1
|
Leventhal L, Ruffley M, Exposito-Alonso M. Planting Genomes in the Wild: Arabidopsis from Genetics History to the Ecology and Evolutionary Genomics Era. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:605-635. [PMID: 39971350 DOI: 10.1146/annurev-arplant-071123-095146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The genetics model system Arabidopsis thaliana (L.) Heynh. lives across a vast geographic range with contrasting climates, in response to which it has evolved diverse life histories and phenotypic adaptations. In the last decade, the cataloging of worldwide populations, DNA sequencing of whole genomes, and conducting of outdoor field experiments have transformed it into a powerful evolutionary ecology system to understand the genomic basis of adaptation. Here, we summarize new insights on Arabidopsis following the coordinated efforts of the 1001 Genomes Project, the latest reconstruction of biogeographic and demographic history, and the systematic genomic mapping of trait natural variation through 15 years of genome-wide association studies. We then put this in the context of local adaptation across climates by summarizing insights from 73 Arabidopsis outdoor common garden experiments conducted to date. We conclude by highlighting how molecular and genomic knowledge of adaptation can help us to understand species' (mal)adaptation under ongoing climate change.
Collapse
Affiliation(s)
- Laura Leventhal
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Megan Ruffley
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California, USA;
| |
Collapse
|
2
|
Lake Diver DA, Savage JA. Weighing the risks and benefits of flowering early in the spring for the woody perennial Prunus pumila. AMERICAN JOURNAL OF BOTANY 2024; 111:e16417. [PMID: 39425253 PMCID: PMC11584043 DOI: 10.1002/ajb2.16417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 10/21/2024]
Abstract
PREMISE There are advantages to flowering early in the spring, including greater pollinator fidelity and longer fruit maturation time. But plant phenology has advanced in recent years, making many plants vulnerable to freezing damage from late frosts. METHODS To determine the costs and benefits of flowering early in the growing season, we exposed Prunus pumila plants to two freezing treatments and a delayed flowering treatment in subsequent years. Data were collected on ovary swelling, fruit production, and pollinator visitation on hand- and open-pollinated plants in all treatments. We also measured tissue damage after freeze events. RESULTS Our results suggest that flowering time and temperature affect reproductive success, with fewer fruits produced after hard freezes. The same was not true for light freezes, which had minimal impact on reproduction. Freezing damage to plants after a hard freeze did affect the number of dipteran pollinators but not the overall pollinator visitation rate. Despite the clear impact of freezing temperatures on plant reproduction, flowering early provided an advantage in that reproductive output decreased with delayed flowering. CONCLUSIONS Our findings suggest that Prunus pumila will retain the ability to attract pollinators and produce viable seeds if exposed to false spring conditions that involve a light freeze, but hard freezes may reduce yield by an order of magnitude. Although the advantages to flowering early may outweigh the risk of freezing damage under current conditions, it is possible that flower viability may be constrained under continued climate warming.
Collapse
|
3
|
DeLeo VL, Marais DLD, Juenger TE, Lasky JR. Genetic variation in phenology of wild Arabidopsis thaliana plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610887. [PMID: 39282395 PMCID: PMC11398302 DOI: 10.1101/2024.09.02.610887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Phenology and the timing of development are often under selection, but at the same time influence selection on other traits by controlling how traits are expressed across seasons. Plants often exhibit high natural genetic variation in phenology when grown in controlled environments, and many genetic and molecular mechanisms underlying phenology have been dissected. There remains considerable diversity of germination and flowering time within populations in the wild and the contribution of genetics to phenological variation of wild plants is largely unknown. We obtained collection dates of naturally inbred Arabidopsis thaliana accessions from nature and compared them to experimental data on the descendant inbred lines that we synthesized from two new and 155 published controlled experiments. We tested whether the genetic variation in flowering and germination timing from experiments predicted the phenology of the same inbred lines in nature. We found that genetic variation in phenology from controlled experiments significantly, but weakly, predicts day of collection from the wild, even when measuring collection date with accumulated photothermal units. We found that experimental flowering time breeding values were correlated to wild flowering time at location of origin estimated from herbarium collections. However, local variation in collection dates within a region was not explained by genetic variation in experiments, suggesting high plasticity across small-scale environmental gradients. This apparent low heritability in natural populations may suggest strong selection or many generations are required for phenological adaptation and the emergence of genetic clines in phenology.
Collapse
Affiliation(s)
| | - David L. Des Marais
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology
| | | | | |
Collapse
|
4
|
Tie S, He YD, Lázaro A, Inouye DW, Guo YH, Yang CF. Floral trait variation across individual plants within a population enhances defense capability to nectar robbing. PLANT DIVERSITY 2023; 45:315-325. [PMID: 37397606 PMCID: PMC10311112 DOI: 10.1016/j.pld.2022.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 07/04/2023]
Abstract
Floral trait variation may help pollinators and nectar robbers identify their target plants and, thus, lead to differential selection pressure for defense capability against floral antagonists. However, the effect of floral trait variation among individuals within a population on multi-dimensional plant-animal interactions has been little explored. We investigated floral trait variation, pollination, and nectar robbing among individual plants in a population of the bumble bee-pollinated plant, Caryopteris divaricata, from which flowers are also robbed by bumble bees with varying intensity across individuals. We measured the variation in corolla tube length, nectar volume and sugar concentration among individual plants, and evaluated whether the variation were recognized by pollinators and robbers. We investigated the influence of nectar robbing on legitimate visitation and seed production per fruit. We found that the primary nectar robber (Bombus nobilis) preferred to forage on plants with long-tubed flowers, which produced less nectar and had lower sugar concentration compared to those with shorter corolla tubes. Individuals with shorter corolla tubes had comparatively lower nectar robbing intensity but higher visitation by legitimate visitors (mainly B. picipes) and higher seed production. Nectar robbing significantly reduced seed production because it decreased pollinator visits. However, neither pollination nor seed production differed between plants with long and short corolla tubes when nectar robbers were excluded. This finding suggests that floral trait variation might not be driven by pollinators. Such variation among individual plants thus allows legitimate visitors and nectar robbers to segregate niches and enhances population defense against nectar robbing in unpredictable conditions.
Collapse
Affiliation(s)
- Shuang Tie
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yong-Deng He
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Amparo Lázaro
- Global Change Research Group, Mediterranean Institute for Advanced Studies (IMEDEA; UIB-CSIC), Esporles, Balearic Islands, Spain
| | - David W. Inouye
- The Rocky Mountain Biological Laboratory, Post Office Box 519, Crested Butte, CO 81224, USA
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - You-Hao Guo
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chun-Feng Yang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
5
|
McMinn R, Salmela MJ, Weinig C. Naturally segregating genetic variation in circadian period exhibits a regional elevational and climatic cline. PLANT, CELL & ENVIRONMENT 2022; 45:2696-2707. [PMID: 35686466 DOI: 10.1111/pce.14377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/15/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Circadian clocks confer adaptation to predictable 24-h fluctuations in the exogenous environment, but it has yet to be determined what ecological factors maintain natural genetic variation in endogenous circadian period outside of the hypothesized optimum of 24 h. We estimated quantitative genetic variation in circadian period in leaf movement in 30 natural populations of the Arabidopsis relative Boechera stricta sampled within only 1° of latitude but across an elevation gradient spanning 2460-3300 m in the Rocky Mountains. Measuring ~3800 plants from 473 maternal families (7-20 per population), we found that genetic variation was of similar magnitude among versus within populations, with population means varying between 21.9 and 24.9 h and maternal family means within populations varying by up to ~6 h. After statistically accounting for spatial autocorrelation at a habitat extreme, we found that elevation explained a significant proportion of genetic variation in the circadian period, such that higher-elevation populations had shorter mean period lengths and reduced intrapopulation ranges. Environmental data indicate that these spatial trends could be related to steep regional climatic gradients in temperature, precipitation, and their intra-annual variability. Our findings suggest that spatially fine-grained environmental heterogeneity contributes to naturally occurring genetic variation in circadian traits in wild populations.
Collapse
Affiliation(s)
- Rob McMinn
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology, University of Wyoming, Laramie, Wyoming, USA
| | | | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology, University of Wyoming, Laramie, Wyoming, USA
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
6
|
Morente‐López J, Kass JM, Lara‐Romero C, Serra‐Diaz JM, Soto‐Correa JC, Anderson RP, Iriondo JM. Linking ecological niche models and common garden experiments to predict phenotypic differentiation in stressful environments: Assessing the adaptive value of marginal populations in an alpine plant. GLOBAL CHANGE BIOLOGY 2022; 28:4143-4162. [PMID: 35359032 PMCID: PMC9325479 DOI: 10.1111/gcb.16181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 05/10/2023]
Abstract
Environmental variation within a species' range can create contrasting selective pressures, leading to divergent selection and novel adaptations. The conservation value of populations inhabiting environmentally marginal areas remains in debate and is closely related to the adaptive potential in changing environments. Strong selection caused by stressful conditions may generate novel adaptations, conferring these populations distinct evolutionary potential and high conservation value under climate change. On the other hand, environmentally marginal populations may be genetically depauperate, with little potential for new adaptations to emerge. Here, we explored the use of ecological niche models (ENMs) linked with common garden experiments to predict and test for genetically determined phenotypic differentiation related to contrasting environmental conditions. To do so, we built an ENM for the alpine plant Silene ciliata in central Spain and conducted common garden experiments, assessing flowering phenology changes and differences in leaf cell resistance to extreme temperatures. The suitability patterns and response curves of the ENM led to the predictions that: (1) the environmentally marginal populations experiencing less snowpack and higher minimum temperatures would have delayed flowering to avoid risks of late-spring frosts and (2) those with higher minimum temperatures and greater potential evapotranspiration would show enhanced cell resistance to high temperatures to deal with physiological stress related to desiccation and heat. The common garden experiments revealed the expected genetically based phenotypic differentiation in flowering phenology. In contrast, they did not show the expected differentiation for cell resistance, but these latter experiments had high variance and hence lower statistical power. The results highlight ENMs as useful tools to identify contrasting putative selective pressures across species ranges. Linking ENMs with common garden experiments provides a theoretically justified and practical way to study adaptive processes, including insights regarding the conservation value of populations inhabiting environmentally marginal areas under ongoing climate change.
Collapse
Affiliation(s)
- Javier Morente‐López
- Área de Biodiversidad y ConservaciónDepto. de Biología, GeologíaFísica y Química InorgánicaESCETUniversidad Rey Juan Carlos (URJC)MadridMóstolesSpain
- Island Ecology and Evolution Research GroupInstitute of Natural Products and Agrobiology, Consejo Superior de Investigaciones Científicas (IPNA‐CSIC)San Cristóbal de La Laguna, TenerifeSpain
| | - Jamie M. Kass
- Department of BiologyCity College of New YorkCity University of New YorkNew YorkNew YorkUSA
- Ph.D. Program in BiologyGraduate CenterCity University of New YorkNew YorkNew YorkUSA
- Biodiversity and Biocomplexity UnitOkinawa Institute of Science and Technology Graduate UniversityKunigami‐gunOkinawaJapan
| | - Carlos Lara‐Romero
- Área de Biodiversidad y ConservaciónDepto. de Biología, GeologíaFísica y Química InorgánicaESCETUniversidad Rey Juan Carlos (URJC)MadridMóstolesSpain
| | | | - José Carmen Soto‐Correa
- Facultad de Ciencias NaturalesUniversidad Autónoma de Querétaro (FCN‐UAQ)Santa Rosa Jáuregui, QuerétaroMexico
| | - Robert P. Anderson
- Department of BiologyCity College of New YorkCity University of New YorkNew YorkNew YorkUSA
- Ph.D. Program in BiologyGraduate CenterCity University of New YorkNew YorkNew YorkUSA
- Division of Vertebrate Zoology (Mammalogy)American Museum of Natural HistoryNew YorkNew YorkUSA
| | - José M. Iriondo
- Área de Biodiversidad y ConservaciónDepto. de Biología, GeologíaFísica y Química InorgánicaESCETUniversidad Rey Juan Carlos (URJC)MadridMóstolesSpain
| |
Collapse
|
7
|
Zhang HP, Tao ZB, Trunschke J, Shrestha M, Scaccabarozzi D, Wang H, Ren ZX. Reproductive Isolation Among Three Nocturnal Moth-Pollinated Sympatric Habenaria Species (Orchidaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:908852. [PMID: 35812980 PMCID: PMC9257206 DOI: 10.3389/fpls.2022.908852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Comparison and quantification of multiple pre- and post-pollination barriers to interspecific hybridization are important to understand the factors promoting reproductive isolation. Such isolating factors have been studied recently in many flowering plant species which seek after the general roles and relative strengths of different pre- and post-pollination barriers. In this study, we quantified six isolating factors (ecogeographic isolation, phenological isolation, pollinator isolation, pollinia-pistil interactions, fruit production, and seed development) that could possibly be acting as reproductive barriers at different stages among three sympatric Habenaria species (H. limprichtii, H. davidii, and H. delavayi). These three species overlap geographically but occupy different microhabitats varying in soil water content. They were isolated through pollinator interactions both ethologically (pollinator preference) and mechanically (pollinia attachment site), but to a variable degree for different species pairs. Interspecific crosses between H. limprichtii and H. davidii result in high fruit set, and embryo development suggested weak post-pollination barriers, whereas bidirectional crosses of H. delavayi with either of the other two species fail to produce fruits. Our results revealed that pollinators were the most important isolating barrier including both ethological and mechanical mechanisms, to maintain the boundaries among these three sympatric Habenaria species. Our study also highlights the importance of a combination of pre-and post-pollination barriers for species co-existence in Orchidaceae.
Collapse
Affiliation(s)
- Hai-Ping Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Bin Tao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), Wuhan, China
| | - Judith Trunschke
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
| | - Mani Shrestha
- Department of Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Daniela Scaccabarozzi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- Lijiang Forest Biodiversity National Observation and Research Station, Lijiang, China
| | - Zong-Xin Ren
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- Lijiang Forest Biodiversity National Observation and Research Station, Lijiang, China
| |
Collapse
|
8
|
de Pedro M, Mayol M, González-Martínez SC, Regalado I, Riba M. Environmental patterns of adaptation after range expansion in Leontodon longirostris: The effect of phenological events on fitness-related traits. AMERICAN JOURNAL OF BOTANY 2022; 109:602-615. [PMID: 35067917 DOI: 10.1002/ajb2.1815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
PREMISE Because of expected range shifts associated with climate change, there is a renewed interest in the evolutionary factors constraining adaptation, among which are genetic bottlenecks, drift, and increased mutational load after range expansion. Here we study adaptation in the short-lived species Leontodon longirostris showing reduced genetic diversity and increased genetic load along an expansion route. METHODS We assessed the phenological patterns of variation, and their effect on fitness-related traits, on 42 L. longirostris populations and six populations of the sister taxa L. saxatilis in a common garden located within the current range of both species. The comparison among L. longirostris populations allowed us to test for genetic clines consistent with local adaptation, whereas the comparison between taxa provided evidence for common adaptive features at the species level. RESULTS We found significant within-species variability for most traits, as well as differences with its close relative L. saxatilis. In general, seeds from drier, warmer, and unpredictable habitats showed overall lower and more restricted conditions for germination, seedlings emerged later and plants flowered earlier. Consequently, genotypes from arid and unpredictable environments attained smaller reproductive sizes and allocated more biomass to reproduction. Flowering time had the strongest direct effect on total plant size, but seedling emergence also showed an important indirect effect. CONCLUSIONS Our results show the crucial role of phenological patterns in shaping adaptive clines for major life-history stage transitions. Furthermore, the genetic load observed in L. longirostris does not seem to preclude adaptation to the climatic variability encountered along the expansion route.
Collapse
Affiliation(s)
| | - Maria Mayol
- CREAF, Cerdanyola del Vallès 08193, Spain
- Univ. Autònoma Barcelona, Cerdanyola del Vallès 08193, Spain
| | | | | | - Miquel Riba
- CREAF, Cerdanyola del Vallès 08193, Spain
- Univ. Autònoma Barcelona, Cerdanyola del Vallès 08193, Spain
| |
Collapse
|
9
|
Puy J, Carmona CP, Dvořáková H, Latzel V, de Bello F. Diversity of parental environments increases phenotypic variation in Arabidopsis populations more than genetic diversity but similarly affects productivity. ANNALS OF BOTANY 2021; 127:425-436. [PMID: 32463878 PMCID: PMC7988527 DOI: 10.1093/aob/mcaa100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/22/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS The observed positive diversity effect on ecosystem functioning has rarely been assessed in terms of intraspecific trait variability within populations. Intraspecific phenotypic variability could stem both from underlying genetic diversity and from plasticity in response to environmental cues. The latter might derive from modifications to a plant's epigenome and potentially last multiple generations in response to previous environmental conditions. We experimentally disentangled the role of genetic diversity and diversity of parental environments on population productivity, resistance against environmental fluctuations and intraspecific phenotypic variation. METHODS A glasshouse experiment was conducted in which different types of Arabidopsis thaliana populations were established: one population type with differing levels of genetic diversity and another type, genetically identical, but with varying diversity levels of the parental environments (parents grown in the same or different environments). The latter population type was further combined, or not, with experimental demethylation to reduce the potential epigenetic diversity produced by the diversity of parental environments. Furthermore, all populations were each grown under different environmental conditions (control, fertilization and waterlogging). Mortality, productivity and trait variability were measured in each population. KEY RESULTS Parental environments triggered phenotypic modifications in the offspring, which translated into more functionally diverse populations when offspring from parents grown under different conditions were brought together in mixtures. In general, neither the increase in genetic diversity nor the increase in diversity of parental environments had a remarkable effect on productivity or resistance to environmental fluctuations. However, when the epigenetic variation was reduced via demethylation, mixtures were less productive than monocultures (i.e. negative net diversity effect), caused by the reduction of phenotypic differences between different parental origins. CONCLUSIONS A diversity of environmental parental origins within a population could ameliorate the negative effect of competition between coexisting individuals by increasing intraspecific phenotypic variation. A diversity of parental environments could thus have comparable effects to genetic diversity. Disentangling the effect of genetic diversity and that of parental environments appears to be an important step in understanding the effect of intraspecific trait variability on coexistence and ecosystem functioning.
Collapse
Affiliation(s)
- Javier Puy
- Department of Botany, Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
- For correspondence. E-mail
| | - Carlos P Carmona
- Institute of Ecology and Earth Sciences, Department of Botany, University of Tartu, Tartu, Estonia
| | - Hana Dvořáková
- Department of Botany, Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic
| | - Vít Latzel
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
| | | |
Collapse
|
10
|
Wieters B, Steige KA, He F, Koch EM, Ramos-Onsins SE, Gu H, Guo YL, Sunyaev S, de Meaux J. Polygenic adaptation of rosette growth in Arabidopsis thaliana. PLoS Genet 2021; 17:e1008748. [PMID: 33493157 PMCID: PMC7861555 DOI: 10.1371/journal.pgen.1008748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 02/04/2021] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
The rate at which plants grow is a major functional trait in plant ecology. However, little is known about its evolution in natural populations. Here, we investigate evolutionary and environmental factors shaping variation in the growth rate of Arabidopsis thaliana. We used plant diameter as a proxy to monitor plant growth over time in environments that mimicked latitudinal differences in the intensity of natural light radiation, across a set of 278 genotypes sampled within four broad regions, including an outgroup set of genotypes from China. A field experiment conducted under natural conditions confirmed the ecological relevance of the observed variation. All genotypes markedly expanded their rosette diameter when the light supply was decreased, demonstrating that environmental plasticity is a predominant source of variation to adapt plant size to prevailing light conditions. Yet, we detected significant levels of genetic variation both in growth rate and growth plasticity. Genome-wide association studies revealed that only 2 single nucleotide polymorphisms associate with genetic variation for growth above Bonferroni confidence levels. However, marginally associated variants were significantly enriched among genes with an annotated role in growth and stress reactions. Polygenic scores computed from marginally associated variants confirmed the polygenic basis of growth variation. For both light regimes, phenotypic divergence between the most distantly related population (China) and the various regions in Europe is smaller than the variation observed within Europe, indicating that the evolution of growth rate is likely to be constrained by stabilizing selection. We observed that Spanish genotypes, however, reach a significantly larger size than Northern European genotypes. Tests of adaptive divergence and analysis of the individual burden of deleterious mutations reveal that adaptive processes have played a more important role in shaping regional differences in rosette growth than maladaptive evolution. The rate at which plants grow is a major functional trait in plant ecology. However, little is known about its genetic variation in natural populations. Here, we investigate genetic and environmental factors shaping variation in the growth rate of Arabidopsis thaliana and ask whether genetic variation in plant growth contributes to adaptation to local environmental conditions. We grew plants under two light regimes that mimic latitudinal differences in the intensity of natural light radiation, and measured plant diameter as it grew over time. When the light supply was decreased, plant diameter grew more slowly but reached a markedly larger final size, confirming that plants can adjust their growth to prevailing light conditions. Yet, we also detected significant levels of genetic variation both in growth rate and in how the growth dynamics is adjusted to the light conditions. We show that this variation is encoded by many loci of small effect that are hard to locate in the genome but overall significantly enriched among genes associated with growth and stress reactions. We further observe that Spanish genotypes tended to reach, on average, a significantly larger rosette size than Northern European genotypes. Tests of adaptive divergence indicate that these differences may reflect adaptation to local environmental conditions.
Collapse
Affiliation(s)
| | - Kim A. Steige
- Institute of Botany, University of Cologne, Cologne, Germany
| | - Fei He
- Institute of Botany, University of Cologne, Cologne, Germany
| | - Evan M. Koch
- Genetics Division, Brigham & Women's Hospital and Harvard Medical School, Boston MA, United States of America
- Department of Biomedical Informatics, Harvard Medical School, Boston MA, United States of America
| | | | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shamil Sunyaev
- Genetics Division, Brigham & Women's Hospital and Harvard Medical School, Boston MA, United States of America
- Department of Biomedical Informatics, Harvard Medical School, Boston MA, United States of America
| | - Juliette de Meaux
- Institute of Botany, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
11
|
Castilla AR, Méndez-Vigo B, Marcer A, Martínez-Minaya J, Conesa D, Picó FX, Alonso-Blanco C. Ecological, genetic and evolutionary drivers of regional genetic differentiation in Arabidopsis thaliana. BMC Evol Biol 2020; 20:71. [PMID: 32571210 PMCID: PMC7310121 DOI: 10.1186/s12862-020-01635-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Disentangling the drivers of genetic differentiation is one of the cornerstones in evolution. This is because genetic diversity, and the way in which it is partitioned within and among populations across space, is an important asset for the ability of populations to adapt and persist in changing environments. We tested three major hypotheses accounting for genetic differentiation-isolation-by-distance (IBD), isolation-by-environment (IBE) and isolation-by-resistance (IBR)-in the annual plant Arabidopsis thaliana across the Iberian Peninsula, the region with the largest genomic diversity. To that end, we sampled, genotyped with genome-wide SNPs, and analyzed 1772 individuals from 278 populations distributed across the Iberian Peninsula. RESULTS IBD, and to a lesser extent IBE, were the most important drivers of genetic differentiation in A. thaliana. In other words, dispersal limitation, genetic drift, and to a lesser extent local adaptation to environmental gradients, accounted for the within- and among-population distribution of genetic diversity. Analyses applied to the four Iberian genetic clusters, which represent the joint outcome of the long demographic and adaptive history of the species in the region, showed similar results except for one cluster, in which IBR (a function of landscape heterogeneity) was the most important driver of genetic differentiation. Using spatial hierarchical Bayesian models, we found that precipitation seasonality and topsoil pH chiefly accounted for the geographic distribution of genetic diversity in Iberian A. thaliana. CONCLUSIONS Overall, the interplay between the influence of precipitation seasonality on genetic diversity and the effect of restricted dispersal and genetic drift on genetic differentiation emerges as the major forces underlying the evolutionary trajectory of Iberian A. thaliana.
Collapse
Affiliation(s)
- Antonio R Castilla
- Centre for Applied Ecology "Prof. Baeta Neves", InBIO, School of Agriculture, University of Lisbon, Lisbon, Portugal
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Belén Méndez-Vigo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Arnald Marcer
- CREAF, Centre de Recerca Ecològica i Aplicacions Forestals, Bellaterra, E08193, Cerdanyola de Vallès, Catalonia, Spain
- Universitat Autònoma de Barcelona, Bellaterra, E08193, Cerdanyola de Vallès, Catalonia, Spain
| | | | - David Conesa
- Departament d'Estadística i Investigació Operativa, Universitat de València, Valencia, Spain
| | - F Xavier Picó
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain.
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
12
|
Thiergart T, Durán P, Ellis T, Vannier N, Garrido-Oter R, Kemen E, Roux F, Alonso-Blanco C, Ågren J, Schulze-Lefert P, Hacquard S. Root microbiota assembly and adaptive differentiation among European Arabidopsis populations. Nat Ecol Evol 2019; 4:122-131. [DOI: 10.1038/s41559-019-1063-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/08/2019] [Indexed: 11/09/2022]
|
13
|
Large-effect flowering time mutations reveal conditionally adaptive paths through fitness landscapes in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2019; 116:17890-17899. [PMID: 31420516 PMCID: PMC6731683 DOI: 10.1073/pnas.1902731116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mutations are often assumed to be largely detrimental to fitness, but they may also be beneficial, and mutations with large phenotypic effects can persist in nature. One explanation for these observations is that mutations may be beneficial in specific environments because these conditions shift trait expression toward higher fitness. This hypothesis is rarely tested due to the difficulty of replicating mutants in multiple natural environments and measuring their phenotypes. We did so by planting Arabidopsis thaliana genotypes with large-effect flowering time mutations in field sites across the species’ European climate range. We quantified the adaptive value of mutant traits, finding that certain mutations increased fitness in some environments but not in others. Contrary to previous assumptions that most mutations are deleterious, there is increasing evidence for persistence of large-effect mutations in natural populations. A possible explanation for these observations is that mutant phenotypes and fitness may depend upon the specific environmental conditions to which a mutant is exposed. Here, we tested this hypothesis by growing large-effect flowering time mutants of Arabidopsis thaliana in multiple field sites and seasons to quantify their fitness effects in realistic natural conditions. By constructing environment-specific fitness landscapes based on flowering time and branching architecture, we observed that a subset of mutations increased fitness, but only in specific environments. These mutations increased fitness via different paths: through shifting flowering time, branching, or both. Branching was under stronger selection, but flowering time was more genetically variable, pointing to the importance of indirect selection on mutations through their pleiotropic effects on multiple phenotypes. Finally, mutations in hub genes with greater connectedness in their regulatory networks had greater effects on both phenotypes and fitness. Together, these findings indicate that large-effect mutations may persist in populations because they influence traits that are adaptive only under specific environmental conditions. Understanding their evolutionary dynamics therefore requires measuring their effects in multiple natural environments.
Collapse
|
14
|
Salmela MJ, Weinig C. The fitness benefits of genetic variation in circadian clock regulation. CURRENT OPINION IN PLANT BIOLOGY 2019; 49:86-93. [PMID: 31302588 DOI: 10.1016/j.pbi.2019.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
Functional circadian clocks are essential for fitness in diverse ecosystems, facilitating detection of predictable light-dark and temperature cycles. The molecular basis of endogenous clocks is variable across the tree of life, but it has one omnipresent attribute: natural genetic diversity that manifests as variation for instance in circadian period length around the hypothesised optimum of 24 hours. Latitudinal variation in photoperiod alone is unlikely to account for the vast diversity documented in varied organisms, but we have yet to achieve a solid understanding of the interplay between clock variability and natural selection. Recent circadian studies sampling populations have drawn attention to the hierarchical structure of genetic diversity in the wild, unveiling pronounced genetic variation even on a scale of metres.
Collapse
Affiliation(s)
- Matti J Salmela
- Natural Resources Institute Finland, Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Cynthia Weinig
- Department of Botany, 3165, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, USA; Program in Ecology, University of Wyoming, Laramie, WY 82071, USA; Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
15
|
Martínez-Minaya J, Conesa D, Fortin MJ, Alonso-Blanco C, Picó FX, Marcer A. A hierarchical Bayesian Beta regression approach to study the effects of geographical genetic structure and spatial autocorrelation on species distribution range shifts. Mol Ecol Resour 2019; 19:929-943. [PMID: 30993910 DOI: 10.1111/1755-0998.13024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022]
Abstract
Global climate change (GCC) may be causing distribution range shifts in many organisms worldwide. Multiple efforts are currently focused on the development of models to better predict distribution range shifts due to GCC. We addressed this issue by including intraspecific genetic structure and spatial autocorrelation (SAC) of data in distribution range models. Both factors reflect the joint effect of ecoevolutionary processes on the geographical heterogeneity of populations. We used a collection of 301 georeferenced accessions of the annual plant Arabidopsis thaliana in its Iberian Peninsula range, where the species shows strong geographical genetic structure. We developed spatial and nonspatial hierarchical Bayesian models (HBMs) to depict current and future distribution ranges for the four genetic clusters detected. We also compared the performance of HBMs with Maxent (a presence-only model). Maxent and nonspatial HBMs presented some shortcomings, such as the loss of accessions with high genetic admixture in the case of Maxent and the presence of residual SAC for both. As spatial HBMs removed residual SAC, these models showed higher accuracy than nonspatial HBMs and handled the spatial effect on model outcomes. The ease of modelling and the consistency among model outputs for each genetic cluster was conditioned by the sparseness of the populations across the distribution range. Our HBMs enrich the toolbox of software available to evaluate GCC-induced distribution range shifts by considering both genetic heterogeneity and SAC, two inherent properties of any organism that should not be overlooked.
Collapse
Affiliation(s)
- Joaquín Martínez-Minaya
- Departament d'Estadística i Investigació Operativa, Universitat de València, Valencia, Spain
| | - David Conesa
- Departament d'Estadística i Investigació Operativa, Universitat de València, Valencia, Spain
| | - Marie-Josée Fortin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - F Xavier Picó
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Arnald Marcer
- CREAF, Bellaterra (Cerdanyola del Vallès), Spain.,Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|
16
|
Montes N, Alonso-Blanco C, García-Arenal F. Cucumber mosaic virus infection as a potential selective pressure on Arabidopsis thaliana populations. PLoS Pathog 2019; 15:e1007810. [PMID: 31136630 PMCID: PMC6555541 DOI: 10.1371/journal.ppat.1007810] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/07/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023] Open
Abstract
It has been proposed that in wild ecosystems viruses are often plant mutualists, whereas agroecosystems favour pathogenicity. We seek evidence for virus pathogenicity in wild ecosystems through the analysis of plant-virus coevolution, which requires a negative effect of infection on the host fitness. We focus on the interaction between Arabidopsis thaliana and Cucumber mosaic virus (CMV), which is significant in nature. We studied the genetic diversity of A. thaliana for two defence traits, resistance and tolerance, to CMV. A set of 185 individuals collected in 76 A. thaliana Iberian wild populations were inoculated with different CMV strains. Resistance was estimated from the level of virus multiplication in infected plants, and tolerance from the effect of infection on host progeny production. Resistance and tolerance to CMV showed substantial genetic variation within and between host populations, and depended on the virus x host genotype interaction, two conditions for coevolution. Resistance and tolerance were co-occurring independent traits that have evolved independently from related life-history traits involved in adaptation to climate. The comparison of the genetic structure for resistance and tolerance with that for neutral traits (QST/FST analyses) indicated that both defence traits are likely under uniform selection. These results strongly suggest that CMV infection selects for defence on A. thaliana populations, and support plant-virus coevolution. Thus, we propose that CMV infection reduces host fitness under the field conditions of the wild A. thaliana populations studied.
Collapse
Affiliation(s)
- Nuria Montes
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
17
|
Taylor MA, Cooper MD, Schmitt J. Phenological and fitness responses to climate warming depend upon genotype and competitive neighbourhood in
Arabidopsis thaliana. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Jonas M, Navarro D. Induced mutations alter patterns of quantitative variation, phenotypic integration, and plasticity to elevated CO 2 in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2019; 132:33-47. [PMID: 30255212 DOI: 10.1007/s10265-018-1064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
A key step toward predicting responses to climate change is characterizing genetic variation in populations. While short-term responses will likely be shaped by currently available genetic variation, longer-term evolutionary responses will depend on the supply of novel variation by, ultimately, mutation. Studying mutational contributions to phenotypic variation can provide insights into the extent of potential variation on which selection may operate in future human-altered environments. Here we used the chemical mutagen ethyl methanesulfonate (EMS) to explore mutational contributions to phenotypic variation, integration, and plasticity to elevated carbon dioxide (eCO2) in three accessions of Arabidopsis thaliana. We found that (1) mutagenesis increased broad-sense heritabilities and variation in plasticity to eCO2 (genotype by environment interactions); (2) mutational effects varied among the three genetic backgrounds; (3) induced mutations had non-random (biased) effects on patterns of phenotypic integration. To our knowledge, this is the first study to address the effects of chemically induced mutations on phenotypic plasticity to eCO2 in a model plant. We discuss our results in light of emerging insights from theoretical and empirical quantitative genetics, suggest potential avenues of research, and identify approaches that may help advance our understanding of climate-driven evolution in plants.
Collapse
Affiliation(s)
- Mark Jonas
- Department of Biology, School of Natural and Social Sciences, State University of New York-Purchase College, 735 Anderson Hill Road, Purchase, NY, 10577, USA.
| | - Dania Navarro
- Department of Biology, School of Natural and Social Sciences, State University of New York-Purchase College, 735 Anderson Hill Road, Purchase, NY, 10577, USA
| |
Collapse
|
19
|
Gómez R, Méndez-Vigo B, Marcer A, Alonso-Blanco C, Picó FX. Quantifying temporal change in plant population attributes: insights from a resurrection approach. AOB PLANTS 2018; 10:ply063. [PMID: 30370042 PMCID: PMC6198925 DOI: 10.1093/aobpla/ply063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/05/2018] [Indexed: 05/11/2023]
Abstract
Rapid evolution in annual plants can be quantified by comparing phenotypic and genetic changes between past and contemporary individuals from the same populations over several generations. Such knowledge will help understand the response of plants to rapid environmental shifts, such as the ones imposed by global climate change. To that end, we undertook a resurrection approach in Spanish populations of the annual plant Arabidopsis thaliana that were sampled twice over a decade. Annual weather records were compared to their historical records to extract patterns of climatic shifts over time. We evaluated the differences between samplings in flowering time, a key life-history trait with adaptive significance, with a field experiment. We also estimated genetic diversity and differentiation based on neutral nuclear markers and nucleotide diversity in candidate flowering time (FRI and FLC) and seed dormancy (DOG1) genes. The role of genetic drift was estimated by computing effective population sizes with the temporal method. Overall, two climatic scenarios were detected: intense warming with increased precipitation and moderate warming with decreased precipitation. The average flowering time varied little between samplings. Instead, within-population variation in flowering time exhibited a decreasing trend over time. Substantial temporal changes in genetic diversity and differentiation were observed with both nuclear microsatellites and candidate genes in all populations, which were interpreted as the result of natural demographic fluctuations. We conclude that drought stress caused by moderate warming with decreased precipitation may have the potential to reduce within-population variation in key life-cycle traits, perhaps as a result of stabilizing selection on them, and to constrain the genetic differentiation over time. Besides, the demographic behaviour of populations probably accounts for the substantial temporal patterns of genetic variation, while keeping rather constant those of phenotypic variation.
Collapse
Affiliation(s)
- Rocío Gómez
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Belén Méndez-Vigo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Arnald Marcer
- CREAF, Cerdanyola del Vallès, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - F Xavier Picó
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
- Corresponding author’s e-mail address:
| |
Collapse
|
20
|
Exposito-Alonso M, Brennan AC, Alonso-Blanco C, Picó FX. Spatio-temporal variation in fitness responses to contrasting environments in Arabidopsis thaliana. Evolution 2018; 72:1570-1586. [PMID: 29947421 DOI: 10.1111/evo.13508] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022]
Abstract
The evolutionary response of organisms to global climate change is expected to be strongly conditioned by preexisting standing genetic variation. In addition, natural selection imposed by global climate change on fitness-related traits can be heterogeneous over time. We estimated selection of life-history traits of an entire genetic lineage of the plant Arabidopsis thaliana occurring in north-western Iberian Peninsula that were transplanted over multiple years into two environmentally contrasting field sites in southern Spain, as southern environments are expected to move progressively northwards with climate change in the Iberian Peninsula. The results indicated that natural selection on flowering time prevailed over that on recruitment. Selection favored early flowering in six of eight experiments and late flowering in the other two. Such heterogeneity of selection for flowering time might be a powerful mechanism for maintaining genetic diversity in the long run. We also found that north-western A. thaliana accessions from warmer environments exhibited higher fitness and higher phenotypic plasticity for flowering time in southern experimental facilities. Overall, our transplant experiments suggested that north-western Iberian A. thaliana has the means to cope with increasingly warmer environments in the region as predicted by trends in global climate change models.
Collapse
Affiliation(s)
- Moises Exposito-Alonso
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Adrian C Brennan
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE, United Kingdom
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC),, 28049, Madrid, Spain
| | - F Xavier Picó
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), 41092, Sevilla, Spain
| |
Collapse
|
21
|
Salmela MJ, McMinn RL, Guadagno CR, Ewers BE, Weinig C. Circadian Rhythms and Reproductive Phenology Covary in a Natural Plant Population. J Biol Rhythms 2018; 33:245-254. [DOI: 10.1177/0748730418764525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Robby L. McMinn
- Department of Botany, University of Wyoming, Laramie, Wyoming
- Program in Ecology, University of Wyoming, Laramie, Wyoming
| | | | - Brent E. Ewers
- Department of Botany, University of Wyoming, Laramie, Wyoming
- Program in Ecology, University of Wyoming, Laramie, Wyoming
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, Wyoming
- Program in Ecology, University of Wyoming, Laramie, Wyoming
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
22
|
Singh A, Roy S. High altitude population of Arabidopsis thaliana is more plastic and adaptive under common garden than controlled condition. BMC Ecol 2017; 17:39. [PMID: 29237449 PMCID: PMC5729231 DOI: 10.1186/s12898-017-0149-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Population differentiation and their adaptation to a particular environment depend on their ability to respond to a new environment. This, in turn is governed to an extent, by the degree of phenotypic plasticity exhibited by the populations. The populations of same species inhabiting different climatic conditions may differ in their phenotypic plasticity. Himalayan populations of Arabidopsis thaliana originating from a steep altitude are exposed to different climatic conditions ranging from sub-tropical to temperate. Thus they might have experienced different selection pressures during evolution and may respond differently under common environmental condition. RESULTS Phenotypic plasticity and differentiation of natural populations of A. thaliana grown under common garden and controlled conditions were determined. A total of seventeen morphological traits, their plasticity, association between traits and environment were performed using 45 accessions from three populations. Plants from different altitudes differed in phenotypes, their selection and fitness under two conditions. Under both the conditions lower altitude population was characterized by higher leaf count and larger silique than higher and middle altitude population. Flowering time of high altitude population increased while that of low and medium altitude decreased under controlled condition compared to open field. An increase in seed weight and germination was observed for all the population under open field than controlled. Rosette area was under divergent selection in both the condition. The heritability of lower altitude population was the highest under both the conditions, where as it was the least for higher altitude population further indicating that the high altitude populations are more responsive towards phenotypic changes under new environmental conditions. Ninety-nine percent of variability in traits and their plasticity co-varied with the altitude of their origin. The population of high altitude was more plastic and differentiated as compared to the lower altitude one. CONCLUSIONS Arabidopsis thaliana population native to different altitudes of the west Himalaya responds differently when grown under common environments. The success of high altitude population is more in common garden than the controlled conditions. The significant variability in phenotype and its association with altitude of origin predicts for non-random genetic differentiation among the populations.
Collapse
Affiliation(s)
- Akanksha Singh
- Genetics and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001 India
| | - Sribash Roy
- Genetics and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001 India
| |
Collapse
|
23
|
Bloomer RH, Dean C. Fine-tuning timing: natural variation informs the mechanistic basis of the switch to flowering in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5439-5452. [PMID: 28992087 DOI: 10.1093/jxb/erx270] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The evolution of diverse life history strategies has allowed Arabidopsis thaliana to adapt to worldwide locations, spanning a range of latitudinal and environmental conditions. Arabidopsis thaliana accessions are either vernalization-requiring winter annuals or rapid cyclers, with extensive natural variation in vernalization requirement and response. Genetic and molecular analysis of this variation has enhanced our understanding of the mechanisms involved in life history determination, with translation to both natural and crop systems in the Brassicaceae and beyond.
Collapse
Affiliation(s)
- R H Bloomer
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - C Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
24
|
Taylor MA, Cooper MD, Sellamuthu R, Braun P, Migneault A, Browning A, Perry E, Schmitt J. Interacting effects of genetic variation for seed dormancy and flowering time on phenology, life history, and fitness of experimental Arabidopsis thaliana populations over multiple generations in the field. THE NEW PHYTOLOGIST 2017; 216:291-302. [PMID: 28752957 DOI: 10.1111/nph.14712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Major alleles for seed dormancy and flowering time are well studied, and can interact to influence seasonal timing and fitness within generations. However, little is known about how this interaction controls phenology, life history, and population fitness across multiple generations in natural seasonal environments. To examine how seed dormancy and flowering time shape annual plant life cycles over multiple generations, we established naturally dispersing populations of recombinant inbred lines of Arabidopsis thaliana segregating early and late alleles for seed dormancy and flowering time in a field experiment. We recorded seasonal phenology and fitness of each genotype over 2 yr and several generations. Strong seed dormancy suppressed mid-summer germination in both early- and late-flowering genetic backgrounds. Strong dormancy and late-flowering genotypes were both necessary to confer a winter annual life history; other genotypes were rapid-cycling. Strong dormancy increased within-season fecundity in an early-flowering background, but decreased it in a late-flowering background. However, there were no detectable differences among genotypes in population growth rates. Seasonal phenology, life history, and cohort fitness over multiple generations depend strongly upon interacting genetic variation for dormancy and flowering. However, similar population growth rates across generations suggest that different life cycle genotypes can coexist in natural populations.
Collapse
Affiliation(s)
- Mark A Taylor
- University of California at Davis, Davis, CA, 95616, USA
| | | | | | - Peter Braun
- Brown University, Providence, RI, 02912, USA
- California State University at San Bernardino, San Bernardino, CA, 92407, USA
| | | | | | - Emily Perry
- Brown University, Providence, RI, 02912, USA
| | - Johanna Schmitt
- University of California at Davis, Davis, CA, 95616, USA
- Brown University, Providence, RI, 02912, USA
| |
Collapse
|
25
|
Davila Olivas NH, Frago E, Thoen MPM, Kloth KJ, Becker FFM, van Loon JJA, Gort G, Keurentjes JJB, van Heerwaarden J, Dicke M. Natural variation in life history strategy of Arabidopsis thaliana determines stress responses to drought and insects of different feeding guilds. Mol Ecol 2017; 26:2959-2977. [PMID: 28295823 PMCID: PMC5485070 DOI: 10.1111/mec.14100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/31/2022]
Abstract
Plants are sessile organisms and, consequently, are exposed to a plethora of stresses in their local habitat. As a result, different populations of a species are subject to different selection pressures leading to adaptation to local conditions and intraspecific divergence. The annual brassicaceous plant Arabidopsis thaliana is an attractive model for ecologists and evolutionary biologists due to the availability of a large collection of resequenced natural accessions. Accessions of A. thaliana display one of two different life cycle strategies: summer and winter annuals. We exposed a collection of 308 European Arabidopsis accessions, that have been genotyped for 250K SNPs, to a range of stresses: one abiotic stress (drought), four biotic stresses (Pieris rapae caterpillars, Plutella xylostella caterpillars, Frankliniella occidentalis thrips and Myzus persicae aphids) and two combined stresses (drought plus P. rapae and Botrytis cinerea fungus plus P. rapae). We identified heritable genetic variation for responses to the different stresses, estimated by narrow-sense heritability. We found that accessions displaying different life cycle strategies differ in their response to stresses. Winter annuals are more resistant to drought, aphids and thrips and summer annuals are more resistant to P. rapae and P. xylostella caterpillars. Summer annuals are also more resistant to the combined stresses of drought plus P. rapae and infection by the fungus Botryris cinerea plus herbivory by P. rapae. Adaptation to drought displayed a longitudinal gradient. Finally, trade-offs were recorded between the response to drought and responses to herbivory by caterpillars of the specialist herbivore P. rapae.
Collapse
Affiliation(s)
| | - Enric Frago
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| | - Manus P. M. Thoen
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
- Wageningen Plant ResearchWageningen University and ResearchWageningenThe Netherlands
- Laboratory of Plant PhysiologyWageningen UniversityWageningenThe Netherlands
| | - Karen J. Kloth
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
- Wageningen Plant ResearchWageningen University and ResearchWageningenThe Netherlands
- Laboratory of Plant PhysiologyWageningen UniversityWageningenThe Netherlands
| | | | | | - Gerrit Gort
- BiometrisWageningen University and ResearchWageningenThe Netherlands
| | | | | | - Marcel Dicke
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
26
|
Zou C, Wang P, Xu Y. Bulked sample analysis in genetics, genomics and crop improvement. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1941-55. [PMID: 26990124 PMCID: PMC5043468 DOI: 10.1111/pbi.12559] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 05/18/2023]
Abstract
Biological assay has been based on analysis of all individuals collected from sample populations. Bulked sample analysis (BSA), which works with selected and pooled individuals, has been extensively used in gene mapping through bulked segregant analysis with biparental populations, mapping by sequencing with major gene mutants and pooled genomewide association study using extreme variants. Compared to conventional entire population analysis, BSA significantly reduces the scale and cost by simplifying the procedure. The bulks can be built by selection of extremes or representative samples from any populations and all types of segregants and variants that represent wide ranges of phenotypic variation for the target trait. Methods and procedures for sampling, bulking and multiplexing are described. The samples can be analysed using individual markers, microarrays and high-throughput sequencing at all levels of DNA, RNA and protein. The power of BSA is affected by population size, selection of extreme individuals, sequencing strategies, genetic architecture of the trait and marker density. BSA will facilitate plant breeding through development of diagnostic and constitutive markers, agronomic genomics, marker-assisted selection and selective phenotyping. Applications of BSA in genetics, genomics and crop improvement are discussed with their future perspectives.
Collapse
Affiliation(s)
- Cheng Zou
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pingxi Wang
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunbi Xu
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China.
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico.
| |
Collapse
|
27
|
Salmela MJ, Ewers BE, Weinig C. Natural quantitative genetic variance in plant growth differs in response to ecologically relevant temperature heterogeneity. Ecol Evol 2016; 6:7574-7585. [PMID: 30128112 PMCID: PMC6093144 DOI: 10.1002/ece3.2482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/22/2016] [Accepted: 08/28/2016] [Indexed: 01/06/2023] Open
Abstract
Adaptation to large‐scale spatial heterogeneity in the environment accounts for a major proportion of genetic diversity within species. Theory predicts the erosion of adaptive genetic variation on a within‐population level, but considerable genetic diversity is often found locally. Genetic diversity could be expected to be maintained within populations in temporally or spatially variable conditions if genotypic rank orders vary across contrasting microenvironmental settings. Taking advantage of fine‐resolution environmental data, we tested the hypothesis that temperature heterogeneity among years could be one factor maintaining quantitative genetic diversity within a natural and genetically diverse plant population. We sampled maternal families of Boechera stricta, an Arabidopsis thaliana relative, at one location in the central Rocky Mountains and grew them in three treatments that, based on records from an adjacent weather station, simulated hourly temperature changes at the native site during three summers with differing mean temperatures. Treatment had a significant effect on all traits, with 2–3‐fold increase in above‐ and belowground biomass and the highest allocation to roots observed in the treatment simulating the warmest summer on record at the site. Treatment affected bivariate associations between traits, with the weakest correlation between above‐ and belowground biomass in the warmest treatment. The magnitude of quantitative genetic variation for all traits differed across treatments: Genetic variance of biomass was 0 in the warmest treatment, while highly significant diversity was found in average conditions, resulting in broad‐sense heritability of 0.31. Significant genotype × environment interactions across all treatments were found only in root‐to‐shoot ratio. Therefore, temperature variation among summers appears unlikely to account for the observed levels of local genetic variation in size in this perennial species, but may influence family rank order in growth allocation. Our results indicate that natural environmental fluctuations can have a large impact on the magnitude of within‐population quantitative genetic variance.
Collapse
Affiliation(s)
- Matti J Salmela
- Department of Botany University of Wyoming Laramie WY USA.,Present address: Natural Resources Institute Finland Vantaa Finland
| | - Brent E Ewers
- Department of Botany University of Wyoming Laramie WY USA.,Program in Ecology University of Wyoming Laramie WY USA
| | - Cynthia Weinig
- Department of Botany University of Wyoming Laramie WY USA.,Program in Ecology University of Wyoming Laramie WY USA.,Department of Molecular Biology University of Wyoming Laramie WY USA
| |
Collapse
|
28
|
Burgarella C, Chantret N, Gay L, Prosperi J, Bonhomme M, Tiffin P, Young ND, Ronfort J. Adaptation to climate through flowering phenology: a case study in
Medicago truncatula. Mol Ecol 2016; 25:3397-415. [DOI: 10.1111/mec.13683] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Concetta Burgarella
- UMR 232 DIADE/DYNADIV Institut de Recherche pour le Developpement (IRD) 911 avenue Agropolis BP 64501, 34394 Montpellier France
- UMR AGAP, Equipe Génomique évolutive et gestion des populations Institut national de Recherche Agronomique (INRA) 34060 Montpellier France
| | - Nathalie Chantret
- UMR AGAP, Equipe Génomique évolutive et gestion des populations Institut national de Recherche Agronomique (INRA) 34060 Montpellier France
| | - Laurène Gay
- UMR AGAP, Equipe Génomique évolutive et gestion des populations Institut national de Recherche Agronomique (INRA) 34060 Montpellier France
| | - Jean‐Marie Prosperi
- UMR AGAP, Equipe Génomique évolutive et gestion des populations Institut national de Recherche Agronomique (INRA) 34060 Montpellier France
| | - Maxime Bonhomme
- UPS Laboratoire de Recherche en Sciences Végétales Université de Toulouse BP42617, Auzeville F‐31326 Castanet‐Tolosan France
- Laboratoire de Recherche en Sciences Végétales CNRS BP42617, Auzeville F‐31326 Castanet‐Tolosan France
| | - Peter Tiffin
- Department of Plant Biology University of Minnesota St. Paul MN 55108 USA
| | - Nevin D. Young
- Department of Plant Biology University of Minnesota St. Paul MN 55108 USA
- Department of Plant Pathology University of Minnesota St. Paul MN 55108 USA
| | - Joelle Ronfort
- UMR AGAP, Equipe Génomique évolutive et gestion des populations Institut national de Recherche Agronomique (INRA) 34060 Montpellier France
| |
Collapse
|
29
|
Salmela MJ, Greenham K, Lou P, McClung CR, Ewers BE, Weinig C. Variation in circadian rhythms is maintained among and within populations in Boechera stricta. PLANT, CELL & ENVIRONMENT 2016; 39:1293-303. [PMID: 26514754 DOI: 10.1111/pce.12670] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 05/13/2023]
Abstract
Circadian clocks have evolved independently in all three domains of life, and fitness benefits of a functional clock have been demonstrated in experimental genotypes in controlled conditions. Still, little is known about genetic variation in the clock and its fitness consequences in natural populations from heterogeneous environments. Using Wyoming populations of the Arabidopsis relative Boechera stricta as our study system, we demonstrate that genetic variation in the clock can occur at multiple levels: means of circadian period among populations sampled at different elevations differed by less than 1 h, but means among families sampled within populations varied by as much as 3.5 h. Growth traits also varied among and within populations. Within the population with the most circadian variation, we observed evidence for a positive correlation between period and growth and a negative correlation between period and root-to-shoot ratio. We then tested whether performance tradeoffs existed among families of this population across simulated seasonal settings. Growth rankings of families were similar across seasonal environments, but for root-to-shoot ratio, genotype × environment interactions contributed significantly to total variation. Therefore, further experiments are needed to identify evolutionary mechanisms that preserve substantial quantitative genetic diversity in the clock in this and other species.
Collapse
Affiliation(s)
- Matti J Salmela
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - Kathleen Greenham
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Ping Lou
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Brent E Ewers
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
- Program in Ecology, University of Wyoming
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
- Program in Ecology, University of Wyoming
- Department of Molecular Biology, University of Wyoming
| |
Collapse
|
30
|
Predicting the evolutionary dynamics of seasonal adaptation to novel climates in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2016; 113:E2812-21. [PMID: 27140640 DOI: 10.1073/pnas.1517456113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Predicting whether and how populations will adapt to rapid climate change is a critical goal for evolutionary biology. To examine the genetic basis of fitness and predict adaptive evolution in novel climates with seasonal variation, we grew a diverse panel of the annual plant Arabidopsis thaliana (multiparent advanced generation intercross lines) in controlled conditions simulating four climates: a present-day reference climate, an increased-temperature climate, a winter-warming only climate, and a poleward-migration climate with increased photoperiod amplitude. In each climate, four successive seasonal cohorts experienced dynamic daily temperature and photoperiod variation over a year. We measured 12 traits and developed a genomic prediction model for fitness evolution in each seasonal environment. This model was used to simulate evolutionary trajectories of the base population over 50 y in each climate, as well as 100-y scenarios of gradual climate change following adaptation to a reference climate. Patterns of plastic and evolutionary fitness response varied across seasons and climates. The increased-temperature climate promoted genetic divergence of subpopulations across seasons, whereas in the winter-warming and poleward-migration climates, seasonal genetic differentiation was reduced. In silico "resurrection experiments" showed limited evolutionary rescue compared with the plastic response of fitness to seasonal climate change. The genetic basis of adaptation and, consequently, the dynamics of evolutionary change differed qualitatively among scenarios. Populations with fewer founding genotypes and populations with genetic diversity reduced by prior selection adapted less well to novel conditions, demonstrating that adaptation to rapid climate change requires the maintenance of sufficient standing variation.
Collapse
|
31
|
Marcer A, Méndez-Vigo B, Alonso-Blanco C, Picó FX. Tackling intraspecific genetic structure in distribution models better reflects species geographical range. Ecol Evol 2016; 6:2084-97. [PMID: 27066224 PMCID: PMC4768750 DOI: 10.1002/ece3.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 12/25/2022] Open
Abstract
Genetic diversity provides insight into heterogeneous demographic and adaptive history across organisms' distribution ranges. For this reason, decomposing single species into genetic units may represent a powerful tool to better understand biogeographical patterns as well as improve predictions of the effects of GCC (global climate change) on biodiversity loss. Using 279 georeferenced Iberian accessions, we used classes of three intraspecific genetic units of the annual plant Arabidopsis thaliana obtained from the genetic analyses of nuclear SNPs (single nucleotide polymorphisms), chloroplast SNPs, and the vernalization requirement for flowering. We used SDM (species distribution models), including climate, vegetation, and soil data, at the whole-species and genetic-unit levels. We compared model outputs for present environmental conditions and with a particularly severe GCC scenario. SDM accuracy was high for genetic units with smaller distribution ranges. Kernel density plots identified the environmental variables underpinning potential distribution ranges of genetic units. Combinations of environmental variables accounted for potential distribution ranges of genetic units, which shrank dramatically with GCC at almost all levels. Only two genetic clusters increased their potential distribution ranges with GCC. The application of SDM to intraspecific genetic units provides a detailed picture on the biogeographical patterns of distinct genetic groups based on different genetic criteria. Our approach also allowed us to pinpoint the genetic changes, in terms of genetic background and physiological requirements for flowering, that Iberian A. thaliana may experience with a GCC scenario applying SDM to intraspecific genetic units.
Collapse
Affiliation(s)
- Arnald Marcer
- CREAF Cerdanyola del Vallès 08193 Spain; Univ Autònoma de Barcelona Cerdanyola del Vallès 08193 Spain
| | - Belén Méndez-Vigo
- Departamento de Genética Molecular de Plantas Centro Nacional de Biotecnología (CNB) Consejo Superior de Investigaciones Científicas (CSIC) 28049 Madrid Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas Centro Nacional de Biotecnología (CNB) Consejo Superior de Investigaciones Científicas (CSIC) 28049 Madrid Spain
| | - F Xavier Picó
- Departamento de Ecología Integrativa Estación Biológica de Doñana (EBD) Consejo Superior de Investigaciones Científicas (CSIC) 41092 Sevilla Spain
| |
Collapse
|
32
|
Abstract
Darwin's theory of evolution by natural selection is the foundation of modern biology. However, it has proven remarkably difficult to demonstrate at the genetic, genomic, and population level exactly how wild species adapt to their natural environments. We discuss how one can use large sets of multiple genome sequences from wild populations to understand adaptation, with an emphasis on the small herbaceous plant Arabidopsis thaliana. We present motivation for such studies; summarize progress in describing whole-genome, species-wide sequence variation; and then discuss what insights have emerged from these resources, either based on sequence information alone or in combination with phenotypic data. We conclude with thoughts on opportunities with other plant species and the impact of expected progress in sequencing technology and genome engineering for studying adaptation in nature.
Collapse
Affiliation(s)
- Detlef Weigel
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria;
| |
Collapse
|
33
|
Luo Y, Widmer A, Karrenberg S. The roles of genetic drift and natural selection in quantitative trait divergence along an altitudinal gradient in Arabidopsis thaliana. Heredity (Edinb) 2015; 114:220-8. [PMID: 25293874 PMCID: PMC4815633 DOI: 10.1038/hdy.2014.89] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 07/29/2014] [Accepted: 08/19/2014] [Indexed: 02/02/2023] Open
Abstract
Understanding how natural selection and genetic drift shape biological variation is a central topic in biology, yet our understanding of the agents of natural selection and their target traits is limited. We investigated to what extent selection along an altitudinal gradient or genetic drift contributed to variation in ecologically relevant traits in Arabidopsis thaliana. We collected seeds from 8 to 14 individuals from each of 14 A. thaliana populations originating from sites between 800 and 2700 m above sea level in the Swiss Alps. Seed families were grown with and without vernalization, corresponding to winter-annual and summer-annual life histories, respectively. We analyzed putatively neutral genetic divergence between these populations using 24 simple sequence repeat markers. We measured seven traits related to growth, phenology and leaf morphology that are rarely reported in A. thaliana and performed analyses of altitudinal clines, as well as overall QST-FST comparisons and correlation analyses among pair-wise QST, FST and altitude of origin differences. Multivariate analyses suggested adaptive differentiation along altitude in the entire suite of traits, particularly when expressed in the summer-annual life history. Of the individual traits, a decrease in rosette leaf number in the vegetative state and an increase in leaf succulence with increasing altitude could be attributed to adaptive divergence. Interestingly, these patterns relate well to common within- and between-species trends of smaller plant size and thicker leaves at high altitude. Our results thus offer exciting possibilities to unravel the underlying mechanisms for these conspicuous trends using the model species A. thaliana.
Collapse
Affiliation(s)
- Y Luo
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
- ETH Zurich, ETH Zurich, Plant Ecological Genetics, Institute of Integrative Biology (IBZ), Universitätstrasse 16, Zurich, Switzerland
| | - A Widmer
- ETH Zurich, ETH Zurich, Plant Ecological Genetics, Institute of Integrative Biology (IBZ), Universitätstrasse 16, Zurich, Switzerland
| | - S Karrenberg
- ETH Zurich, ETH Zurich, Plant Ecological Genetics, Institute of Integrative Biology (IBZ), Universitätstrasse 16, Zurich, Switzerland
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
34
|
Vermeulen PJ. On selection for flowering time plasticity in response to density. THE NEW PHYTOLOGIST 2015; 205:429-439. [PMID: 25124368 DOI: 10.1111/nph.12984] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/10/2014] [Indexed: 06/03/2023]
Abstract
Different genotypes often exhibit opposite plastic responses in the timing of the onset of flowering with increasing plant density. In experimental studies, selection for accelerated flowering is generally found. By contrast, game theoretical studies predict that there should be selection for delayed flowering when competition increases. Combining different optimality criteria, the conditions under which accelerated or delayed flowering in response to density would be selected for are analysed with a logistic growth simulation model. To maximize seed production at the whole-stand level (simple optimization), selection should lead to accelerated flowering at high plant density, unless very short growing seasons select for similar onset of flowering at all densities. By contrast, selection of relative individual fitness will lead to delayed flowering when season length is long and/or growth rates are high. These different results give a potential explanation for the observed differences in direction of the plastic responses within and between species, including homeostasis, as a result of the effect of the variation in season length on the benefits of delayed flowering. This suggests that limited plasticity can evolve without the costs and limits that are currently thought to constrain the evolution of plasticity.
Collapse
Affiliation(s)
- Peter J Vermeulen
- Centre for Crop Systems Analysis, Wageningen University, PO Box 430, 6700 AK, Wageningen, the Netherlands
| |
Collapse
|
35
|
Hily JM, García A, Moreno A, Plaza M, Wilkinson MD, Fereres A, Fraile A, García-Arenal F. The relationship between host lifespan and pathogen reservoir potential: an analysis in the system Arabidopsis thaliana--cucumber mosaic virus. PLoS Pathog 2014; 10:e1004492. [PMID: 25375140 PMCID: PMC4223077 DOI: 10.1371/journal.ppat.1004492] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/29/2014] [Indexed: 11/18/2022] Open
Abstract
Identification of the determinants of pathogen reservoir potential is central to understand disease emergence. It has been proposed that host lifespan is one such determinant: short-lived hosts will invest less in costly defenses against pathogens, so that they will be more susceptible to infection, more competent as sources of infection and/or will sustain larger vector populations, thus being effective reservoirs for the infection of long-lived hosts. This hypothesis is sustained by analyses of different hosts of multihost pathogens, but not of different genotypes of the same host species. Here we examined this hypothesis by comparing two genotypes of the plant Arabidopsis thaliana that differ largely both in life-span and in tolerance to its natural pathogen Cucumber mosaic virus (CMV). Experiments with the aphid vector Myzus persicae showed that both genotypes were similarly competent as sources for virus transmission, but the short-lived genotype was more susceptible to infection and was able to sustain larger vector populations. To explore how differences in defense against CMV and its vector relate to reservoir potential, we developed a model that was run for a set of experimentally-determined parameters, and for a realistic range of host plant and vector population densities. Model simulations showed that the less efficient defenses of the short-lived genotype resulted in higher reservoir potential, which in heterogeneous host populations may be balanced by the longer infectious period of the long-lived genotype. This balance was modulated by the demography of both host and vector populations, and by the genetic composition of the host population. Thus, within-species genetic diversity for lifespan and defenses against pathogens will result in polymorphisms for pathogen reservoir potential, which will condition within-population infection dynamics. These results are relevant for a better understanding of host-pathogen co-evolution, and of the dynamics of pathogen emergence. Understanding pathogen emergence is a major goal of pathology, because of the high impact of emerging diseases. Pathogens emerge onto a new host from a reservoir, hence the relevance of identifying the determinants of host's reservoir potential. Host lifespan is considered as one such determinant: short-lived hosts will invest less in defenses, being more susceptible to infection, more competent as infection sources and/or will sustain larger vector populations, and thus, are effective reservoirs for long-lived host infection. Evidence for this hypothesis derives from analyses of different hosts of multihost pathogens, and here we examine whether it holds at the within-species level by comparing two genotypes of the plant Arabidopsis thaliana that differ in life-span and in tolerance to its natural pathogen Cucumber mosaic virus. Experiments showed that defenses to the virus and its aphid vector were less efficient in the short-lived genotype that, according to model simulations, was an effective reservoir under a large range of conditions. Reservoir potential, though, was modulated by the demography of host and vector and by the genetic composition of the host population. Thus, within-species genetic diversity for lifespan and pathogen defense will result in differences in reservoir potential, which will condition infection dynamics and host-pathogen co-evolution.
Collapse
Affiliation(s)
- Jean Michel Hily
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
| | - Adrián García
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
| | - Arancha Moreno
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), Madrid, Spain
| | - María Plaza
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), Madrid, Spain
| | - Mark D. Wilkinson
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
| | - Alberto Fereres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
36
|
The genetic basis of natural variation in seed size and seed number and their trade-off using Arabidopsis thaliana MAGIC lines. Genetics 2014; 198:1751-8. [PMID: 25313128 DOI: 10.1534/genetics.114.170746] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Offspring number and size are key traits determining an individual's fitness and a crop's yield. Yet, extensive natural variation within species is observed for these traits. Such variation is typically explained by trade-offs between fecundity and quality, for which an optimal solution is environmentally dependent. Understanding the genetic basis of seed size and number, as well as any possible genetic constraints preventing the maximization of both, is crucial from both an evolutionary and applied perspective. We investigated the genetic basis of natural variation in seed size and number using a set of Arabidopsis thaliana multiparent advanced generation intercross (MAGIC) lines. We also tested whether life history affects seed size, number, and their trade-off. We found that both seed size and seed number are affected by a large number of mostly nonoverlapping QTL, suggesting that seed size and seed number can evolve independently. The allele that increases seed size at most identified QTL is from the same natural accession, indicating past occurrence of directional selection for seed size. Although a significant trade-off between seed size and number is observed, its expression depends on life-history characteristics, and generally explains little variance. We conclude that the trade-off between seed size and number might have a minor role in explaining the maintenance of variation in seed size and number, and that seed size could be a valid target for selection.
Collapse
|
37
|
Wilczek AM, Cooper MD, Korves TM, Schmitt J. Lagging adaptation to warming climate in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2014; 111:7906-13. [PMID: 24843140 PMCID: PMC4050579 DOI: 10.1073/pnas.1406314111] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
If climate change outpaces the rate of adaptive evolution within a site, populations previously well adapted to local conditions may decline or disappear, and banked seeds from those populations will be unsuitable for restoring them. However, if such adaptational lag has occurred, immigrants from historically warmer climates will outperform natives and may provide genetic potential for evolutionary rescue. We tested for lagging adaptation to warming climate using banked seeds of the annual weed Arabidopsis thaliana in common garden experiments in four sites across the species' native European range: Valencia, Spain; Norwich, United Kingdom; Halle, Germany; and Oulu, Finland. Genotypes originating from geographic regions near the planting site had high relative fitness in each site, direct evidence for broad-scale geographic adaptation in this model species. However, genotypes originating in sites historically warmer than the planting site had higher average relative fitness than local genotypes in every site, especially at the northern range limit in Finland. This result suggests that local adaptive optima have shifted rapidly with recent warming across the species' native range. Climatic optima also differed among seasonal germination cohorts within the Norwich site, suggesting that populations occurring where summer germination is common may have greater evolutionary potential to persist under future warming. If adaptational lag has occurred over just a few decades in banked seeds of an annual species, it may be an important consideration for managing longer-lived species, as well as for attempts to conserve threatened populations through ex situ preservation.
Collapse
Affiliation(s)
- Amity M Wilczek
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912;Department of Natural Sciences, Deep Springs College, Big Pine, CA 93513
| | - Martha D Cooper
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912
| | - Tonia M Korves
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912;Data Analytics Department, The MITRE Corporation, Bedford, MA 01730-1420; and
| | - Johanna Schmitt
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912;Department of Evolution and Ecology, University of California, Davis, CA 95616
| |
Collapse
|
38
|
El-Soda M, Malosetti M, Zwaan BJ, Koornneef M, Aarts MGM. Genotype×environment interaction QTL mapping in plants: lessons from Arabidopsis. TRENDS IN PLANT SCIENCE 2014; 19:390-8. [PMID: 24491827 DOI: 10.1016/j.tplants.2014.01.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/23/2013] [Accepted: 01/06/2014] [Indexed: 05/23/2023]
Abstract
Plant growth and development are influenced by the genetic composition of the plant (G), the environment (E), and the interaction between them (G×E). To produce suitable genotypes for multiple environments, G×E should be accounted for and assessed in plant-breeding programs. Here, we review the genetic basis of G×E and its consequence for quantitative trait loci (QTL) mapping in biparental and genome-wide association (GWA) mapping populations. We also consider the implications of G×E for understanding plant fitness trade-offs and evolutionary ecology.
Collapse
Affiliation(s)
- Mohamed El-Soda
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Marcos Malosetti
- Biometris - Applied Statistics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
39
|
Manzano-Piedras E, Marcer A, Alonso-Blanco C, Picó FX. Deciphering the adjustment between environment and life history in annuals: lessons from a geographically-explicit approach in Arabidopsis thaliana. PLoS One 2014; 9:e87836. [PMID: 24498381 PMCID: PMC3912251 DOI: 10.1371/journal.pone.0087836] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/30/2013] [Indexed: 11/20/2022] Open
Abstract
The role that different life-history traits may have in the process of adaptation caused by divergent selection can be assessed by using extensive collections of geographically-explicit populations. This is because adaptive phenotypic variation shifts gradually across space as a result of the geographic patterns of variation in environmental selective pressures. Hence, large-scale experiments are needed to identify relevant adaptive life-history traits as well as their relationships with putative selective agents. We conducted a field experiment with 279 geo-referenced accessions of the annual plant Arabidopsis thaliana collected across a native region of its distribution range, the Iberian Peninsula. We quantified variation in life-history traits throughout the entire life cycle. We built a geographic information system to generate an environmental data set encompassing climate, vegetation and soil data. We analysed the spatial autocorrelation patterns of environmental variables and life-history traits, as well as the relationship between environmental and phenotypic data. Almost all environmental variables were significantly spatially autocorrelated. By contrast, only two life-history traits, seed weight and flowering time, exhibited significant spatial autocorrelation. Flowering time, and to a lower extent seed weight, were the life-history traits with the highest significant correlation coefficients with environmental factors, in particular with annual mean temperature. In general, individual fitness was higher for accessions with more vigorous seed germination, higher recruitment and later flowering times. Variation in flowering time mediated by temperature appears to be the main life-history trait by which A. thaliana adjusts its life history to the varying Iberian environmental conditions. The use of extensive geographically-explicit data sets obtained from field experiments represents a powerful approach to unravel adaptive patterns of variation. In a context of current global warming, geographically-explicit approaches, evaluating the match between organisms and the environments where they live, may contribute to better assess and predict the consequences of global warming.
Collapse
Affiliation(s)
- Esperanza Manzano-Piedras
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Arnald Marcer
- CREAF, Cerdanyola del Vallès, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - F. Xavier Picó
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| |
Collapse
|
40
|
Brennan AC, Méndez-Vigo B, Haddioui A, Martínez-Zapater JM, Picó FX, Alonso-Blanco C. The genetic structure of Arabidopsis thaliana in the south-western Mediterranean range reveals a shared history between North Africa and southern Europe. BMC PLANT BIOLOGY 2014; 14:17. [PMID: 24411008 PMCID: PMC3890648 DOI: 10.1186/1471-2229-14-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 01/05/2014] [Indexed: 05/24/2023]
Abstract
BACKGROUND Deciphering the genetic structure of Arabidopsis thaliana diversity across its geographic range provides the bases for elucidating the demographic history of this model plant. Despite the unique A. thaliana genomic resources currently available, its history in North Africa, the extreme southern limit in the biodiversity hotspot of the Mediterranean Basin, remains virtually unknown. RESULTS To approach A. thaliana evolutionary history in North Africa, we have analysed the genetic diversity and structure of 151 individuals collected from 20 populations distributed across Morocco. Genotyping of 249 genome-wide SNPs indicated that Morocco contains substantially lower diversity than most analyzed world regions. However, IBD, STRUCTURE and PCA clustering analyses showed that genetic variation is strongly geographically structured. We also determined the genetic relationships between Morocco and the closest European region, the Iberian Peninsula, by analyses of 201 populations from both regions genotyped with the same SNPs. These analyses detected four genetic groups, but all Moroccan accessions belonged to a common Iberian/Moroccan cluster that appeared highly differentiated from the remaining groups. Thus, we identified a genetic lineage with an isolated demographic history in the south-western Mediterranean region. The existence of this lineage was further supported by the study of several flowering genes and traits, which also found Moroccan accessions similar to the same Iberian group. Nevertheless, genetic diversity for neutral SNPs and flowering genes was higher in Moroccan than in Iberian populations of this lineage. Furthermore, we analyzed the genetic relationships between Morocco and other world regions by joint analyses of a worldwide collection of 337 accessions, which detected an additional weak relationship between North Africa and Asia. CONCLUSIONS The patterns of genetic diversity and structure of A. thaliana in Morocco show that North Africa is part of the species native range and support the occurrence of a glacial refugium in the Atlas Mountains. In addition, the identification of a genetic lineage specific of Morocco and the Iberian Peninsula indicates that the Strait of Gibraltar has been an A. thaliana migration route between Europe and Africa. Finally, the genetic relationship between Morocco and Asia suggests another migration route connecting north-western Africa and Asia.
Collapse
Affiliation(s)
- Adrian C Brennan
- Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Belén Méndez-Vigo
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Abdelmajid Haddioui
- Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, Beni Mellal, Morocco
| | - José M Martínez-Zapater
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, Gobierno de La Rioja), Logroño, Spain
| | - F Xavier Picó
- Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Carlos Alonso-Blanco
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
41
|
Takahashi M, Morikawa H. Nitrogen dioxide accelerates flowering without changing the number of leaves at flowering in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2014; 9:e970433. [PMID: 25482805 PMCID: PMC4623349 DOI: 10.4161/15592316.2014.970433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/09/2014] [Indexed: 05/19/2023]
Abstract
A negative correlation has consistently been reported between the change in flowering time and the change in leaf number at flowering in response to environmental stimuli, such as the application of exogenous compounds, cold temperature, day length and light quality treatments in Arabidopsis thaliana (Arabidopsis). However, we show here that the application of exogenous nitrogen dioxide (NO2) did not change the number of rosette leaves at flowering, but actually accelerated flowering in Arabidopsis. Furthermore, NO2 treatment was found to increase the rate of leaf appearance. Based on these results, reaching the maximum rosette leaf number earlier in response to NO2 treatment resulted in earlier flowering relative to controls.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences; Hiroshima University; Higashi-Hiroshima, Japan
- Correspondence to: Misa Takahashi;
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences; Hiroshima University; Higashi-Hiroshima, Japan
| |
Collapse
|
42
|
Brachi B, Villoutreix R, Faure N, Hautekèete N, Piquot Y, Pauwels M, Roby D, Cuguen J, Bergelson J, Roux F. Investigation of the geographical scale of adaptive phenological variation and its underlying genetics in Arabidopsis thaliana. Mol Ecol 2013; 22:4222-4240. [DOI: 10.1111/mec.12396] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 02/02/2023]
Affiliation(s)
- Benjamin Brachi
- Laboratoire Génétique et Evolution des Populations Végétales; UMR CNRS 8198; Université des Sciences et Technologies de Lille - Lille 1; F-59655 Villeneuve d'Ascq Cedex France
- Department of Ecology and Evolution; University of Chicago; Chicago IL 60637 USA
| | - Romain Villoutreix
- Laboratoire Génétique et Evolution des Populations Végétales; UMR CNRS 8198; Université des Sciences et Technologies de Lille - Lille 1; F-59655 Villeneuve d'Ascq Cedex France
| | - Nathalie Faure
- Laboratoire Génétique et Evolution des Populations Végétales; UMR CNRS 8198; Université des Sciences et Technologies de Lille - Lille 1; F-59655 Villeneuve d'Ascq Cedex France
| | - Nina Hautekèete
- Laboratoire Génétique et Evolution des Populations Végétales; UMR CNRS 8198; Université des Sciences et Technologies de Lille - Lille 1; F-59655 Villeneuve d'Ascq Cedex France
| | - Yves Piquot
- Laboratoire Génétique et Evolution des Populations Végétales; UMR CNRS 8198; Université des Sciences et Technologies de Lille - Lille 1; F-59655 Villeneuve d'Ascq Cedex France
| | - Maxime Pauwels
- Laboratoire Génétique et Evolution des Populations Végétales; UMR CNRS 8198; Université des Sciences et Technologies de Lille - Lille 1; F-59655 Villeneuve d'Ascq Cedex France
| | - Dominique Roby
- INRA; Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR441; F-31326 Castanet-Tolosan France
- CNRS; Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR2594; F-31326 Castanet-Tolosan France
| | - Joël Cuguen
- Laboratoire Génétique et Evolution des Populations Végétales; UMR CNRS 8198; Université des Sciences et Technologies de Lille - Lille 1; F-59655 Villeneuve d'Ascq Cedex France
| | - Joy Bergelson
- Department of Ecology and Evolution; University of Chicago; Chicago IL 60637 USA
| | - Fabrice Roux
- Laboratoire Génétique et Evolution des Populations Végétales; UMR CNRS 8198; Université des Sciences et Technologies de Lille - Lille 1; F-59655 Villeneuve d'Ascq Cedex France
| |
Collapse
|