1
|
Shor E, Perlin DS, Kontoyiannis DP. Tolerance and heteroresistance to echinocandins in Candida auris: conceptual issues, clinical implications, and outstanding questions. mSphere 2025; 10:e0016125. [PMID: 40237528 PMCID: PMC12108057 DOI: 10.1128/msphere.00161-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Candida auris is a significant public health threat due to its environmental persistence and multidrug resistance, with echinocandins being the preferred treatment. However, in addition to resistance, echinocandin tolerance and heteroresistance may contribute to treatment challenges. Echinocandin tolerance involves reduced drug-mediated killing, while heteroresistance is the ability of a small cell subset to grow at high drug concentrations. These phenomena may facilitate the emergence of full resistance and complicate clinical outcomes. The clinical significance of these mechanisms remains unclear, with limited data correlating them with treatment failures. Research is needed to understand their mechanisms and impact, develop streamlined and robust methods to detect them in clinical settings, and explore mitigation strategies. The pathogen's range of drug adaptations demands innovative approaches like spatial transcriptomics to dissect these complex responses and improve patient outcomes.
Collapse
Affiliation(s)
- Erika Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
2
|
Cha H, Won D, Bahn YS. Signaling pathways governing the pathobiological features and antifungal drug resistance of Candida auris. mBio 2025; 16:e0247523. [PMID: 40178272 PMCID: PMC12077148 DOI: 10.1128/mbio.02475-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Candida auris is an emerging multidrug-resistant fungal pathogen that poses a significant global health threat. Since its discovery in 2009, C. auris has rapidly spread worldwide, causing severe infections with high mortality rates, particularly in healthcare settings. Its ability to persist in the environment, form biofilms, and resist multiple antifungal drugs underscores the urgent need to understand its pathogenicity mechanisms and associated signaling pathways. Such insights are crucial for elucidating its unique virulence traits and developing targeted therapeutic strategies. Current studies have identified several key pathways involved in its pathogenicity and antifungal drug resistance. The Ras/cAMP/PKA pathway regulates critical virulence factors, including thermotolerance, morphological plasticity, and biofilm formation. The mitogen-activated protein kinase (MAPK) and calcineurin pathways contribute to stress responses and antifungal drug resistance. The regulation of Ace2 and morphogenesis (RAM) pathway influences cell aggregation, while the target of rapamycin (TOR) pathway affects filamentous growth and biofilm development. However, the distinct characteristics of C. auris, such as its rapid environmental spread and clade-specific traits, warrant further investigation into additional signaling pathways. This review provides a comprehensive analysis of known signaling pathways associated with C. auris pathogenicity and antifungal drug resistance, integrating insights from other fungal pathogens. By synthesizing current knowledge and identifying research gaps, this review offers new perspectives on future research directions and potential therapeutic targets against this formidable pathogen.
Collapse
Affiliation(s)
- Hyunjin Cha
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Doyeon Won
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Oshika, Bari VK. Molecular mechanism of host-yeast interactions and prevention by nanoformulation approaches. Microb Pathog 2025; 205:107663. [PMID: 40339625 DOI: 10.1016/j.micpath.2025.107663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/17/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025]
Abstract
Fungal infections are a major source of morbidity and mortality in people with compromised immune systems, such as those with human immunodeficiency virus, cancer, organ transplant recipients, and patients undergoing chemotherapy in healthcare settings. According to a recent World Health Organization (WHO) fungal priority pathogens list, Cryptococcus spp., Candida spp., Aspergillus spp., and Candida auris cause severe invasive infections in human. These opportunistic pathogens cause a significant number of mycoses, which affect over a billion people annually. Around two million infections can be fatal, especially for those with compromised immune systems. To diagnose and treat mycoses, we need to understand the complex interactions between the fungus and the host during pathogenesis, the virulence-causing traits of the fungus, and how the host fights infection through the immune system. Although several antifungal drugs are available against fungal infections, their effectiveness is highly variable, with adverse effects. In addition, the increasing resistance to traditional antifungal treatments poses serious risks to the healthcare industry. Therefore, new therapeutic strategies are required to combat these potentially fatal fungal infections. Nanostructure-based formulations can improve the therapeutic efficacy of conventional medications by broadening their activities, decreasing toxicity, enhancing bioactivity, and improving biodistribution. The review highlights host and fungus interaction and how nanoformulations can be targeted against fungal infections.
Collapse
Affiliation(s)
- Oshika
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO, Ghudda, Bathinda, India
| | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO, Ghudda, Bathinda, India.
| |
Collapse
|
4
|
Sharma V, Das S, Spruijtenburg B, de Groot T, Meijer E, Kaur H, Rudramurthy SM, Ghosh A. Genotypic Diversity and Molecular Basis of Fluconazole Resistance in Candida parapsilosis Clinical Isolates Collected Over 7 Years in a Tertiary-Care Hospital in North India. Mycoses 2025; 68:e70062. [PMID: 40326573 DOI: 10.1111/myc.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND The recent rise in the global incidence of fluconazole resistance in C. parapsilosis has become a significant public health concern. Epidemiological studies suggest that fluconazole resistance in C. parapsilosis spreads through endemic clones. We, therefore, investigated the molecular epidemiology of fluconazole-resistant C. parapsilosis in our centre. METHODS C. parapsilosis isolates from 2016 through 2022 were investigated for antifungal susceptibility. Fluconazole-resistant isolates were analysed for ERG11 mutation using Sanger sequencing. Gene expression profiles of ERG11, CDR1 and MDR1 were assessed by real-time qPCR. The epidemiological relationship of resistant and susceptible isolates of C. parapsilosis was investigated using short tandem repeat typing. Additionally, biofilm production and cell wall ergosterol contents were also quantified and compared. RESULTS Among 572 C. parapsilosis isolates, 48 (8.4%) were resistant to fluconazole. Of 28 recoverable resistant isolates, 17.9% (5/28) were wild-type and 82.1% (23/28) harboured the following ERG11 mutations: Y132F (n = 3), K143R (n = 10) and K143R + R398I (10/28). Significant fold-changes were observed in ERG11 (p = 0.037) and MDR1 (p = 0.008) gene expressions in fluconazole resistant compared to susceptible isolates. Contrary to global reports, STR typing suggested a limited clonal transmission of resistant C. parapsilosis with multiple introductions of resistant isolates in our centre. On fluconazole exposure, ergosterol content significantly increased (p < 0.01) in resistant isolates, particularly in isolates harbouring ERG11K143R + R398I mutations. In contrast, fluconazole-susceptible isolates formed comparatively higher baseline biofilm (p < 0.05) than resistant isolates with ERG11K143R mutation. CONCLUSION The current study underscores the need for continuous molecular surveillance and tailored therapeutic options for effective management of fluconazole resistance in C. parapsilosis.
Collapse
Affiliation(s)
- Vrinda Sharma
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Sourav Das
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Bram Spruijtenburg
- Centre of Expertise for Mycology, Radboud University Medical Centre-CWZ, Nijmegen, the Netherlands
| | - Theun de Groot
- Centre of Expertise for Mycology, Radboud University Medical Centre-CWZ, Nijmegen, the Netherlands
| | - Eelco Meijer
- Centre of Expertise for Mycology, Radboud University Medical Centre-CWZ, Nijmegen, the Netherlands
| | - Harsimran Kaur
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Anup Ghosh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
5
|
Shaban S, Patel M, Ahmad A. Anti-virulence and anti-efflux pump activity of synthetic defensins and histatin in Candida auris. Microb Pathog 2025; 205:107644. [PMID: 40306590 DOI: 10.1016/j.micpath.2025.107644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 04/17/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
Novel antifungal therapies are needed to combat multidrug-resistant Candida auris, a pathogen with significant virulence and efflux pump activity. Building on our previous work demonstrating the fungicidal activity of selected antimicrobial peptides (AMPs) towards C. auris, this study investigates their effects against virulence factors and efflux pump. We evaluated the impact of human β-Defensin-3 (hBD-3), Human neutrophil peptide-1 (HNP-1) and human salivary histatin 5 (His 5) on C. auris virulence and resistance, using two clinical isolates. Their effect on adhesion and proteinase activity was studied using adherence assay and BSA plates, respectively. Their impact on biofilm formation and mature biofilm was studied using the MTT reduction test and further visualized using Confocal laser scanning microscope. Intracellular accumulation and external efflux of rhodamine-6-G was studied to establish their action on efflux pump activity. In addition, their effect on the expression of related genes was studied using RT-qPCR. At sub-minimum inhibitory concentrations (sub-MICs) and minimum inhibitory concentrations (MICs), all three test AMPs significantly reduced both adherence and proteinase activity. All the test peptides substantially inhibited the metabolic activity and decreased the density of growing and mature biofilms. Moreover, the tested peptides effectively obstructed efflux pumps and downregulated the genes linked to virulence and efflux pumps, including CDR1, CDR2, MDR1, SAP3, SNQ2, PGA26, PGA7 and PGA52. Finally, the safety of these peptides was verified by a haemolytic test. The finding of this study demonstrated the anti-virulence and anti-efflux pump properties of the tested AMPs. Therefore, these peptides can be a potentially effective alternative for managing infections caused by C. auris.
Collapse
Affiliation(s)
- Siham Shaban
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Mrudula Patel
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa; Division of Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa.
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| |
Collapse
|
6
|
Bhargava A, Klamer K, Sharma M, Ortiz D, Saravolatz L. Candida auris: A Continuing Threat. Microorganisms 2025; 13:652. [PMID: 40142543 PMCID: PMC11946832 DOI: 10.3390/microorganisms13030652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Candida auris is a World Health Organization critical-priority fungal pathogen that has variable resistance to antifungal treatments. Multiple clades have been identified through genomic analysis and have appeared in different geographic locations simultaneously. Due to a combination of factors including antifungal resistance, ability to colonize and persist in the environment, and thermotolerance, it can thrive. Infected patients are associated with a high mortality rate, especially those with multiple health risk factors like those associated with other Candida species. This review highlights the current situation of this pathogen to help provide guidance for future work.
Collapse
Affiliation(s)
- Ashish Bhargava
- Thomas Mackey Center of Infectious Diseases, Henry Ford Health—St. John Hospital, Detroit, MI 48236, USA
- School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Katherine Klamer
- Thomas Mackey Center of Infectious Diseases, Henry Ford Health—St. John Hospital, Detroit, MI 48236, USA
| | - Mamta Sharma
- Thomas Mackey Center of Infectious Diseases, Henry Ford Health—St. John Hospital, Detroit, MI 48236, USA
| | - Daniel Ortiz
- LabCorp—Health Systems Operating Division, Troy, MI 48083, USA
| | - Louis Saravolatz
- Thomas Mackey Center of Infectious Diseases, Henry Ford Health—St. John Hospital, Detroit, MI 48236, USA
- School of Medicine, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
7
|
Li R, Chen J, Wu Y, Lu M, Cheng G, Jia P, Yu S, Xie X, Zhang G, Xu Y, Zhang L, Liu Y. Molecular and biological characteristics of two rare bloodstream Candida isolates: Candida nonsorbophila and Candida sonorensis. BMC Infect Dis 2025; 25:348. [PMID: 40075268 PMCID: PMC11905472 DOI: 10.1186/s12879-025-10696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The incidence of new infections caused by rare Candida species has been steadily increasing, particularly in immunocompromised patients. This study investigates two rare Candida species responsible for Candida bloodstream infections and explores their molecular characteristics. METHODS Clinical Candida strains were continuously isolated from the lower respiratory tract and blood specimens of a patient. Identification was performed using conventional culture techniques, ITS sequencing, and whole-genome sequencing. Additionally, antifungal susceptibility testing, phylogenetic analysis, macrophage survival assays, and in vivo survival experiments were conducted to evaluate the antifungal resistance, infection source, and pathogenicity of the isolates. RESULTS Molecular identification confirmed that the RP (pinkish-purple colonies from respiratory specimens), RW (pinkish-white colonies from respiratory specimens), and BP (pinkish-purple colonies from peripheral blood) strains were Candida nonsorbophila, while the BW (pinkish-white colonies from peripheral blood) strain was identified as Candida sonorensis. Phylogenetic analysis revealed that the RP strain from the lower respiratory tract and the BP strain from the bloodstream belonged to the same clonal lineage, suggesting that the pulmonary isolate entered the bloodstream, resulting in candidemia. Antifungal susceptibility testing showed that C. nonsorbophila RW strain exhibited significant resistance to fluconazole, likely due to the E70D mutation in the ERG11 gene. Both C. sonorensis and C. nonsorbophila exhibited relatively weak virulence, with no significant differences in pathogenicity between single-strain infections and mixed infections of both species (P > 0.05). CONCLUSION This study successfully isolated C. nonsorbophila and C. sonorensis from clinical specimens, providing detailed microbiological and molecular characterization. Rare fungal infections in immunocompromised patients require careful consideration.
Collapse
Affiliation(s)
- Rui Li
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, Beijing, China
| | - Jiawei Chen
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Wu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Minya Lu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, Beijing, China
| | - Guixue Cheng
- Department of Clinical Laboratory, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Peiyao Jia
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, Beijing, China
| | - Shuying Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, Beijing, China
| | - Xiuli Xie
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, Beijing, China
| | - Ge Zhang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, Beijing, China
| | - Yingchun Xu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, Beijing, China.
| | - Li Zhang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, Beijing, China.
| | - Yali Liu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, Beijing, China.
| |
Collapse
|
8
|
Peng Y, Liu Y, Yu X, Fang J, Guo Z, Liao K, Chen P, Guo P. First report of Candida auris in Guangdong, China: clinical and microbiological characteristics of 7 episodes of candidemia. Emerg Microbes Infect 2024; 13:2300525. [PMID: 38164742 PMCID: PMC10773663 DOI: 10.1080/22221751.2023.2300525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Candida auris is an emerging multidrug-resistant fungal pathogen worldwide. To date, it has not been reported in Guangdong, China. For the first time, we reported 7 cases of C. auris candidemia from two hospitals in Guangdong. The clinical and microbiological characteristics of these cases were investigated carefully. Two geographic clades, i.e. III and I, were found popular in different hospitals by whole genome sequencing analyses. All C. auris isolates from bloodstream were resistant to fluconazole, 5 of which belonged to Clade III harbouring VF125AL mutation in the ERG11 gene. The isolates with Clade I presented Y132F mutation in the ERG11 gene as well as resistance to amphotericin B. All isolates exhibited strong biofilm-forming capacity and non-aggregative phenotype. The mean time from admission to onset of C. auris candidemia was 39.4 days (range: 12 - 80 days). Despite performing appropriate therapeutic regimen, 42.9% (3/7) of patients experienced occurrences of C. auris candidemia and colonization after the first positive bloodstream. C. auris colonization was still observed after the first C. auris candidemia for 81 days in some patient. Microbiologic eradication from bloodstream was achieved in 85.7% (6/7) of patients at discharge. In conclusion, this study offers a crucial insight into unravelling the multiple origins of C. auris in Guangdong, highlighting great challenges in clinical prevention and control.
Collapse
Affiliation(s)
- Yaqin Peng
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yue Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Xuegao Yu
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jingchun Fang
- Department of Clinical Microbiology Laboratory, Nansha Division of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhaowang Guo
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Kang Liao
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Peisong Chen
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Penghao Guo
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
9
|
Louvet M, Li J, Brandalise D, Bachmann D, Sala de Oyanguren F, Labes D, Jacquier N, Genoud C, Mucciolo A, Coste AT, Sanglard D, Lamoth F. Ume6-dependent pathways of morphogenesis and biofilm formation in Candida auris. Microbiol Spectr 2024; 12:e0153124. [PMID: 39297645 PMCID: PMC11537075 DOI: 10.1128/spectrum.01531-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/05/2024] [Indexed: 11/07/2024] Open
Abstract
Candida auris is a yeast pathogen causing nosocomial outbreaks of candidemia. Its ability to adhere to inert surfaces and to be transmitted from one patient to another via medical devices is of particular concern. Like other Candida spp., C. auris has the ability to transition from the yeast form to pseudohyphae and to build biofilms. Moreover, some isolates have a unique capacity to form aggregates. These morphogenetic changes may impact virulence. In this study, we demonstrated the role of the transcription factor Ume6 in C. auris morphogenesis. Genetic hyperactivation of Ume6 induced filamentation and aggregation. The Ume6-hyperactivated strain (UME6HA) also exhibited increased adhesion to inert surface and formed biofilms of higher biomass compared to the parental strain. Transcriptomic analyses of UME6HA revealed enrichment of genes encoding for adhesins, proteins involved in cell wall organization, sterol biosynthesis, and aspartic protease activities. The three most upregulated genes compared to wild-type were those encoding for the agglutin-like sequence adhesin Als4498, the C. auris-specific adhesin Scf1, and the hypha-specific G1 cyclin-related protein Hgc1. The deletion of these genes in the UME6HA background showed that Ume6 controls filamentation via Hgc1 and aggregation via Als4498 and Scf1. Adhesion to inert surface was essentially triggered by Scf1. However, Als4498 and Hgc1 were also crucial for biofilm formation. Our data show that Ume6 is a universal regulator of C. auris morphogenesis via distinct modulators.IMPORTANCEC. auris represents a public health threat because of its ability to cause difficult-to-treat infections and hospital outbreaks. The morphogenetic plasticity of C. auris, including its ability to filament, to form aggregates or biofilms on inert surfaces, is important to the fungus for interhuman transmission, skin or catheter colonization, tissue invasion, antifungal resistance, and escape of the host immune system. This work deciphered the importance of Ume6 in the control of distinct pathways involved in filamentation, aggregation, adhesion, and biofilm formation of C. auris. A better understanding of the mechanisms of C. auris morphogenesis may help identify novel antifungal targets.
Collapse
Affiliation(s)
- Marine Louvet
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jizhou Li
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Danielle Brandalise
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Daniel Bachmann
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Danny Labes
- Flow Cytometry Facility, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Jacquier
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christel Genoud
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Antonio Mucciolo
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Alix T. Coste
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Frederic Lamoth
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Kumari A, Sharma A, Kumari L, Pawar SV, Singh R. Antibiofilm activity of truncated Staphylococcus aureus phenol soluble modulin α2 (SaΔ1Δ2PSMα2) against Candida auris in vitro and in an animal model of catheter-associated infection. Microb Pathog 2024; 196:106943. [PMID: 39288824 DOI: 10.1016/j.micpath.2024.106943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Candida auris has emerged as a major multidrug-resistant nosocomial pathogen. The organism exhibits a persistent colonising phenotype, and causes recalcitrant infections often strongly linked to biofilm formation. Alternate strategies are urgently needed to combat this yeast and its biofilm-associated phenotype. This work aimed to evaluate the efficacy of select staphylococcal phenol soluble modulins (PSMs), namely, a truncated version of Staphylococcus aureus PSMα2 shortened by two amino acids at the N-terminal (SaΔ1Δ2PSMα2) and Staphylococcus epidermidis PSMδ against C. auris in vitro and in vivo. The antifungal and antibiofilm activity was tested by broth microdilution and XTT dye reduction assay. Combination effect with antifungal drugs was determined by fractional inhibitory concentration test. The efficacy of combination therapy using SaΔ1Δ2PSMα2 with amphotericin B or caspofungin was evaluated in murine model of C. auris catheter-associated infection. Based on antifungal activity, antibiofilm activity and cytotoxicity data, SaΔ1Δ2PSMα2 exhibited promising activity against C. auris biofilms. Nearly 50 % inhibition in biofilm formation was noted with 0.5-2 μM of the peptide against multiple clinical and C. auris colonizing isolates. It was synergistic with amphotericin B (ΣFIC = 0.281) and caspofungin (ΣFIC = 0.047) in vitro, and improved the activity of voriconazole in voriconazole-resistant C. auris. Combination therapy using amphotericin B or caspofungin (1 μg/ml) with SaΔ1Δ2PSMα2 resulted in 99.5 % reduction in C. auris biofilm in murine model, even when the peptide was used at a concentration that was neither fungicidal nor antibiofilm (0.125 μM; ≈0.26 μg/ml). The study provides insight into the potential utility of SaΔ1Δ2PSMα2-antifungal drug combination against C. auris biofilm-associated infections.
Collapse
Affiliation(s)
- Anjna Kumari
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Anayata Sharma
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Laxmi Kumari
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Rachna Singh
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
11
|
Ismail SHH, Hamdy R, Altaie AM, Fayed B, Dakalbab S, El-Awady R, Soliman SSM. Decoding host cell interaction- and fluconazole-induced metabolic alterations and drug resistance in Candida auris. Mycologia 2024; 116:673-693. [PMID: 39024116 DOI: 10.1080/00275514.2024.2363730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
Candida auris is an emerging drug-resistant pathogen associated with high mortality rates. This study aimed to explore the metabolic alterations and associated pathogenesis and drug resistance in fluconazole-treated Candida auris-host cell interaction. Compared with controls, secreted metabolites from fluconazole-treated C. auris and fluconazole-treated C. auris-host cell co-culture demonstrated notable anti-Candida activity. Fluconazole caused significant reductions in C. auris cell numbers and aggregated phenotype. Metabolites produced by C. auris with potential fungal colonization, invasion, and host immune evasion effects were identified. Metabolites known to enhance biofilm formation produced during C. auris-host cell interaction were inhibited by fluconazole. Fluconazole enhanced the production of metabolites with biofilm inhibition activity, including behenyl alcohol and decanoic acid. Metabolites with potential Candida growth inhibition activity such as 2-palmitoyl glycerol, 1-tetradecanol, and 1-nonadecene were activated by fluconazole. Different patterns of proinflammatory cytokine expression presented due to fluconazole concentration and host cell type (fibroblasts versus macrophages). This highlights the immune response's complexity, emphasizing the necessity for additional research to comprehend cell-type-specific responses to antifungal therapies. Both host cell interaction and fluconazole treatment increased the expression of CDR1 and ERG11 genes, both associated with drug resistance. This study provides insights into pathogenesis in C. auris due to host cell interaction and fluconazole treatment. Understanding these interactions is crucial for enhancing fluconazole sensitivity and effectively combating C. auris.
Collapse
Affiliation(s)
- Samah H H Ismail
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Zagazig, Egypt
| | - Alaa M Altaie
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Department of Chemistry of Natural and Microbial Product, National Research Centre, P.O. Box 12622, Cairo, Egypt
| | - Salam Dakalbab
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| |
Collapse
|
12
|
Yue H, Xu X, Peng B, Wang X, Zhang S, Tian J, Wang S, Song M, Liu Q. Antifungal Activity of the Dichloromethane Extract of CaoHuangGuiXiang Formula Against Candida auris by in vitro and in vivo Evaluation. Infect Drug Resist 2024; 17:3547-3559. [PMID: 39161467 PMCID: PMC11330856 DOI: 10.2147/idr.s467418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
Purpose CaoHuangGuiXiang (CHGX) formula is a traditional Chinese medicine for the treatment of Candida-related infection. However, its antifungal mechanisms against the emerging fungal pathogen Candida auris remain unclear. This study aimed to evaluate the antifungal activity of the dichloromethane extract of CHGX (CHGX-DME) and clarified its antifungal mechanims against C. auris. Methods The major components of CHGX-DME were identified by ultra-performance liquid chromatography tandem mass spectrometry. Then, the minimal inhibitory concentration (MIC) assay and the time-kill kinetic assay were performed to investigate the in vitro antifungal activity of CHGX-DME against C. auris, including 8 isolates of 4 discrete clades and 2 special phenotypes (filamentous and aggregative). Furthermore, the effect of CHGX-DME on biofilm development was examined. In addition, the in vivo toxicity and efficacy of CHGX-DME were evaluated in a Galleria mellonella infection model. Results First, 20 major compounds in CHGX-DME were detected and characterized. The MIC50% and MIC90% of CHGX-DME against C. auris isolates ranged from 50-200 mg/L and 100-400 mg/L, respectively. At 400 mg/L, CHGX-DME was able to efficiently kill more than 70% and 90% of C. auris cells after 3 hours and 6 hours of treatment, respectively. This notable antifungal activity exhibited a dosage- and time-dependent manner. Moreover, CHGX-DME not only played a critical role in inhibiting the proliferation of filamentous and aggregative cells, but also showed restricting effect on biofilm development in C. auris. Importantly, it significantly improved the survival rate and reduced the fungal burden in G. mellonella infection models, suggesting a remarkable treatment effect against C. auris infection. Conclusion CHGX-DME exhibited potent antifungal activity against C. auris and significantly ameliorated this fungal infection in the G. mellonella model, confirming that it would be a promising antifungal drug for the troublesome and emerging fungal pathogen C. auris.
Collapse
Affiliation(s)
- Huizhen Yue
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Chinese Medicine, Beijing, People’s Republic of China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, People’s Republic of China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Chinese Medicine, Beijing, People’s Republic of China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, People’s Republic of China
| | - Bing Peng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Chinese Medicine, Beijing, People’s Republic of China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, People’s Republic of China
| | - Xuanyu Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Shengnan Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Jinhao Tian
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shuo Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Maifen Song
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Chinese Medicine, Beijing, People’s Republic of China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, People’s Republic of China
| |
Collapse
|
13
|
Kim JS, Cha H, Bahn YS. Comprehensive Overview of Candida auris: An Emerging Multidrug-Resistant Fungal Pathogen. J Microbiol Biotechnol 2024; 34:1365-1375. [PMID: 38881183 PMCID: PMC11294645 DOI: 10.4014/jmb.2404.04040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
The rise of Candida auris, a multidrug-resistant fungal pathogen, across more than 40 countries, has signaled an alarming threat to global health due to its significant resistance to existing antifungal therapies. Characterized by its rapid spread and robust drug resistance, C. auris presents a critical challenge in managing infections, particularly in healthcare settings. With research on its biological traits and genetic basis of virulence and resistance still in the early stages, there is a pressing need for a concerted effort to understand and counteract this pathogen. This review synthesizes current knowledge on the epidemiology, biology, genetic manipulation, pathogenicity, diagnostics, and resistance mechanisms of C. auris, and discusses future directions in research and therapeutic development. By exploring the complexities surrounding C. auris, we aim to underscore the importance of advancing research to devise effective control and treatment strategies.
Collapse
Affiliation(s)
- Ji-Seok Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyunjin Cha
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
14
|
Cavallo L, Menotti F, Roana J, Costa C, Longo F, Pagano C, Curtoni A, Bondi A, Banche G, Allizond V, Mandras N. Synergistic Effect of Essential Oils and Antifungal Agents in Fighting Resistant Clinical Isolates of Candida auris. Pharmaceutics 2024; 16:957. [PMID: 39065654 PMCID: PMC11279409 DOI: 10.3390/pharmaceutics16070957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Recently, a large number of nosocomial infections have been caused by an emerging pathogen that is rising as a worldwide issue in human health: Candida auris. This yeast is considered resistant to antifungals of the first-line therapies, and consequently it is related to morbidity and mortality. Therefore, the aim of this research was to determine the in vitro anti-C. auris activity against twenty-three resistant clinical strains of different essential oils (EOs), pure or in combination with traditional antifungal agents, mainly caspofungin, fluconazole, micafungin and 5-flucytosine. Broth dilution assay was performed to evaluate the fungistatic and fungicidal effectiveness of fifteen EOs towards all the C. auris isolates. The data demonstrated that EOs were able to prevent C. auris growth, with MIC values ranging from 0.03 to 1% for the efficacious EOs (thyme, cinnamon, geranium, clove bud, lemongrass and mentha of Pancalieri), whereas the MICs were >1% for the ineffective ones. Thereafter, the six most effective EOs were used to perform the checkerboard experiments by assaying simultaneously the activity of EOs and traditional antifungals towards two selected strains. The most promising synergic combinations towards C. auris, depending on the isolate, were those with micafungin and geranium, thyme, cinnamon, lemongrass or clove bud EOs, with fluconazole and mentha of Pancalieri EO, and with 5-flucytosine and mentha of Pancalieri EO. These EOs and their combinations with antifungal drugs may provide a useful therapeutic alternative that could reduce the dose of the individual components, limiting the overall side effects. These associations might be a prospective option for the future treatment of infections, thus helping to overcome the challenging issue of resistance in C. auris.
Collapse
Affiliation(s)
- Lorenza Cavallo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
| | - Francesca Menotti
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
| | - Janira Roana
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
| | - Cristina Costa
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
- Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Fabio Longo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
| | - Claudia Pagano
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
| | - Antonio Curtoni
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
- Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Alessandro Bondi
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
- Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Giuliana Banche
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
| | - Valeria Allizond
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
| | - Narcisa Mandras
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
| |
Collapse
|
15
|
Das S, Singh S, Tawde Y, Dutta TK, Rudramurthy SM, Kaur H, Shaw T, Ghosh A. Comparative fitness trade-offs associated with azole resistance in Candida auris clinical isolates. Heliyon 2024; 10:e32386. [PMID: 38988564 PMCID: PMC11233892 DOI: 10.1016/j.heliyon.2024.e32386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Multidrug-resistant yeast Candida auris is a serious threat to public health with documented survival in various hospital niches. The dynamics of this survival benefit and its trade off with drug resistance are still unknown for this pathogen. In this study we investigate the oxidative stress response (OSR) in fluconazole-resistant C. auris and compare its relative fitness with fluconazole-susceptible strains. A total of 351 C. auris clinical isolates (61 fluconazole-susceptible and 290 fluconazole-resistant) were screened for stress tolerance by spot assay and 95.08 % fluconazole-susceptible isolates were hyper-resistant to oxidative stress while majority (94.5 %) fluconazole-resistant isolates had lower oxidative tolerance. Expression of Hog1 and Cta1 gene transcript levels and cellular catalase levels were significantly higher in fluconazole-susceptible isolates and a corresponding higher intracellular reactive oxygen species level (iROS) was accumulated in the fluconazole-resistant isolates. Biofilm formation and cell viability under oxidative stress revealed higher biofilm formation and better viability in fluconazole-susceptible isolates. Fluconazole-resistant isolates had higher basal cell wall chitin. On comparison of virulence, the % cytotoxicity in A549 cell line was higher in fluconazole-susceptible isolates and the median survival of the infected larvae in G. mellonella infection model was higher in fluconazole-resistant (5; IQR:4.5-5 days) vs. fluconazole-susceptible C. auris (2; IQR:1.5-2.5 days). All organisms evolve with changes in their environmental conditions, to ensure an optimal balance between proliferation and survival. Development of tolerance to a certain kind of stress example antifungal exposure in yeast can leads to a compensatory decrease in tolerance for other stresses. This study provides useful insights into the comparative fitness and antifungal susceptibility trade off in C. auris. We report a negative association between H2O2 tolerance and fluconazole susceptibility. Using in-vitro cell cytotoxicity and in-vivo survival assays we also demonstrate the higher virulence potential of fluconazole-susceptible C. auris isolates corroborating the negative correlation between susceptibility and pathogen survival or virulence. These findings could also be translated to clinical practice by investigating the possibility of using molecules targeting stress response and fitness regulating pathways for management of this serious infection.
Collapse
Affiliation(s)
- Sourav Das
- Department of Medical Microbiology. Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shreya Singh
- Department of Microbiology. Dr. B. R. Ambedkar State Institute of Medical Science, Mohali, Punjab, India
| | - Yamini Tawde
- Department of Medical Microbiology. Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Tushar K. Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shivaprakash M. Rudramurthy
- Department of Medical Microbiology. Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Harsimran Kaur
- Department of Medical Microbiology. Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Tushar Shaw
- Department of Life and Allied Health Sciences, Ramaiah university of Applied sciences, Bangalore, India
| | - Anup Ghosh
- Department of Medical Microbiology. Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
16
|
Areitio M, Antoran A, Rodriguez-Erenaga O, Aparicio-Fernandez L, Martin-Souto L, Buldain I, Zaldibar B, Ruiz-Gaitan A, Pemán J, Rementeria A, Ramirez-Garcia A. Identification of the Most Immunoreactive Antigens of Candida auris to IgGs from Systemic Infections in Mice. J Proteome Res 2024; 23:1634-1648. [PMID: 38572994 PMCID: PMC11077488 DOI: 10.1021/acs.jproteome.3c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
The delay in making a correct diagnosis of Candida auris causes concern in the healthcare system setting, and immunoproteomics studies are important to identify immunoreactive proteins for new diagnostic strategies. In this study, immunocompetent murine systemic infections caused by non-aggregative and aggregative phenotypes of C. auris and by Candida albicans and Candida haemulonii were carried out, and the obtained sera were used to study their immunoreactivity against C. auris proteins. The results showed higher virulence, in terms of infection signs, weight loss, and histopathological damage, of the non-aggregative isolate. Moreover, C. auris was less virulent than C. albicans but more than C. haemulonii. Regarding the immunoproteomics study, 13 spots recognized by sera from mice infected with both C. auris phenotypes and analyzed by mass spectrometry corresponded to enolase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, and phosphoglycerate mutase. These four proteins were also recognized by sera obtained from human patients with disseminated C. auris infection but not by sera obtained from mice infected with C. albicans or Aspergillus fumigatus. Spot identification data are available via ProteomeXchange with the identifier PXD049077. In conclusion, this study showed that the identified proteins could be potential candidates to be studied as new diagnostic or even therapeutic targets for C. auris.
Collapse
Affiliation(s)
- Maialen Areitio
- Department
of Immunology, Microbiology and Parasitology, Faculty of Science and
Technology, University of the Basque Country
(UPV/EHU), 48940 Leioa, Spain
| | - Aitziber Antoran
- Department
of Immunology, Microbiology and Parasitology, Faculty of Science and
Technology, University of the Basque Country
(UPV/EHU), 48940 Leioa, Spain
| | - Oier Rodriguez-Erenaga
- Department
of Immunology, Microbiology and Parasitology, Faculty of Science and
Technology, University of the Basque Country
(UPV/EHU), 48940 Leioa, Spain
| | - Leire Aparicio-Fernandez
- Department
of Immunology, Microbiology and Parasitology, Faculty of Science and
Technology, University of the Basque Country
(UPV/EHU), 48940 Leioa, Spain
| | - Leire Martin-Souto
- Department
of Immunology, Microbiology and Parasitology, Faculty of Science and
Technology, University of the Basque Country
(UPV/EHU), 48940 Leioa, Spain
| | - Idoia Buldain
- Department
of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Beñat Zaldibar
- CBET
Research Group, Department of Zoology and Animal Cell Biology, Faculty
of Science and Technology, Research Centre for Experimental Marine
Biology and Biotechnology PIE, University
of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Alba Ruiz-Gaitan
- Microbiology
Department, University and Polytechnic La
Fe Hospital, 46026 Valencia, Spain
| | - Javier Pemán
- Microbiology
Department, University and Polytechnic La
Fe Hospital, 46026 Valencia, Spain
| | - Aitor Rementeria
- Department
of Immunology, Microbiology and Parasitology, Faculty of Science and
Technology, University of the Basque Country
(UPV/EHU), 48940 Leioa, Spain
| | - Andoni Ramirez-Garcia
- Department
of Immunology, Microbiology and Parasitology, Faculty of Science and
Technology, University of the Basque Country
(UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
17
|
Bing J, Guan Z, Zheng T, Ennis CL, Nobile CJ, Chen C, Chu H, Huang G. Rapid evolution of an adaptive multicellular morphology of Candida auris during systemic infection. Nat Commun 2024; 15:2381. [PMID: 38493178 PMCID: PMC10944540 DOI: 10.1038/s41467-024-46786-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Candida auris has become a serious threat to public health. The mechanisms of how this fungal pathogen adapts to the mammalian host are poorly understood. Here we report the rapid evolution of an adaptive C. auris multicellular aggregative morphology in the murine host during systemic infection. C. auris aggregative cells accumulate in the brain and exhibit obvious advantages over the single-celled yeast-form cells during systemic infection. Genetic mutations, specifically de novo point mutations in genes associated with cell division or budding processes, underlie the rapid evolution of this aggregative phenotype. Most mutated C. auris genes are associated with the regulation of cell wall integrity, cytokinesis, cytoskeletal properties, and cellular polarization. Moreover, the multicellular aggregates are notably more recalcitrant to the host antimicrobial peptides LL-37 and PACAP relative to the single-celled yeast-form cells. Overall, to survive in the host, C. auris can rapidly evolve a multicellular aggregative morphology via genetic mutations.
Collapse
Affiliation(s)
- Jian Bing
- Shanghai Institute of Infectious Disease and Biosecurity, Department of infectious diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Zhangyue Guan
- Shanghai Institute of Infectious Disease and Biosecurity, Department of infectious diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Tianhong Zheng
- Shanghai Institute of Infectious Disease and Biosecurity, Department of infectious diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Craig L Ennis
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, 95343, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, 95343, USA
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, 95343, USA
- Health Sciences Research Institute, University of California, Merced, Merced, CA, 95343, USA
| | - Changbin Chen
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Unit of Pathogenic Fungal Infection & Host Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Guanghua Huang
- Shanghai Institute of Infectious Disease and Biosecurity, Department of infectious diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
18
|
Pelletier C, Shaw S, Alsayegh S, Brown AJP, Lorenz A. Candida auris undergoes adhesin-dependent and -independent cellular aggregation. PLoS Pathog 2024; 20:e1012076. [PMID: 38466738 PMCID: PMC10957086 DOI: 10.1371/journal.ppat.1012076] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 03/21/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Candida auris is a fungal pathogen of humans responsible for nosocomial infections with high mortality rates. High levels of resistance to antifungal drugs and environmental persistence mean these infections are difficult to treat and eradicate from a healthcare setting. Understanding the life cycle and the genetics of this fungus underpinning clinically relevant traits, such as antifungal resistance and virulence, is of the utmost importance to develop novel treatments and therapies. Epidemiological and genomic studies have identified five geographical clades (I-V), which display phenotypic and genomic differences. Aggregation of cells, a phenotype primarily of clade III strains, has been linked to reduced virulence in some infection models. The aggregation phenotype has thus been associated with conferring an advantage for (skin) colonisation rather than for systemic infection. However, strains with different clade affiliations were compared to infer the effects of different morphologies on virulence. This makes it difficult to distinguish morphology-dependent causes from clade-specific or even strain-specific genetic factors. Here, we identify two different types of aggregation: one induced by antifungal treatment which is a result of a cell separation defect; and a second which is controlled by growth conditions and only occurs in strains with the ability to aggregate. The latter aggregation type depends on an ALS-family adhesin which is differentially expressed during aggregation in an aggregative C. auris strain. Finally, we demonstrate that macrophages cannot clear aggregates, suggesting that aggregation might after all provide a benefit during systemic infection and could facilitate long-term persistence in the host.
Collapse
Affiliation(s)
- Chloe Pelletier
- Institute of Medical Sciences (IMS), University of Aberdeen, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sophie Shaw
- Centre for Genome-Enabled Biology and Medicine (CGEBM), University of Aberdeen, Aberdeen, United Kingdom
| | - Sakinah Alsayegh
- Institute of Medical Sciences (IMS), University of Aberdeen, Aberdeen, United Kingdom
| | | | - Alexander Lorenz
- Institute of Medical Sciences (IMS), University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
19
|
Chadwick C, De Jesus M, Ginty F, Martinez JS. Pathobiology of Candida auris infection analyzed by multiplexed imaging and single cell analysis. PLoS One 2024; 19:e0293011. [PMID: 38232081 DOI: 10.1371/journal.pone.0293011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/03/2023] [Indexed: 01/19/2024] Open
Abstract
Fungal organisms contribute to significant human morbidity and mortality and Candida auris (C. auris) infections are of utmost concern due to multi-drug resistant strains and persistence in critical care and hospital settings. Pathogenesis and pathology of C. auris is still poorly understood and in this study, we demonstrate how the use of multiplex immunofluorescent imaging (MxIF) and single-cell analysis can contribute to a deeper understanding of fungal infections within organs. We used two different neutrophil depletion murine models (treated with either 1A8-an anti-Ly6G antibody, or RB6-8C5-an anti-Ly6G/Ly6C antibody; both 1A8 and RB6-8C5 antibodies have been shown to deplete neutrophils) and compared to wildtype, non-neutropenic mice. Following pathologist assessment, fixed samples underwent MxIF imaging using a C. albicans antibody (shown to be cross-reactive to C. auris) and immune cell biomarkers-CD3 (T cells), CD68 (macrophages), B220 (B cells), CD45 (monocytes), and Ly6G (neutrophils) to quantify organ specific immune niches. MxIF analysis highlighted the heterogenous distribution of C. auris infection within heart, kidney, and brain 7 days post-infection. Size and number of fungal abscesses was greatest in the heart and lowest in brain. Infected mice had an increased count of CD3+, CD68+, B220+, and CD45+ immune cells, concentrated around C. auris abscesses. CD68+ cells were predominant in wildtype (non-neutropenic mice) and CD3+/CD45+ cells were predominant in neutropenic mice, with B cells being the least abundant. These findings suggest a Th2 driven immune response in neutropenic C. auris infection mice models. This study demonstrates the value of MxIF to broaden understanding of C. auris pathobiology, and mechanistic understanding of fungal infections.
Collapse
Affiliation(s)
| | - Magdia De Jesus
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, United States of America
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Fiona Ginty
- GE Research, Niskayuna, New York, United States of America
| | | |
Collapse
|
20
|
Alvarado M, Gómez-Navajas JA, Blázquez-Muñoz MT, Gómez-Molero E, Fernández-Sánchez S, Eraso E, Munro CA, Valentín E, Mateo E, de Groot PWJ. The good, the bad, and the hazardous: comparative genomic analysis unveils cell wall features in the pathogen Candidozyma auris typical for both baker's yeast and Candida. FEMS Yeast Res 2024; 24:foae039. [PMID: 39656857 PMCID: PMC11657238 DOI: 10.1093/femsyr/foae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 11/04/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
The drug-resistant pathogenic yeast Candidozyma auris (formerly named Candida auris) is considered a critical health problem of global importance. As the cell wall plays a crucial role in pathobiology, here we performed a detailed bioinformatic analysis of its biosynthesis in C. auris and related Candidozyma haemuli complex species using Candida albicans and Saccharomyces cerevisiae as references. Our data indicate that the cell wall architecture described for these reference yeasts is largely conserved in Candidozyma spp.; however, expansions or reductions in gene families point to subtle alterations, particularly with respect to β--1,3--glucan synthesis and remodeling, phosphomannosylation, β-mannosylation, and glycosylphosphatidylinositol (GPI) proteins. In several aspects, C. auris holds a position in between C. albicans and S. cerevisiae, consistent with being classified in a separate genus. Strikingly, among the identified putative GPI proteins in C. auris are adhesins typical for both Candida (Als and Hyr/Iff) and Saccharomyces (Flo11 and Flo5-like flocculins). Further, 26 putative C. auris GPI proteins lack homologs in Candida genus species. Phenotypic analysis of one such gene, QG37_05701, showed mild phenotypes implicating a role associated with cell wall β-1,3-glucan. Altogether, our study uncovered a wealth of information relevant for the pathogenicity of C. auris as well as targets for follow-up studies.
Collapse
Affiliation(s)
- María Alvarado
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| | - Jesús A Gómez-Navajas
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| | | | - Emilia Gómez-Molero
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| | | | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain
| | - Carol A Munro
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Eulogio Valentín
- GMCA Research Unit, Departament of Microbiology and Ecology, University of Valencia, Burjassot, 46010 Valencia, Spain
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Estibaliz Mateo
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain
| | - Piet W J de Groot
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| |
Collapse
|
21
|
Akinbobola A, Kean R, Quilliam RS. Plastic pollution as a novel reservoir for the environmental survival of the drug resistant fungal pathogen Candida auris. MARINE POLLUTION BULLETIN 2024; 198:115841. [PMID: 38061145 DOI: 10.1016/j.marpolbul.2023.115841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
The WHO recently classified Candida auris as a fungal pathogen of "critical concern". Evidence suggests that C. auris emerged from the natural environment, yet the ability of this pathogenic yeast to survive in the natural environment is still poorly understood. The aim of this study, therefore, was to quantify the persistence of C. auris in simulated environmental matrices and explore the role of plastic pollution for facilitating survival and potential transfer of C. auris. Multi-drug resistant strains of C. auris persisted for over 30 days in river water or seawater, either planktonically, or in biofilms colonising high-density polyethylene (HDPE) or glass. C. auris could be transferred from plastic beads onto simulated beach sand, particularly when the sand was wet. Importantly, all C. auris cells recovered from plastics retained their pathogenicity; therefore, plastic pollution could play a significant role in the widescale environmental dissemination of this recently emerged pathogen.
Collapse
Affiliation(s)
- Ayorinde Akinbobola
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Ryan Kean
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
22
|
Cox CA, Manavathu EK, Wakade S, Myntti M, Vazquez JA. Efficacy of biofilm disrupters against Candida auris and other Candida species in monomicrobial and polymicrobial biofilms. Mycoses 2024; 67:e13684. [PMID: 38214428 DOI: 10.1111/myc.13684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Candida species are now considered global threats by the CDC and WHO. Candida auris specifically is on the critical pathogen threat list along with Candida albicans. In addition, it is not uncommon to find Candida spp. in a mixed culture with bacterial organisms, especially Staphylococcus aureus producing polymicrobial infections. To eradicate these organisms from the environment and from patient surfaces, surface agents such as chlorhexidine (CHD) and Puracyn are used. Biofilm disrupters (BDs) are novel agents with a broad spectrum of antimicrobial activity and have been used in the management of chronic wounds and to sterilise environmental surfaces for the past several years. The goal of this study was to evaluate BDs (BlastX, Torrent, NSSD) and CHD against Candida spp. and S. aureus using zone of inhibition assays, biofilm and time-kill assays. All BDs and CHD inhibited C. auris growth effectively in a concentration-dependent manner. Additionally, CHD and the BDs showed excellent antimicrobial activity within polymicrobial biofilms. A comparative analysis of the BDs and CHD against C. auris and C. albicans using biofilm kill-curves showed at least 99.999% killing. All three BDs and CHD have excellent activity against different Candida species, including C. auris. However, one isolate of C. auris in a polymicrobial biofilm assay showed resistance/tolerance to CHD, but not to the BDs. The fungicidal activity of these novel agents will be valuable in eradicating surface colonisation of Candida spp, especially C. auris from colonised environmental surfaces and from wounds in colonised patients.
Collapse
Affiliation(s)
- Claudia A Cox
- Division of Infectious Diseases, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Elias K Manavathu
- Division of Infectious Diseases, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Sushama Wakade
- Division of Infectious Diseases, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | | | - Jose A Vazquez
- Division of Infectious Diseases, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
23
|
Rapti V, Iliopoulou K, Poulakou G. The Gordian Knot of C. auris: If You Cannot Cut It, Prevent It. Pathogens 2023; 12:1444. [PMID: 38133327 PMCID: PMC10747958 DOI: 10.3390/pathogens12121444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Since its first description in 2009, Candida auris has, so far, resulted in large hospital outbreaks worldwide and is considered an emerging global public health threat. Exceptionally for yeast, it is gifted with a profoundly worrying invasive potential and high inter-patient transmissibility. At the same time, it is capable of colonizing and persisting in both patients and hospital settings for prolonged periods of time, thus creating a vicious cycle of acquisition, spreading, and infection. It exhibits various virulence qualities and thermotolerance, osmotolerance, filamentation, biofilm formation and hydrolytic enzyme production, which are mainly implicated in its pathogenesis. Owing to its unfavorable profile of resistance to diverse antifungal agents and the lack of effective treatment options, the implementation of robust infection prevention and control (IPC) practices is crucial for controlling and minimizing intra-hospital transmission of C. auris. Rapid and accurate microbiological identification, adherence to hand hygiene, use of adequate personal protective equipment (PPE), proper handling of catheters and implantable devices, contact isolation, periodical environmental decontamination, targeted screening, implementation of antimicrobial stewardship (AMS) programs and communication between healthcare facilities about residents' C. auris colonization status are recognized as coherent strategies for preventing its spread. Current knowledge on C. auris epidemiology, clinical characteristics, and its mechanisms of pathogenicity are summarized in the present review and a comprehensive overview of IPC practices ensuring yeast prevention is also provided.
Collapse
Affiliation(s)
- Vasiliki Rapti
- Third Department of Internal Medicine, School of Medicine, National & Kapodistrian University of Athens, Sotiria General Hospital, 115 27 Athens, Greece;
| | | | - Garyfallia Poulakou
- Third Department of Internal Medicine, School of Medicine, National & Kapodistrian University of Athens, Sotiria General Hospital, 115 27 Athens, Greece;
| |
Collapse
|
24
|
Lockhart SR, Chowdhary A, Gold JAW. The rapid emergence of antifungal-resistant human-pathogenic fungi. Nat Rev Microbiol 2023; 21:818-832. [PMID: 37648790 PMCID: PMC10859884 DOI: 10.1038/s41579-023-00960-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
During recent decades, the emergence of pathogenic fungi has posed an increasing public health threat, particularly given the limited number of antifungal drugs available to treat invasive infections. In this Review, we discuss the global emergence and spread of three emerging antifungal-resistant fungi: Candida auris, driven by global health-care transmission and possibly facilitated by climate change; azole-resistant Aspergillus fumigatus, driven by the selection facilitated by azole fungicide use in agricultural and other settings; and Trichophyton indotineae, driven by the under-regulated use of over-the-counter high-potency corticosteroid-containing antifungal creams. The diversity of the fungi themselves and the drivers of their emergence make it clear that we cannot predict what might emerge next. Therefore, vigilance is critical to monitoring fungal emergence, as well as the rise in overall antifungal resistance.
Collapse
Affiliation(s)
- Shawn R Lockhart
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Jeremy A W Gold
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
25
|
Abstract
Candida auris recently emerged as an urgent public health threat, causing outbreaks of invasive infections in healthcare settings throughout the world. This fungal pathogen persists on the skin of patients and on abiotic surfaces despite antiseptic and decolonization attempts. The heightened capacity for skin colonization and environmental persistence promotes rapid nosocomial spread. Following skin colonization, C. auris can gain entrance to the bloodstream and deeper tissues, often through a wound or an inserted medical device, such as a catheter. C. auris possesses a variety of virulence traits, including the capacity for biofilm formation, production of adhesins and proteases, and evasion of innate immune responses. In this review, we highlight the interactions of C. auris with the host, emphasizing the intersection of laboratory studies and clinical observations.
Collapse
Affiliation(s)
- Mark V. Horton
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Medical Microbiology & Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ashley M. Holt
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Medical Microbiology & Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jeniel E. Nett
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Medical Microbiology & Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
26
|
Weber DJ, Rutala WA, Anderson DJ, Sickbert-Bennett EE. Biofilms on medical instruments and surfaces: Do they interfere with instrument reprocessing and surface disinfection. Am J Infect Control 2023; 51:A114-A119. [PMID: 37890940 DOI: 10.1016/j.ajic.2023.04.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Biofilms are surface-attached communities of bacteria embedded in an extracellular matrix. This matrix shields the resident cells from desiccation, chemical perturbation, invasion by other bacteria, and confers reduced susceptibility to antibiotics and disinfectants. There is growing evidence that biofilms on medical instruments (especially endoscopes) and environmental surfaces interfere with cleaning and disinfection. METHODS The English literature on the impact of biofilms in medicine was reviewed with a focus on the impact of biofilms on reusable semicritical medical instruments and hospital environmental surfaces. RESULTS Biofilms are frequently present on hospital environmental surfaces and reusable medical equipment. Important health care...associated pathogens that readily form biofilms on environmental surfaces include Staphylococcus aureus, Pseudomonas aeruginosa, and Candida auris. Evidence has demonstrated that biofilms interfere with cleaning and disinfection. DISCUSSION New technologies such as ..úself-disinfecting..Ñ surfaces or continuous room disinfection systems may reduce or disrupt biofilm formation and are under study to reduce the impact of the contaminated surface environment on health care...associated infections. CONCLUSIONS Future research is urgently needed to develop methods to reduce or eliminate biofilms from forming on implantable medical devices, reusable medical equipment, and hospital surfaces.
Collapse
Affiliation(s)
- David J Weber
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC; Department of Infection Prevention, UNC Medical Center, Chapel Hill, NC.
| | - William A Rutala
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Deverick J Anderson
- Division of Infectious Diseases, School of Medicine, Duke University, Durham, NC
| | - Emily E Sickbert-Bennett
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC; Department of Infection Prevention, UNC Medical Center, Chapel Hill, NC
| |
Collapse
|
27
|
Singh P, Srivastava S, Malhotra R, Mathur P. Identification of Candida auris by PCR and assessment of biofilm formation by crystal violet assay. Indian J Med Microbiol 2023; 46:100421. [PMID: 37945115 DOI: 10.1016/j.ijmmb.2023.100421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 06/18/2023] [Accepted: 06/24/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Candida auris is a notorious pathogen capable of forming biofilms on devices as well as host tissues, often culminating in infections. We evaluated characteristics of infections and the methods to diagnose C. auris over a period of three years in a tertiary care hospital. METHODS Patients admitted between 2018 and 2020, who had candidemia due to C. auris were included in the study. Identification was performed using HiCrome™ Candida Differential Agar, Vitek 2 (BioMérieux, Inc., Marcy-l'Etoile, France) and MALDI-TOF, Vitek-MS. Identification was confirmed by detection of rDNA region covering part of 5.8S, entire of ITS2, and part of 28S by polymerase chain reaction (PCR). Biofilm formation was assessed by crystal violet staining. RESULTS Presence of central line and broad spectrum antimicrobials were noted in all patients whereas total parenteral nutrition was given in 82.1% of these patients. Identification by Vitek2 v8.1 correlated with MALDI-TOF MS. PCR products of length 163 bp were obtained in all isolates as visualized by agarose gel electrophoresis. The biofilm quantity measured as A560 of the twenty-eight C. auris isolates ranged from 0.16 to 0.80 compared to C. albicans. CONCLUSIONS C. auris can be identified by PCR targeting specific rDNA region. Biofilm formation and quantification can be achieved by growing C. auris isolates in Mueller-Hinton broth over a duration of 48 h.
Collapse
Affiliation(s)
- Parul Singh
- Department of Microbiology, Trauma Centre, AIIMS, New Delhi, India.
| | | | - Rajesh Malhotra
- Department of Orthopaedics & Chief, Trauma Centre, AIIMS, New Delhi, India.
| | - Purva Mathur
- Department of Laboratory Medicine, Trauma Centre, AIIMS, New Delhi, India.
| |
Collapse
|
28
|
Cobrado L, Ricardo E, Ramalho P, Fernandes AR, Rodrigues AG. Does repeated exposure to hydrogen peroxide induce Candida auris resistance? Antimicrob Resist Infect Control 2023; 12:92. [PMID: 37674229 PMCID: PMC10483791 DOI: 10.1186/s13756-023-01281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/27/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND To minimize environmental colonization by microorganisms that may persist and thrive in healthcare settings, thus reducing healthcare-associated infections (HAIs), new insights over already known biocides are certainly of relevance. Although the efficacy of hydrogen peroxide (H2O2) against the emergent yeast Candida auris is moderately documented, concerns over the potential induction of resistance after repeated exposure do persist. The main objective of the present study was to evaluate the hypothetical induction of Candida auris resistance following 30 days of consecutive exposure to lethal and sublethal concentrations of H2O2. Furthermore, the authors aimed to elucidate about the rank of efficacy of H2O2 against C. auris comparing to other Candida species and whether different strains of C. auris may display different susceptibilities to H2O2. METHODS During the induction of resistance assays, both type strains and clinical isolates of Candida auris, Candida albicans and Candida parapsilosis were exposed repeatedly to defined concentrations of H2O2, for 30 days. RESULTS After that period, no significant differences were found when comparing the minimal inhibitory concentration values of H2O2 in case of the induced strains versus each respective positive control. Moreover, H2O2 displayed similar effectiveness against all the tested Candida species and no differences were demonstrated among the distinct strains of C. auris. CONCLUSIONS The adoption of H2O2 solutions in routine protocols in order to promote disinfection standards against Candida auris, improving patient safety and reducing healthcare costs, is certainly welcomed.
Collapse
Affiliation(s)
- Luis Cobrado
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, Porto, 4200 - 319, Portugal.
- Center for Health Technology and Services Research / Rede de Investigação em Saúde, CINTESIS / RISE, University of Porto, Porto, Portugal.
- Burn Unit, Department of Plastic and Reconstructive Surgery, University Hospital Center of São João, Porto, Portugal.
| | - Elisabete Ricardo
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, Porto, 4200 - 319, Portugal
- Center for Health Technology and Services Research / Rede de Investigação em Saúde, CINTESIS / RISE, University of Porto, Porto, Portugal
| | - Patricia Ramalho
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, Porto, 4200 - 319, Portugal
- Center for Health Technology and Services Research / Rede de Investigação em Saúde, CINTESIS / RISE, University of Porto, Porto, Portugal
| | - Angela Rita Fernandes
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, Porto, 4200 - 319, Portugal
| | - Acacio Goncalves Rodrigues
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, Porto, 4200 - 319, Portugal
- Center for Health Technology and Services Research / Rede de Investigação em Saúde, CINTESIS / RISE, University of Porto, Porto, Portugal
- Burn Unit, Department of Plastic and Reconstructive Surgery, University Hospital Center of São João, Porto, Portugal
| |
Collapse
|
29
|
Ramos LS, Parra-Giraldo CM, Branquinha MH, Santos ALS. Cell Aggregation Capability of Clinical Isolates from Candida auris and Candida haemulonii Species Complex. Trop Med Infect Dis 2023; 8:382. [PMID: 37624320 PMCID: PMC10460019 DOI: 10.3390/tropicalmed8080382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
The opportunistic fungal pathogens belonging to the Candida haemulonii complex and the phylogenetically related species Candida auris are well-known for causing infections that are difficult to treat due to their multidrug-resistance profiles. Candida auris is even more worrisome due to its ability to cause outbreaks in healthcare settings. These emerging yeasts produce a wide range of virulence factors that facilitate the development of the infectious process. In recent years, the aggregative phenotype has been receiving attention, as it is mainly associated with defects in cellular division and its possible involvement in helping the fungus to escape from the host immune responses. In the present study, we initially investigated the aggregation ability of 18 clinical isolates belonging to the C. haemulonii species complex (C. haemulonii sensu stricto, C. duobushaemulonii, and C. haemulonii var. vulnera) and C. auris. Subsequently, we evaluated the effects of physicochemical factors on fungal aggregation competence. The results demonstrated that cell-to-cell aggregation was a typically time-dependent event, in which almost all studied fungal isolates of both the C. haemulonii species complex and C. auris exhibited high aggregation after 2 h of incubation at 37 °C. Interestingly, the fungal cells forming the aggregates remained viable. The aggregation of all isolates was not impacted by pH, temperature, β-mercaptoethanol (a protein-denaturing agent), or EDTA (a chelator agent). Conversely, proteinase K, trypsin, and sodium dodecyl sulfate (SDS) significantly diminished the fungal aggregation. Collectively, our results demonstrated that the aggregation ability of these opportunistic yeast pathogens is time-dependent, and surface proteins and hydrophobic interactions seem to mediate cell aggregation since the presence of proteases and anionic detergents affected the aggregation capability. However, further studies are necessary to better elucidate the molecular aspects of this intriguing phenomenon.
Collapse
Affiliation(s)
- Lívia S. Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.S.R.); (M.H.B.)
| | - Claudia M. Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.S.R.); (M.H.B.)
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, Brazil
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.S.R.); (M.H.B.)
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
30
|
Spoladori LFDA, Andriani GM, Castro IMD, Suzukawa HT, Gimenes ACR, Bartolomeu-Gonçalves G, Ishida K, Nakazato G, Pinge-Filho P, Machado RRB, Nakamura CV, Andrade G, Tavares ER, Yamauchi LM, Yamada-Ogatta SF. Synergistic Antifungal Interaction between Pseudomonas aeruginosa LV Strain Metabolites and Biogenic Silver Nanoparticles against Candida auris. Antibiotics (Basel) 2023; 12:antibiotics12050861. [PMID: 37237764 DOI: 10.3390/antibiotics12050861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Candida auris has been found to be a persistent colonizer of human skin and a successful pathogen capable of causing potentially fatal infection, especially in immunocompromised individuals. This fungal species is usually resistant to most antifungal agents and has the ability to form biofilms on different surfaces, representing a significant therapeutic challenge. Herein, the effect of metabolites of Pseudomonas aeruginosa LV strain, alone and combined with biologically synthesized silver nanoparticles (bioAgNP), was evaluated in planktonic and sessile (biofilm) cells of C. auris. First, the minimal inhibitory and fungicidal concentration values of 3.12 and 6.25 μg/mL, respectively, were determined for F4a, a semi-purified bacterial fraction. Fluopsin C and indolin-3-one seem to be the active components of F4a. Like the semi-purified fraction, they showed a time- and dose-dependent fungicidal activity. F4a and bioAgNP caused severe changes in the morphology and ultrastructure of fungal cells. F4a and indolin-3-one combined with bioAgNP exhibited synergistic fungicidal activity against planktonic cells. F4a, alone or combined with bioAgNP, also caused a significant decrease in the number of viable cells within the biofilms. No cytotoxicity to mammalian cells was detected for bacterial metabolites combined with bioAgNP at synergistic concentrations that presented antifungal activity. These results indicate the potential of F4a combined with bioAgNP as a new strategy for controlling C. auris infections.
Collapse
Affiliation(s)
| | - Gabriella Maria Andriani
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Brazil
| | - Isabela Madeira de Castro
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Brazil
| | - Helena Tiemi Suzukawa
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Brazil
| | - Ana Carolina Ramos Gimenes
- Laboratório de Biologia Molecular de Microrganismos, Universidade Estadual de Londrina, Londrina CEP 86057-970, Brazil
| | - Guilherme Bartolomeu-Gonçalves
- Programa de Pós-Graduação em Fisiopatologia Clínica e Laboratorial, Universidade Estadual de Londrina, Londrina CEP 86038-350, Brazil
| | - Kelly Ishida
- Laboratório de Quimioterapia Antifúngica, Universidade de São Paulo, São Paulo CEP 05508-000, Brazil
| | - Gerson Nakazato
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Brazil
- Laboratório de Bacteriologia Básica e Aplicada, Universidade Estadual de Londrina, Londrina CEP 86057-970, Brazil
| | - Phileno Pinge-Filho
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Brazil
- Laboratório de Imunopatologia Experimental, Universidade Estadual de Londrina, Londrina CEP 86057-970, Brazil
| | - Rayanne Regina Beltrame Machado
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Maringá CEP 87020-900, Brazil
| | - Celso Vataru Nakamura
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Brazil
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Maringá CEP 87020-900, Brazil
| | - Galdino Andrade
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Brazil
- Laboratório de Ecologia Microbiana, Universidade Estadual de Londrina, Londrina CEP 86057-970, Brazil
| | - Eliandro Reis Tavares
- Laboratório de Biologia Molecular de Microrganismos, Universidade Estadual de Londrina, Londrina CEP 86057-970, Brazil
| | - Lucy Megumi Yamauchi
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Brazil
- Laboratório de Biologia Molecular de Microrganismos, Universidade Estadual de Londrina, Londrina CEP 86057-970, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Brazil
- Laboratório de Biologia Molecular de Microrganismos, Universidade Estadual de Londrina, Londrina CEP 86057-970, Brazil
- Programa de Pós-Graduação em Fisiopatologia Clínica e Laboratorial, Universidade Estadual de Londrina, Londrina CEP 86038-350, Brazil
| |
Collapse
|
31
|
Bing J, Guan Z, Zheng T, Zhang Z, Fan S, Ennis CL, Nobile CJ, Huang G. Clinical isolates of Candida auris with enhanced adherence and biofilm formation due to genomic amplification of ALS4. PLoS Pathog 2023; 19:e1011239. [PMID: 36913408 PMCID: PMC10035925 DOI: 10.1371/journal.ppat.1011239] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/23/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
Candida auris is an emerging multidrug-resistant fungal pathogen and a new global threat to human health. A unique morphological feature of this fungus is its multicellular aggregating phenotype, which has been thought to be associated with defects in cell division. In this study, we report a new aggregating form of two clinical C. auris isolates with increased biofilm forming capacity due to enhanced adherence of adjacent cells and surfaces. Unlike the previously reported aggregating morphology, this new aggregating multicellular form of C. auris can become unicellular after treatment with proteinase K or trypsin. Genomic analysis demonstrated that amplification of the subtelomeric adhesin gene ALS4 is the reason behind the strain's enhanced adherence and biofilm forming capacities. Many clinical isolates of C. auris have variable copy numbers of ALS4, suggesting that this subtelomeric region exhibits instability. Global transcriptional profiling and quantitative real-time PCR assays indicated that genomic amplification of ALS4 results in a dramatic increase in overall levels of transcription. Compared to the previously characterized nonaggregative/yeast-form and aggregative-form strains of C. auris, this new Als4-mediated aggregative-form strain of C. auris displays several unique characteristics in terms of its biofilm formation, surface colonization, and virulence.
Collapse
Affiliation(s)
- Jian Bing
- Shanghai Institute of Infectious Disease and Biosecurity, Department of infectious diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| | - Zhangyue Guan
- Shanghai Institute of Infectious Disease and Biosecurity, Department of infectious diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Tianhong Zheng
- Shanghai Institute of Infectious Disease and Biosecurity, Department of infectious diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| | - Zhijie Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuru Fan
- Shanghai Institute of Infectious Disease and Biosecurity, Department of infectious diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| | - Craig L. Ennis
- Department of Molecular and Cell Biology, University of California, Merced, California, United States of America
- Health Sciences Research Institute, University of California, Merced, California, United States of America
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, University of California, Merced, California, United States of America
- Health Sciences Research Institute, University of California, Merced, California, United States of America
| | - Guanghua Huang
- Shanghai Institute of Infectious Disease and Biosecurity, Department of infectious diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| |
Collapse
|
32
|
Khari A, Biswas B, Gangwar G, Thakur A, Puria R. Candida auris biofilm: a review on model to mechanism conservation. Expert Rev Anti Infect Ther 2023; 21:295-308. [PMID: 36755419 DOI: 10.1080/14787210.2023.2179036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Candida auris is included in the fungal infection category 'critical' by WHO because of associated high drug tolerance and spread at an alarming rate which if remains untouched may result in serious outbreaks. Since its discovery in 2009, several assiduous efforts by mycologists across the world have deciphered its biology including growth physiology, drug tolerance, biofilm formation, etc. The differential response of various strains from different clades poses a hurdle in drawing a final conclusion. AREAS COVERED This review provides brief insights into the understanding of C. auris biofilm. It includes information on various models developed to understand the biofilms and conservation of different signaling pathways. Significant development has been made in the recent past with the generation of relevant in vivo and ex vivo models. The role of signaling pathways in the development of biofilm is largely unknown. EXPERT OPINION The selection of an appropriate model system is a must for the accuracy and reproducibility of results. The conservation of major signaling pathways in C. auris with respect to C. albicans and S. cerevisiae highlights that initial inputs acquired from orthologs will be valuable in getting insights into the mechanism of biofilm formation and associated pathogenesis.
Collapse
Affiliation(s)
- Arsha Khari
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | | | | | - Anil Thakur
- Regional Centre for Biotechnology, Faridabad, India
| | - Rekha Puria
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| |
Collapse
|
33
|
Rabaan AA, Eljaaly K, Alfouzan WA, Mutair AA, Alhumaid S, Alfaraj AH, Aldawood Y, Alsaleh AA, Albayat H, Azmi RA, AlKaabi N, Alzahrani SJ, AlBahrani S, Sulaiman T, Alshukairi AN, Abuzaid AA, Garout M, Ahmad R, Muhammad J. Psychogenetic, genetic and epigenetic mechanisms in Candida auris: Role in drug resistance. J Infect Public Health 2023; 16:257-263. [PMID: 36608452 DOI: 10.1016/j.jiph.2022.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/28/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, we are facing the challenge of drug resistance emergence in fungi. The availability of limited antifungals and development of multi-drug resistance in fungal pathogens has become a serious concern in the past years in the health sector. Although several cellular, molecular, and genetic mechanisms have been proposed to explain the drug resistance mechanism in fungi, but a complete understanding of the molecular and genetic mechanisms is still lacking. Besides the genetic mechanism, epigenetic mechanisms are pivotal in the fungal lifecycle and disease biology. However, very little is understood about the role of epigenetic mechanisms in the emergence of multi-drug resistance in fungi, especially in Candida auris (C. auris). The current narrative review summaries the clinical characteristics, genomic organization, and molecular/genetic/epigenetic mechanisms underlying the emergence of drug resistance in C. auris. A very few studies have attempted to evaluate the role of epigenetic mechanisms in C. auris. Furthermore, advanced genetic tools such as the CRISP-Cas9 system can be utilized to elucidate the epigenetic mechanisms and their role in the emergence of multi-drug resistance in C. auris.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan.
| | - Khalid Eljaaly
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Pharmacy Practice and Science Department, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Wadha A Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia; College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia; School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia; Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Amal H Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Yahya Aldawood
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Abdulmonem A Alsaleh
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh 7790, Saudi Arabia
| | - Reyouf Al Azmi
- Infection Prevention and Control, Eastern Health Cluster, Dammam 32253, Saudi Arabia
| | - Nawal AlKaabi
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, 51900, United Arab Emirates; College of Medicine and Health Science, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Samira J Alzahrani
- Molecular Diagnostic Laboratory, King Fahd Military Medical Complex, Dhahran 31932, Saudi Arabia
| | - Salma AlBahrani
- Infectious Disease Unit, Specialty Internal Medicine, King Fahd Military Medical Complex, Dhahran 31932, Saudi Arabia
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abeer N Alshukairi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Abdulmonem A Abuzaid
- Medical Microbiology Department, Security Forces Hospital Programme, Dammam 32314, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Rafiq Ahmad
- Department of Microbiology, The University of Haripur, Haripur 22610, Pakistan
| | - Javed Muhammad
- Department of Microbiology, The University of Haripur, Haripur 22610, Pakistan.
| |
Collapse
|
34
|
Ahmad S, Asadzadeh M. Strategies to Prevent Transmission of Candida auris in Healthcare Settings. CURRENT FUNGAL INFECTION REPORTS 2023; 17:36-48. [PMID: 36718372 PMCID: PMC9878498 DOI: 10.1007/s12281-023-00451-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 01/27/2023]
Abstract
Purpose of Review Candida auris, a recently recognized yeast pathogen, has become a major public health threat due to the problems associated with its accurate identification, intrinsic and acquired resistance to antifungal drugs, and its potential to easily contaminate the environment causing clonal outbreaks in healthcare facilities. These outbreaks are associated with high mortality rates particularly among older patients with multiple comorbidities under intensive care settings. The purpose of this review is to highlight strategies that are being adapted to prevent transmission of C. auris in healthcare settings. Recent Findings Colonized patients shed C. auris into their environment which contaminates surrounding equipment. It resists elimination even by robust decontamination procedures and is easily transmitted to new patients during close contact resulting in outbreaks. Efforts are being made to rapidly identify C. auris-infected/C. auris-colonized patients, to determine its susceptibility to antifungals, and to perform effective cleaning and decontamination of the environment and isolation of colonized patients to prevent further transmission. Summary Rapid and accurate identification of hospitalized patients infected/colonized with C. auris, rapid detection of its susceptibility patterns, and appropriate use of infection control measures can help to contain the spread of this highly pathogenic yeast in healthcare settings and prevent/control outbreaks.
Collapse
Affiliation(s)
- Suhail Ahmad
- Faculty of Medicine, Department of Microbiology, Kuwait University, PO Box: 24923, 13110 Safat, Kuwait
| | - Mohammad Asadzadeh
- Faculty of Medicine, Department of Microbiology, Kuwait University, PO Box: 24923, 13110 Safat, Kuwait
| |
Collapse
|
35
|
de Melo CC, de Sousa BR, da Costa GL, Oliveira MME, de Lima-Neto RG. Colonized patients by Candida auris: Third and largest outbreak in Brazil and impact of biofilm formation. Front Cell Infect Microbiol 2023; 13:1033707. [PMID: 36756619 PMCID: PMC9900136 DOI: 10.3389/fcimb.2023.1033707] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Objective To describe the clinical-epidemiological features of patients colonized by Candida auris in the largest outbreak in Brazil and to show the biofilm formation capacity of yeast strains. Methods Clinical yeasts suspected of C. auris isolated from urine and surveillance samples were seeded on chromogenic media at 30°C and Sabouraud agar at 42°C. matrix-assisted laser desorption/ionization-time of flight mass spectometry was used for reliable identification. After proteomic confirmation, the genomic approach and culture on Chromagar Candida Plus media were carried out. Biofilm formation was investigated based on metabolic activity, and the clinical-epidemiological profile of patients was described. Results A total of 11 C. auris clinical yeasts from nine patients were identified between the end of December 2021 and March 2022. Two clinical yeasts were isolates from urine and nine clinical yeasts were isolates from axillary and inguinal surveillance swabs. No case is related to previous Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, all the yeasts showed a high ability of biofilm formation. Conclusion C. auris requires great vigilance as its high capacity to colonize and form biofilms contributes to its dissemination. The rapid and precise identification of this species is essential for the management, control, and prevention of infections.
Collapse
Affiliation(s)
- Camylla Carvalho de Melo
- Hospital da Restauração, Department of Health, State of Pernambuco, Recife, Brazil,Post-Graduate Program in Tropical Medicine, Center for Medical Sciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | | | | | - Manoel Marques Evangelista Oliveira
- Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil,*Correspondence: Reginaldo Gonçalves de Lima-Neto, ; Manoel Marques Evangelista Oliveira,
| | - Reginaldo Gonçalves de Lima-Neto
- Post-Graduate Program in Tropical Medicine, Center for Medical Sciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil,Post-Graduate Program in Fungal Biology, University of Pernambuco (UFPE), Recife, Brazil,*Correspondence: Reginaldo Gonçalves de Lima-Neto, ; Manoel Marques Evangelista Oliveira,
| |
Collapse
|
36
|
Garcia-Bustos V, Pemán J, Ruiz-Gaitán A, Cabañero-Navalon MD, Cabanilles-Boronat A, Fernández-Calduch M, Marcilla-Barreda L, Sigona-Giangreco IA, Salavert M, Tormo-Mas MÁ, Ruiz-Saurí A. Host-pathogen interactions upon Candida auris infection: fungal behaviour and immune response in Galleria mellonella. Emerg Microbes Infect 2022; 11:136-146. [PMID: 34890523 PMCID: PMC8725852 DOI: 10.1080/22221751.2021.2017756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
Candida auris has globally emerged as a multidrug-resistant fungus linked to healthcare-associated outbreaks. There is still limited evidence on its virulence, pathogenicity determinants, and complex host-pathogen interactions. This study analyzes the in vivo fungal behaviour, immune response, and host-pathogen interactions upon C. auris infection compared to C. albicans and C. parapsilosis in G. mellonella. This was performed by immunolabelling fungal structures and larval plasmatocytes and using a quantitative approach incorporating bioinformatic morphometric techniques into the study of microbial pathogenesis. C. auris presents a remarkably higher immunogenic activity than expected at its moderate degree of tissue invasion. It induces a greater inflammatory response than C. albicans and C. parapsilosis at the expense of plasmatocyte nodule formation, especially in non-aggregative strains. It specifically invades the larval respiratory system, in a pattern not previously observed in other Candida species, and presents inter-phenotypic tissue tropism differences. C. auris filaments in vivo less frequently than C. albicans or C. parapsilosis mostly through pseudohyphal growth. Filamentation might not be a major pathogenic determinant in C. auris, as less virulent aggregative phenotypes form pseudohyphae to a greater extent. C. auris has important both interspecific and intraspecific virulence and phenotype heterogeneity, with aggregative phenotypes of C. auris sharing characteristics with low pathogenic species such as C. parapsilosis. Our work suggests that C. auris owns an important morphogenetic plasticity that distinguishes it from other yeasts of the genus. Routine phenotypic identification of aggregative or non-aggregative phenotypes should be performed in the clinical setting as it may impact patient management.
Collapse
Affiliation(s)
- Victor Garcia-Bustos
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, Valencia, Spain
- Severe Infection Research Group, Health Research Institute La Fe, Valencia, Spain
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Javier Pemán
- Severe Infection Research Group, Health Research Institute La Fe, Valencia, Spain
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Alba Ruiz-Gaitán
- Severe Infection Research Group, Health Research Institute La Fe, Valencia, Spain
| | - Marta Dafne Cabañero-Navalon
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Ana Cabanilles-Boronat
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - María Fernández-Calduch
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Lucía Marcilla-Barreda
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Ignacio A. Sigona-Giangreco
- Severe Infection Research Group, Health Research Institute La Fe, Valencia, Spain
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Miguel Salavert
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, Valencia, Spain
- Severe Infection Research Group, Health Research Institute La Fe, Valencia, Spain
| | | | - Amparo Ruiz-Saurí
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| |
Collapse
|
37
|
Similarities and Differences among Species Closely Related to Candida albicans: C. tropicalis, C. dubliniensis, and C. auris. Cell Microbiol 2022. [DOI: 10.1155/2022/2599136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although Candida species are widespread commensals of the microflora of healthy individuals, they are also among the most important human fungal pathogens that under certain conditions can cause diseases (candidiases) of varying severity ranging from mild superficial infections of the mucous membranes to life-threatening systemic infections. So far, the vast majority of research aimed at understanding the molecular basis of pathogenesis has been focused on the most common species—Candida albicans. Meanwhile, other closely related species belonging to the CTG clade, namely, Candida tropicalis and Candida dubliniensis, are becoming more important in clinical practice, as well as a relatively newly identified species, Candida auris. Despite the close relationship of these microorganisms, it seems that in the course of evolution, they have developed distinct biochemical, metabolic, and physiological adaptations, which they use to fit to commensal niches and achieve full virulence. Therefore, in this review, we describe the current knowledge on C. tropicalis, C. dubliniensis, and C. auris virulence factors, the formation of a mixed species biofilm and mutual communication, the environmental stress response and related changes in fungal cell metabolism, and the effect of pathogens on host defense response and susceptibility to antifungal agents used, highlighting differences with respect to C. albicans. Special attention is paid to common diagnostic problems resulting from similarities between these species and the emergence of drug resistance mechanisms. Understanding the different strategies to achieve virulence, used by important opportunistic pathogens of the genus Candida, is essential for proper diagnosis and treatment.
Collapse
|
38
|
Pezzotti G, Kobara M, Nakaya T, Imamura H, Asai T, Miyamoto N, Adachi T, Yamamoto T, Kanamura N, Ohgitani E, Marin E, Zhu W, Nishimura I, Mazda O, Nakata T, Makimura K. Raman Study of Pathogenic Candida auris: Imaging Metabolic Machineries in Reaction to Antifungal Drugs. Front Microbiol 2022; 13:896359. [PMID: 35694304 PMCID: PMC9175029 DOI: 10.3389/fmicb.2022.896359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
The multidrug-resistant Candida auris often defies treatments and presently represents a worldwide public health threat. Currently, the ergosterol-targeting Amphotericin B (AmB) and the DNA/RNA-synthesis inhibitor 5-flucytosine (5-FC) are the two main drugs available for first-line defense against life-threatening Candida auris infections. However, important aspects of their mechanisms of action require further clarification, especially regarding metabolic reactions of yeast cells. Here, we applied Raman spectroscopy empowered with specifically tailored machine-learning algorithms to monitor and to image in situ the susceptibility of two Candida auris clades to different antifungal drugs (LSEM 0643 or JCM15448T, belonging to the East Asian Clade II; and, LSEM 3673 belonging to the South African Clade III). Raman characterizations provided new details on the mechanisms of action against Candida auris Clades II and III, while also unfolding differences in their metabolic reactions to different drugs. AmB treatment induced biofilm formation in both clades, but the formed biofilms showed different structures: a dense and continuous biofilm structure in Clade II, and an extra-cellular matrix with a “fluffy” and discontinuous structure in Clade III. Treatment with 5-FC caused no biofilm formation but yeast-to-hyphal or pseudo-hyphal morphogenesis in both clades. Clade III showed a superior capacity in reducing membrane permeability to the drug through chemically tailoring chitin structure with a high degree of acetylation and fatty acids networks with significantly elongated chains. This study shows the suitability of the in situ Raman method in characterizing susceptibility and stress response of different C. auris clades to antifungal drugs, thus opening a path to identifying novel clinical solutions counteracting the spread of these alarming pathogens.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, Tokyo, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
- *Correspondence: Giuseppe Pezzotti
| | - Miyuki Kobara
- Division of Pathological Science, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tamaki Nakaya
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Hayata Imamura
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Tenma Asai
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Nao Miyamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Ichiro Nishimura
- Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, United States
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuo Nakata
- Division of Pathological Science, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Koichi Makimura
- Medical Mycology, Graduate School of Medicine, Teikyo University, Tokyo, Japan
| |
Collapse
|
39
|
Frías-De-León MG, García-Salazar E, Reyes-Montes MDR, Duarte-Escalante E, Acosta-Altamirano G. Opportunistic Yeast Infections and Climate Change: The Emergence of Candida auris. Fungal Biol 2022. [DOI: 10.1007/978-3-030-89664-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Willaert RG, Kayacan Y, Devreese B. The Flo Adhesin Family. Pathogens 2021; 10:pathogens10111397. [PMID: 34832553 PMCID: PMC8621652 DOI: 10.3390/pathogens10111397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
The first step in the infection of fungal pathogens in humans is the adhesion of the pathogen to host tissue cells or abiotic surfaces such as catheters and implants. One of the main players involved in this are the expressed cell wall adhesins. Here, we review the Flo adhesin family and their involvement in the adhesion of these yeasts during human infections. Firstly, we redefined the Flo adhesin family based on the domain architectures that are present in the Flo adhesins and their functions, and set up a new classification of Flo adhesins. Next, the structure, function, and adhesion mechanisms of the Flo adhesins whose structure has been solved are discussed in detail. Finally, we identified from Pfam database datamining yeasts that could express Flo adhesins and are encountered in human infections and their adhesin architectures. These yeasts are discussed in relation to their adhesion characteristics and involvement in infections.
Collapse
Affiliation(s)
- Ronnie G. Willaert
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Correspondence: ; Tel.: +32-2629-1846
| | - Yeseren Kayacan
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Bart Devreese
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Laboratory for Microbiology, Gent University (UGent), 9000 Gent, Belgium
| |
Collapse
|
41
|
Garcia-Bustos V, Cabanero-Navalon MD, Ruiz-Saurí A, Ruiz-Gaitán AC, Salavert M, Tormo MÁ, Pemán J. What Do We Know about Candida auris? State of the Art, Knowledge Gaps, and Future Directions. Microorganisms 2021; 9:2177. [PMID: 34683498 PMCID: PMC8538163 DOI: 10.3390/microorganisms9102177] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
Candida auris has unprecedently emerged as a multidrug resistant fungal pathogen, considered a serious global threat due to its potential to cause nosocomial outbreaks and deep-seated infections with staggering transmissibility and mortality, that has put health authorities and institutions worldwide in check for more than a decade now. Due to its unique features not observed in other yeasts, it has been categorised as an urgent threat by the Centers for Disease Control and Prevention and other international agencies. Moreover, epidemiological alerts have been released in view of the increase of healthcare-associated C. auris outbreaks in the context of the COVID-19 pandemic. This review summarises the current evidence on C. auris since its first description, from virulence to treatment and outbreak control, and highlights the knowledge gaps and future directions for research efforts.
Collapse
Affiliation(s)
- Victor Garcia-Bustos
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, 56026 Valencia, Spain;
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (A.C.R.-G.); (M.Á.T.); (J.P.)
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain;
| | - Marta D. Cabanero-Navalon
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, 56026 Valencia, Spain;
| | - Amparo Ruiz-Saurí
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain;
| | - Alba C. Ruiz-Gaitán
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (A.C.R.-G.); (M.Á.T.); (J.P.)
| | - Miguel Salavert
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, 56026 Valencia, Spain;
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (A.C.R.-G.); (M.Á.T.); (J.P.)
| | - María Á. Tormo
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (A.C.R.-G.); (M.Á.T.); (J.P.)
| | - Javier Pemán
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (A.C.R.-G.); (M.Á.T.); (J.P.)
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| |
Collapse
|
42
|
Nagy F, Tóth Z, Nyikos F, Forgács L, Jakab Á, Borman AM, Majoros L, Kovács R. In vitro and in vivo interaction of caspofungin with isavuconazole against Candida auris planktonic cells and biofilms. Med Mycol 2021; 59:1015-1023. [PMID: 34021571 DOI: 10.1093/mmy/myab032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
The in vitro and in vivo efficacy of caspofungin was determined in combination with isavuconazole against Candida auris. Drug-drug interactions were assessed utilising the fractional inhibitory concentration indices (FICIs), the Bliss independence model and an immunocompromised mouse model. Median planktonic minimum inhibitory concentrations (pMICs) of 23 C. auris isolates were between 0.5 and 2 mg/L and between 0.015 and 4 mg/L for caspofungin and isavuconazole, respectively. Median pMICs for caspofungin and isavuconazole in combination showed 2-128-fold and 2-256-fold decreases, respectively. Caspofungin and isavuconazole showed synergism in 14 out of 23 planktonic isolates (FICI range 0.03-0.5; Bliss cumulative synergy volume range 0-4.83). Median sessile MICs (sMIC) of 14 biofilm-forming isolates were between 32 and > 32 mg/L and between 0.5 and > 2 mg/L for caspofungin and isavuconazole, respectively. Median sMICs for caspofungin and isavuconazole in combination showed 0-128-fold and 0-512-fold decreases, respectively. Caspofungin and isavuconazole showed synergistic interaction in 12 out of 14 sessile isolates (FICI range 0.023-0.5; Bliss cumulative synergy volume range 0.13-234.32). In line with the in vitro findings, synergistic interactions were confirmed by in vivo experiments. The fungal kidney burden decreases were more than 3 log volumes in mice treated with combination of 1 mg/kg caspofungin and 20 mg/kg isavuconazole daily; this difference was statistically significant compared with control mice (p < 0.001). Despite the favourable effect of isavuconazole in combination with caspofungin, further studies are needed to confirm the therapeutic advantage of this combination when treating an infection caused by C. auris.
Collapse
Affiliation(s)
- Fruzsina Nagy
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary.,Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Zoltán Tóth
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary.,Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Fanni Nyikos
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary
| | - Lajos Forgács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary.,Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Ágnes Jakab
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary
| | - Andrew M Borman
- UK National Mycology Reference Laboratory, Public Health England, Science Quarter, Southmead Hospital, Bristol BS10 5NB, UK.,Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, UK
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary.,Department of Metagenomics, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| |
Collapse
|
43
|
Černáková L, Roudbary M, Brás S, Tafaj S, Rodrigues CF. Candida auris: A Quick Review on Identification, Current Treatments, and Challenges. Int J Mol Sci 2021; 22:4470. [PMID: 33922907 PMCID: PMC8123192 DOI: 10.3390/ijms22094470] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Candida auris is a novel and major fungal pathogen that has triggered several outbreaks in the last decade. The few drugs available to treat fungal diseases, the fact that this yeast has a high rate of multidrug resistance and the occurrence of misleading identifications, and the ability of forming biofilms (naturally more resistant to drugs) has made treatments of C. auris infections highly difficult. This review intends to quickly illustrate the main issues in C. auris identification, available treatments and the associated mechanisms of resistance, and the novel and alternative treatment and drugs (natural and synthetic) that have been recently reported.
Collapse
Affiliation(s)
- Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Susana Brás
- Centre of Biological Engineering, LIBRO—‘Laboratório de Investigação em Biofilmes Rosário Oliveira’, University of Minho, 4710-057 Braga, Portugal;
| | - Silva Tafaj
- Microbiology Department, University Hospital “Shefqet Ndroqi”, 1044 Tirana, Albania;
| | - Célia F. Rodrigues
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
44
|
Ahmad S, Alfouzan W. Candida auris: Epidemiology, Diagnosis, Pathogenesis, Antifungal Susceptibility, and Infection Control Measures to Combat the Spread of Infections in Healthcare Facilities. Microorganisms 2021; 9:microorganisms9040807. [PMID: 33920482 PMCID: PMC8069182 DOI: 10.3390/microorganisms9040807] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Candida auris, a recently recognized, often multidrug-resistant yeast, has become a significant fungal pathogen due to its ability to cause invasive infections and outbreaks in healthcare facilities which have been difficult to control and treat. The extraordinary abilities of C. auris to easily contaminate the environment around colonized patients and persist for long periods have recently resulted in major outbreaks in many countries. C. auris resists elimination by robust cleaning and other decontamination procedures, likely due to the formation of 'dry' biofilms. Susceptible hospitalized patients, particularly those with multiple comorbidities in intensive care settings, acquire C. auris rather easily from close contact with C. auris-infected patients, their environment, or the equipment used on colonized patients, often with fatal consequences. This review highlights the lessons learned from recent studies on the epidemiology, diagnosis, pathogenesis, susceptibility, and molecular basis of resistance to antifungal drugs and infection control measures to combat the spread of C. auris infections in healthcare facilities. Particular emphasis is given to interventions aiming to prevent new infections in healthcare facilities, including the screening of susceptible patients for colonization; the cleaning and decontamination of the environment, equipment, and colonized patients; and successful approaches to identify and treat infected patients, particularly during outbreaks.
Collapse
|
45
|
Chakrabarti A, Sood P. On the emergence, spread and resistance of Candida auris: host, pathogen and environmental tipping points. J Med Microbiol 2021; 70:001318. [PMID: 33599604 PMCID: PMC8346726 DOI: 10.1099/jmm.0.001318] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/28/2020] [Indexed: 01/12/2023] Open
Abstract
Over a decade ago, a multidrug-resistant nosocomial fungus Candida auris emerged worldwide and has since become a significant challenge for clinicians and microbiologists across the globe. A resilient pathogen, C. auris survives harsh disinfectants, desiccation and high-saline environments. It readily colonizes the inanimate environment, susceptible patients and causes invasive infections that exact a high toll. Prone to misidentification by conventional microbiology techniques, C. auris rapidly acquires multiple genetic determinants that confer multidrug resistance. Whole-genome sequencing has identified four distinct clades of C. auris, and possibly a fifth one, in circulation. Even as our understanding of this formidable pathogen grows, the nearly simultaneous emergence of its distinct clades in different parts of the world, followed by their rapid global spread, remains largely unexplained. We contend that certain host-pathogen-environmental factors have been evolving along adverse trajectories for the last few decades, especially in regions where C. auris originally appeared, until these factors possibly reached a tipping point to compel the evolution, emergence and spread of C. auris. Comparative genomics has helped identify several resistance mechanisms in C. auris that are analogous to those seen in other Candida species, but they fail to fully explain how high-level resistance rapidly develops in this yeast. A better understanding of these unresolved aspects is essential not only for the effective management of C. auris patients, hospital outbreaks and its global spread but also for forecasting and tackling novel resistant pathogens that might emerge in the future. In this review, we discuss the emergence, spread and resistance of C. auris, and propose future investigations to tackle this resilient pathogen.
Collapse
Affiliation(s)
- Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prashant Sood
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
46
|
A Selective Medium for Isolation and Detection of Candida auris, an Emerging Pathogen. J Clin Microbiol 2021; 59:JCM.00326-20. [PMID: 33208474 DOI: 10.1128/jcm.00326-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 11/06/2020] [Indexed: 12/25/2022] Open
Abstract
Identification of Candida auris is challenging and requires molecular or protein profiling-based approaches, availability of which is limited in many routine diagnostic laboratories, necessitating the development of a cost-effective, rapid, and reliable method of identification. The objective of this study was to develop a selective medium for C. auris identification. Eighteen C. auris and 30 non-C. auris yeasts were used for the standardization of the selective medium. Sodium chloride (10% to 13% concentration) and ferrous sulfate (8 mM to 15 mM) were added to yeast extract-peptone-dextrose (YPD) agar in various combinations followed by incubation at 37°C, 40°C, or 42°C for 2 to 3 days. For validation, 579 yeast isolates and 40 signal-positive Bactec blood culture (BC) broths were used. YPD agar comprising 12.5% NaCl and 9 mM ferrous sulfate incubated at 42°C for 48 h, named Selective Auris Medium (SAM), allowed selective growth of C. auris A total of 95% (127/133) of C. auris isolates tested grew on the standardized media within 48 h, and the remaining 6 isolates grew after 72 h, whereas the growth of 446 non-C. auris yeast isolates was completely inhibited. The specificity and sensitivity of the test medium were both 100% after 72 h of incubation. The positive and negative predictive values were also noted to be 100% after 72 h of incubation. The formulated selective medium can be used for the detection and identification of C. auris The SAM is inexpensive, can easily be prepared, and can be used as an alternative to molecular diagnostic tools in the clinical microbiology laboratory.
Collapse
|
47
|
Chatzimoschou A, Giampani A, Meis JF, Roilides E. Activities of nine antifungal agents against Candida auris biofilms. Mycoses 2020; 64:381-384. [PMID: 33270284 DOI: 10.1111/myc.13223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Candida auris is a newly described multidrug-resistant fungal pathogen associated with biofilm formation and severe infections with high mortality. OBJECTIVES To study the activities of fluconazole, itraconazole, posaconazole, voriconazole, deoxycholate and liposomal amphotericin B, anidulafungin, caspofungin and micafungin against C auris biofilms and planktonic cells. MATERIALS/METHODS C auris strains originating from 5 clades (South Asian, East Asian, African, South American and Iranian) were tested for biofilm production by safranin staining of the extracellular matrix polysaccharide structure as well as biofilm (BF) and planktonic (PLK) antifungal susceptibility to nine antifungal agents using the XTT reduction assay. RESULTS Candida auris isolates produced mature BF as compared to non-C auris control (Candida albicans and Candida parapsilosis) strains. Four C auris isolates exhibited relatively high MIC's for fluconazole (32-128 mg/L for PLK MIC and 128-1024 mg/L for BF MIC) as compared to the Iranian strain that had PLK and BF MIC's 0.5 and 16, respectively. Itraconazole, posaconazole and voriconazole had relatively low PLK MICs but high BF MICs. A similar pattern was observed with echinocandins; relatively low PLK MIC (0.06-4 mg/L) but quite high BF MICs (4-2048 mg/L). While all isolates exhibited relatively low PLK MICs (0.06-4 mg/L) for both amphotericin B formulations, liposomal amphotericin B showed higher MICs compared to deoxycholate amphotericin B against C auris BF. CONCLUSION Triazoles, echinocandins and liposomal amphotericin B appear to have less activity against C auris biofilms than deoxycholate amphotericin B. Our in vitro model provides evidence for intrinsic C auris biofilm resistance to antifungal agents.
Collapse
Affiliation(s)
- Athanasios Chatzimoschou
- Laboratory of Infectious Diseases, 3rd Department of Pediatrics, Medical Faculty, Aristotle University School of Health Sciences, Hippokration General Hospital, Thessaloniki, Greece.,Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital (CWZ), Nijmegen, The Netherlands
| | - Athina Giampani
- Laboratory of Infectious Diseases, 3rd Department of Pediatrics, Medical Faculty, Aristotle University School of Health Sciences, Hippokration General Hospital, Thessaloniki, Greece
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital (CWZ), Nijmegen, The Netherlands.,Centre of Expertise in Mycology, Radboudumc/CWZ, Nijmegen, The Netherlands.,Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Emmanuel Roilides
- Laboratory of Infectious Diseases, 3rd Department of Pediatrics, Medical Faculty, Aristotle University School of Health Sciences, Hippokration General Hospital, Thessaloniki, Greece
| |
Collapse
|
48
|
Alfouzan W, Ahmad S, Dhar R, Asadzadeh M, Almerdasi N, Abdo NM, Joseph L, de Groot T, Alali WQ, Khan Z, Meis JF, Al-Rashidi MR. Molecular Epidemiology of Candida Auris Outbreak in a Major Secondary-Care Hospital in Kuwait. J Fungi (Basel) 2020; 6:E307. [PMID: 33233388 PMCID: PMC7712429 DOI: 10.3390/jof6040307] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
The emerging, often multidrug-resistant Candida auris is increasingly being associated with outbreaks in healthcare facilities. Here we describe the molecular epidemiology of a C. auris outbreak during 18 months, which started in 2018 in the high dependency unit (HDU) of a secondary-care hospital in Kuwait. Demographic and clinical data for candidemia and colonized patients were prospectively recorded. Clinical and environmental isolates were subjected to phenotypic and molecular identification; antifungal susceptibility testing by broth microdilution method; PCR-sequencing of ERG11 and FKS1 for resistance mechanisms to triazoles and echinocandins, respectively; and molecular fingerprinting by short tandem repeat (STR) analyses. Seventy-one (17 candidemic and 54 colonized) patients including 26 with candiduria and seven environmental samples yielded C. auris. All isolates were identified as C. auris by Vitek2, MALDI-TOF MS, PCR amplification and/or PCR-sequencing of rDNA. Twelve candidemia and 26 colonized patients were admitted or exposed to HDU. Following outbreak recognition, an intensive screening program was instituted for new patients. Despite treatment of all candidemia and 36 colonized patients, 9 of 17 candidemia and 27 of 54 colonized patients died with an overall crude mortality rate of ~50%. Nearly all isolates were resistant to fluconazole and contained the Y132F mutation in ERG11 except one patient's isolates, which were also distinct by STR typing. Only urine isolates from two patients developed echinocandin resistance with concomitant FKS1 mutations. The transmission of C. auris in this outbreak was linked to infected/colonized patients and the hospital environment. However, despite continuous surveillance and enforcement of infection control measures, sporadic new cases continued to occur, challenging the containment efforts.
Collapse
Affiliation(s)
- Wadha Alfouzan
- Microbiology Unit, Department of Laboratories, Farwaniya Hospital, P.O. Box 13373, Farwaniya 81004, Kuwait; (R.D.); (N.A.)
- Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; (S.A.); (M.A.); (L.J.); (Z.K.)
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; (S.A.); (M.A.); (L.J.); (Z.K.)
| | - Rita Dhar
- Microbiology Unit, Department of Laboratories, Farwaniya Hospital, P.O. Box 13373, Farwaniya 81004, Kuwait; (R.D.); (N.A.)
| | - Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; (S.A.); (M.A.); (L.J.); (Z.K.)
| | - Noura Almerdasi
- Microbiology Unit, Department of Laboratories, Farwaniya Hospital, P.O. Box 13373, Farwaniya 81004, Kuwait; (R.D.); (N.A.)
| | - Naglaa M. Abdo
- Department of Infection Control, Farwaniya Hospital, P.O. Box 13373, Farwaniya 81004, Kuwait;
- Department of Community, Environmental and Occupational Medicine, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Leena Joseph
- Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; (S.A.); (M.A.); (L.J.); (Z.K.)
| | - Theun de Groot
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands; (T.d.G.); (J.F.M.)
| | - Walid Q. Alali
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait;
| | - Ziauddin Khan
- Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; (S.A.); (M.A.); (L.J.); (Z.K.)
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands; (T.d.G.); (J.F.M.)
- Center of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, Curitiba 80060-000, Brazil
| | | |
Collapse
|
49
|
Candida auris: An Overview of How to Screen, Detect, Test and Control This Emerging Pathogen. Antibiotics (Basel) 2020; 9:antibiotics9110778. [PMID: 33167419 PMCID: PMC7694398 DOI: 10.3390/antibiotics9110778] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
The multidrug-resistant yeast Candida auris is associated with invasive infections in critically ill patients and has been isolated in different countries worldwide. Ease of spread, prolonged persistence in the environment and antifungal drug resistance pose a significant concern for the prevention of transmission and management of patients with C. auris infections. Early and correct identification of patients colonized with C. auris is critical in containing its spread. However, this may be complicated by C. auris strains being misidentified as other phylogenetically related pathogens. In this review, we offer a brief overview highlighting some of the critical aspects of sample collection, laboratory culture-dependent and independent identification and the susceptibility profile of C. auris.
Collapse
|
50
|
Abstract
First described in 2009 in Japan, the emerging multidrug-resistant fungal pathogen Candida auris is becoming a worldwide public health threat that has been attracting considerable attention due to its rapid and widespread emergence over the past decade. The reasons behind the recent emergence of this fungus remain a mystery to date. Genetic analyses indicate that this fungal pathogen emerged simultaneously in several different continents, where 5 genetically distinct clades of C. auris were isolated from distinct geographical locations. Although C. auris belongs to the CTG clade (its constituent species translate the CTG codon as serine instead of leucine, as in the standard code), C. auris is a haploid fungal species that is more closely related to the haploid and often multidrug-resistant species Candida haemulonii and Candida lusitaniae and is distantly related to the diploid and clinically common fungal pathogens Candida albicans and Candida tropicalis. Infections and outbreaks caused by C. auris in hospitals settings have been rising over the past several years. Difficulty in its identification, multidrug resistance properties, evolution of virulence factors, associated high mortality rates in patients, and long-term survival on surfaces in the environment make C. auris particularly problematic in clinical settings. Here, we review progress made over the past decade on the biological and clinical aspects of C. auris. Future efforts should be directed toward understanding the mechanistic details of its biology, epidemiology, antifungal resistance, and pathogenesis with a goal of developing novel tools and methods for the prevention, diagnosis, and treatment of C. auris infections.
Collapse
|