1
|
He K, Xu L, Zhu X, Zhang W, Ren L, Liu Y, Guo C, Ma Y, Yi Q, Xu Y, Yin J, Luo X, Zou L, Song L, Lu X, Tang Y, He M, Chen X, Li W. OsEPSPS Balances Disease Resistance and Plant Growth. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40241284 DOI: 10.1111/pce.15565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/10/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
The balance between the antagonistic traits, such as plant growth and disease resistance, is crucial for developing elite crop varieties. While the roles of plant hormones in this balance are well established, the regulatory function of secondary metabolites remains largely unexplored. Here, we report that 5-enolpyruvylshikimate-3-phosphate synthase (OsEPSPS), a key enzyme in the shikimate pathway, regulates both plant growth and disease resistance. Silencing the OsEPSPS gene in rice compromises the shikimate pathway but enhances the nicotinate and nicotinamide metabolism, resulting in the accumulations of trigonelline and nicotinamide mononucleotide (NMN). These metabolites boost resistance to rice blast by activating plant immune responses rather than inhibiting the germination and growth of Magnaporthe oryzae. Furthermore, silencing OsEPSPS conferring disease resistance results in less growth in plant. Our findings highlight the pivotal role of OsEPSPS in coordinating plant growth and disease resistance.
Collapse
Grants
- This study was supported by the National Natural Science Foundation of China (32121003 and 32425005) to X.C., (32172419 and 32372555) to W.L., (32472565) to X.Z., (32272560) to L.Z. and (32272033) to Y.T.; National Key Research and Development program (2021YFA1300702), Major Projects in Agricultural Biological Breeding (2022ZD04002), and New Cornerstone Science Foundation through the XPLORER PRIZE to X.C. National Key Research and Development Program of China for Young Scientists (2022YFD1401400) to X.Z.; College Student Innovation and Entrepreneurship Training Program Project (S202410626003) to Y.X.; Sichuan Science and Technology Program (2023NSFSC0005) to X.C., (2023NSFSC1996) to W.L., (2024YFNH0014) to J.Y., (2023NSFSC1937) to L.Z., (2024NSFSC1317) to Q.O., (2024NSFSC0322) to L.S., and (2022NSFSC0166) to Y.T.
Collapse
Affiliation(s)
- Kaiwei He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Liting Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lifen Ren
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuchen Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chunyu Guo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yahuan Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qian Yi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yingzhi Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology Center, Chengdu, China
| | - Lijuan Zou
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Teachers' College, Mianyang, China
| | - Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yongyan Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Zhang B, Guo M, Liu X, Zhang B, Cui Y, Cao X, Zhang Z, Shi C, Wei H, He H, Zhang H, Zhu Y, Wang X, Lv Y, Yu X, Chen D, Yuan Q, Teng S, Sun T, Qian Q, Shang L. RBB1 negatively regulates rice disease resistance by modulating protein glycosylation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:391-407. [PMID: 39620422 DOI: 10.1111/jipb.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/28/2024] [Indexed: 02/13/2025]
Abstract
Glycosylation, a prevalent post-translational modification in eukaryotic secreted and membrane-associated proteins, plays a pivotal role in diverse physiological and pathological processes. Although UDP-N-acetylglucosamine (UDP-GlcNAc) is essential for this modification, the specific glycosylation mechanisms during plant leaf senescence and defense responses remain poorly understood. In our research, we identified a novel rice mutant named rbb1 (resistance to blast and bacterial blight1), exhibiting broad-spectrum disease resistance. This mutant phenotype results from a loss-of-function mutation in the gene encoding glucosamine-6-phosphate acetyltransferase, an important enzyme in D-glucosamine 6-phosphate acetylation. The rbb1 mutant demonstrates enhanced defense responses, evident in increased resistance to rice blast and bacterial blight, along with the upregulation of defense-response genes. Various biochemical markers indicate an activated defense mechanism in the rbb1 mutant, such as elevated levels of reactive oxygen species and malondialdehyde, reduced enzyme activity and UDP-GlcNAc content, and decreased expression of N-glycan and O-glycan modifying proteins. Moreover, proteome analysis of N-glycosylation modifications reveals alterations in the N-glycosylation of several disease-resistance-related proteins, with a significant reduction in Prx4 and Prx13 in rbb1-1. Additionally, the knockout of Prx4 or Prx13 also enhances resistance to Xanthomonas oryzae pv. oryzae (Xoo) and Magnaporthe oryzae (M. oryzae). This study uncovers a novel mechanism of defense response in rice, suggesting potential targets for the development of disease-resistant varieties.
Collapse
Affiliation(s)
- Bin Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Yazhouwan National Laboratory, Sanya, 572024, China
| | - Mingliang Guo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Xiangpei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Bintao Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Yan Cui
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Xinglan Cao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Zhipeng Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Chuanlin Shi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Hua Wei
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Huiying He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Hong Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Yiwang Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Xianmeng Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Yang Lv
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Xiaoman Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Dandan Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Qiaoling Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Sheng Teng
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Tongjun Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Yazhouwan National Laboratory, Sanya, 572024, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310000, China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Yazhouwan National Laboratory, Sanya, 572024, China
- Nanfan Research Institute, Chinese Academy of Agriculture Science, Sanya, 572024, China
| |
Collapse
|
3
|
Gogoi K, Gogoi H, Borgohain M, Saikia R, Chikkaputtaiah C, Hiremath S, Basu U. The molecular dynamics between reactive oxygen species (ROS), reactive nitrogen species (RNS) and phytohormones in plant's response to biotic stress. PLANT CELL REPORTS 2024; 43:263. [PMID: 39412663 DOI: 10.1007/s00299-024-03343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/24/2024] [Indexed: 11/15/2024]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are critical for plant development as well as for its stress response. They can function as signaling molecules to orchestrate a well-defined response of plants to biotic stress. These responses are further fine-tuned by phytohormones, such as salicylic acid, jasmonic acid, and ethylene, to modulate immune response. In the past decades, the intricacies of redox and phytohormonal signaling have been uncovered during plant-pathogen interactions. This review explores the dynamic interplay of these components, elucidating their roles in perceiving biotic threats and shaping the plant's defense strategy. Molecular regulators and sites of oxidative burst have been explored during pathogen perception. Further, the interplay between various components of redox and phytohormonal signaling has been explored during bacterial, fungal, viral, and nematode infections as well as during insect pest infestation. Understanding these interactions highlights gaps in the current knowledge and provides insights into engineering crop varieties with enhanced resistance to pathogens and pests. This review also highlights potential applications of manipulating regulators of redox signaling to bolster plant immunity and ensure global food security. Future research should explore regulators of these signaling pathways as potential target to develop biotic stress-tolerant crops. Further insights are also needed into roles of endophytes and host microbiome modulating host ROS and RNS pool for exploiting them as biocontrol agents imparting resistance against pathogens in plants.
Collapse
Affiliation(s)
- Krishna Gogoi
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
| | - Hunmoyna Gogoi
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- The Assam Kaziranga University, Jorhat, Assam, 785006, India
| | - Manashi Borgohain
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- The Assam Kaziranga University, Jorhat, Assam, 785006, India
| | - Ratul Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shridhar Hiremath
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Centre for Infectious Diseases, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India.
| | - Udita Basu
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Mascarenhas MS, Nascimento FDS, Rocha ADJ, Ferreira MDS, Oliveira WDDS, Morais Lino LS, Mendes TADO, Ferreira CF, dos Santos-Serejo JA, Amorim EP. Use of CRISPR Technology in Gene Editing for Tolerance to Biotic Factors in Plants: A Systematic Review. Curr Issues Mol Biol 2024; 46:11086-11123. [PMID: 39451539 PMCID: PMC11505962 DOI: 10.3390/cimb46100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
The objective of this systematic review (SR) was to select studies on the use of gene editing by CRISPR technology related to plant resistance to biotic stresses. We sought to evaluate articles deposited in six electronic databases, using pre-defined inclusion and exclusion criteria. This SR demonstrates that countries such as China and the United States of America stand out in studies with CRISPR/Cas. Among the most studied crops are rice, tomatoes and the model plant Arabidopsis thaliana. The most cited biotic agents include the genera, Xanthomonas, Manaporthe, Pseudomonas and Phytophthora. This SR also identifies several CRISPR/Cas-edited genes and demonstrates that plant responses to stressors are mediated by many complex signaling pathways. The Cas9 enzyme is used in most articles and Cas12 and 13 are used as additional editing tools. Furthermore, the quality of the articles included in this SR was validated by a risk of bias analysis. The information collected in this SR helps to understand the state of the art of CRISPR/Cas aimed at improving resistance to diseases and pests to understand the mechanisms involved in most host-pathogen relationships. This SR shows that the CRISPR/Cas system provides a straightforward method for rapid gene targeting, providing useful information for plant breeding programs.
Collapse
Affiliation(s)
- Marcelly Santana Mascarenhas
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil; (M.S.M.); (W.D.d.S.O.)
| | - Fernanda dos Santos Nascimento
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Anelita de Jesus Rocha
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Mileide dos Santos Ferreira
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | | | - Lucymeire Souza Morais Lino
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | | | - Claudia Fortes Ferreira
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Janay Almeida dos Santos-Serejo
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Edson Perito Amorim
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| |
Collapse
|
5
|
Singh PK, Devanna BN, Dubey H, Singh P, Joshi G, Kumar R. The potential of genome editing to create novel alleles of resistance genes in rice. Front Genome Ed 2024; 6:1415244. [PMID: 38933684 PMCID: PMC11201548 DOI: 10.3389/fgeed.2024.1415244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Rice, a staple food for a significant portion of the global population, faces persistent threats from various pathogens and pests, necessitating the development of resilient crop varieties. Deployment of resistance genes in rice is the best practice to manage diseases and reduce environmental damage by reducing the application of agro-chemicals. Genome editing technologies, such as CRISPR-Cas, have revolutionized the field of molecular biology, offering precise and efficient tools for targeted modifications within the rice genome. This study delves into the application of these tools to engineer novel alleles of resistance genes in rice, aiming to enhance the plant's innate ability to combat evolving threats. By harnessing the power of genome editing, researchers can introduce tailored genetic modifications that bolster the plant's defense mechanisms without compromising its essential characteristics. In this study, we synthesize recent advancements in genome editing methodologies applicable to rice and discuss the ethical considerations and regulatory frameworks surrounding the creation of genetically modified crops. Additionally, it explores potential challenges and future prospects for deploying edited rice varieties in agricultural landscapes. In summary, this study highlights the promise of genome editing in reshaping the genetic landscape of rice to confront emerging challenges, contributing to global food security and sustainable agriculture practices.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Department of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, Punjab, India
| | | | - Himanshu Dubey
- Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, India
| | - Prabhakar Singh
- Botany Department, Banaras Hindu University, Varanasi, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal (A Central University), Tehri Garhwal, Uttarakhand, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
6
|
Zeng H, He K, He Q, Xu L, Zhang W, Lu X, Tang Y, Zhu X, Yin J, He M, Chen X, Li W. Exogenous Indole-3-Acetic Acid Suppresses Rice Infection of Magnaporthe oryzae by Affecting Plant Resistance and Fungal Growth. PHYTOPATHOLOGY 2024; 114:1050-1056. [PMID: 38709298 DOI: 10.1094/phyto-10-23-0365-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Auxin is an important phytohormone that regulates diverse biologic processes, including plant growth and immunity. Indole-3-acetic acid (IAA), known as one of the main forms of auxin, is able to activate plant immunity. However, it is unknown whether IAA enhances plant resistance and/or suppresses the growth of the fungal pathogen Magnaporthe oryzae. Here, we found that IAA could induce expression levels of pathogenesis-related genes to enhance disease resistance and could control the development of blast disease through inhibiting M. oryzae infection. Exogenous IAA suppressed mycelial growth and delayed spore germination by inhibiting fungal endogenous IAA biosynthesis and impairing redox homeostasis, respectively. When applied to a field test, two IAA analogues, 1-naphthaleneacetic acid and 2,4-dichlorophenoxy acetic acid, can effectively control rice blast disease. Our study advances the understanding of IAA in controlling rice blast disease through suppressing pathogen growth and enhancing plant resistance.
Collapse
Affiliation(s)
- Hongling Zeng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Kaiwei He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qin He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Liting Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yongyan Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
7
|
Zhang Y, Lin XF, Li L, Piao RH, Wu S, Song A, Gao M, Jin YM. CRISPR/Cas9-mediated knockout of Bsr-d1 enhances the blast resistance of rice in Northeast China. PLANT CELL REPORTS 2024; 43:100. [PMID: 38498220 DOI: 10.1007/s00299-024-03192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
KEY MESSAGE The blast resistance allele of OsBsr-d1 does not exist in most japonica rice varieties of Jilin Province in China. The development of Bsr-d1 knockout mutants via CRISPR/Cas9 enhances broad-spectrum resistance to rice blast in Northeast China. Rice blast is a global disease that has a significant negative impact on rice yield and quality. Due to the complexity and variability of the physiological races of rice blast, controlling rice blast is challenging in agricultural production. Bsr-d1, a negative transcription factor that confers broad-spectrum resistance to rice blast, was identified in the indica rice cultivar Digu; however, its biological function in japonica rice varieties is still unclear. In this study, we analyzed the blast resistance allele of Bsr-d1 in a total of 256 japonica rice varieties from Jilin Province in Northeast China and found that this allele was not present in these varieties. Therefore, we generated Bsr-d1 knockout mutants via the CRISPR/Cas9 system using the japonica rice variety Jigeng88 (JG88) as a recipient variety. Compared with those of the wild-type JG88, the homozygous Bsr-d1 mutant lines KO#1 and KO#2 showed enhanced leaf blast resistance at the seedling stage to several Magnaporthe oryzae (M. oryzae) races collected from Jilin Province in Northeast China. Physiological and biochemical indices revealed that the homozygous mutant lines produced more hydrogen peroxide than did JG88 plants when infected with M. oryzae. Comparative RNA-seq revealed that the DEGs were mainly involved in the synthesis of amide compounds, zinc finger proteins, transmembrane transporters, etc. In summary, our results indicate that the development of Bsr-d1 knockout mutants through CRISPR/Cas9 can enhance the broad-spectrum resistance of rice in Northeast China to rice blast. This study not only provides a theoretical basis for disease resistance breeding involving the Bsr-d1 gene in Northeast China, but also provides new germplasm resources for disease-resistance rice breeding.
Collapse
Affiliation(s)
- Ying Zhang
- Research Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, People's Republic of China
- Rice Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, People's Republic of China
| | - Xiu-Feng Lin
- Research Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, People's Republic of China
| | - Li Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences/Jilin Key Laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management On Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, 136100, People's Republic of China
| | - Ri-Hua Piao
- Rice Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, People's Republic of China
| | - Songquan Wu
- College of Agricultural Sciences, Yanbian University, Yanji, 133000, People's Republic of China
| | - Anqi Song
- Research Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, People's Republic of China
- College of Agricultural Sciences, Yanbian University, Yanji, 133000, People's Republic of China
| | - Mengmeng Gao
- Research Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, People's Republic of China
- College of Agricultural Sciences, Yanbian University, Yanji, 133000, People's Republic of China
| | - Yong-Mei Jin
- Research Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, People's Republic of China.
| |
Collapse
|
8
|
Zhu Z, Xiong J, Shi H, Liu Y, Yin J, He K, Zhou T, Xu L, Zhu X, Lu X, Tang Y, Song L, Hou Q, Xiong Q, Wang L, Ye D, Qi T, Zou L, Li G, Sun C, Wu Z, Li P, Liu J, Bi Y, Yang Y, Jiang C, Fan J, Gong G, He M, Wang J, Chen X, Li W. Magnaporthe oryzae effector MoSPAB1 directly activates rice Bsr-d1 expression to facilitate pathogenesis. Nat Commun 2023; 14:8399. [PMID: 38110425 PMCID: PMC10728069 DOI: 10.1038/s41467-023-44197-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Fungal pathogens typically use secreted effector proteins to suppress host immune activators to facilitate invasion. However, there is rarely evidence supporting the idea that fungal secretory proteins contribute to pathogenesis by transactivating host genes that suppress defense. We previously found that pathogen Magnaporthe oryzae induces rice Bsr-d1 to facilitate infection and hypothesized that a fungal effector mediates this induction. Here, we report that MoSPAB1 secreted by M. oryzae directly binds to the Bsr-d1 promoter to induce its expression, facilitating pathogenesis. Amino acids 103-123 of MoSPAB1 are required for its binding to the Bsr-d1 promoter. Both MoSPAB1 and rice MYBS1 compete for binding to the Bsr-d1 promoter to regulate Bsr-d1 expression. Furthermore, MoSPAB1 homologues are highly conserved among fungi. In particular, Colletotrichum fructicola CfSPAB1 and Colletotrichum sublineola CsSPAB1 activate kiwifruit AcBsr-d1 and sorghum SbBsr-d1 respectively, to facilitate pathogenesis. Taken together, our findings reveal a conserved module that may be widely utilized by fungi to enhance pathogenesis.
Collapse
Affiliation(s)
- Ziwei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Jun Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hao Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuchen Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Kaiwei He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Tianyu Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Liting Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yongyan Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qingqing Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qing Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Long Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Daihua Ye
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Tuo Qi
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Teachers' College, Mianyang, Sichuan, 621000, China
| | - Lijuan Zou
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Teachers' College, Mianyang, Sichuan, 621000, China
| | - Guobang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhiyue Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Peili Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jiali Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yu Bi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yihua Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Chunxian Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guoshu Gong
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
9
|
Shaheen N, Ahmad S, Alghamdi SS, Rehman HM, Javed MA, Tabassum J, Shao G. CRISPR-Cas System, a Possible "Savior" of Rice Threatened by Climate Change: An Updated Review. RICE (NEW YORK, N.Y.) 2023; 16:39. [PMID: 37688677 PMCID: PMC10492775 DOI: 10.1186/s12284-023-00652-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/04/2023] [Indexed: 09/11/2023]
Abstract
Climate change has significantly affected agriculture production, particularly the rice crop that is consumed by almost half of the world's population and contributes significantly to global food security. Rice is vulnerable to several abiotic and biotic stresses such as drought, heat, salinity, heavy metals, rice blast, and bacterial blight that cause huge yield losses in rice, thus threatening food security worldwide. In this regard, several plant breeding and biotechnological techniques have been used to raise such rice varieties that could tackle climate changes. Nowadays, gene editing (GE) technology has revolutionized crop improvement. Among GE technology, CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein) system has emerged as one of the most convenient, robust, cost-effective, and less labor-intensive system due to which it has got more popularity among plant researchers, especially rice breeders and geneticists. Since 2013 (the year of first application of CRISPR/Cas-based GE system in rice), several trait-specific climate-resilient rice lines have been developed using CRISPR/Cas-based GE tools. Earlier, several reports have been published confirming the successful application of GE tools for rice improvement. However, this review particularly aims to provide an updated and well-synthesized brief discussion based on the recent studies (from 2020 to present) on the applications of GE tools, particularly CRISPR-based systems for developing CRISPR rice to tackle the current alarming situation of climate change, worldwide. Moreover, potential limitations and technical bottlenecks in the development of CRISPR rice, and prospects are also discussed.
Collapse
Affiliation(s)
- Nabeel Shaheen
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water & Agriculture, Riyadh, 14712, Saudi Arabia
| | - Shakeel Ahmad
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water & Agriculture, Riyadh, 14712, Saudi Arabia.
| | - Salem S Alghamdi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hafiz Mamoon Rehman
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Javaria Tabassum
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, National Rice Research Institute, 310006, Hangzhou, China.
- Zhejiang Lab, 310006, Hangzhou, China.
| |
Collapse
|
10
|
Wu T, Bi Y, Yu Y, Zhou Z, Yuan B, Ding X, Zhang Q, Chen X, Yang H, Liu H, Chu Z. Activated Expression of Rice DMR6-like Gene OsS3H Partially Explores the Susceptibility to Bacterial Leaf Streak Mediated by Knock-Out OsF3H04g. Int J Mol Sci 2023; 24:13263. [PMID: 37686066 PMCID: PMC10487387 DOI: 10.3390/ijms241713263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Downy Mildew Resistance 6-like (DMR6-like) genes are identified as salicylic acid (SA) hydroxylases and negative regulators of plant immunity. Previously, we identified two rice DMR6-like genes, OsF3H03g, and OsF3H04g, that act as susceptible targets of transcription activator-like effectors (TALEs) from Xanthomonas oryzae pv. oryzicola (Xoc), which causes bacterial leaf streak (BLS) in rice. Furthermore, all four homologs of rice DMR6-like proteins were identified to predominantly carry the enzyme activity of SA 5-hydroxylase (S5H), negatively regulate rice broad-spectrum resistance, and cause the loss of function of these OsDMR6s, leading to increased resistance to rice blast and bacterial blight (BB). Here, we curiously found that an OsF3H04g knock-out mutant created by T-DNA insertion, osf3h04g, was remarkedly susceptible to BLS and BB and showed an extreme reduction in SA content. OsF3H04g knock-out rice lines produced by gene-editing were mildly susceptible to BLS and reduced content of SA. To explore the susceptibility mechanism in OsF3H04g loss-of-function rice lines, transcriptome sequencing revealed that another homolog, OsS3H, had induced expression in the loss-of-function OsF3H04g rice lines. Furthermore, we confirmed that a great induction of OsS3H downstream and genomically adjacent to OsF3H04g in osf3h04g was primarily related to the inserted T-DNA carrying quadruple enhancer elements of 35S, while a slight induction was caused by an unknown mechanism in gene-editing lines. Then, we found that the overexpression of OsS3H increased rice susceptibility to BLS, while gene-editing mediated the loss-of-function OsS3H enhanced rice resistance to BLS. However, the knock-out of both OsF3H04g and OsS3H by gene-editing only neutralized rice resistance to BLS. Thus, we concluded that the knock-out of OsF3H04g activated the expression of the OsS3H, partially participating in the susceptibility to BLS in rice.
Collapse
Affiliation(s)
- Tao Wu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.W.); (Q.Z.)
| | - Yunya Bi
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.B.); (Y.Y.); (Z.Z.); (X.C.)
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Yue Yu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.B.); (Y.Y.); (Z.Z.); (X.C.)
| | - Zhou Zhou
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.B.); (Y.Y.); (Z.Z.); (X.C.)
| | - Bin Yuan
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (X.D.); (H.L.)
| | - Qingxia Zhang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.W.); (Q.Z.)
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.B.); (Y.Y.); (Z.Z.); (X.C.)
| | - Hong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (X.D.); (H.L.)
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.B.); (Y.Y.); (Z.Z.); (X.C.)
| |
Collapse
|
11
|
Zhang H, Liu Y, Zhang X, Ji W, Kang Z. A necessary considering factor for breeding: growth-defense tradeoff in plants. STRESS BIOLOGY 2023; 3:6. [PMID: 37676557 PMCID: PMC10441926 DOI: 10.1007/s44154-023-00086-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/27/2023] [Indexed: 09/08/2023]
Abstract
Crop diseases cause enormous yield losses and threaten global food security. Deployment of resistant cultivars can effectively control the disease and to minimize crop losses. However, high level of genetic immunity to disease was often accompanied by an undesired reduction in crop growth and yield. Recently, literatures have been rapidly emerged in understanding the mechanism of disease resistance and development genes in crop plants. To determine how and why the costs and the likely benefit of resistance genes caused in crop varieties, we re-summarized the present knowledge about the crosstalk between plant development and disease resistance caused by those genes that function as plasma membrane residents, MAPK cassette, nuclear envelope (NE) channels components and pleiotropic regulators. Considering the growth-defense tradeoffs on the basis of current advances, finally, we try to understand and suggest that a reasonable balancing strategies based on the interplay between immunity with growth should be considered to enhance immunity capacity without yield penalty in future crop breeding.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Yuanming Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiangyu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
12
|
Wang Z, Sun J, Zu X, Gong J, Deng H, Hang R, Zhang X, Liu C, Deng X, Luo L, Wei X, Song X, Cao X. Pseudouridylation of chloroplast ribosomal RNA contributes to low temperature acclimation in rice. THE NEW PHYTOLOGIST 2022; 236:1708-1720. [PMID: 36093745 DOI: 10.1111/nph.18479] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Ribosomal RNAs (rRNAs) undergo many modifications during transcription and maturation; homeostasis of rRNA modifications is essential for chloroplast biogenesis in plants. The chloroplast acts as a hub to sense environmental signals, such as cold temperature. However, how RNA modifications contribute to low temperature responses remains unknown. Here we reveal that pseudouridine (Ψ) modification of rice chloroplast rRNAs mediated by the pseudouridine synthase (OsPUS1) contributes to cold tolerance at seedling stage. Loss-function of OsPUS1 leads to abnormal chloroplast development and albino seedling phenotype at low temperature. We find that OsPUS1 is accumulated upon cold and binds to chloroplast precursor rRNAs (pre-rRNAs) to catalyse the pseudouridylation on rRNA. These modifications on chloroplast rRNAs could be required for their processing, as the reduction of mature chloroplast rRNAs and accumulation of pre-rRNAs are observed in ospus1-1 at low temperature. Therefore, the ribosome activity and translation in chloroplasts is disturbed in ospus1-1. Furthermore, transcriptome and translatome analysis reveals that OsPUS1 balances growth and stress-responsive state, preventing excess reactive oxygen species accumulation. Taken together, our findings unveil a crucial function of Ψ in chloroplast ribosome biogenesis and cold tolerance in rice, with potential applications in crop improvement.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofeng Zu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Gong
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hongjing Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Runlai Hang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofan Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lilan Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311401, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
13
|
Saeed S, Usman B, Shim SH, Khan SU, Nizamuddin S, Saeed S, Shoaib Y, Jeon JS, Jung KH. CRISPR/Cas-mediated editing of cis-regulatory elements for crop improvement. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111435. [PMID: 36031021 DOI: 10.1016/j.plantsci.2022.111435] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
To improve future agricultural production, major technological advances are required to increase crop production and yield. Targeting the coding region of genes via the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated Protein (CRISPR/Cas) system has been well established and has enabled the rapid generation of transgene-free plants, which can lead to crop improvement. The emergence of the CRISPR/Cas system has also enabled scientists to achieve cis-regulatory element (CRE) editing and, consequently, engineering endogenous critical CREs to modulate the expression of target genes. Recent genome-wide association studies have identified the domestication of natural CRE variants to regulate complex agronomic quantitative traits and have allowed for their engineering via the CRISPR/Cas system. Although engineering plant CREs can be advantageous to drive gene expression, there are still many limitations to its practical application. Here, we review the current progress in CRE editing and propose future strategies to effectively target CREs for transcriptional regulation for crop improvement.
Collapse
Affiliation(s)
- Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Babar Usman
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Su-Hyeon Shim
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University KPK, Pakistan
| | - Sabzoi Nizamuddin
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Sundus Saeed
- School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Yasira Shoaib
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Ki-Hong Jung
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
14
|
Zhou Y, Xu S, Jiang N, Zhao X, Bai Z, Liu J, Yao W, Tang Q, Xiao G, Lv C, Wang K, Hu X, Tan J, Yang Y. Engineering of rice varieties with enhanced resistances to both blast and bacterial blight diseases via CRISPR/Cas9. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:876-885. [PMID: 34890109 PMCID: PMC9055821 DOI: 10.1111/pbi.13766] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 11/25/2021] [Accepted: 12/04/2021] [Indexed: 05/05/2023]
Abstract
Rice blast and bacterial blight represent two of major diseases having devastating impact on the yield of rice in most rice-growing countries. Developments of resistant cultivars are the most economic and effective strategy to control these diseases. Here, we used CRISPR/Cas9-mediated gene editing to rapidly install mutations in three known broad-spectrum blast-resistant genes, Bsr-d1, Pi21 and ERF922, in an indica thermosensitive genic male sterile (TGMS) rice line Longke638S (LK638S). We obtained transgene-free homozygous single or triple mutants in T1 generations. While all single and triple mutants showed increased resistance to rice blast compared with wild type, the erf922 mutants displayed the strongest blast resistance similar with triple mutants. Surprisingly, we found that Pi21 or ERF922 single mutants conferred enhanced resistance to most of tested bacterial blight. Both resistances in mutants were attribute to the up-regulation of SA- and JA-pathway associated genes. Moreover, phenotypic analysis of these single mutants in paddy fields revealed that there were no trade-offs between resistances and main agricultural traits. Together, our study provides a rapid and effective way to generate rice varieties with resistance to both rice blast and bacterial blight.
Collapse
Affiliation(s)
- Yanbiao Zhou
- Key Laboratory of Southern Rice Innovation & ImprovementMinistry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice BreedingYuan Longping High‐Tech Agriculture Co., LtdChangsha410001HunanChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Shichong Xu
- Key Laboratory of Southern Rice Innovation & ImprovementMinistry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice BreedingYuan Longping High‐Tech Agriculture Co., LtdChangsha410001HunanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070HubeiChina
| | - Nan Jiang
- Key Laboratory of Southern Rice Innovation & ImprovementMinistry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice BreedingYuan Longping High‐Tech Agriculture Co., LtdChangsha410001HunanChina
| | - Xinhui Zhao
- Key Laboratory of Southern Rice Innovation & ImprovementMinistry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice BreedingYuan Longping High‐Tech Agriculture Co., LtdChangsha410001HunanChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Zhenan Bai
- Key Laboratory of Southern Rice Innovation & ImprovementMinistry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice BreedingYuan Longping High‐Tech Agriculture Co., LtdChangsha410001HunanChina
| | - Jinling Liu
- College of AgronomyHunan Agricultural UniversityChangsha410128HunanChina
| | - Wei Yao
- College of AgronomyHunan Agricultural UniversityChangsha410128HunanChina
| | - Qianying Tang
- Key Laboratory of Southern Rice Innovation & ImprovementMinistry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice BreedingYuan Longping High‐Tech Agriculture Co., LtdChangsha410001HunanChina
| | - Gui Xiao
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangsha410125HunanChina
| | - Chao Lv
- Key Laboratory of Southern Rice Innovation & ImprovementMinistry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice BreedingYuan Longping High‐Tech Agriculture Co., LtdChangsha410001HunanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070HubeiChina
| | - Kai Wang
- Key Laboratory of Southern Rice Innovation & ImprovementMinistry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice BreedingYuan Longping High‐Tech Agriculture Co., LtdChangsha410001HunanChina
| | - Xiaochun Hu
- Key Laboratory of Southern Rice Innovation & ImprovementMinistry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice BreedingYuan Longping High‐Tech Agriculture Co., LtdChangsha410001HunanChina
| | - Junjie Tan
- State Key Laboratory of Crop Genetics and Germplasm EnhancementInnovation Center for Genome Editing and EngineeringJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjing210095China
| | - Yuanzhu Yang
- Key Laboratory of Southern Rice Innovation & ImprovementMinistry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice BreedingYuan Longping High‐Tech Agriculture Co., LtdChangsha410001HunanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070HubeiChina
- College of AgronomyHunan Agricultural UniversityChangsha410128HunanChina
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangsha410125HunanChina
- State Key Laboratory of Crop Genetics and Germplasm EnhancementInnovation Center for Genome Editing and EngineeringJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
15
|
Qi X, Chen L, Zhang Y, Gao W, Chen L, Wang D, Tang L, Wang Z, Wang NN, Fan Z. Methoxyacrylate Fungicide Candidate CL-15C Also Functions as a Plant Elicitor in Arabidopsis thaliana and Oryza sativa L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3142-3150. [PMID: 35254068 DOI: 10.1021/acs.jafc.1c07757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Unlike traditional fungicides targeting fungi, plant elicitors usually lack direct fungicidal activity but improve the plant immune system to resist fungi infection, which has gained increasing attention for better fungi resistance management and environment protection. (E)-methyl-2-(2-((((Z)-(amino-(3,4-dichloroisothiazol-5-yl)methylene)amino)oxy)methyl)phenyl)-2-(methoxyimino)acetate (CL-15C) was found to be a fungicide candidate with a broad spectrum. Here, we studied its immune-inducing ability and mechanism to strengthen the resistance of Arabidopsis thaliana against Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and Oryza sativa L. against Magnaporthe oryzae. CL-15C promoted a 2.20- and 1.47-fold increase in phenylalanine ammonia-lyase (PAL) activity in A. thaliana and O. sativa, respectively. It also facilitated a 1.89- and 1.32-fold increase in accumulation of salicylic acid (SA) in A. thaliana and O. sativa, respectively. Differential genes were clustered in the SA signaling pathway at 24 h after a CL-15C treatment in A. thaliana. Because PAL is a rate-limiting enzyme in the phenylalanine metabolic pathway, after a CL-15C treatment, a pal1(PAL 1) mutant was more susceptible to Pst DC3000 when compared with the wild type. Bacterial counts in leaves after a CL-15C treatment showed a 1.11-fold reduction in the pal1 mutant and a 1.54-fold reduction in the wild type. The effect of CL-15C on the PAL enzyme activity and SA content was attenuated in the pal1 mutant. Present experimental data implied that the immune-inducing activity of CL-15C was dependent on PAL gene-mediated synthesis of SA.
Collapse
Affiliation(s)
- Xin Qi
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lei Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yue Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Wei Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Dan Wang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhihong Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ning Ning Wang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
16
|
Liu Z, Zhu Y, Shi H, Qiu J, Ding X, Kou Y. Recent Progress in Rice Broad-Spectrum Disease Resistance. Int J Mol Sci 2021; 22:11658. [PMID: 34769087 PMCID: PMC8584176 DOI: 10.3390/ijms222111658] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
Rice is one of the most important food crops in the world. However, stable rice production is constrained by various diseases, in particular rice blast, sheath blight, bacterial blight, and virus diseases. Breeding and cultivation of resistant rice varieties is the most effective method to control the infection of pathogens. Exploitation and utilization of the genetic determinants of broad-spectrum resistance represent a desired way to improve the resistance of susceptible rice varieties. Recently, researchers have focused on the identification of rice broad-spectrum disease resistance genes, which include R genes, defense-regulator genes, and quantitative trait loci (QTL) against two or more pathogen species or many isolates of the same pathogen species. The cloning of broad-spectrum disease resistance genes and understanding their underlying mechanisms not only provide new genetic resources for breeding broad-spectrum rice varieties, but also promote the development of new disease resistance breeding strategies, such as editing susceptibility and executor R genes. In this review, the most recent advances in the identification of broad-spectrum disease resistance genes in rice and their application in crop improvement through biotechnology approaches during the past 10 years are summarized.
Collapse
Affiliation(s)
- Zhiquan Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Yujun Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Huanbin Shi
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Jiehua Qiu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Yanjun Kou
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| |
Collapse
|
17
|
Yang D, Li S, Xiao Y, Lu L, Zheng Z, Tang D, Cui H. Transcriptome analysis of rice response to blast fungus identified core genes involved in immunity. PLANT, CELL & ENVIRONMENT 2021; 44:3103-3121. [PMID: 33993496 DOI: 10.1111/pce.14098] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/04/2021] [Indexed: 05/05/2023]
Abstract
Rice blast disease caused by the filamentous Ascomycetous fungus Magnaporthe oryzae is a major threat to rice production worldwide. The mechanisms underlying rice resistance to M. oryzae, such as transcriptional reprogramming and signalling networks, remain elusive. In this study, we carried out an in-depth comparative transcriptome study on the susceptible and resistant rice cultivars in response to M. oryzae. Our analysis highlighted that rapid, high-amplitude transcriptional reprogramming was important for rice defence against blast fungus. Ribosome- and protein translation-related genes were significantly enriched among differentially expressed genes (DEGs) at 12 hpi in both cultivars, indicating that the protein translation machinery is regulated in the activation of immunity in rice. Furthermore, we identified a core set of genes that are involved in the rice response to both biotic and abiotic stress. More importantly, among the core genes, we demonstrated that the metallothionein OsMT1a and OsMT1b genes positively regulated rice resistance while a peroxidase gene Perox4 negatively regulated rice resistance to M. oryzae. Our study provides novel insight into transcriptional reprogramming and serves as a valuable resource for functional studies on rice immune signalling components in resistance to blast disease.
Collapse
Affiliation(s)
- Dewei Yang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Shengping Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yueping Xiao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ling Lu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zichao Zheng
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haitao Cui
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
18
|
Genome editing for resistance against plant pests and pathogens. Transgenic Res 2021; 30:427-459. [PMID: 34143358 DOI: 10.1007/s11248-021-00262-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
The conventional breeding of crops struggles to keep up with increasing food needs and ever-adapting pests and pathogens. Global climate changes have imposed another layer of complexity to biological systems, increasing the challenge to obtain improved crop cultivars. These dictate the development and application of novel technologies, like genome editing (GE), that assist targeted and fast breeding programs in crops, with enhanced resistance to pests and pathogens. GE does not require crossings, hence avoiding the introduction of undesirable traits through linkage in elite varieties, speeding up the whole breeding process. Additionally, GE technologies can improve plant protection by directly targeting plant susceptibility (S) genes or virulence factors of pests and pathogens, either through the direct edition of the pest genome or by adding the GE machinery to the plant genome or to microorganisms functioning as biocontrol agents (BCAs). Over the years, GE technology has been continuously evolving and more so with the development of CRISPR/Cas. Here we review the latest advancements of GE to improve plant protection, focusing on CRISPR/Cas-based genome edition of crops and pests and pathogens. We discuss how other technologies, such as host-induced gene silencing (HIGS) and the use of BCAs could benefit from CRISPR/Cas to accelerate the development of green strategies to promote a sustainable agriculture in the future.
Collapse
|
19
|
CRISPR-Cas technology based genome editing for modification of salinity stress tolerance responses in rice (Oryza sativa L.). Mol Biol Rep 2021; 48:3605-3615. [PMID: 33950408 DOI: 10.1007/s11033-021-06375-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/24/2021] [Indexed: 12/26/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein (Cas) technology is an effective tool for site-specific genome editing, used to precisely induce mutagenesis in different plant species including rice. Salinity is one of the most stressful environmental constraints affecting agricultural productivity worldwide. As plant adaptation to salinity stress is under polygenic control therefore, 51 rice genes have been identified that play crucial role in response to salinity. This review offers an exclusive overview of genes identified in rice genome for salinity stress tolerance. This will provide an idea to produce rice varieties with enhanced salt tolerance using the potentially efficient CRISPR-Cas technology. Several undesirable off-target effects of CRISPR-Cas technology and their possible solutions have also been highlighted.
Collapse
|
20
|
Li C, Zhang J, Ren Z, Xie R, Yin C, Ma W, Zhou F, Chen H, Lin Y. Development of 'multiresistance rice' by an assembly of herbicide, insect and disease resistance genes with a transgene stacking system. PEST MANAGEMENT SCIENCE 2021; 77:1536-1547. [PMID: 33201594 DOI: 10.1002/ps.6178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Weeds, diseases and pests pose serious threats to rice production and cause significant economic losses. Cultivation of rice varieties with resistance to herbicides, diseases and pests is believed to be the most economical and environmentally friendly method to deal with these problems. RESULTS In this study, a highly efficient transgene stacking system was used to assembly the synthetic glyphosate-tolerance gene (I. variabilis-EPSPS*), lepidopteran pest resistance gene (Cry1C*), brown planthopper resistance genes (Bph14* and OsLecRK1*), bacterial blight resistance gene (Xa23*) and rice blast resistance gene (Pi9*) onto a transformable artificial chromosome vector. The construct was transferred into ZH11 (a widely used japonica rice cultivar Zhonghua 11) via Agrobacterium-mediated transformation and 'multiresistance rice' (MRR) with desirable agronomic traits was obtained. The results showed that MRR had significantly improved resistance to glyphosate, borers, brown planthopper, bacterial blight and rice blast relative to the recipient cultivar ZH11. Besides, under the natural occurrence of pests and diseases in the field, the yield of MRR was significantly higher than that of ZH11. CONCLUSION A multigene transformation strategy was employed to successfully develop rice lines with multiresistance to glyphosate, borers, brown planthopper, bacterial blight and rice blast, and the obtained MRR is expected to have great application potential. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuanxu Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhiyong Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rong Xie
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture, Luzhou Branch of National Rice Improvement Center, Deyang, China
| | - Changxi Yin
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weihua Ma
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|