrade complex polysaccharides in the cell wall, were found among the candidate genes, and one of them had a positive correlation (β-glucosidase) between gene expression and imbibition capacity, and the other gene (β-galactosidase) presented a negative correlation between gene expression and SCT.
Collapse
Affiliation(s)
- Azalea Guerra‐García
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV‐IPN)IrapuatoMéxico
| | | | - Petr Smykal
- Department of BotanyPalacký UniversityOlomoucCzech Republic
| | - Eric J von Wettberg
- Department of Agriculture, Landscape, and Environment, Gund Institute for the EnvironmentUniversity of VermontBurlingtonVermontUSA
| | - Scott D. Noble
- Department of Mechanical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Kirstin E. Bett
- Department of Plant SciencesUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| |
Collapse
|
2
|
Pavlovič A, Jílková T, Chamrád I, Lenobel R, Vrobel O, Tarkowski P. The carnivorous rainbow plant Byblis filifolia Planch. secretes digestive enzymes in response to prey capture independently of jasmonates. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 40387350 DOI: 10.1111/plb.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/19/2025] [Indexed: 05/20/2025]
Abstract
Carnivorous plants from the order Caryophyllales co-opted plant phytohormones from a group of jasmonates to regulate digestive enzyme activity. However, not all genera of carnivorous plants have been thoroughly explored, and the digestive physiology of Australian carnivorous rainbow plants of the genus Byblis (order Lamiales) is poorly understood. Here, we investigated the composition of digestive enzymes in the secreted fluid of Byblis filifolia using LC/MS, measured enzyme activity, and analysed tissue phytohormone levels after experimental feeding with fruit flies and coronatine application. Several hydrolytic digestive enzymes were identified in the secreted digestive fluid, the levels of which clearly increased in the presence of insect prey. However, in contrast to the sundew Drosera capensis, endogenous jasmonates do not accumulate, and coronatine, a molecular mimic of jasmonates, is unable to trigger enzyme secretion. Our results showed that B. filifolia is fully carnivorous, with its own digestive enzyme repertoire. However, in contrast to carnivorous genera from the Caryophyllales order, these enzymes are not regulated by jasmonates. This indicates that jasmonates have not been repeatedly co-opted to regulate digestive enzyme activity during the evolution of carnivorous plants.
Collapse
Affiliation(s)
- A Pavlovič
- Department of Biophysics, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - T Jílková
- Department of Biophysics, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - I Chamrád
- Laboratory of Growth Regulators, Faculty of Science, Palacký University in Olomouc and Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - R Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacký University in Olomouc and Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - O Vrobel
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University in Olomouc, Olomouc, Czech Republic
- Czech Agrifood Research Center, Genetic Resources of Vegetables and Special Crops, Olomouc, Czech Republic
| | - P Tarkowski
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University in Olomouc, Olomouc, Czech Republic
- Czech Agrifood Research Center, Genetic Resources of Vegetables and Special Crops, Olomouc, Czech Republic
| |
Collapse
|
3
|
Lai J, Liu B, Xiong G, Song S, Yang Y, Wei H, Xie S, Jiang J. Functional Characterization of the Subtilase Gene Cg043 Downregulated by 4-Ethyl-1,2-dimethoxybenzene in the Growth and Pathogenicity of Colletotrichum gloeosporioides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10292-10303. [PMID: 40251727 DOI: 10.1021/acs.jafc.5c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Colletotrichum gloeosporioides, the causative agent of anthracnose, poses a significant threat to agricultural production. Previous studies identified 4-ethyl-1,2-dimethoxybenzene as a potent antifungal compound that downregulates the expression of the subtilase gene Cg043, although the underlying molecular mechanism remains unclear. Here, we generated Cg043 knockout mutants (ΔCg043) and found that their sensitivity to 4-ethyl-1,2-dimethoxybenzene was significantly reduced, identifying Cg043 as a key molecular target. Phenotypic assays and transcriptomic analyses revealed that Cg043 downregulation inhibits hyphal growth, spore production, and germination while impairing cell wall and membrane integrity and reducing pathogenicity. Furthermore, functional verification of the signal peptide and subcellular localization analysis confirmed that Cg043 is a secreted protein specifically localized to the plant cell nucleus, suggesting its role in virulence. These findings elucidate a novel antifungal mechanism by which 4-ethyl-1,2-dimethoxybenzene suppresses the growth, development, and pathogenicity of C. gloeosporioides via Cg043 downregulation, highlighting a promising molecular target for sustainable anthracnose management.
Collapse
Affiliation(s)
- Jiahao Lai
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Bing Liu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Guihong Xiong
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Shuilin Song
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Youxin Yang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Hongyi Wei
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Shuilong Xie
- Ji'an Jinggang Honey Pomeloes Developmental Services Center, Ji'an, Jiangxi 343000, China
| | - Junxi Jiang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| |
Collapse
|
4
|
Singh P, Pandey B, Purwar S, Nair RM, Pratap A. Genome-wide identification and characterization of Subtilisin-like Serine protease encoding genes in Vigna radiata L. Wilczek. Sci Rep 2025; 15:13284. [PMID: 40246940 PMCID: PMC12006535 DOI: 10.1038/s41598-025-95331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 03/20/2025] [Indexed: 04/19/2025] Open
Abstract
Subtilisin-like serine proteases (SBTs) are serine proteolytic enzymes that play various roles in plant growth, function and stress responses. Vigna glabrescens, a wild relative of mungbean known to be a potential donor of photo- and thermoperiod insensitivity, was characterized for thermotolerance through reproductive biology and gene expression profiling. Whole-genome sequencing of this species has not yet been performed; hence, genome-wide analysis of this species has not been explored. In the present study, a systematic analysis of SBT-encoding genes in the V. radiata (Vradi_SBT) genome was conducted, with a focus on their response during flower development under different temperature regimes, such as optimum temperature, heat and cold stresses, in Vigna radiata and a wild relative, Vigna glabrescens. Thirty-eight Vradi_SBT genes were identified in the V. radiata genome and were further grouped into five distinct subgroups. The key domain of the SBT peptidase, "peptidase_S8_53," was found in all 38 Vradi_SBT proteins, while 28 of them contained the "peptidase_S8" domain. Additionally, 30 of these proteins contained a maximum of 10 motifs. A total of 22 orthologous genes were identified in Arabidopsis thaliana, whereas paralogous gene pairs were detected as tandemly duplicated genes with V. unguiculata. Cis-acting element analysis revealed that these genes presented more stress-responsive promoter sequences than the other promoters. Furthermore, Vradi_SBT-1.9 was found significantly upregulated under both high- and low-temperature stresses. This study provides insights into SBT-encoding genes and their possible role in flower development and thermotolerance in Vigna species.
Collapse
Affiliation(s)
- Poornima Singh
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, 845 401, India
| | - Brijesh Pandey
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, 845 401, India
| | - Shalini Purwar
- Department of Basic and Social Sciences, Banda University of Agriculture and Technology, Banda, 210 001, India.
| | | | - Aditya Pratap
- Project Coordination Unit, All India Coordinated Research Project on Kharif Pulses, ICAR-Indian Institute of Pulses Research, Kanpur, 208 024, India.
| |
Collapse
|
5
|
Thomas T, Sakure AA, Kumar S, Mishra A, Ahmad S, Rojasara YM, Vaja MB, Patel DA. The Mi- 1 gene is a key regulator of defence mechanisms and cellular gene dynamics in response to root-knot nematodes. PLANT CELL REPORTS 2025; 44:96. [PMID: 40220132 DOI: 10.1007/s00299-025-03484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
KEY MESSAGE Root-knot nematodes threaten tomato cultivation worldwide. This study confirms Mi- 1 gene's role in defence by inducing programmed cell death, lignin accumulation, and cellular remodelling in resistant plants. Root-knot nematodes, particularly Meloidogyne species, pose a significant economic threat to tomato cultivation globally. Despite the identification of various Mi genes, their mechanisms of action are not fully understood. This study aimed to elucidate the role of the Mi- 1 gene by analysing transcriptomic data from both resistant and susceptible tomato genotypes and by constitutively expressing Mi- 1 in a susceptible cultivar. Transcriptome analysis of leaf and root samples upon RKN infection showed that the Mi- 1 gene was exclusively present in the roots of resistant plants. Further to investigate its function Mi- 1 was constitutively expressed under the CaMV 35S promoter in a susceptible tomato cultivar. Structural analysis confirmed that the Mi- 1 protein primarily localized in the cytoplasm and lacked a transmembrane motif. Following transformation, a comparative gene expression of wild-type and transformed tomato plants with genes obtained from transcriptome, revealing significant up-regulation of cellular, plant defence, and programmed cell death (PCD) related genes in the transgenic lines. Notably, the roots of the transformed plants exhibited thickened root morphology and high lignin accumulation, correlating with the expression of lignin biosynthesis genes. These findings suggested that the Mi- 1 gene is not only involved in PCD but also activates various defence-related and cellular remodelling genes by depositing the lignin in the root cell to combat against nematode attack.
Collapse
Affiliation(s)
- Treesa Thomas
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, India
| | - Amar A Sakure
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, India.
| | - Sushil Kumar
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, India
| | - Ankita Mishra
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, India
| | - Suhail Ahmad
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, India
| | - Yogesh M Rojasara
- Bidi Tobacco Research Station, Anand Agricultural University, Anand, 388110, India
| | - Mahesh B Vaja
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, India
| | - Dipak A Patel
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, India
| |
Collapse
|
6
|
Pérez-Moro C, D'Esposito D, Capuozzo C, Guadagno A, Pérez-de-Castro A, Ercolano MR. Discovery of variation in genes related to agronomic traits by sequencing the genome of Cucurbita pepo varieties. BMC Genomics 2025; 26:335. [PMID: 40181258 PMCID: PMC11969804 DOI: 10.1186/s12864-025-11370-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/14/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Cucurbita pepo L. cultivars display high morphological traits variation. In addition, C. pepo faces numerous threats, such as viral and fungal infections, which significantly influence crop cultivation. Recent genomic advancements improved the understanding of genetic diversity and stress responses in this crop. We investigated genetic variations related to plant morphology and quality traits. Additionally, the inclusion of both powdery mildew (PM) and Zucchini yellow mosaic virus (ZYMV) susceptible and tolerant varieties facilitated the examination of genetic diversity concerning biotic stress. RESULTS The sequencing of eight Cucurbita pepo varieties produced an average of 40 million raw reads with a coverage of reference genome ranging from 22 to 40X. More than 4.7 million genomic variants were identified in all genomes. Based on admixture and PCA analysis, the eight C. pepo genotypes were grouped in two clusters belonging to Cocozelle and Zucchini groups, with "Whitaker" separated from the rest of the accessions. Genes involved in pathways related to gibberellin regulation, leaf development, and pigment accumulation resulted highly affected by variation suggesting that the diversity observed among varieties in plant and fruit morphology could be related to variants identified in such genes. Each variety showed its own set of genetic differences. The genomic comparison of 381e, 968Rb and SPQ allowed the identification of variants in chromosome regions affecting response to Zucchini yellow mosaic virus (ZYMV) and powdery mildew (PM). Variants in key genes associated with resistant traits were identified, suggesting potential pathways and mechanisms involved in biotic stress response and plant immunity. CONCLUSIONS Genetic variations affecting morphology and fruit quality in C. pepo emphasize their significance for breeding efforts. Furthermore, the genomic comparison of 381e, 968Rb and SPQ highlighted variants in chromosomal regions influencing zucchini's response to PM and ZYMV. These findings could pave the way for more targeted and effective genetic improvement strategies, thereby potentially leading to increased agricultural productivity and quality.
Collapse
Affiliation(s)
- C Pérez-Moro
- COMAV, Instituto de Conservación y Mejora de la Agroaffiliationersidad, Universitat Politècnica de València, Cno. de Vera, s.n, València, 46022, Spain
| | - D D'Esposito
- Institute for Sustainable Plant Protection, National Research Council, Portici, Na, 80055, Italy
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Na, Italy
| | - C Capuozzo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Na, Italy
| | - A Guadagno
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Na, Italy
| | - A Pérez-de-Castro
- COMAV, Instituto de Conservación y Mejora de la Agroaffiliationersidad, Universitat Politècnica de València, Cno. de Vera, s.n, València, 46022, Spain
| | - M R Ercolano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Na, Italy.
| |
Collapse
|
7
|
Wang K, Ren W, Hong L, Wang Q, Ghimire R, Haapanen M, Kivimäenpää M, Wu P, Ma X, Asiegbu FO. Linalool and 1,8-Cineole as Constitutive Disease-Resistant Factors of Norway Spruce Against Necrotrophic Pathogen Heterobasidion Parviporum. PLANT, CELL & ENVIRONMENT 2025; 48:1993-2008. [PMID: 39535466 PMCID: PMC11788960 DOI: 10.1111/pce.15280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Norway spruce is an important coniferous species in boreal forests. Root and stem rot diseases caused by the necrotrophic pathogen Heterobasidion parviporum threaten the wood production of Norway spruce which necessitates the search for durable control and management strategies. Breeding for resistant traits is considered a viable long-term strategy. However, identification of potential resistant traits and markers remains a major challenge. In this study, short-term disease resistance screening was conducted using 218 Norway spruce clones from 17 families. Disease resistance was evaluated based on the size of necrosis lesion length following infection with the pathogen. A subset of needles/branches from clones with small (partial resistant) or large (susceptible) lesions were used for terpene analysis and transcriptomic profiling. The results revealed that the content of monoterpene linalool and 1,8-cineole and their respective encoded genes were significantly more abundant and highly expressed in the partial resistant group. Furthermore, linalool and 1,8-cineole were demonstrated to have inhibitory effect on the growth of the pathogen H. parviporum, with morphological distortion of the hyphae. RNAseq analysis revealed that transcript of pathogen genes involved in the regulation of carbohydrate metabolism and stress responses were significantly decreased in presence of the terpenes. The results suggest the relevance of monoterpenes together with jasmonic acid precursor and some genes involved in phenylpropanoid biosynthesis, as constitutive tolerance factors for Norway spruce tolerance against necrotrophic pathogen. The high level of necrosis related cell death gene expression might be factors critical for host susceptibility and disease development.
Collapse
Affiliation(s)
- Kai Wang
- College of ForestryFujian Agriculture and Forestry UniversityFuzhouChina
- Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
| | - Wenzi Ren
- Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
| | - Liang Hong
- College of ForestryFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qingao Wang
- College of ForestryFujian Agriculture and Forestry UniversityFuzhouChina
| | - Rajendra Ghimire
- Department of Environmental and Biological Sciences, Kuopio CampusUniversity of Eastern FinlandKuopioFinland
| | - Matti Haapanen
- Natural Resources Institute Finland (LUKE)HelsinkiFinland
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, Kuopio CampusUniversity of Eastern FinlandKuopioFinland
- Natural Resources Institute Finland (LUKE)SuonenjokiFinland
| | - Pengfei Wu
- College of ForestryFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiangqing Ma
- College of ForestryFujian Agriculture and Forestry UniversityFuzhouChina
| | - Fred O. Asiegbu
- Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
8
|
Liu J, He F, Chen Z, Liu M, Xiao Y, Wang Y, Cai Y, Du J, Jin W, Liu X. Subtilisin-like protease 4 regulates cold tolerance through cell wall modification in rice. Sci Rep 2025; 15:426. [PMID: 39747628 PMCID: PMC11696678 DOI: 10.1038/s41598-024-84491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
Rice is susceptible to cold temperatures, especially during the seedling stage. Despite extensive research into the cold tolerance mechanisms of rice, the number of cloned genes remains limited. Plant subtilisin-like proteases (SUBs or SBTs) are protein-hydrolyzing enzymes which play important roles in various aspects of plant growth as well as the plant response to biotic and abiotic stress. The rice SUB gene family consists of 62 members, but it is unknown whether they are involved in the response to cold stress. In this study, we observed that a loss-of-function SUB4 mutant exhibited enhanced cold tolerance at the seedling stage. The sub4 mutant seedlings exhibited improved survival rates and related physiological parameters, including relative electrolyte conductivity, chlorophyll content, malondialdehyde content, and antioxidant enzyme activity. Transcriptomic analysis revealed that differentially expressed genes responsive to cold stress in the sub4 mutants were primarily associated with metabolism and signal transduction. Notably, the majority of cold-responsive genes were associated with cell wall functions, including those related to cell wall organization, chitin catabolic processes, and oxidoreductases. Our findings suggest that SUB4 negatively regulates the cold response in rice seedlings, possibly by modifying the properties of the cell wall.
Collapse
Affiliation(s)
- Jingyan Liu
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Fei He
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zhicai Chen
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Meng Liu
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Yingni Xiao
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Ying Wang
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - YuMeng Cai
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Jin Du
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Weiwei Jin
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Xuejun Liu
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China.
| |
Collapse
|
9
|
Ghanbarzadeh Z, Mohagheghzadeh A, Hemmati S. The Roadmap of Plant Antimicrobial Peptides Under Environmental Stress: From Farm to Bedside. Probiotics Antimicrob Proteins 2024; 16:2269-2304. [PMID: 39225894 DOI: 10.1007/s12602-024-10354-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Antimicrobial peptides (AMPs) are the most favorable alternatives in overcoming multidrug resistance, alone or synergistically with conventional antibiotics. Plant-derived AMPs, as cysteine-rich peptides, widely compensate the pharmacokinetic drawbacks of peptide therapeutics. Compared to the putative genes encrypted in the genome, AMPs that are produced under stress are active forms with the ability to combat resistant microbial species. Within this study, plant-derived AMPs, namely, defensins, nodule-specific cysteine-rich peptides, snakins, lipid transfer proteins, hevein-like proteins, α-hairpinins, and aracins, expressed under biotic and abiotic stresses, are classified. We could observe that while α-hairpinins and snakins display a helix-turn-helix structure, conserved motif patterns such as β1αβ2β3 and β1β2β3 exist in plant defensins and hevein-like proteins, respectively. According to the co-expression data, several plant AMPs are expressed together to trigger synergistic effects with membrane disruption mechanisms such as toroidal pore, barrel-stave, and carpet models. The application of AMPs as an eco-friendly strategy in maintaining agricultural productivity through the development of transgenes and bio-pesticides is discussed. These AMPs can be consumed in packaging material, wound-dressing products, coating catheters, implants, and allergology. AMPs with cell-penetrating properties are verified for the clearance of intracellular pathogens. Finally, the dominant pharmacological activities of bioactive peptides derived from the gastrointestinal digestion of plant AMPs, namely, inhibitors of renin and angiotensin-converting enzymes, dipeptidyl peptidase IV and α-glucosidase inhibitors, antioxidants, anti-inflammatory, immunomodulating, and hypolipidemic peptides, are analyzed. Conclusively, as phytopathogens and human pathogens can be affected by plant-derived AMPs, they provide a bright perspective in agriculture, breeding, food, cosmetics, and pharmaceutical industries, translated as farm to bedside.
Collapse
Affiliation(s)
- Zohreh Ghanbarzadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolali Mohagheghzadeh
- Department of Phytopharmaceuticals, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Thieron H, Krassini L, Kwon S, Fricke S, Nasfi S, Oberkofler L, Ruf A, Kehr J, Kogel K, Weiberg A, Feldbrügge M, Robatzek S, Panstruga R. Practical advice for extracellular vesicle isolation in plant-microbe interactions: Concerns, considerations, and conclusions. J Extracell Vesicles 2024; 13:e70022. [PMID: 39665314 PMCID: PMC11635479 DOI: 10.1002/jev2.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/24/2024] [Indexed: 12/13/2024] Open
Abstract
In recent years, extracellular vesicles (EVs) have emerged as novel key players in plant-microbe interactions. While it is immensely useful to draw on the established "minimal information for studies of extracellular vesicles" (MISEV) guidelines and precedents in mammalian systems, working with plants and their associated microbes poses specific challenges. To navigate researchers through these obstacles, we offer detailed step-by-step suggestions for those embarking on EV research in the context of plant-microbe interactions. The advice is based on recent publications and our collective experience from the diverse plant and microbe systems studied in a dedicated research consortium. We provide considerations for experimental design, optimization, quality control, and recommendations on how to increase yield, purity, and reproducibility of EV isolation. With this perspective article, we aim not only to assist researchers in our field but also to promote discussions on plant and microbe EVs in the broader EV community.
Collapse
Affiliation(s)
- Hannah Thieron
- Unit for Plant Molecular Cell Biology, Institute for Biology IRWTH Aachen UniversityAachenGermany
| | - Laura Krassini
- LMU Munich BiocenterLudwig‐Maximilian‐University of MunichMunichGermany
| | - Seomun Kwon
- Institute for Microbiology, Cluster of Excellence on Plant SciencesHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Sebastian Fricke
- Institute of Plant Science and Microbiology, Department of BiologyUniversität HamburgHamburgGermany
| | - Sabrine Nasfi
- Institute of Phytopathology, Research Centre for BioSystemsLand Use and Nutrition, Justus‐Liebig‐University GiessenGiessenGermany
| | - Lorenz Oberkofler
- LMU Munich BiocenterLudwig‐Maximilian‐University of MunichMunichGermany
| | - Alessa Ruf
- LMU Munich BiocenterLudwig‐Maximilian‐University of MunichMunichGermany
| | - Julia Kehr
- Institute of Plant Science and Microbiology, Department of BiologyUniversität HamburgHamburgGermany
| | - Karl‐Heinz Kogel
- Institute of Phytopathology, Research Centre for BioSystemsLand Use and Nutrition, Justus‐Liebig‐University GiessenGiessenGermany
| | - Arne Weiberg
- LMU Munich BiocenterLudwig‐Maximilian‐University of MunichMunichGermany
| | - Michael Feldbrügge
- Institute for Microbiology, Cluster of Excellence on Plant SciencesHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Silke Robatzek
- LMU Munich BiocenterLudwig‐Maximilian‐University of MunichMunichGermany
| | - Ralph Panstruga
- Unit for Plant Molecular Cell Biology, Institute for Biology IRWTH Aachen UniversityAachenGermany
| |
Collapse
|
11
|
Meng Y, Xiao Y, Zhu S, Xu L, Huang L. VmSpm1: a secretory protein from Valsa mali that targets apple's abscisic acid receptor MdPYL4 to suppress jasmonic acid signaling and enhance infection. THE NEW PHYTOLOGIST 2024; 244:2489-2504. [PMID: 39417426 DOI: 10.1111/nph.20194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Pathogenic fungi such as Valsa mali secrete effector proteins to manipulate host defenses and facilitate infection. Subtilases are identified as potential virulence factors, yet their specific roles in fruit tree pathogens, such as those affecting apple trees, are poorly understood. Our research shows VmSpm1 as a virulence factor in V. mali. Knocking it out decreased virulence, whereas its heterologous expression in apple led to reduced disease resistance. Using Y2H, BiFC, SLC, and Co-IP techniques, we demonstrated an interaction between VmSpm1 and MdPYL4. MdPYL4 levels increased during V. mali infection. The stable transgenic apple lines inoculation experiment showed that MdPYL4 correlates with enhanced resistance to Apple Valsa canker when overexpressed in apples. Furthermore, through in vitro and in vivo assays, we showed the degradative role of VmSpm1 on MdPYL4. MdPYL4 promotes the synthesis of jasmonic acid (JA) in apples in an abscisic acid-dependent manner. The degradation of MdPYL4 leads to a reduction in JA content in apples during V. mali infection, thereby impairing JA signal transduction and decreasing disease resistance in apple plants. In summary, this study reveals how V. mali utilizes VmSpm1 to subvert JA signaling, shedding light on fungal manipulation of plant hormones to disrupt immunity.
Collapse
Affiliation(s)
- Yangguang Meng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yingzhu Xiao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shan Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Liangsheng Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
12
|
Genot B, Grogan M, Yost M, Iacono G, Archer SD, Burns JA. Functional stress responses in Glaucophyta: Evidence of ethylene and abscisic acid functions in Cyanophora paradoxa. J Eukaryot Microbiol 2024; 71:e13041. [PMID: 38952030 PMCID: PMC11603287 DOI: 10.1111/jeu.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
Glaucophytes, an enigmatic group of freshwater algae, occupy a pivotal position within the Archaeplastida, providing insights into the early evolutionary history of plastids and their host cells. These algae possess unique plastids, known as cyanelles that retain certain ancestral features, enabling a better understanding of the plastid transition from cyanobacteria. In this study, we investigated the role of ethylene, a potent hormone used by land plants to coordinate stress responses, in the glaucophyte alga Cyanophora paradoxa. We demonstrate that C. paradoxa produces gaseous ethylene when supplied with exogenous 1-aminocyclopropane-1-carboxylic acid (ACC), the ethylene precursor in land plants. In addition, we show that cells produce ethylene natively in response to abiotic stress, and that another plant hormone, abscisic acid (ABA), interferes with ethylene synthesis from exogenously supplied ACC, while positively regulating reactive oxygen species (ROS) accumulation. ROS synthesis also occurred following abiotic stress and ACC treatment, possibly acting as a second messenger in stress responses. A physiological response of C. paradoxa to ACC treatment is growth inhibition. Using transcriptomics, we reveal that ACC treatment induces the upregulation of senescence-associated proteases, consistent with the observation of growth inhibition. This is the first report of hormone usage in a glaucophyte alga, extending our understanding of hormone-mediated stress response coordination into the Glaucophyta, with implications for the evolution of signaling modalities across Archaeplastida.
Collapse
Affiliation(s)
- Baptiste Genot
- Bigelow Laboratory for Ocean SciencesEast BoothbayMaineUSA
| | | | | | | | | | - John A. Burns
- Bigelow Laboratory for Ocean SciencesEast BoothbayMaineUSA
| |
Collapse
|
13
|
Khan FK, Sánchez-García M, Johannesson H, Ryberg M. High rate of gene family evolution in proximity to the origin of ectomycorrhizal symbiosis in Inocybaceae. THE NEW PHYTOLOGIST 2024; 244:219-234. [PMID: 39113397 DOI: 10.1111/nph.20007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/09/2024] [Indexed: 09/17/2024]
Abstract
The genomes of ectomycorrhizal (ECM) fungi have a reduced number of genes encoding Carbohydrate-Active EnZymes (CAZymes), expansions in transposable elements (TEs) and small secreted proteins (SSPs) compared with saprotrophs. Fewer genes for specific peptidases and lipases in ECM fungi are also reported. It is unclear whether these changes occur at the shift to the ECM habit or are more gradual throughout the evolution of ECM lineages. We generated a genomic dataset of 20 species in the ECM lineage Inocybaceae and compared them with six saprotrophic species. Inocybaceae genomes have fewer CAZymes, peptidases, lipases, secondary metabolite clusters and SSPs and higher TE content than their saprotrophic relatives. There was an increase in the rate of gene family evolution along the branch with the transition to the ECM lifestyle. This branch had very high rate of evolution in CAZymes and had the largest number of contractions. Other significant changes along this branch included expansions in transporters, transposons-related genes and communication genes such as fungal kinases. There is a high concentration of changes in proximity to the transition to the ECM lifestyle, which correspond to the identified key changes for the gain of this lifestyle.
Collapse
Affiliation(s)
- Faheema Kalsoom Khan
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, 752 36, Sweden
| | - Marisol Sánchez-García
- Department of Forest Mycology and Plant Pathology, Uppsala Biocentre, Swedish University of Agricultural Sciences, Uppsala, SE-75005, Sweden
| | - Hanna Johannesson
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, 752 36, Sweden
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
- The Royal Swedish Academy of Sciences, Stockholm, 114 18, Sweden
| | - Martin Ryberg
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, 752 36, Sweden
| |
Collapse
|
14
|
Chen N, Zou C, Pan LL, Du H, Yang JJ, Liu SS, Wang XW. Cotton leaf curl Multan virus subverts the processing of hydroxyproline-rich systemin to suppress tobacco defenses against insect vectors. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5819-5838. [PMID: 38829390 DOI: 10.1093/jxb/erae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
Insect vector-virus-plant interactions have important ecological and evolutionary implications. The constant struggle of plants against viruses and insect vectors has driven the evolution of multiple defense strategies in the host as well as counter-defense strategies in the viruses and insect vectors. Cotton leaf curl Multan virus (CLCuMuV) is a major causal agent of cotton leaf curl disease in Asia and is exclusively transmitted by the whitefly Bemisia tabaci. Here, we report that plants infected with CLCuMuV and its betasatellite CLCuMuB enhance the performance of the B. tabaci vector, and βC1 encoded by CLCuMuB plays an important role in begomovirus-whitefly-tobacco tripartite interactions. We showed that CLCuMuB βC1 suppresses the jasmonic acid signaling pathway by interacting with the subtilisin-like protease 1.7 (NtSBT1.7) protein, thereby enhancing whitefly performance on tobacco plants. Further studies revealed that in wild-type plants, NtSBT1.7 could process tobacco preprohydroxyproline-rich systemin B (NtpreproHypSysB). After CLCuMuB infection, CLCuMuB βC1 could interfere with the processing of NtpreproHypSysB by NtSBT1.7, thereby impairing plant defenses against whitefly. These results contribute to our understanding of tripartite interactions among virus, plant, and whitefly, thus offering ecological insights into the spread of vector insect populations and the prevalence of viral diseases.
Collapse
Affiliation(s)
- Na Chen
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Chi Zou
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
- Zhenhai Agricultural Technology Extension Station, 569 Minhe Road, Ningbo 310000, China
| | - Li-Long Pan
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Hui Du
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Jing-Jing Yang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Shu-Sheng Liu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Xiao-Wei Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
15
|
Wang Y, Qin J, Wei M, Liao X, Shang W, Chen J, Subbarao KV, Hu X. Verticillium dahliae Elicitor VdSP8 Enhances Disease Resistance Through Increasing Lignin Biosynthesis in Cotton. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39327679 DOI: 10.1111/pce.15170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Verticillium wilt caused by the soil-borne fungus Verticillium dahliae Kleb., is a destructive plant disease that instigates severe losses in many crops. Improving plant resistance to Verticillium wilt has been a challenge in most crops. In this study, a V. dahliae secreted protein VdSP8 was identified and shown to activate hyper-sensitive response (HR) and systemic acquired resistance (SAR) to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and Botrytis cinerea in tobacco plants. We identified a β-glucosidase named GhBGLU46 as a cotton plant target of VdSP8. VdSP8 interacts with GhBGLU46 both in vivo and in vitro and promotes the β-glucosidase activity of GhBGLU46. Silencing of GhBGLU46 reduced the expression of genes involved in lignin biosynthesis, such as GhCCR4, GhCCoAOMT2, GhCAD3 and GhCAD6, thus decreasing lignin deposition and increasing Verticillium wilt susceptibility. We have shown that GhBGLU46 is indispensable for the function of VdSP8 in plant resistance. These results suggest that plants have also evolved a strategy to exploit the invading effector protein VdSP8 to enhance plant resistance.
Collapse
Affiliation(s)
- Yajuan Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jun Qin
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Mengmeng Wei
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiwen Liao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wenjing Shang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o Sam Farr United States Crop Improvement and Protection Research Center, Salinas, California, USA
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
16
|
Del Corpo D, Coculo D, Greco M, De Lorenzo G, Lionetti V. Pull the fuzes: Processing protein precursors to generate apoplastic danger signals for triggering plant immunity. PLANT COMMUNICATIONS 2024; 5:100931. [PMID: 38689495 PMCID: PMC11371470 DOI: 10.1016/j.xplc.2024.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The apoplast is one of the first cellular compartments outside the plasma membrane encountered by phytopathogenic microbes in the early stages of plant tissue invasion. Plants have developed sophisticated surveillance mechanisms to sense danger events at the cell surface and promptly activate immunity. However, a fine tuning of the activation of immune pathways is necessary to mount a robust and effective defense response. Several endogenous proteins and enzymes are synthesized as inactive precursors, and their post-translational processing has emerged as a critical mechanism for triggering alarms in the apoplast. In this review, we focus on the precursors of phytocytokines, cell wall remodeling enzymes, and proteases. The physiological events that convert inactive precursors into immunomodulatory active peptides or enzymes are described. This review also explores the functional synergies among phytocytokines, cell wall damage-associated molecular patterns, and remodeling, highlighting their roles in boosting extracellular immunity and reinforcing defenses against pests.
Collapse
Affiliation(s)
- Daniele Del Corpo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Daniele Coculo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Marco Greco
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Vincenzo Lionetti
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
17
|
Han Z, Schneiter R. Dual functionality of pathogenesis-related proteins: defensive role in plants versus immunosuppressive role in pathogens. FRONTIERS IN PLANT SCIENCE 2024; 15:1368467. [PMID: 39157512 PMCID: PMC11327054 DOI: 10.3389/fpls.2024.1368467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024]
Abstract
Plants respond to pathogen exposure by activating the expression of a group of defense-related proteins known as Pathogenesis-Related (PR) proteins, initially discovered in the 1970s. These PR proteins are categorized into 17 distinct families, denoted as PR1-PR17. Predominantly secreted, most of these proteins execute their defensive roles within the apoplastic space. Several PR proteins possess well-defined enzymatic functions, such as β-glucanase (PR2), chitinases (PR3, 4, 8, 11), proteinase (PR7), or RNase (PR10). Enhanced resistance against pathogens is observed upon PR protein overexpression, while their downregulation renders plants more susceptible to pathogen infections. Many of these proteins exhibit antimicrobial activity in vitro, and due to their compact size, some are classified as antimicrobial peptides. Recent research has unveiled that phytopathogens, including nematodes, fungi, and phytophthora, employ analogous proteins to bolster their virulence and suppress plant immunity. This raises a fundamental question: how can these conserved proteins act as antimicrobial agents when produced by the host plant but simultaneously suppress plant immunity when generated by the pathogen? In this hypothesis, we investigate PR proteins produced by pathogens, which we term "PR-like proteins," and explore potential mechanisms by which this class of virulence factors operate. Preliminary data suggests that these proteins may form complexes with the host's own PR proteins, thereby interfering with their defense-related functions. This analysis sheds light on the intriguing interplay between plant and pathogen-derived PR-like proteins, providing fresh insights into the intricate mechanisms governing plant-pathogen interactions.
Collapse
Affiliation(s)
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
18
|
Yuan G, Shi J, Zeng C, Shi H, Yang Y, Zhang C, Ma T, Wu M, Jia Z, Du J, Zou C, Ma L, Pan G, Shen Y. Integrated analysis of transcriptomics and defense-related phytohormones to discover hub genes conferring maize Gibberella ear rot caused by Fusarium Graminearum. BMC Genomics 2024; 25:733. [PMID: 39080512 PMCID: PMC11288080 DOI: 10.1186/s12864-024-10656-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Gibberella ear rot (GER) is one of the most devastating diseases in maize growing areas, which directly reduces grain yield and quality. However, the underlying defense response of maize to pathogens infection is largely unknown. RESULTS To gain a comprehensive understanding of the defense response in GER resistance, two contrasting inbred lines 'Nov-82' and 'H10' were used to explore transcriptomic profiles and defense-related phytohormonal alterations during Fusarium graminearum infection. Transcriptomic analysis revealed 4,417 and 4,313 differentially expressed genes (DEGs) from the Nov-82 and H10, respectively, and 647 common DEGs between the two lines. More DEGs were obviously enriched in phenylpropanoid biosynthesis, secondary metabolites biosynthesis, metabolic process and defense-related pathways. In addition, the concentration of the defense-related phytohormones, jasmonates (JAs) and salicylates (SAs), was greatly induced after the pathogen infection. The level of JAs in H10 was more higher than in Nov-82, whereas an opposite pattern for the SA between the both lines. Integrated analysis of the DEGs and the phytohormones revealed five vital modules based on co-expression network analysis according to their correlation. A total of 12 hub genes encoding fatty acid desaturase, subtilisin-like protease, ethylene-responsive transcription factor, 1-aminocyclopropane-1-carboxylate oxidase, and sugar transport protein were captured from the key modules, indicating that these genes might play unique roles in response to pathogen infection, CONCLUSIONS: Overall, our results indicate that large number DEGs related to plant disease resistance and different alteration of defensive phytohormones were activated during F. graminearum infection, providing new insight into the defense response against pathogen invasion, in addition to the identified hub genes that can be further investigated for enhancing maize GER resistance.
Collapse
Affiliation(s)
- Guangsheng Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jiahao Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Cheng Zeng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haoya Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chuntian Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tieli Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengyang Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zheyi Jia
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Juan Du
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangtang Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
19
|
Liu H, Fang H, Zhang G, Li J, Zhang X, Li Y. De novo transcriptome profiling reveals the patterns of gene expression in plum fruits with bud mutations. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:909-919. [PMID: 38974351 PMCID: PMC11222343 DOI: 10.1007/s12298-024-01472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Bud mutation is a common technique for plant breeding and can provide a large number of breeding materials. Through traditional breeding methods, we obtained a plum plant with bud mutations (named "By") from an original plum variety (named "B"). The ripening period of "By" fruit was longer than that of "B" fruit, and its taste was better. In order to understand the characteristics of these plum varieties, we used transcriptome analysis and compared the gene expression patterns in fruits from the two cultivars. Subsequently, we identified the biological processes regulated by the differentially expressed genes (DEGs). Gene ontology (GO) analysis revealed that these DEGs were highly enriched for "single-organism cellular process" and "transferase activity". KEGG analysis demonstrated that the main pathways affected by the bud mutations were plant hormone signal transduction, starch and sucrose metabolism. The IAA, CKX, ARF, and SnRK2 genes were identified as the key regulators of plant hormone signal transduction. Meanwhile, TPP, the beta-glucosidase (EC3.2.1.21) gene, and UGT72E were identified as candidate DEGs affecting secondary metabolite synthesis. The transcriptome sequencing (RNA-seq) data were also validated using RT-qPCR experiments. The transcriptome analysis demonstrated that plant hormones play a significant role in extending the maturity period of plum fruit, with IAA, CKX, ARF, and SnRK2 serving as the key regulators of this process. Further, TPP, beta-glucosidase (EC3.2.1.21), and UGT72E appeared to mediate the synthesis of various soluble secondary metabolites, contributing to the aroma of plum fruits. The expression of BAG6 was upregulated in "B" as the fruit matured, but it was downregulated in "By". This indicated that "B" may have stronger resistance, especially fungal resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01472-3.
Collapse
Affiliation(s)
- Huiyan Liu
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan, 750021 Ningxia China
| | - Haitian Fang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan, 750021 Ningxia China
| | - Guangdi Zhang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan, 750021 Ningxia China
- Ningxia Facility Horticulture Engineering Technology Center, Yinchuan, 750021 Ningxia China
- Technological Innovation Center of Horticulture, Ningxia University), Ningxia Hui Autonomous Region, Yinchuan, 750021 Ningxia China
| | - Jianshe Li
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan, 750021 Ningxia China
- Ningxia Facility Horticulture Engineering Technology Center, Yinchuan, 750021 Ningxia China
- Technological Innovation Center of Horticulture, Ningxia University), Ningxia Hui Autonomous Region, Yinchuan, 750021 Ningxia China
| | - Xiangjun Zhang
- School of Life Science, Ningxia University, Yinchuan, 750021 Ningxia China
| | - Yu Li
- Technological Innovation Center of Horticulture, Ningxia University), Ningxia Hui Autonomous Region, Yinchuan, 750021 Ningxia China
| |
Collapse
|
20
|
Xiong J, Luo M, Chen Y, Hu Q, Fang Y, Sun T, Hu G, Zhang CJ. Subtilisin-like proteases from Fusarium graminearum induce plant cell death and contribute to virulence. PLANT PHYSIOLOGY 2024; 195:1681-1693. [PMID: 38478507 DOI: 10.1093/plphys/kiae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 06/02/2024]
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum, causes huge annual economic losses in cereal production. To successfully colonize host plants, pathogens secrete hundreds of effectors that interfere with plant immunity and facilitate infection. However, the roles of most secreted effectors of F. graminearum in pathogenesis remain unclear. We analyzed the secreted proteins of F. graminearum and identified 255 candidate effector proteins by liquid chromatography-mass spectrometry (LC-MS). Five subtilisin-like family proteases (FgSLPs) were identified that can induce cell death in Nicotiana benthamiana leaves. Further experiments showed that these FgSLPs induced cell death in cotton (Gossypium barbadense) and Arabidopsis (Arabidopsis thaliana). A signal peptide and light were not essential for the cell death-inducing activity of FgSLPs. The I9 inhibitor domain and the entire C-terminus of FgSLPs were indispensable for their self-processing and cell death-inducing activity. FgSLP-induced cell death occurred independent of the plant signal transduction components BRI-ASSOCIATED KINASE 1 (BAK1), SUPPRESSOR OF BIR1 1 (SOBIR1), ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), and PHYTOALEXIN DEFICIENT 4 (PAD4). Reduced virulence was observed when FgSLP1 and FgSLP2 were simultaneously knocked out. This study reveals a class of secreted toxic proteins essential for F. graminearum virulence.
Collapse
Affiliation(s)
- Jiang Xiong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Mingyu Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yunshen Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Qianyong Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ying Fang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tongjun Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guanjing Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Cui-Jun Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
21
|
Zhang M, Jiang P, Wu Q, Han X, Man J, Sun J, Liang J, Chen J, Zhao Q, Guo Y, An Y, Jia H, Li S, Xu Y. Identification of candidate genes for Fusarium head blight resistance from QTLs using RIL population in wheat. PLANT MOLECULAR BIOLOGY 2024; 114:62. [PMID: 38771394 DOI: 10.1007/s11103-024-01462-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Fusarium head blight (FHB) stands out as one of the most devastating wheat diseases and leads to significantly grain yield losses and quality reductions in epidemic years. Exploring quantitative trait loci (QTL) for FHB resistance is a critical step for developing new FHB-resistant varieties. We previously constructed a genetic map of unigenes (UG-Map) according to the physical positions using a set of recombinant-inbred lines (RILs) derived from the cross of 'TN18 × LM6' (TL-RILs). Here, the number of diseased spikelets (NDS) and relative disease index (RDI) for FHB resistance were investigated under four environments using TL-RILs, which were distributed across 13 chromosomes. A number of 36 candidate genes for NDS and RDI from of 19 stable QTLs were identified. The average number of candidate genes per QTL was 1.89, with 14 (73.7%), two (10.5%), and three (15.8%) QTLs including one, two, and 3-10 candidate genes, respectively. Among the 24 candidate genes annotated in the reference genome RefSeq v1.1, the homologous genes of seven candidate genes, including TraesCS4B02G227300 for QNds/Rdi-4BL-4553, TraesCS5B02G303200, TraesCS5B02G303300, TraesCS5B02G303700, TraesCS5B02G303800 and TraesCS5B02G304000 for QNds/Rdi-5BL-9509, and TraesCS7A02G568400 for QNds/Rdi-7AL-14499, were previously reported to be related to FHB resistance in wheat, barely or Brachypodium distachyon. These genes should be closely associated with FHB resistance in wheat. In addition, the homologous genes of five genes, including TraesCS1A02G037600LC for QNds-1AS-2225, TraesCS1D02G017800 and TraesCS1D02G017900 for QNds-1DS-527, TraesCS1D02G018000 for QRdi-1DS-575, and TraesCS4B02G227400 for QNds/Rdi-4BL-4553, were involved in plant defense responses against pathogens. These genes should be likely associated with FHB resistance in wheat.
Collapse
Affiliation(s)
- Mingxia Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Peng Jiang
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Nanjing, 210095, China
| | - Qun Wu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Xu Han
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Junxia Man
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Junsheng Sun
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Jinlong Liang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Jingchuan Chen
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Qi Zhao
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Ying Guo
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Yanrong An
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Haiyan Jia
- Applied Plant Genomics Laboratory, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Sishen Li
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China.
| | - Yongyu Xu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
22
|
Mauceri A, Puccio G, Faddetta T, Abbate L, Polito G, Caldiero C, Renzone G, Lo Pinto M, Alibrandi P, Vaccaro E, Abenavoli MR, Scaloni A, Sunseri F, Cavalieri V, Palumbo Piccionello A, Gallo G, Mercati F. Integrated omics approach reveals the molecular pathways activated in tomato by Kocuria rhizophila, a soil plant growth-promoting bacterium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108609. [PMID: 38615442 DOI: 10.1016/j.plaphy.2024.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Plant microbial biostimulants application has become a promising and eco-friendly agricultural strategy to improve crop yields, reducing chemical inputs for more sustainable cropping systems. The soil dwelling bacterium Kocuria rhizophila was previously characterized as Plant Growth Promoting Bacteria (PGPB) for its multiple PGP traits, such as indole-3-acetic acid production, phosphate solubilization capability and salt and drought stress tolerance. Here, we evaluated by a multi-omics approach, the PGP activity of K. rhizophila on tomato, revealing the molecular pathways by which it promotes plant growth. Transcriptomic analysis showed several up-regulated genes mainly related to amino acid metabolism, cell wall organization, lipid and secondary metabolism, together with a modulation in the DNA methylation profile, after PGPB inoculation. In agreement, proteins involved in photosynthesis, cell division, and plant growth were highly accumulated by K. rhizophila. Furthermore, "amino acid and peptides", "monosaccharides", and "TCA" classes of metabolites resulted the most affected by PGPB treatment, as well as dopamine, a catecholamine neurotransmitter mediating plant growth through S-adenosylmethionine decarboxylase (SAMDC), a gene enhancing the vegetative growth, up-regulated in tomato by K. rhizophila treatment. Interestingly, eight gene modules well correlated with differentially accumulated proteins (DAPs) and metabolites (DAMs), among which two modules showed the highest correlation with nine proteins, including a nucleoside diphosphate kinase, and cytosolic ascorbate peroxidase, as well as with several amino acids and metabolites involved in TCA cycle. Overall, our findings highlighted that sugars and amino acids, energy regulators, involved in tomato plant growth, were strongly modulated by the K. rhizophila-plant interaction.
Collapse
Affiliation(s)
- Antonio Mauceri
- University Mediterranea of Reggio Calabria, AGRARIA Department, Località Feo di Vito, 89122, Reggio Calabria, Italy
| | - Guglielmo Puccio
- National Research Council, Institute of Biosciences and Bioresources (IBBR), Via Ugo La Malfa 153, 90146, Palermo, Italy; University of Palermo, SAAF Department, Viale Delle Scienze, 90128, Palermo, Italy
| | - Teresa Faddetta
- University of Palermo, STEBICEF Department, Viale Delle Scienze, 90128, Palermo, Italy
| | - Loredana Abbate
- National Research Council, Institute of Biosciences and Bioresources (IBBR), Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Giulia Polito
- University of Palermo, STEBICEF Department, Viale Delle Scienze, 90128, Palermo, Italy
| | - Ciro Caldiero
- University Mediterranea of Reggio Calabria, AGRARIA Department, Località Feo di Vito, 89122, Reggio Calabria, Italy
| | - Giovanni Renzone
- National Research Council, Proteomics, Metabolomics and Mass Spectrometry Laboratory (ISPAAM), Piazzale E. Fermi 1, 80055, Portici, (Napoli), Italy
| | - Margot Lo Pinto
- University of Palermo, STEBICEF Department, Viale Delle Scienze, 90128, Palermo, Italy
| | - Pasquale Alibrandi
- Mugavero Teresa S.A.S., Corso Umberto e Margherita 1B, 90018, Termini Imerese, (Palermo), Italy
| | - Edoardo Vaccaro
- Mugavero Teresa S.A.S., Corso Umberto e Margherita 1B, 90018, Termini Imerese, (Palermo), Italy
| | - Maria Rosa Abenavoli
- University Mediterranea of Reggio Calabria, AGRARIA Department, Località Feo di Vito, 89122, Reggio Calabria, Italy
| | - Andrea Scaloni
- National Research Council, Proteomics, Metabolomics and Mass Spectrometry Laboratory (ISPAAM), Piazzale E. Fermi 1, 80055, Portici, (Napoli), Italy
| | - Francesco Sunseri
- University Mediterranea of Reggio Calabria, AGRARIA Department, Località Feo di Vito, 89122, Reggio Calabria, Italy
| | - Vincenzo Cavalieri
- University of Palermo, STEBICEF Department, Viale Delle Scienze, 90128, Palermo, Italy
| | | | - Giuseppe Gallo
- University of Palermo, STEBICEF Department, Viale Delle Scienze, 90128, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| | - Francesco Mercati
- National Research Council, Institute of Biosciences and Bioresources (IBBR), Via Ugo La Malfa 153, 90146, Palermo, Italy.
| |
Collapse
|
23
|
Ricciardi V, Crespan M, Maddalena G, Migliaro D, Brancadoro L, Maghradze D, Failla O, Toffolatti SL, De Lorenzis G. Novel loci associated with resistance to downy and powdery mildew in grapevine. FRONTIERS IN PLANT SCIENCE 2024; 15:1386225. [PMID: 38584944 PMCID: PMC10998452 DOI: 10.3389/fpls.2024.1386225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
Among the main challenges in current viticulture, there is the increasing demand for sustainability in the protection from fungal diseases, such as downy mildew (DM) and powdery mildew (PM). Breeding disease-resistant grapevine varieties is a key strategy for better managing fungicide inputs. This study explores the diversity of grapevine germplasm (cultivated and wild) from Caucasus and neighboring areas to identify genotypes resistant to DM and PM, based on 13 Simple Sequence Repeat (SSR) loci and phenotypical (artificial pathogen inoculation) analysis, and to identify loci associated with DM and PM resistance, via Genome-Wide Association Analysis (GWAS) on Single Nucleotide Polymorphism (SNP) profiles. SSR analysis revealed resistant alleles for 16 out of 88 genotypes. Phenotypic data identified seven DM and 31 PM resistant genotypes. GWAS identified two new loci associated with DM resistance, located on chromosome 15 and 16 (designated as Rpv36 and Rpv37), and two with PM resistance, located on chromosome 6 and 17 (designated as Ren14 and Ren15). The four novel loci identified genomic regions rich in genes related to biotic stress response, such as genes involved in pathogen recognition, signal transduction and resistance response. This study highlights potential candidate genes associated with resistance to DM and PM, providing valuable insights for breeding programs for resistant varieties. To optimize their utilization, further functional characterization studies are recommended.
Collapse
Affiliation(s)
- Valentina Ricciardi
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Manna Crespan
- Centro di Ricerca per la Viticoltura e l'Enologia, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Conegliano, Italy
| | - Giuliana Maddalena
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Daniele Migliaro
- Centro di Ricerca per la Viticoltura e l'Enologia, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Conegliano, Italy
| | - Lucio Brancadoro
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - David Maghradze
- Faculty of Viticulture-Winemaking, Caucasus International University, Tbilisi, Georgia
- Faculty of Agricultural Sciences and Biosystems Engineering, Georgian Technical University, Tbilisi, Georgia
| | - Osvaldo Failla
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Silvia Laura Toffolatti
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Gabriella De Lorenzis
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
24
|
Lavaud C, Lesné A, Leprévost T, Pilet-Nayel ML. Fine mapping of Ae-Ps4.5, a major locus for resistance to pathotype III of Aphanomyces euteiches in pea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:47. [PMID: 38334777 DOI: 10.1007/s00122-024-04548-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
KEY MESSAGE QTL mapping and recombinant screening confirmed the major effect of QTL Ae-Ps4.5 on pea resistance to pathotype III of Aphanomyces euteiches and fine-mapped the QTL to a 3.06-Mb interval. Aphanomyces root rot, caused by Aphanomyces euteiches, is the most important disease of pea (Pisum sativum L.) worldwide. The development of pea-resistant varieties is a major challenge to control the disease. Previous linkage studies identified seven main resistance quantitative trait loci (QTL), including the QTL Ae-Ps4.5 associated with partial resistance in US nurseries infested by the pea pathotype III of A. euteiches. This study aimed to confirm the major effect of Ae-Ps4.5 on A. euteiches pathotype III, refine its interval, and identify candidate genes underlying the QTL. QTL mapping on an updated genetic map from the Puget × 90-2079 pea recombinant inbred line population identified Ae-Ps4.5 in a 0.8-cM confidence interval with a high effect (R2 = 89%) for resistance to the Ae109 reference strain of A. euteiches (pathotype III) under controlled conditions. However, the QTL mapping did not detect Ae-Ps4.5 for resistance to the RB84 reference strain of A. euteiches (pathotype I). Screening 224-pea BC5F2 plant progeny derived from three near-isogenic lines (NILs) carrying the 90-2079 allele at Ae-Ps4.5 in the Puget genetic background with 26 SNP markers identified 15 NILs showing recombination in the QTL interval. Phenotyping of the recombinant lines for resistance to the Ae109 strain of A. euteiches reduced the QTL to a physical interval of 3.06 Mb, containing 50 putative annotated genes on the Caméor pea genome V1a among which three candidate genes highlighted. This study provides closely linked SNP markers and putative candidate genes to accelerate pea breeding for resistant varieties to Aphanomyces root rot.
Collapse
Affiliation(s)
- Clément Lavaud
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Angélique Lesné
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Théo Leprévost
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | | |
Collapse
|
25
|
Yadav P, Sharma K, Tiwari N, Saxena G, Asif MH, Singh S, Kumar M. Comprehensive transcriptome analyses of Fusarium-infected root xylem tissues to decipher genes involved in chickpea wilt resistance. 3 Biotech 2023; 13:390. [PMID: 37942053 PMCID: PMC10630269 DOI: 10.1007/s13205-023-03803-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Fusarium wilt is the most destructive soil-borne disease that poses a major threat to chickpea production. To comprehensively understand the interaction between chickpea and Fusarium oxysporum, the xylem-specific transcriptome analysis of wilt-resistant (WR315) and wilt-susceptible (JG62) genotypes at an early timepoint (4DPI) was investigated. Differential expression analysis showed that 1368 and 348 DEGs responded to pathogen infection in resistant and susceptible genotypes, respectively. Both genotypes showed transcriptional reprogramming in response to Foc2, but the responses in WR315 were more severe than in JG62. Results of the KEGG pathway analysis revealed that most of the DEGS in both genotypes with enrichment in metabolic pathways, secondary metabolite biosynthesis, plant hormone signal transduction, and carbon metabolism. Genes associated with defense-related metabolites synthesis such as thaumatin-like protein 1b, cysteine-rich receptor-like protein kinases, MLP-like proteins, polygalacturonase inhibitor 2-like, ethylene-responsive transcription factors, glycine-rich cell wall structural protein-like, beta-galactosidase-like, subtilisin-like protease, thioredoxin-like protein, chitin elicitor receptor kinase-like, proline transporter-like, non-specific lipid transfer protein and sugar transporter were mostly up-regulated in resistant as compared to susceptible genotypes. The results of this study provide disease resistance genes, which would be helpful in understanding the Foc resistance mechanism in chickpea. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03803-9.
Collapse
Affiliation(s)
- Pooja Yadav
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Kritika Sharma
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Nikita Tiwari
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Garima Saxena
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Mehar H. Asif
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Swati Singh
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Manoj Kumar
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
26
|
Wang Y, Yu H, Xu Y, Wu M, Zhang J, Tsuda K, Liu S, Jiang D, Chen W, Wei Y, Li G, Yang L. Expression of a mycoparasite protease in plant petals suppresses the petal-mediated infection by necrotrophic pathogens. Cell Rep 2023; 42:113290. [PMID: 37874677 DOI: 10.1016/j.celrep.2023.113290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/14/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
Sclerotinia sclerotiorum and Botrytis cinerea are necrotrophic plant-pathogenic fungi, causing substantial economic losses on many crops. So far, resistant cultivars against these pathogens are unavailable in most crops. Here, we show that the serine protease CmSp1 of Coniothyrium minitans, a well-characterized mycoparasite of S. sclerotiorum, contributed to suppressing the petal-mediated infection by S. sclerotiorum in rapeseed. Application of recombinant CmSp1 proteins facilitates the bulk degradation of S. sclerotiorum proteins and inhibits spore germination and hyphal growth of S. sclerotiorum and B. cinerea, thereby preventing the development of both diseases. Stable transgenic rapeseed plants with tissue-specific expression of CmSp1 in flower petals inhibit the petal-mediated infection by both S. sclerotiorum and B. cinerea, and resulting transgenic plants have no adverse effect on other agronomic traits. Thus, our findings provide a novel mechanism by which a mycoparasite inhibits fungal pathogens and an environmentally friendly disease management strategy.
Collapse
Affiliation(s)
- Yongchun Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Han Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuping Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Weidong Chen
- U.S. Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA, USA
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
27
|
Sun B, Zhou R, Zhu G, Xie X, Chai A, Li L, Fan T, Li B, Shi Y. Transcriptome Analysis Reveals the Involvement of Mitophagy and Peroxisome in the Resistance to QoIs in Corynespora cassiicola. Microorganisms 2023; 11:2849. [PMID: 38137993 PMCID: PMC10745780 DOI: 10.3390/microorganisms11122849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Quinone outside inhibitor fungicides (QoIs) are crucial fungicides for controlling plant diseases, but resistance, mainly caused by G143A, has been widely reported with the high and widespread use of QoIs. However, two phenotypes of Corynespora casiicola (RI and RII) with the same G143A showed significantly different resistance to QoIs in our previous study, which did not match the reported mechanisms. Therefore, transcriptome analysis of RI and RII strains after trifloxystrobin treatment was used to explore the new resistance mechanism in this study. The results show that 332 differentially expressed genes (DEGs) were significantly up-regulated and 448 DEGs were significantly down-regulated. The results of GO and KEGG enrichment showed that DEGs were most enriched in ribosomes, while also having enrichment in peroxide, endocytosis, the lysosome, autophagy, and mitophagy. In particular, mitophagy and peroxisome have been reported in medicine as the main mechanisms of reactive oxygen species (ROS) scavenging, while the lysosome and endocytosis are an important organelle and physiological process, respectively, that assist mitophagy. The oxidative stress experiments showed that the oxidative stress resistance of the RII strains was significantly higher than that of the RI strains: specifically, it was more than 1.8-fold higher at a concentration of 0.12% H2O2. This indicates that there is indeed a significant difference in the scavenging capacity of ROS between the two phenotypic strains. Therefore, we suggest that QoIs' action caused a high production of ROS, and that scavenging mechanisms such as mitophagy and peroxisomes functioned in RII strains to prevent oxidative stress, whereas RI strains were less capable of resisting oxidative stress, resulting in different resistance to QoIs. In this study, it was first revealed that mitophagy and peroxisome mechanisms available for ROS scavenging are involved in the resistance of pathogens to fungicides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Baoju Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.S.); (R.Z.)
| | - Yanxia Shi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.S.); (R.Z.)
| |
Collapse
|
28
|
Ordaz NA, Nagalakshmi U, Boiteux LS, Atamian HS, Ullman DE, Dinesh-Kumar SP. The Sw-5b NLR Immune Receptor Induces Early Transcriptional Changes in Response to Thrips and Mechanical Modes of Inoculation of Tomato spotted wilt orthotospovirus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:705-715. [PMID: 37432156 DOI: 10.1094/mpmi-03-23-0032-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The NLR (nucleotide-binding leucine-rich repeat) class immune receptor Sw-5b confers resistance to Tomato spotted wilt orthotospovirus (TSWV). Although Sw-5b is known to activate immunity upon recognition of the TSWV movement protein NSm, we know very little about the downstream events that lead to resistance. Here, we investigated the Sw-5b-mediated early transcriptomic changes that occur in response to mechanical and thrips-mediated inoculation of TSWV, using near-isogenic tomato lines CNPH-LAM 147 (Sw5b+/+) and Santa Clara (Sw-5b-/-). We observed earlier Sw-5b-mediated transcriptional changes in response to thrips-mediated inoculation compared with that in response to mechanical inoculation of TSWV. With thrips-mediated inoculation, differentially expressed genes (DEGs) were observed at 12, 24, and 72 h postinoculation (hpi). Whereas with mechanical inoculation, DEGs were observed only at 72 hpi. Although some DEGs were shared between the two methods of inoculation, many DEGs were specific to either thrips-mediated or mechanical inoculation of TSWV. In response to thrips-mediated inoculation, an NLR immune receptor, cysteine-rich receptor-like kinase, G-type lectin S-receptor-like kinases, the ethylene response factor 1, and the calmodulin-binding protein 60 were induced. Fatty acid desaturase 2-9, cell death genes, DCL2b, RIPK/PBL14-like, ERF017, and WRKY75 were differentially expressed in response to mechanical inoculation. Our findings reveal Sw-5b responses specific to the method of TSWV inoculation. Although TSWV is transmitted in nature primarily by the thrips, Sw-5b responses to thrips inoculation have not been previously studied. Therefore, the DEGs we have identified in response to thrips-mediated inoculation provide a new foundation for understanding the mechanistic roles of these genes in the Sw-5b-mediated resistance. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Norma A Ordaz
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, U.S.A
| | - Ugrappa Nagalakshmi
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, U.S.A
| | - Leonardo S Boiteux
- National Center for Vegetable Crops Research (CNPH), Embrapa Hortaliças, Brasilia-DF, Brazil
| | - Hagop S Atamian
- Biological Sciences program, Schmid College of Science & Technology, Chapman University, Orange, CA 92866, U.S.A
| | - Diane E Ullman
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, U.S.A
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, U.S.A
- The Genome Center, College of Biological Sciences, University of California, Davis, CA 95616, U.S.A
| |
Collapse
|
29
|
Lei G, Zhou KH, Chen XJ, Huang YQ, Yuan XJ, Li GG, Xie YY, Fang R. Transcriptome and metabolome analyses revealed the response mechanism of pepper roots to Phytophthora capsici infection. BMC Genomics 2023; 24:626. [PMID: 37864214 PMCID: PMC10589972 DOI: 10.1186/s12864-023-09713-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Phytophthora root rot caused by the oomycete Phytophthora capsici is the most devastating disease in pepper production worldwide, and current management strategies have not been effective in preventing this disease. Therefore, the use of resistant varieties was regarded as an important part of disease management of P. capsici. However, our knowledge of the molecular mechanisms underlying the defense response of pepper roots to P. capsici infection is limited. METHODS A comprehensive transcriptome and metabolome approaches were used to dissect the molecular response of pepper to P. capsici infection in the resistant genotype A204 and the susceptible genotype A198 at 0, 24 and 48 hours post-inoculation (hpi). RESULTS More genes and metabolites were induced at 24 hpi in A204 than A198, suggesting the prompt activation of defense responses in the resistant genotype, which can attribute two proteases, subtilisin-like protease and xylem cysteine proteinase 1, involved in pathogen recognition and signal transduction in A204. Further analysis indicated that the resistant genotype responded to P. capsici with fine regulation by the Ca2+- and salicylic acid-mediated signaling pathways, and then activation of downstream defense responses, including cell wall reinforcement and defense-related genes expression and metabolites accumulation. Among them, differentially expressed genes and differentially accumulated metabolites involved in the flavonoid biosynthesis pathways were uniquely activated in the resistant genotype A204 at 24 hpi, indicating a significant role of the flavonoid biosynthesis pathways in pepper resistance to P. capsici. CONCLUSION The candidate transcripts may provide genetic resources that may be useful in the improvement of Phytophthora root rot-resistant characters of pepper. In addition, the model proposed in this study provides new insight into the defense response against P. capsici in pepper, and enhance our current understanding of the interaction of pepper-P. capsici.
Collapse
Affiliation(s)
- Gang Lei
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Kun-Hua Zhou
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xue-Jun Chen
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Yue-Qin Huang
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xin-Jie Yuan
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Ge-Ge Li
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Yuan-Yuan Xie
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Rong Fang
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| |
Collapse
|
30
|
Manjunatha PB, Aski MS, Mishra GP, Gupta S, Devate NB, Singh A, Bansal R, Kumar S, Nair RM, Dikshit HK. Genome-wide association studies for phenological and agronomic traits in mungbean ( Vigna radiata L. Wilczek). FRONTIERS IN PLANT SCIENCE 2023; 14:1209288. [PMID: 37810385 PMCID: PMC10558178 DOI: 10.3389/fpls.2023.1209288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023]
Abstract
Mungbean (Vigna radiata L. Wilczek) is one of the important warm-season food legumes, contributing substantially to nutritional security and environmental sustainability. The genetic complexity of yield-associated agronomic traits in mungbean is not well understood. To dissect the genetic basis of phenological and agronomic traits, we evaluated 153 diverse mungbean genotypes for two phenological (days to heading and days to maturity) and eight agronomic traits (leaf nitrogen status using SPAD, plant height, number of primary branches, pod length, number of pods per plant, seeds per pod, 100-seed weight, and yield per plant) under two environmental conditions. A wide array of phenotypic variability was apparent among the studied genotypes for all the studied traits. The broad sense of heritability of traits ranged from 0.31 to 0.95 and 0.21 to 0.94 at the Delhi and Ludhiana locations, respectively. A total of 55,634 genome-wide single nucleotide polymorphisms (SNPs) were obtained by the genotyping-by-sequencing method, of which 15,926 SNPs were retained for genome-wide association studies (GWAS). GWAS with Bayesian information and linkage-disequilibrium iteratively nested keyway (BLINK) model identified 50 SNPs significantly associated with phenological and agronomic traits. In total, 12 SNPs were found to be significantly associated with phenological traits across environments, explaining 7%-18.5% of phenotypic variability, and 38 SNPs were significantly associated with agronomic traits, explaining 4.7%-27.6% of the phenotypic variability. The maximum number of SNPs (15) were located on chromosome 1, followed by seven SNPs each on chromosomes 2 and 8. The BLAST search identified 19 putative candidate genes that were involved in light signaling, nitrogen responses, phosphorus (P) transport and remobilization, photosynthesis, respiration, metabolic pathways, and regulating growth and development. Digital expression analysis of 19 genes revealed significantly higher expression of 12 genes, viz. VRADI01G08170, VRADI11G09170, VRADI02G00450, VRADI01G00700, VRADI07G14240, VRADI03G06030, VRADI02G14230, VRADI08G01540, VRADI09G02590, VRADI08G00110, VRADI02G14240, and VRADI02G00430 in the roots, cotyledons, seeds, leaves, shoot apical meristems, and flowers. The identified SNPs and putative candidate genes provide valuable genetic information for fostering genomic studies and marker-assisted breeding programs that improve yield and agronomic traits in mungbean.
Collapse
Affiliation(s)
- P. B. Manjunatha
- Division of Genetics, ICAR- Indian Agricultural Research Institute, New Delhi, India
| | - Muraleedhar S. Aski
- Division of Genetics, ICAR- Indian Agricultural Research Institute, New Delhi, India
| | - Gyan Prakash Mishra
- Division of Genetics, ICAR- Indian Agricultural Research Institute, New Delhi, India
| | - Soma Gupta
- Division of Genetics, ICAR- Indian Agricultural Research Institute, New Delhi, India
| | - Narayana Bhat Devate
- Division of Genetics, ICAR- Indian Agricultural Research Institute, New Delhi, India
| | - Akanksha Singh
- Amity Institute of Organic Agriculture, Amity University, Noida, India
| | - Ruchi Bansal
- Division of Plant Physiology, ICAR- Indian Agricultural Research Institute, New Delhi, India
| | - Shiv Kumar
- International Centre for Agricultural Research in the Dry Areas (ICARDA), New Delhi, India
| | | | - Harsh Kumar Dikshit
- Division of Genetics, ICAR- Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
31
|
Oh Y, Ingram T, Shekasteband R, Adhikari T, Louws FJ, Dean RA. Tissues and mechanisms associated with Verticillium wilt resistance in tomato using bi-grafted near-isogenic lines. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4685-4706. [PMID: 37184211 PMCID: PMC10433936 DOI: 10.1093/jxb/erad182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/12/2023] [Indexed: 05/16/2023]
Abstract
Host resistance is the primary means to control Verticillium dahliae, a soil-borne pathogen causing major losses on a broad range of plants, including tomato. The tissues and mechanisms responsible for resistance remain obscure. In the field, resistant tomato used as rootstocks does not confer resistance. Here, we created bi-grafted plants with near-isogenic lines (NILs) exhibiting (Ve1) or lacking (ve1) resistance to V. dahliae race 1. Ten days after inoculation, scion and rootstock tissues were subjected to differential gene expression and co-expression network analyses. Symptoms only developed in susceptible scions regardless of the rootstock. Infection caused more dramatic alteration of tomato gene expression in susceptible compared with resistant tissues, including pathogen receptor, signaling pathway, pathogenesis-related protein, and cell wall modification genes. Differences were observed between scions and rootstocks, primarily related to physiological processes in these tissues. Gene expression in scions was influenced by the rootstock genotype. A few genes were associated with the Ve1 genotype, which was independent of infection or tissue type. Several were physically clustered, some near the Ve1 locus on chromosome 9. Transcripts mapped to V. dahliae were dominated by secreted candidate effector proteins. These findings advance knowledge of molecular mechanisms underlying the tomato-V. dahliae interaction.
Collapse
Affiliation(s)
- Yeonyee Oh
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Thomas Ingram
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Reza Shekasteband
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Tika Adhikari
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Frank J Louws
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Ralph A Dean
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
32
|
Chen X, Duan Y, Ren Z, Niu T, Xu Q, Wang Z, Zheng L, Wang Y, Chen X, Huang J, Pan Y. Post-Translational Modification β-Hydroxybutyrylation Regulates Ustilaginoidea virens Virulence. Mol Cell Proteomics 2023; 22:100616. [PMID: 37442371 PMCID: PMC10423879 DOI: 10.1016/j.mcpro.2023.100616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Lysine β-hydroxybutyrylation (Kbhb) is an evolutionarily conserved and widespread post-translational modification that is associated with active gene transcription and cellular proliferation. However, its role in phytopathogenic fungi remains unknown. Here, we characterized Kbhb in the rice false smut fungus Ustilaginoidea virens. We identified 2204 Kbhb sites in 852 proteins, which are involved in diverse biological processes. The mitogen-activated protein kinase UvSlt2 is a Kbhb protein, and a strain harboring a point mutation at K72, the Kbhb site of this protein, had decreased UvSlt2 activity and reduced fungal virulence. Molecular dynamic simulations revealed that K72bhb increases the hydrophobic solvent-accessible surface area of UvSlt2, thereby affecting its binding to its substrates. The mutation of K298bhb in the septin UvCdc10 resulted in reduced virulence and altered the subcellular localization of this protein. Moreover, we confirmed that the NAD+-dependent histone deacetylases UvSirt2 and UvSirt5 are the major enzymes that remove Kbhb in U. virens. Collectively, our findings identify regulatory elements of the Kbhb pathway and reveal important roles for Kbhb in regulating protein localization and enzymatic activity. These findings provide insight into the regulation of virulence in phytopathogenic fungi via post-translational modifications.
Collapse
Affiliation(s)
- Xiaoyang Chen
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Yuhang Duan
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zhiyong Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Taotao Niu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Qiutao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhaoyun Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Lu Zheng
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yaohui Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China; Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaolin Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Junbin Huang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yuemin Pan
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
33
|
Jeon D, Kim JB, Kang BC, Kim C. Deciphering the Genetic Mechanisms of Salt Tolerance in Sorghum bicolor L.: Key Genes and SNP Associations from Comparative Transcriptomic Analyses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2639. [PMID: 37514252 PMCID: PMC10384642 DOI: 10.3390/plants12142639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Sorghum bicolor L. is a vital cereal crop for global food security. Its adaptability to diverse climates make it economically, socially, and environmentally valuable. However, soil salinization caused by climate extremes poses a threat to sorghum. This study aimed to identify candidate salt-tolerant genes and single nucleotide polymorphisms (SNPs) by performing a comparative transcriptome analysis on a mutant sorghum line and its wild type. The mutant line was generated through gamma ray exposure and selection for salt tolerance. Phenotypic measurements were taken, followed by mRNA sequencing and variant calling. In this study, potential genes and non-synonymous SNPs associated with salt tolerance were inferred, including LOC8071970, LOC8067721, LOC110430887, LOC8070256, and LOC8056880. These genes demonstrated notable differences in nsSNPs in comparison to the wild type, suggesting their potential roles in salt tolerance. Additionally, LOC8060874 (cyanohydrin beta-glucosyltransferase) was suggested as a key gene involved in salt tolerance due to its possible role in dhurrin biosynthesis under salt stress. In upcoming research, additional reverse genetics studies will be necessary in order to verify the function of those candidate genes in relation to salt stress. In conclusion, this study underscores the significance of investigating salt tolerance mechanisms and the potential key genes associated with salt tolerance in sorghum. Our findings may provide insights for future breeding strategies aimed at enhancing salinity tolerance and crop productivity.
Collapse
Affiliation(s)
- Donghyun Jeon
- Department of Science in Smart Agriculture System, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Beum-Chang Kang
- Department of Horticulture, College of Agricultural Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Changsoo Kim
- Department of Science in Smart Agriculture System, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Crop Science, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
34
|
Sala T, Puglisi D, Ferrari L, Salamone F, Tassone MR, Rotino GL, Fricano A, Losa A. Genome-wide analysis of genetic diversity in a germplasm collection including wild relatives and interspecific clones of garden asparagus. FRONTIERS IN PLANT SCIENCE 2023; 14:1187663. [PMID: 37476175 PMCID: PMC10354869 DOI: 10.3389/fpls.2023.1187663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/09/2023] [Indexed: 07/22/2023]
Abstract
The Asparagus genus includes approximately 240 species, the most important of which is garden asparagus (Asparagus officinalis L.), as this is a vegetable crop cultivated worldwide for its edible spear. Along with garden asparagus, other species are also cultivated (e.g., Asparagus maritimus L.) or have been proposed as untapped sources of variability in breeding programs (e.g., Asparagus acutifolius L.). In the present work, we applied reduced-representation sequencing to examine a panel of 378 diverse asparagus genotypes, including commercial hybrids, interspecific lines, wild relatives of garden asparagus, and doubled haploids currently used in breeding programs, which enabled the identification of more than 200K single-nucleotide polymorphisms (SNPs). These SNPs were used to assess the extent of linkage disequilibrium in the diploid gene pool of asparagus and combined with preliminary phenotypic information to conduct genome-wide association studies for sex and traits tied to spear quality and production. Moreover, using the same phenotypic and genotypic information, we fitted and cross-validated genome-enabled prediction models for the same set of traits. Overall, our analyses demonstrated that, unlike the diversity detected in wild species related to garden asparagus and in interspecific crosses, cultivated and wild genotypes of A. officinalis L. show a narrow genetic basis, which is a contributing factor hampering the genetic improvement of this crop. Estimating the extent of linkage disequilibrium and providing the first example of genome-wide association study and genome-enabled prediction in this species, we concluded that the asparagus panel examined in the present study can lay the foundation for determination of the genetic bases of agronomically important traits and for the implementation of predictive breeding tools to sustain breeding.
Collapse
Affiliation(s)
- Tea Sala
- Council for Agricultural Research and Economics – Research Centre for Genomics and Bioinformatics (CREA-GB), Montanaso Lombardo, LO, Italy
| | - Damiano Puglisi
- Council for Agricultural Research and Economics – Research Centre for Genomics and Bioinformatics (CREA-GB), Fiorenzuola d’Arda, PC, Italy
| | - Luisa Ferrari
- Council for Agricultural Research and Economics – Research Centre for Genomics and Bioinformatics (CREA-GB), Montanaso Lombardo, LO, Italy
| | - Filippo Salamone
- Council for Agricultural Research and Economics – Research Centre for Genomics and Bioinformatics (CREA-GB), Montanaso Lombardo, LO, Italy
| | - Maria Rosaria Tassone
- Council for Agricultural Research and Economics – Research Centre for Genomics and Bioinformatics (CREA-GB), Montanaso Lombardo, LO, Italy
| | - Giuseppe Leonardo Rotino
- Council for Agricultural Research and Economics – Research Centre for Genomics and Bioinformatics (CREA-GB), Montanaso Lombardo, LO, Italy
| | - Agostino Fricano
- Council for Agricultural Research and Economics – Research Centre for Genomics and Bioinformatics (CREA-GB), Fiorenzuola d’Arda, PC, Italy
| | - Alessia Losa
- Council for Agricultural Research and Economics – Research Centre for Genomics and Bioinformatics (CREA-GB), Montanaso Lombardo, LO, Italy
| |
Collapse
|
35
|
Bělonožníková K, Černý M, Hýsková V, Synková H, Valcke R, Hodek O, Křížek T, Kavan D, Vaňková R, Dobrev P, Haisel D, Ryšlavá H. Casein as protein and hydrolysate: Biostimulant or nitrogen source for Nicotiana tabacum plants grown in vitro? PHYSIOLOGIA PLANTARUM 2023; 175:e13973. [PMID: 37402155 DOI: 10.1111/ppl.13973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023]
Abstract
In contrast to inorganic nitrogen (N) assimilation, the role of organic N forms, such as proteins and peptides, as sources of N and their impact on plant metabolism remains unclear. Simultaneously, organic biostimulants are used as priming agents to improve plant defense response. Here, we analysed the metabolic response of tobacco plants grown in vitro with casein hydrolysate or protein. As the sole source of N, casein hydrolysate enabled tobacco growth, while protein casein was used only to a limited extent. Free amino acids were detected in the roots of tobacco plants grown with protein casein but not in the plants grown with no source of N. Combining hydrolysate with inorganic N had beneficial effects on growth, root N uptake and protein content. The metabolism of casein-supplemented plants shifted to aromatic (Trp), branched-chain (Ile, Leu, Val) and basic (Arg, His, Lys) amino acids, suggesting their preferential uptake and/or alterations in their metabolic pathways. Complementarily, proteomic analysis of tobacco roots identified peptidase C1A and peptidase S10 families as potential key players in casein degradation and response to N starvation. Moreover, amidases were significantly upregulated, most likely for their role in ammonia release and impact on auxin synthesis. In phytohormonal analysis, both forms of casein influenced phenylacetic acid and cytokinin contents, suggesting a root system response to scarce N availability. In turn, metabolomics highlighted the stimulation of some plant defense mechanisms under such growth conditions, that is, the high concentrations of secondary metabolites (e.g., ferulic acid) and heat shock proteins.
Collapse
Affiliation(s)
- Kateřina Bělonožníková
- Department of Biochemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Veronika Hýsková
- Department of Biochemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Helena Synková
- Institute of Experimental Botany, Czech Academy of Sciences, Praha 6, Czech Republic
| | - Roland Valcke
- Molecular and Physical Plant Physiology, Faculty of Sciences, Hasselt University, Diepenbeek, Belgium
| | - Ondřej Hodek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Daniel Kavan
- Department of Biochemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Radomíra Vaňková
- Institute of Experimental Botany, Czech Academy of Sciences, Praha 6, Czech Republic
| | - Petre Dobrev
- Institute of Experimental Botany, Czech Academy of Sciences, Praha 6, Czech Republic
| | - Daniel Haisel
- Institute of Experimental Botany, Czech Academy of Sciences, Praha 6, Czech Republic
| | - Helena Ryšlavá
- Department of Biochemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| |
Collapse
|
36
|
Xiao M, Hao G, Guo X, Feng L, Lin H, Yang W, Chen Y, Zhao K, Xiang L, Jiang X, Mei D, Hu Q. A high-quality chromosome-level Eutrema salsugineum genome, an extremophile plant model. BMC Genomics 2023; 24:174. [PMID: 37020189 PMCID: PMC10077641 DOI: 10.1186/s12864-023-09256-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Eutrema salsugineum (2n = 14), a halophyte in the family Brassicaceae, is an attractive model to study abiotic stress tolerance in plants. Two versions of E. salsugineum genomes that previously reported were based on relatively short reads; thus, the repetitive regions were difficult to characterize. RESULTS We report the sequencing and assembly of the E. salsugineum (Shandong accession) genome using long-read sequencing and chromosome conformation capture data. We generated Oxford Nanopore long reads at high depth (> 60X) of genome coverage with additional short reads for error correction. The new assembly has a total size of 295.5 Mb with 52.8% repetitive sequences, and the karyotype of E. salsugineum is consistent with the ancestral translocation Proto-Calepineae Karyotype structure in both order and orientation. Compared with previous assemblies, this assembly has higher contiguity, especially in the centromere region. Based on this new assembly, we predicted 25,399 protein-coding genes and identified the positively selected genes associated with salt and drought stress responses. CONCLUSION The new genome assembly will provide a valuable resource for future genomic studies and facilitate comparative genomic analysis with other plants.
Collapse
Grants
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
Collapse
Affiliation(s)
- Meng Xiao
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Guoqian Hao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644007, Sichuan, China
| | - Xinyi Guo
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Landi Feng
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Hao Lin
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Wenjie Yang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Yanyu Chen
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Kexin Zhao
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Ling Xiang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Xinyao Jiang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Dong Mei
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Quanjun Hu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China.
| |
Collapse
|
37
|
Sharma S, Deswal R. N-Linked Glycoproteome Analysis of Diosorea alata Tuber Shows Atypical Glycosylation and Indicates Central Role of Glycosylated Proteins in Tuber Maturation. Protein J 2023; 42:78-93. [PMID: 36754933 DOI: 10.1007/s10930-023-10094-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
Glycosylation is an important post translational modification in plants. First analysis of N-linked glycosylated proteins of Dioscorea alata using Concanavalin A lectin affinity chromatography enrichment coupled with label free quantification is presented. In total, 114 enriched glycoproteins were detected. Signal P and sub-cellular localization showed 42.2% of proteins to be secretory. These included peroxidases, endochitinases, calreticulin, calnexin, thaumatins and lipid transfer proteins. Gene Ontology and MapMan analysis predicted the enriched glycoproteins to be involved in processes essential for tuber maturation namely: signal transduction, lignification, protein trafficking, endoplasmic reticulum quality control and cell wall remodeling. This was supported by biochemical validation of the essential glycoproteins. Interestingly, out of the two dioscorin isoforms, Dio B was the only N-glycosylated form. In silico analysis showed O-glycosylation sites in the other form, Dio A suggesting its similarity with sporamin, the storage protein of sweet potato. Absence of signal peptide in Dio B and the presence of non-canonical motif hints towards its atypical glycosylation. The analysis revealed that N-glycosylation of Dio B isoform maintains the activities associated with Dioscorin at maturity and provides an overview of protein N-glycosylation, enriching the glycoproteome database of plants especially tubers.
Collapse
Affiliation(s)
- Shruti Sharma
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, India
| | - Renu Deswal
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, India.
| |
Collapse
|
38
|
De Meyer F, Carlier A. Ecotin: A versatile protease inhibitor of bacteria and eukaryotes. Front Microbiol 2023; 14:1114690. [PMID: 36760512 PMCID: PMC9904509 DOI: 10.3389/fmicb.2023.1114690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Serine protease inhibitors are a large family of proteins involved in important pathways and processes, such as inflammatory responses and blood clotting. Most are characterized by a precise mode of action, thereby targeting a narrow range of protease substrates. However, the serine-protease inhibitor ecotin is able to inhibit a broad range of serine proteases that display a wide range of specificities. This specificity is driven by special structural features which allow unique flexibility upon binding to targets. Although frequently observed in many human/animal-associated bacteria, ecotin homologs may also be found in plant-associated taxa and environmental species. The purpose of this review is to provide an update on the biological importance, role in host-microbe interactions, and evolutionary relationship between ecotin orthologs isolated from Eukaryotic and Prokaryotic species across the Tree of Life.
Collapse
Affiliation(s)
- Frédéric De Meyer
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Aurélien Carlier
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium,LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France,*Correspondence: Aurélien Carlier, ✉
| |
Collapse
|
39
|
de Menezes TA, Aburjaile FF, Quintanilha-Peixoto G, Tomé LMR, Fonseca PLC, Mendes-Pereira T, Araújo DS, Melo TS, Kato RB, Delabie JHC, Ribeiro SP, Brenig B, Azevedo V, Drechsler-Santos ER, Andrade BS, Góes-Neto A. Unraveling the Secrets of a Double-Life Fungus by Genomics: Ophiocordyceps australis CCMB661 Displays Molecular Machinery for Both Parasitic and Endophytic Lifestyles. J Fungi (Basel) 2023; 9:jof9010110. [PMID: 36675931 PMCID: PMC9864599 DOI: 10.3390/jof9010110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Ophiocordyceps australis (Ascomycota, Hypocreales, Ophiocordycipitaceae) is a classic entomopathogenic fungus that parasitizes ants (Hymenoptera, Ponerinae, Ponerini). Nonetheless, according to our results, this fungal species also exhibits a complete set of genes coding for plant cell wall degrading Carbohydrate-Active enZymes (CAZymes), enabling a full endophytic stage and, consequently, its dual ability to both parasitize insects and live inside plant tissue. The main objective of our study was the sequencing and full characterization of the genome of the fungal strain of O. australis (CCMB661) and its predicted secretome. The assembled genome had a total length of 30.31 Mb, N50 of 92.624 bp, GC content of 46.36%, and 8,043 protein-coding genes, 175 of which encoded CAZymes. In addition, the primary genes encoding proteins and critical enzymes during the infection process and those responsible for the host-pathogen interaction have been identified, including proteases (Pr1, Pr4), aminopeptidases, chitinases (Cht2), adhesins, lectins, lipases, and behavioral manipulators, such as enterotoxins, Protein Tyrosine Phosphatases (PTPs), and Glycoside Hydrolases (GHs). Our findings indicate that the presence of genes coding for Mad2 and GHs in O. australis may facilitate the infection process in plants, suggesting interkingdom colonization. Furthermore, our study elucidated the pathogenicity mechanisms for this Ophiocordyceps species, which still is scarcely studied.
Collapse
Affiliation(s)
- Thaís Almeida de Menezes
- Department of Biological Sciences, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n, Novo Horizonte, Feira de Santana 44036-900, BA, Brazil
| | - Flávia Figueira Aburjaile
- Laboratory of Integrative Bioinformatics, Preventive Veterinary Medicine Department, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Gabriel Quintanilha-Peixoto
- Laboratory of Molecular and Computational Biology of Fungi, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil
| | - Luiz Marcelo Ribeiro Tomé
- Laboratory of Molecular and Computational Biology of Fungi, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil
| | - Paula Luize Camargos Fonseca
- Laboratory of Molecular and Computational Biology of Fungi, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil
| | - Thairine Mendes-Pereira
- Laboratory of Molecular and Computational Biology of Fungi, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil
| | - Daniel Silva Araújo
- Program in Bioinformatics, Loyola University Chicago, Chicago, IL 60660, USA
| | - Tarcisio Silva Melo
- Department of Biological Sciences, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n, Novo Horizonte, Feira de Santana 44036-900, BA, Brazil
| | - Rodrigo Bentes Kato
- Laboratory of Molecular and Computational Biology of Fungi, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil
| | - Jacques Hubert Charles Delabie
- Laboratory of Myrmecology, Centro de Pesquisa do Cacau, Ilhéus 45600-000, BA, Brazil
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz, Ilhéus 45600-970, BA, Brazil
| | - Sérvio Pontes Ribeiro
- Laboratory of Ecology of Diseases and Forests, Nucleus of Biological Science, Campus Morro do Cruzeiro, Universidade Federal de Ouro Preto, Ouro Preto 35402-163, MG, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardtweg, University of Göttingen, 37073 Göttingen, Germany
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | - Bruno Silva Andrade
- Department of Biological Sciences, Universidade Federal do Sudoeste da Bahia, Av. José Moreira Sobrinho, s/n, Jequiezinho, Jequié 45205-490, BA, Brazil
| | - Aristóteles Góes-Neto
- Laboratory of Molecular and Computational Biology of Fungi, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil
- Correspondence: ; Tel.: +55-31-3409-3050
| |
Collapse
|
40
|
Cui H, Zhou G, Ruan H, Zhao J, Hasi A, Zong N. Genome-Wide Identification and Analysis of the Maize Serine Peptidase S8 Family Genes in Response to Drought at Seedling Stage. PLANTS (BASEL, SWITZERLAND) 2023; 12:369. [PMID: 36679082 PMCID: PMC9865268 DOI: 10.3390/plants12020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Subtilisin-like proteases (subtilases) are found in almost all plant species and are involved in regulating various biotic and abiotic stresses. Although the literature on subtilases in different plant species is vast, the gene function of the serine peptidase S8 family and its maize subfamily is still unknown. Here, a bioinformatics analysis of this gene family was conducted by describing gene structure, conserved motifs, phylogenetic relationships, chromosomal distributions, gene duplications, and promoter cis-elements. In total, we identified 18 ZmSPS8 genes in maize, distributed on 7 chromosomes, and half of them were hydrophilic. Most of these proteins were located at the cell wall and had similar secondary and tertiary structures. Prediction of cis-regulatory elements in promoters illustrated that they were mainly associated with hormones and abiotic stress. Maize inbred lines B73, Zheng58, and Qi319 were used to analyze the spatial-temporal expression patterns of ZmSPS8 genes under drought treatment. Seedling drought results showed that Qi319 had the highest percent survival after 14 d of withholding irrigation, while B73 was the lowest. Leaf relative water content (LRWC) declined more rapidly in B73 and to lower values, and the nitrotetrazolium blue chloride (NBT) contents of leaves were higher in Qi319 than in the other inbreds. The qPCR results indicated that 6 serine peptidase S8 family genes were positively or negatively correlated with plant tolerance to drought stress. Our study provides a detailed analysis of the ZmSPS8s in the maize genome and finds a link between drought tolerance and the family gene expression, which was established by using different maize inbred lines.
Collapse
Affiliation(s)
- Hongwei Cui
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Guyi Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongqiang Ruan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Agula Hasi
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Na Zong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
41
|
Wleklik K, Borek S. Vacuolar Processing Enzymes in Plant Programmed Cell Death and Autophagy. Int J Mol Sci 2023; 24:ijms24021198. [PMID: 36674706 PMCID: PMC9862320 DOI: 10.3390/ijms24021198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Vacuolar processing enzymes (VPEs) are plant cysteine proteases that are subjected to autoactivation in an acidic pH. It is presumed that VPEs, by activating other vacuolar hydrolases, are in control of tonoplast rupture during programmed cell death (PCD). Involvement of VPEs has been indicated in various types of plant PCD related to development, senescence, and environmental stress responses. Another pathway induced during such processes is autophagy, which leads to the degradation of cellular components and metabolite salvage, and it is presumed that VPEs may be involved in the degradation of autophagic bodies during plant autophagy. As both PCD and autophagy occur under similar conditions, research on the relationship between them is needed, and VPEs, as key vacuolar proteases, seem to be an important factor to consider. They may even constitute a potential point of crosstalk between cell death and autophagy in plant cells. This review describes new insights into the role of VPEs in plant PCD, with an emphasis on evidence and hypotheses on the interconnections between autophagy and cell death, and indicates several new research opportunities.
Collapse
|
42
|
Lu D, Xu B, Yu Q, Liu Z, Ren M, Wang Y, Zhang S, Wu C, Shen Y. Identification of potential light deficiency response regulators in endangered species Magnolia sinostellata. Sci Rep 2022; 12:22536. [PMID: 36581613 PMCID: PMC9800573 DOI: 10.1038/s41598-022-25393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/29/2022] [Indexed: 12/30/2022] Open
Abstract
Magnolia sinostellata is one of the endangered species in China and largely suffers light deficiency stress in the understory of forest. However, the weak light response molecular mechanism remains unclear. More importantly, hub genes in the molecular network have not been pinpointed. To explore potential regulators in the mechanism, weighted gene co-expression network analysis (WGCNA) was performed to analysis the trancriptome data of M. sinostellata leaves subjected to weak light with different time points. Gene co-expression analysis illustrated that module 1, 2 and 3 were closely associated with light deficiency treatment, which. Gene ontology and KEGG analyses showed that genes in module 1 mainly participated in amino and nucleotide metabolism, module 2 mostly involved in carbon fixation and module 3 mostly regulated photosynthesis related pathways, among which 6, 7 and 8 hub genes were identified, respectively. Hub genes isoform_107196 in module 1 and isoform_55976 in module 2 were unique to M. sinostellata. This study found that light deficiency inhibited photosynthesis and stress tolerance, while improved carbon metabolism and flowering related pathways in M. sinostellata, which can impact its accumulation reserves of growth and reproduction in the next season. In addition, key shade response regulators identified in this study have laid a firm foundation for further investigation of shade response molecular mechanism and protection of other shade sensitive plants.
Collapse
Affiliation(s)
- Danying Lu
- College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Bin Xu
- College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Qin Yu
- College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Zhigao Liu
- College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China.
| | - Mingjie Ren
- College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Yaling Wang
- Xi'an Botanical Garden of Shanxi Academy of Science, Xi'an , 710061, Shanxi, China
| | - Shouzhou Zhang
- Fairy Lake Botanical Garden, Shenzhen, 518004, Guangdong, China
| | - Chao Wu
- College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Yamei Shen
- College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
43
|
Gasser M, Alloisio N, Fournier P, Balmand S, Kharrat O, Tulumello J, Carro L, Heddi A, Da Silva P, Normand P, Pujic P, Boubakri H. A Nonspecific Lipid Transfer Protein with Potential Functions in Infection and Nodulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:1096-1108. [PMID: 36102948 DOI: 10.1094/mpmi-06-22-0131-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The response of Alnus glutinosa to Frankia alni ACN14a is driven by several sequential physiological events from calcium spiking and root-hair deformation to the development of the nodule. Early stages of actinorhizal symbiosis were monitored at the transcriptional level to observe plant host responses to Frankia alni. Forty-two genes were significantly upregulated in inoculated compared with noninoculated roots. Most of these genes encode proteins involved in biological processes induced during microbial infection, such as oxidative stress or response to stimuli, but a large number of them are not differentially modulated or downregulated later in the process of nodulation. In contrast, several of them remained upregulated in mature nodules, and this included the gene most upregulated, which encodes a nonspecific lipid transfer protein (nsLTP). Classified as an antimicrobial peptide, this nsLTP was immunolocalized on the deformed root-hair surfaces that are points of contact for Frankia spp. during infection. Later in nodules, it binds to the surface of F. alni ACN14a vesicles, which are the specialized cells for nitrogen fixation. This nsLTP, named AgLTP24, was biologically produced in a heterologous host and purified for assay on F. alni ACN14a to identify physiological effects. Thus, the activation of the plant immunity response occurs upon first contact, while the recognition of F. alni ACN14a genes switches off part of the defense system during nodulation. AgLTP24 constitutes a part of the defense system that is maintained all along the symbiosis, with potential functions such as the formation of infection threads or nodule primordia to the control of F. alni proliferation. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mélanie Gasser
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Nicole Alloisio
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Pascale Fournier
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Severine Balmand
- INSA-Lyon, INRAE, UMR203 BF2i, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, France
| | - Ons Kharrat
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Joris Tulumello
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Lorena Carro
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Abdelaziz Heddi
- INSA-Lyon, INRAE, UMR203 BF2i, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, France
| | - Pedro Da Silva
- INSA-Lyon, INRAE, UMR203 BF2i, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, France
| | - Philippe Normand
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Petar Pujic
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Hasna Boubakri
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| |
Collapse
|
44
|
Yang L, Yan C, Peng S, Chen L, Guo J, Lu Y, Li L, Ji Z. Broad-spectrum resistance mechanism of serine protease Sp1 in Bacillus licheniformis W10 via dual comparative transcriptome analysis. Front Microbiol 2022; 13:974473. [PMID: 36267189 PMCID: PMC9577198 DOI: 10.3389/fmicb.2022.974473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Antagonistic microorganisms are considered to be the most promising biological controls for plant disease. However, they are still not as popular as chemical pesticides due to complex environmental factors in the field. It is urgent to exploit their potential genetic characteristics and excellent properties to develop biopesticides with antimicrobial substances as the main components. Here, the serine protease Sp1 isolated from the Bacillus licheniformis W10 strain was confirmed to have a broad antifungal and antibacterial spectrum. Sp1 treatment significantly inhibited fungal vegetative growth and damaged the structure of hyphae, in accordance with that caused by W10 strain. Furthermore, Sp1 could activate the systemic resistance of peach twigs, fruits and tobacco. Dual comparative transcriptome analysis uncovered how Sp1 resisted the plant pathogenic fungus Phomopsis amygdali and the potential molecular resistance mechanisms of tobacco. In PSp1 vs. P. amygdali, RNA-seq identified 150 differentially expressed genes (DEGs) that were upregulated and 209 DEGs that were downregulated. Further analysis found that Sp1 might act on the energy supply and cell wall structure to inhibit the development of P. amygdali. In TSp1 vs. Xanthi tobacco, RNA-seq identified that 5937 DEGs were upregulated and 2929 DEGs were downregulated. DEGs were enriched in the metabolic biosynthesis pathways of secondary metabolites, plant hormone signal transduction, plant–pathogen interactions, and MAPK signaling pathway–plant and further found that the genes of salicylic acid (SA) and jasmonic acid (JA) signaling pathways were highly expressed and the contents of SA and JA increased significantly, suggesting that systemic resistance induced by Sp1 shares features of SAR and ISR. In addition, Sp1 might induce the plant defense responses of tobacco. This study provides insights into the broad-spectrum resistance molecular mechanism of Sp1, which could be used as a potential biocontrol product.
Collapse
Affiliation(s)
- Lina Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Chun Yan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Shuai Peng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Lili Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Junjie Guo
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yihe Lu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Lianwei Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zhaolin Ji
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- *Correspondence: Zhaolin Ji,
| |
Collapse
|
45
|
Qiu S, Bradley JM, Zhang P, Chaudhuri R, Blaxter M, Butlin RK, Scholes JD. Genome-enabled discovery of candidate virulence loci in Striga hermonthica, a devastating parasite of African cereal crops. THE NEW PHYTOLOGIST 2022; 236:622-638. [PMID: 35699626 PMCID: PMC9795911 DOI: 10.1111/nph.18305] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Parasites have evolved proteins, virulence factors (VFs), that facilitate plant colonisation, however VFs mediating parasitic plant-host interactions are poorly understood. Striga hermonthica is an obligate, root-parasitic plant of cereal hosts in sub-Saharan Africa, causing devastating yield losses. Understanding the molecular nature and allelic variation of VFs in S. hermonthica is essential for breeding resistance and delaying the evolution of parasite virulence. We assembled the S. hermonthica genome and identified secreted proteins using in silico prediction. Pooled sequencing of parasites growing on a susceptible and a strongly resistant rice host allowed us to scan for loci where selection imposed by the resistant host had elevated the frequency of alleles contributing to successful colonisation. Thirty-eight putatively secreted VFs had very different allele frequencies with functions including host cell wall modification, protease or protease inhibitor and kinase activities. These candidate loci had significantly higher Tajima's D than the genomic background, consistent with balancing selection. Our results reveal diverse strategies used by S. hermonthica to overcome different layers of host resistance. Understanding the maintenance of variation at virulence loci by balancing selection will be critical to managing the evolution of virulence as part of a sustainable control strategy.
Collapse
Affiliation(s)
- Suo Qiu
- School of BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - James M. Bradley
- School of BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Peijun Zhang
- School of BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Roy Chaudhuri
- School of BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Mark Blaxter
- Institute of Evolutionary Biology, School of Biological SciencesThe University of Edinburgh, Ashworth LaboratoriesCharlotte Auerbach RoadEdinburghEH9 3FLUK
- Wellcome Sanger InstituteWellcome Genome Campus, HinxtonCambridgeCB10 1SAUK
| | - Roger K. Butlin
- School of BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
- Department of Marine SciencesUniversity of GothenburgS‐405 30GothenburgSweden
| | - Julie D. Scholes
- School of BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| |
Collapse
|
46
|
Chen X, Li X, Duan Y, Pei Z, Liu H, Yin W, Huang J, Luo C, Chen X, Li G, Xie K, Hsiang T, Zheng L. A secreted fungal subtilase interferes with rice immunity via degradation of SUPPRESSOR OF G2 ALLELE OF skp1. PLANT PHYSIOLOGY 2022; 190:1474-1489. [PMID: 35861434 PMCID: PMC9516721 DOI: 10.1093/plphys/kiac334] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Serine protease subtilase, found widely in both eukaryotes and prokaryotes, participates in various biological processes. However, how fungal subtilase regulates plant immunity is a major concern. Here, we identified a secreted fungal subtilase, UvPr1a, from the rice false smut (RFS) fungus Ustilaginoidea virens. We characterized UvPr1a as a virulence effector localized to the plant cytoplasm that inhibits plant cell death induced by Bax. Heterologous expression of UvPr1a in rice (Oryza sativa) enhanced plant susceptibility to rice pathogens. UvPr1a interacted with the important rice protein SUPPRESSOR OF G2 ALLELE OF skp1 (OsSGT1), a positive regulator of innate immunity against multiple rice pathogens, degrading OsSGT1 in a protease activity-dependent manner. Furthermore, host-induced gene silencing of UvPr1a compromised disease resistance of rice plants. Our work reveals a previously uncharacterized fungal virulence strategy in which a fungal pathogen secretes a subtilase to interfere with rice immunity through degradation of OsSGT1, thereby promoting infection. These genetic resources provide tools for introducing RFS resistance and further our understanding of plant-pathogen interactions.
Collapse
Affiliation(s)
| | | | - Yuhang Duan
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhangxin Pei
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China
| | - Hao Liu
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weixiao Yin
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junbin Huang
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaoxi Luo
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolin Chen
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guotian Li
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kabin Xie
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | | |
Collapse
|
47
|
Šoln K, Klemenčič M, Koce JD. Plant cell responses to allelopathy: from oxidative stress to programmed cell death. PROTOPLASMA 2022; 259:1111-1124. [PMID: 34993622 DOI: 10.1007/s00709-021-01729-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Allelopathy is a plant-plant interaction in which one plant releases biologically active compounds that have negative effects on the fitness of the target plant. The most pronounced effects are inhibition of seed germination and growth of neighboring plants. The roots of these plants are in contact with the allelochemicals released into the soil, as the primary target of the allelopathic action. To date, the best documented allelopathic activities relate to some weeds and invasive alien plants that show rapid spread and successful growth. A better understanding of the mechanisms of allelopathy will help to improve crop production and to manage and prevent plant invasions. At the cellular level, allelochemicals induce a burst of reactive oxygen species in the target plants, which leads to oxidative stress, and can promote programmed cell death. Lipid peroxidation and cell membrane changes, protein modifications, and increased protease activities are the early signs of cell damage. When enzymatic and nonenzymatic antioxidants cannot scavenge reactive oxidants, this can result in hydrolytic or necrotic degradation of the protoplast. Cell organelles then lose their integrity and function. In roots, the structure and activity of the apical meristem are changed, which affects root growth and water absorption. Such allelopathically active compounds might thus be applied to control and manage weeds and invasive plants in a more sustainable way, to reduce chemical pollution.
Collapse
Affiliation(s)
- Katarina Šoln
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Jasna Dolenc Koce
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
| |
Collapse
|
48
|
Hilário S, Gonçalves MFM, Fidalgo C, Tacão M, Alves A. Genome Analyses of Two Blueberry Pathogens: Diaportheamygdali CAA958 and Diaporthe eres CBS 160.32. J Fungi (Basel) 2022; 8:804. [PMID: 36012791 PMCID: PMC9409727 DOI: 10.3390/jof8080804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
The genus Diaporthe includes pathogenic species distributed worldwide and affecting a wide variety of hosts. Diaporthe amygdali and Diaporthe eres have been found to cause cankers, dieback, or twig blights on economically important crops such as soybean, almond, grapevine, and blueberry. Despite their importance as plant pathogens, the strategies of species of Diaporthe to infect host plants are poorly explored. To provide a genomic basis of pathogenicity, the genomes of D. amygdali CAA958 and D. eres CBS 160.32 were sequenced and analyzed. Cellular transporters involved in the transport of toxins, ions, sugars, effectors, and genes implicated in pathogenicity were detected in both genomes. Hydrolases and oxidoreductases were the most prevalent carbohydrate-active enzymes (CAZymes). However, analyses of the secreted proteins revealed that the secretome of D. eres CBS 160.32 is represented by 5.4% of CAZymes, whereas the secreted CAZymes repertoire of D. amygdali CAA958 represents 29.1% of all secretomes. Biosynthetic gene clusters (BGCs) encoding compounds related to phytotoxins and mycotoxins were detected in D. eres and D. amygdali genomes. The core gene clusters of the phytotoxin Fusicoccin A in D. amygdali are reported here through a genome-scale assembly. Comparative analyses of the genomes from 11 Diaporthe species revealed an average of 874 CAZymes, 101 secondary metabolite BGCs, 1640 secreted proteins per species, and genome sizes ranging from 51.5 to 63.6 Mbp. This study offers insights into the overall features and characteristics of Diaporthe genomes. Our findings enrich the knowledge about D. eres and D. amygdali, which will facilitate further research into the pathogenicity mechanisms of these species.
Collapse
Affiliation(s)
| | | | | | | | - Artur Alves
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (S.H.); (M.F.M.G.); (C.F.); (M.T.)
| |
Collapse
|
49
|
Zheng K, Pang L, Xue X, Gao P, Zhao H, Wang Y, Han S. Genome-Wide Comprehensive Survey of the Subtilisin-Like Proteases Gene Family Associated With Rice Caryopsis Development. FRONTIERS IN PLANT SCIENCE 2022; 13:943184. [PMID: 35795345 PMCID: PMC9251471 DOI: 10.3389/fpls.2022.943184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Subtilisin-like proteases (SUBs), which are extensively distributed in three life domains, affect all aspects of the plant life cycle, from embryogenesis and organogenesis to senescence. To explore the role of SUBs in rice caryopsis development, we recharacterized the OsSUB gene family in rice (Oryza sativa ssp. japonica). In addition, investigation of the SUBs was conducted across cultivated and wild rice in seven other Oryza diploid species (O. brachyantha, O. glaberrima, O. meridionalis, O. nivara, O. punctata, O. rufipogon, and O. sativa ssp. indica). Sixty-two OsSUBs were identified in the latest O. sativa ssp. japonica genome, which was higher than that observed in wild species. The SUB gene family was classified into six evolutionary branches, and SUB1 and SUB3 possessed all tandem duplication (TD) genes. All paralogous SUBs in eight Oryza plants underwent significant purifying selection. The expansion of SUBs in cultivated rice was primarily associated with the occurrence of tandem duplication events and purifying selection and may be the result of rice domestication. Combining the expression patterns of OsSUBs in different rice tissues and qRT-PCR verification, four OsSUBs were expressed in rice caryopses. Moreover, OsSUBs expressed in rice caryopses possessed an earlier origin in Oryza, and the gene cluster formed by OsSUBs together with the surrounding gene blocks may be responsible for the specific expression of OsSUBs in caryopses. All the above insights were inseparable from the continuous evolution and domestication of Oryza. Together, our findings not only contribute to the understanding of the evolution of SUBs in cultivated and wild rice but also lay the molecular foundation of caryopsis development and engineering improvement of crop yield.
Collapse
Affiliation(s)
- Kaifeng Zheng
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lu Pang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xiuhua Xue
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ping Gao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
- Academy of Plateau Science and Sustainability of the People’s Government of Qinghai Province and Beijing Normal University, Qinghai Normal University, Xining, China
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
- Academy of Plateau Science and Sustainability of the People’s Government of Qinghai Province and Beijing Normal University, Qinghai Normal University, Xining, China
| |
Collapse
|
50
|
Basak S, Kundu P. Plant metacaspases: Decoding their dynamics in development and disease. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 180:50-63. [PMID: 35390704 DOI: 10.1016/j.plaphy.2022.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/02/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Plant metacaspases were evolved in parallel to well-characterized animal counterpart caspases and retained the similar histidine-cysteine catalytic dyad, leading to functional congruity between these endopeptidases. Although phylogenetic relatedness of the catalytic domain and functional commonality placed these proteases in the caspase family, credible counterarguments predominantly about their distinct substrate specificity raised doubts about the classification. Metacaspases are involved in regulating the PCD during development as well as in senescence. Balancing acts of metacaspase activity also dictate cell fate during defense upon the perception of adverse environmental cues. Accordingly, their activity is tightly regulated, while suppressing spurious activation, by a combination of genetic and post-translational modifications. Structural insights from recent studies provided vital clues on the functionality. This comprehensive review aims to explore the origin of plant metacaspases, and their regulatory and functional diversity in different plants while discussing their analogy to mammalian caspases. Besides, we have presented various modern methodologies for analyzing the proteolytic activity of these indispensable molecules in the healthy or stressed life of a plant. The review would serve as a repository of all the available pieces of evidence indicating metacaspases as the key regulator of PCD across the plant kingdom and highlight the prospect of studying metacaspases for their inclusion in a crop improvement program.
Collapse
Affiliation(s)
- Shrabani Basak
- Division of Plant Biology, Bose Institute, EN-80, Sector V, Bidhannagar, Kolkata, 700091, West Bengal, India.
| | - Pallob Kundu
- Division of Plant Biology, Bose Institute, EN-80, Sector V, Bidhannagar, Kolkata, 700091, West Bengal, India.
| |
Collapse
|