1
|
Nitschke MR, Rosset SL, Oakley CA, Gardner SG, Camp EF, Suggett DJ, Davy SK. The diversity and ecology of Symbiodiniaceae: A traits-based review. ADVANCES IN MARINE BIOLOGY 2022; 92:55-127. [PMID: 36208879 DOI: 10.1016/bs.amb.2022.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Among the most successful microeukaryotes to form mutualisms with animals are dinoflagellates in the family Symbiodiniaceae. These photosynthetic symbioses drive significant primary production and are responsible for the formation of coral reef ecosystems but are particularly sensitive when environmental conditions become extreme. Annual episodes of widespread coral bleaching (disassociation of the mutualistic partnership) and mortality are forecasted from the year 2060 under current trends of ocean warming. However, host cnidarians and dinoflagellate symbionts display exceptional genetic and functional diversity, and meaningful predictions of the future that embrace this biological complexity are difficult to make. A recent move to trait-based biology (and an understanding of how traits are shaped by the environment) has been adopted to move past this problem. The aim of this review is to: (1) provide an overview of the major cnidarian lineages that are symbiotic with Symbiodiniaceae; (2) summarise the symbiodiniacean genera associated with cnidarians with reference to recent changes in taxonomy and systematics; (3) examine the knowledge gaps in Symbiodiniaceae life history from a trait-based perspective; (4) review Symbiodiniaceae trait variation along three abiotic gradients (light, nutrients, and temperature); and (5) provide recommendations for future research of Symbiodiniaceae traits. We anticipate that a detailed understanding of traits will further reveal basic knowledge of the evolution and functional diversity of these mutualisms, as well as enhance future efforts to model stability and change in ecosystems dependent on cnidarian-dinoflagellate organisms.
Collapse
Affiliation(s)
- Matthew R Nitschke
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia.
| | - Sabrina L Rosset
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Stephanie G Gardner
- Center for Marine Science and Innovation, University of New South Wales Sydney, Kensington, NSW, Australia
| | - Emma F Camp
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
| | - David J Suggett
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
2
|
Herrera M, Liew YJ, Venn A, Tambutté E, Zoccola D, Tambutté S, Cui G, Aranda M. New Insights From Transcriptomic Data Reveal Differential Effects of CO 2 Acidification Stress on Photosynthesis of an Endosymbiotic Dinoflagellate in hospite. Front Microbiol 2021; 12:666510. [PMID: 34349734 PMCID: PMC8326563 DOI: 10.3389/fmicb.2021.666510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/15/2021] [Indexed: 01/22/2023] Open
Abstract
Ocean acidification (OA) has both detrimental as well as beneficial effects on marine life; it negatively affects calcifiers while enhancing the productivity of photosynthetic organisms. To date, many studies have focused on the impacts of OA on calcification in reef-building corals, a process particularly susceptible to acidification. However, little is known about the effects of OA on their photosynthetic algal partners, with some studies suggesting potential benefits for symbiont productivity. Here, we investigated the transcriptomic response of the endosymbiont Symbiodinium microadriaticum (CCMP2467) in the Red Sea coral Stylophora pistillata subjected to different long-term (2 years) OA treatments (pH 8.0, 7.8, 7.4, 7.2). Transcriptomic analyses revealed that symbionts from corals under lower pH treatments responded to acidification by increasing the expression of genes related to photosynthesis and carbon-concentrating mechanisms. These processes were mostly up-regulated and associated metabolic pathways were significantly enriched, suggesting an overall positive effect of OA on the expression of photosynthesis-related genes. To test this conclusion on a physiological level, we analyzed the symbiont’s photochemical performance across treatments. However, in contrast to the beneficial effects suggested by the observed gene expression changes, we found significant impairment of photosynthesis with increasing pCO2. Collectively, our data suggest that over-expression of photosynthesis-related genes is not a beneficial effect of OA but rather an acclimation response of the holobiont to different water chemistries. Our study highlights the complex effects of ocean acidification on these symbiotic organisms and the role of the host in determining symbiont productivity and performance.
Collapse
Affiliation(s)
- Marcela Herrera
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yi Jin Liew
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Alexander Venn
- Marine Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Eric Tambutté
- Marine Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Didier Zoccola
- Marine Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Sylvie Tambutté
- Marine Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Guoxin Cui
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Manuel Aranda
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
3
|
Gonzalez de Vega R, Goyen S, Lockwood TE, Doble PA, Camp EF, Clases D. Characterisation of microplastics and unicellular algae in seawater by targeting carbon via single particle and single cell ICP-MS. Anal Chim Acta 2021; 1174:338737. [PMID: 34247735 DOI: 10.1016/j.aca.2021.338737] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/28/2022]
Abstract
The discharge of plastic waste and subsequent formation and global distribution of microplastics (MPs) has caused great concern and highlighted the need for dedicated methods to characterise MPs in complex environmental matrices like seawater. Single particle inductively coupled plasma - mass spectrometry (SP ICP-MS) is an elegant method for the rapid analysis of nano- and microparticles and to characterise number concentrations, mass, and size distributions. However, the analysis of carbon (C)-based microstructures such as MPs by SP ICP-MS is at an early stage. This paper investigates various strategies to improve figures of merit to detect and characterise MPs in complex matrices, such as seawater. Ten methods operating distinct acquisition modes with various collision/reaction gases, tandem MS (ICP-MS/MS) and targeting 12C or 13C were developed and compared for the analysis of polystyrene-based MPs standards in ultra-pure water and seawater. The robust analysis of MPs in seawater was accomplished by on-line aerosol dilution enabling repeatable size calibration while minimising drift effects. However, the direct analysis of seawater decreased ion transmission and required matrix-matching for accurate size calibration. Analysis of the 12C isotope instead of 13C improved the size detection limits (sDL) to 0.62 μm in ultra-pure water and to 0.96 μm in seawater. ICP-MS/MS methods decreased ion transmission but also reduced background signal and increased selectivity, particularly in the presence of spectral interferences. In the second part of this study, it was demonstrated that the developed methods were applicable for the analysis of C in unicellular organisms and allowed calibration of physical dimensions. This is relevant for the investigation and understanding of phenotypical traits associated, for example, with climate change resilience as well as oceanic C storage. SP/SC ICP-MS was employed to target five different intact Symbiodiniaceae algae strains with diverse life-histories in seawater and polystyrene-based MPs were used to calibrate cellular C masses, which were between 51 and 83 pg. The C mass distribution across the analysed unicellular cells was used for modelling cell sizes, which were in the range of 7.6 and 10.1 μm. Determined values were in line with values obtained with complementary techniques (Coulter-counting, total organic C analysis and microscopic analysis).
Collapse
Affiliation(s)
- Raquel Gonzalez de Vega
- The Atomic Medicine Initiative, University of Technology Sydney, 15 Broadway, Ultimo NSW, 2007, Australia
| | - Samantha Goyen
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Thomas E Lockwood
- The Atomic Medicine Initiative, University of Technology Sydney, 15 Broadway, Ultimo NSW, 2007, Australia
| | - Philip A Doble
- The Atomic Medicine Initiative, University of Technology Sydney, 15 Broadway, Ultimo NSW, 2007, Australia
| | - Emma F Camp
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - David Clases
- The Atomic Medicine Initiative, University of Technology Sydney, 15 Broadway, Ultimo NSW, 2007, Australia.
| |
Collapse
|
4
|
Hughes DJ, Giannini FC, Ciotti AM, Doblin MA, Ralph PJ, Varkey D, Verma A, Suggett DJ. Taxonomic Variability in the Electron Requirement for Carbon Fixation Across Marine Phytoplankton. JOURNAL OF PHYCOLOGY 2021; 57:111-127. [PMID: 32885422 DOI: 10.1111/jpy.13068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Fast Repetition Rate fluorometry (FRRf) has been increasingly used to measure marine primary productivity by oceanographers to understand how carbon (C) uptake patterns vary over space and time in the global ocean. As FRRf measures electron transport rates through photosystem II (ETRPSII ), a critical, but difficult to predict conversion factor termed the "electron requirement for carbon fixation" (Φe,C ) is needed to scale ETRPSII to C-fixation rates. Recent studies have generally focused on understanding environmental regulation of Φe,C , while taxonomic control has been explored by only a handful of laboratory studies encompassing a limited diversity of phytoplankton species. We therefore assessed Φe,C for a wide range of marine phytoplankton (n = 17 strains) spanning multiple taxonomic and size classes. Data mined from previous studies were further considered to determine whether Φe,C variability could be explained by taxonomy versus other phenotypic traits influencing growth and physiological performance (e.g., cell size). We found that Φe,C exhibited considerable variability (~4-10 mol e- · [mol C]-1 ) and was negatively correlated with growth rate (R2 = 0.7, P < 0.01). Diatoms exhibited a lower Φe,C compared to chlorophytes during steady-state, nutrient-replete growth. Inclusion of meta-analysis data did not find significant relationships between Φe,C and class, or growth rate, although confounding factors inherent to methodological inconsistencies between studies likely contributed to this. Knowledge of empirical relationships between Φe,C and growth rate coupled with recent improvements in quantifying phytoplankton growth rates in situ, facilitate up-scaling of FRRf campaigns to routinely derive Φe,C needed to assess ocean C-cycling.
Collapse
Affiliation(s)
- David J Hughes
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Fernanda C Giannini
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
- Laboratorio Aquarela, Centro de Biologia Marinha (CEBIMar/USP) - Universidade de Sao Paulo, Rodovia Manoel Hypolito Rego, km 131.5, Sao Sebastiao, SP, Brazil
| | - Aurea M Ciotti
- Laboratorio Aquarela, Centro de Biologia Marinha (CEBIMar/USP) - Universidade de Sao Paulo, Rodovia Manoel Hypolito Rego, km 131.5, Sao Sebastiao, SP, Brazil
| | - Martina A Doblin
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Peter J Ralph
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Deepa Varkey
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Arjun Verma
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - David J Suggett
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
| |
Collapse
|
5
|
Raven JA, Suggett DJ, Giordano M. Inorganic carbon concentrating mechanisms in free-living and symbiotic dinoflagellates and chromerids. JOURNAL OF PHYCOLOGY 2020; 56:1377-1397. [PMID: 32654150 DOI: 10.1111/jpy.13050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Photosynthetic dinoflagellates are ecologically and biogeochemically important in marine and freshwater environments. However, surprisingly little is known of how this group acquires inorganic carbon or how these diverse processes evolved. Consequently, how CO2 availability ultimately influences the success of dinoflagellates over space and time remains poorly resolved compared to other microalgal groups. Here we review the evidence. Photosynthetic core dinoflagellates have a Form II RuBisCO (replaced by Form IB or Form ID in derived dinoflagellates). The in vitro kinetics of the Form II RuBisCO from dinoflagellates are largely unknown, but dinoflagellates with Form II (and other) RuBisCOs have inorganic carbon concentrating mechanisms (CCMs), as indicated by in vivo internal inorganic C accumulation and affinity for external inorganic C. However, the location of the membrane(s) at which the essential active transport component(s) of the CCM occur(s) is (are) unresolved; isolation and characterization of functionally competent chloroplasts would help in this respect. Endosymbiotic Symbiodiniaceae (in Foraminifera, Acantharia, Radiolaria, Ciliata, Porifera, Acoela, Cnidaria, and Mollusca) obtain inorganic C by transport from seawater through host tissue. In corals this transport apparently provides an inorganic C concentration around the photobiont that obviates the need for photobiont CCM. This is not the case for tridacnid bivalves, medusae, or, possibly, Foraminifera. Overcoming these long-standing knowledge gaps relies on technical advances (e.g., the in vitro kinetics of Form II RuBisCO) that can functionally track the fate of inorganic C forms.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Faculty of Science, University of Technology, Sydney, Climate Change Cluster, Ultimo, Sydney, New South Wales, 2007, Australia
- School of Biological Science, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - David J Suggett
- Faculty of Science, University of Technology, Sydney, Climate Change Cluster, Ultimo, Sydney, New South Wales, 2007, Australia
| | - Mario Giordano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Algatech, Trebon, Czech Republic
- National Research Council, Institute of Marine Science ISMAR, Venezia, Italy
| |
Collapse
|
6
|
Kirk AL, Clowez S, Lin F, Grossman AR, Xiang T. Transcriptome Reprogramming of Symbiodiniaceae Breviolum minutum in Response to Casein Amino Acids Supplementation. Front Physiol 2020; 11:574654. [PMID: 33329024 PMCID: PMC7710908 DOI: 10.3389/fphys.2020.574654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/18/2020] [Indexed: 01/08/2023] Open
Abstract
Dinoflagellates in the family Symbiodiniaceae can live freely in ocean waters or form a symbiosis with a variety of cnidarians including corals, sea anemones, and jellyfish. Trophic plasticity of Symbiodiniaceae is critical to its ecological success as it moves between environments. However, the molecular mechanisms underlying these trophic shifts in Symbiodiniaceae are still largely unknown. Using Breviolum minutum strain SSB01 (designated SSB01) as a model, we showed that Symbiodiniaceae go through a physiological and transcriptome reprogramming when the alga is grown with the organic nitrogen containing nutrients in hydrolyzed casein, but not with inorganic nutrients. SSB01 grows at a much faster rate and maintains stable photosynthetic efficiency when supplemented with casein amino acids compared to only inorganic nutrients or seawater. These physiological changes are driven by massive transcriptome changes in SSB01 supplemented with casein amino acids. The levels of transcripts encoding proteins involved in altering DNA conformation such as DNA topoisomerases, histones, and chromosome structural components were all significantly changed. Functional enrichment analysis also revealed processes involved in translation, ion transport, generation of second messengers, and phosphorylation. The physiological and molecular changes that underlie in vitro trophic transitions in Symbiodiniaceae can serve as an orthogonal platform to further understand the factors that impact the Symbiodiniaceae lifestyle.
Collapse
Affiliation(s)
- Andrea L. Kirk
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Sophie Clowez
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| | - Fan Lin
- Brightseed Inc., San Francisco, CA, United States
| | - Arthur R. Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| | - Tingting Xiang
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
7
|
Pierangelini M, Thiry M, Cardol P. Different levels of energetic coupling between photosynthesis and respiration do not determine the occurrence of adaptive responses of Symbiodiniaceae to global warming. THE NEW PHYTOLOGIST 2020; 228:855-868. [PMID: 32535971 PMCID: PMC7590187 DOI: 10.1111/nph.16738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/30/2020] [Indexed: 05/06/2023]
Abstract
Disentangling the metabolic functioning of corals' endosymbionts (Symbiodiniaceae) is relevant to understanding the response of coral reefs to warming oceans. In this work, we first question whether there is an energetic coupling between photosynthesis and respiration in Symbiodiniaceae (Symbiodinium, Durusdinium and Effrenium), and second, how different levels of energetic coupling will affect their adaptive responses to global warming. Coupling between photosynthesis and respiration was established by determining the variation of metabolic rates during thermal response curves, and how inhibition of respiration affects photosynthesis. Adaptive (irreversible) responses were studied by exposing two Symbiodinium species with different levels of photosynthesis-respiration interaction to high temperature conditions (32°C) for 1 yr. We found that some Symbiodiniaceae have a high level of energetic coupling; that is, photosynthesis and respiration have the same temperature dependency, and photosynthesis is negatively affected when respiration is inhibited. Conversely, photosynthesis and respiration are not coupled in other species. In any case, prolonged exposure to high temperature caused adjustments in both photosynthesis and respiration, but these changes were fully reversible. We conclude that energetic coupling between photosynthesis and respiration exhibits wide variation amongst Symbiodiniaceae and does not determine the occurrence of adaptive responses in Symbiodiniaceae to temperature increase.
Collapse
Affiliation(s)
- Mattia Pierangelini
- Génétique et Physiologie des MicroalguesInBioS/PhytosystemsInstitut de BotaniqueUniversité de LiègeB22Liège4000Belgium
| | - Marc Thiry
- Unit of Cell BiologyGIGA‐NeurosciencesCHU Sart‐TilmanUniversity of LiègeLiègeB36, 4000Belgium
| | - Pierre Cardol
- Génétique et Physiologie des MicroalguesInBioS/PhytosystemsInstitut de BotaniqueUniversité de LiègeB22Liège4000Belgium
| |
Collapse
|
8
|
Goulet TL, Erill I, Ascunce MS, Finley SJ, Javan GT. Conceptualization of the Holobiont Paradigm as It Pertains to Corals. Front Physiol 2020; 11:566968. [PMID: 33071821 PMCID: PMC7538806 DOI: 10.3389/fphys.2020.566968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/19/2020] [Indexed: 11/13/2022] Open
Abstract
Corals' obligate association with unicellular dinoflagellates, family Symbiodiniaceae form the foundation of coral reefs. For nearly a century, researchers have delved into understanding the coral-algal mutualism from multiple levels of resolution and perspectives, and the questions and scope have evolved with each iteration of new techniques. Advances in genetic technologies not only aided in distinguishing between the multitude of Symbiodiniaceae but also illuminated the existence and diversity of other organisms constituting the coral microbiome. The coral therefore is a meta-organism, often referred to as the coral holobiont. In this review, we address the importance of including a holistic perspective to understanding the coral holobiont. We also discuss the ramifications of how different genotypic combinations of the coral consortium affect the holobiont entity. We highlight the paucity of data on most of the coral microbiome. Using Symbiodiniaceae data, we present evidence that the holobiont properties are not necessarily the sum of its parts. We then discuss the consequences of the holobiont attributes to the fitness of the holobiont and the myriad of organisms that contribute to it. Considering the complexity of host-symbiont genotypic combinations will aid in our understanding of coral resilience, robustness, acclimation, and/or adaptation in the face of environmental change and increasing perturbations.
Collapse
Affiliation(s)
- Tamar L Goulet
- Department of Biology, University of Mississippi, University, MS, United States
| | - Ivan Erill
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Marina S Ascunce
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Plant Pathology Department, University of Florida, Gainesville, FL, United States
| | - Sheree J Finley
- Department of Physical Sciences and Forensic Science Programs, Alabama State University, Montgomery, AL, United States
| | - Gulnaz T Javan
- Department of Physical Sciences and Forensic Science Programs, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
9
|
Roberty S, Béraud E, Grover R, Ferrier-Pagès C. Coral Productivity Is Co-Limited by Bicarbonate and Ammonium Availability. Microorganisms 2020; 8:microorganisms8050640. [PMID: 32354088 PMCID: PMC7285240 DOI: 10.3390/microorganisms8050640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 11/16/2022] Open
Abstract
The nitrogen environment and nitrogen status of reef-building coral endosymbionts is one of the important factors determining the optimal assimilation of phototrophic carbon and hence the growth of the holobiont. However, the impact of inorganic nutrient availability on the photosynthesis and physiological state of the coral holobiont is partly understood. This study aimed to determine if photosynthesis of the endosymbionts associated with the coral Stylophora pistillata and the overall growth of the holobiont were limited by the availability of dissolved inorganic carbon and nitrogen in seawater. For this purpose, colonies were incubated in absence or presence of 4 µM ammonium and/or 6 mM bicarbonate. Photosynthetic performances, pigments content, endosymbionts density and growth rate of the coral colonies were monitored for 3 weeks. Positive effects were observed on coral physiology with the supplementation of one or the other nutrient, but the most important changes were observed when both nutrients were provided. The increased availability of DIC and NH4+ significantly improved the photosynthetic efficiency and capacity of endosymbionts, in turn enhancing the host calcification rate. Overall, these results suggest that in hospite symbionts are co-limited by nitrogen and carbon availability for an optimal photosynthesis.
Collapse
|
10
|
Jiang J, Lu Y. Metabolite profiling of Breviolum minutum in response to acidification. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105215. [PMID: 31200330 DOI: 10.1016/j.aquatox.2019.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Coral reefs are in significant decline globally due to climate change and environmental pollution. The ocean is becoming more acidic due to rising atmospheric pCO2, and ocean acidification is considered a major threat to coral reefs. However, little is known about the exact mechanism by which acidification impacts coral symbiosis. As an important component of the symbiotic association, to explore the responses of symbionts could greatly enhance our understanding of this issue. The present work aimed to identify metabolomic changes of Breviolum minutum in acidification (low pH) condition, and investigate the underlying mechanisms responsible. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was applied to determine metabolite profiles after exposure to ambient and acidic conditions. We analysed the resulting metabolite data, and acidification appeared to have little effect on photosynthetic parameters, but it inhibited growth. Marked alterations in metabolite pools were observed in response to acidification that may be important in acclimation to climate change. Acidification may affect the biosynthesis of amino acids and proteins, and thereby inhibit the growth of B. minutum. Metabolites identified using this approach provide targets for future analyses aimed at understanding the responses of Symbiodiniaceae to environmental disturbance.
Collapse
Affiliation(s)
- Jiaoyun Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou 570228, Hainan, China; College of Life Sciences, Guangxi Normal University, Guilin 541004, Guangxi, China.
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou 570228, Hainan, China.
| |
Collapse
|
11
|
Abstract
Rubisco is often claimed to be the most abundant protein on Earth, yet the quantitative evidence to support the estimate of its global mass are scarce. Here we provide a robust and detailed estimate of the global mass of Rubisco, which is an order of magnitude larger than previous estimates. We use this estimate to derive the time-average rate of terrestrial and marine Rubisco and show that they are, respectively, 100-fold and sevenfold lower than the in vitro measured kcat of Rubisco at 25 °C. Photosynthetic carbon assimilation enables energy storage in the living world and produces most of the biomass in the biosphere. Rubisco (d-ribulose 1,5-bisphosphate carboxylase/oxygenase) is responsible for the vast majority of global carbon fixation and has been claimed to be the most abundant protein on Earth. Here we provide an updated and rigorous estimate for the total mass of Rubisco on Earth, concluding it is ≈0.7 Gt, more than an order of magnitude higher than previously thought. We find that >90% of Rubisco enzymes are found in the ≈2 × 1014 m2 of leaves of terrestrial plants, and that Rubisco accounts for ≈3% of the total mass of leaves, which we estimate at ≈30 Gt dry weight. We use our estimate for the total mass of Rubisco to derive the effective time-averaged catalytic rate of Rubisco of ≈0.03 s−1 on land and ≈0.6 s−1 in the ocean. Compared with the maximal catalytic rate observed in vitro at 25 °C, the effective rate in the wild is ≈100-fold slower on land and sevenfold slower in the ocean. The lower ambient temperature, and Rubisco not working at night, can explain most of the difference from laboratory conditions in the ocean but not on land, where quantification of many more factors on a global scale is needed. Our analysis helps sharpen the dramatic difference between laboratory and wild environments and between the terrestrial and marine environments.
Collapse
|
12
|
Jiang L, Guo YJ, Zhang F, Zhang YY, McCook LJ, Yuan XC, Lei XM, Zhou GW, Guo ML, Cai L, Lian JS, Qian PY, Huang H. Diurnally Fluctuating pCO 2 Modifies the Physiological Responses of Coral Recruits Under Ocean Acidification. Front Physiol 2019; 9:1952. [PMID: 30692940 PMCID: PMC6340097 DOI: 10.3389/fphys.2018.01952] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/22/2018] [Indexed: 01/08/2023] Open
Abstract
Diurnal pCO2 fluctuations have the potential to modulate the biological impact of ocean acidification (OA) on reef calcifiers, yet little is known about the physiological and biochemical responses of scleractinian corals to fluctuating carbonate chemistry under OA. Here, we exposed newly settled Pocillopora damicornis for 7 days to ambient pCO2, steady and elevated pCO2 (stable OA) and diurnally fluctuating pCO2 under future OA scenario (fluctuating OA). We measured the photo-physiology, growth (lateral growth, budding and calcification), oxidative stress and activities of carbonic anhydrase (CA), Ca-ATPase and Mg-ATPase. Results showed that while OA enhanced the photochemical performance of in hospite symbionts, it also increased catalase activity and lipid peroxidation. Furthermore, both OA treatments altered the activities of host and symbiont CA, suggesting functional changes in the uptake of dissolved inorganic carbon (DIC) for photosynthesis and calcification. Most importantly, only the fluctuating OA treatment resulted in a slight drop in calcification with concurrent up-regulation of Ca-ATPase and Mg-ATPase, implying increased energy expenditure on calcification. Consequently, asexual budding rates decreased by 50% under fluctuating OA. These results suggest that diel pCO2 oscillations could modify the physiological responses and potentially alter the energy budget of coral recruits under future OA, and that fluctuating OA is more energetically expensive for the maintenance of coral recruits than stable OA.
Collapse
Affiliation(s)
- Lei Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Hainan Tropical Marine Biology Research Station, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Juan Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Fang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Hainan Tropical Marine Biology Research Station, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Laurence John McCook
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Xiang-Cheng Yuan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xin-Ming Lei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Guo-Wei Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Hainan Tropical Marine Biology Research Station, Chinese Academy of Sciences, Sanya, China
| | - Ming-Lan Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lin Cai
- Shenzhen Research Institute and Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Jian-Sheng Lian
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Pei-Yuan Qian
- Shenzhen Research Institute and Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Hui Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Hainan Tropical Marine Biology Research Station, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
13
|
Hughes DJ, Campbell DA, Doblin MA, Kromkamp JC, Lawrenz E, Moore CM, Oxborough K, Prášil O, Ralph PJ, Alvarez MF, Suggett DJ. Roadmaps and Detours: Active Chlorophyll- a Assessments of Primary Productivity Across Marine and Freshwater Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12039-12054. [PMID: 30247887 DOI: 10.1021/acs.est.8b03488] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Assessing phytoplankton productivity over space and time remains a core goal for oceanographers and limnologists. Fast Repetition Rate fluorometry (FRRf) provides a potential means to realize this goal with unprecedented resolution and scale yet has not become the "go-to" method despite high expectations. A major obstacle is difficulty converting electron transfer rates to equivalent rates of C-fixation most relevant for studies of biogeochemical C-fluxes. Such difficulty stems from methodological inconsistencies and our limited understanding of how the electron requirement for C-fixation (Φe,C) is influenced by the environment and by differences in the composition and physiology of phytoplankton assemblages. We outline a "roadmap" for limiting methodological bias and to develop a more mechanistic understanding of the ecophysiology underlying Φe,C. We 1) re-evaluate core physiological processes governing how microalgae invest photosynthetic electron transport-derived energy and reductant into stored carbon versus alternative sinks. Then, we 2) outline steps to facilitate broader uptake and exploitation of FRRf, which could transform our knowledge of aquatic primary productivity. We argue it is time to 3) revise our historic methodological focus on carbon as the currency of choice, to 4) better appreciate that electron transport fundamentally drives ecosystem biogeochemistry, modulates cell-to-cell interactions, and ultimately modifies community biomass and structure.
Collapse
Affiliation(s)
- David J Hughes
- Climate Change Cluster , University of Technology Sydney , Ultimo, Sydney 2007 , New South Wales , Australia
| | - Douglas A Campbell
- Department of Biology , Mount Allison University , Sackville , New Brunswick E4L 1E4 , Canada
| | - Martina A Doblin
- Climate Change Cluster , University of Technology Sydney , Ultimo, Sydney 2007 , New South Wales , Australia
| | - Jacco C Kromkamp
- Department of Estuarine and Delta Systems , NIOZ Royal Netherlands Institute for Sea Research and Utrecht University , P.O. Box 140, 4401 NT Yerseke , The Netherlands
| | - Evelyn Lawrenz
- Centre Algatech , Institute of Microbiology, Czech Academy of Sciences , Třeboň 379 81 , Czech Republic
| | - C Mark Moore
- Ocean and Earth Science , University of Southampton, National Oceanography Centre, Southampton , European Way , Southampton SO14 3ZH , U.K
| | | | - Ondřej Prášil
- Centre Algatech , Institute of Microbiology, Czech Academy of Sciences , Třeboň 379 81 , Czech Republic
| | - Peter J Ralph
- Climate Change Cluster , University of Technology Sydney , Ultimo, Sydney 2007 , New South Wales , Australia
| | - Marco F Alvarez
- Climate Change Cluster , University of Technology Sydney , Ultimo, Sydney 2007 , New South Wales , Australia
| | - David J Suggett
- Climate Change Cluster , University of Technology Sydney , Ultimo, Sydney 2007 , New South Wales , Australia
| |
Collapse
|
14
|
Pierangelini M, Ryšánek D, Lang I, Adlassnig W, Holzinger A. Terrestrial adaptation of green algae Klebsormidium and Zygnema (Charophyta) involves diversity in photosynthetic traits but not in CO 2 acquisition. PLANTA 2017; 246:971-986. [PMID: 28721563 PMCID: PMC5633629 DOI: 10.1007/s00425-017-2741-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/09/2017] [Indexed: 05/20/2023]
Abstract
The basal streptophyte Klebsormidium and the advanced Zygnema show adaptation to terrestrialization. Differences are found in photoprotection and resistance to short-term light changes, but not in CO 2 acquisition. Streptophyte green algae colonized land about 450-500 million years ago giving origin to terrestrial plants. We aim to understand how their physiological adaptations are linked to the ecological conditions (light, water and CO2) characterizing modern terrestrial habitats. A new Klebsormidium isolate from a strongly acidic environment of a former copper mine (Schwarzwand, Austria) is investigated, in comparison to Klebsormidium cf. flaccidum and Zygnema sp. We show that these genera possess different photosynthetic traits and water requirements. Particularly, the Klebsormidium species displayed a higher photoprotection capacity, concluded from non-photochemical quenching (NPQ) and higher tolerance to high light intensity than Zygnema. However, Klebsormidium suffered from photoinhibition when the light intensity in the environment increased rapidly, indicating that NPQ is involved in photoprotection against strong and stable irradiance. Klebsormidium was also highly resistant to cellular water loss (dehydration) under low light. On the other hand, exposure to relatively high light intensity during dehydration caused a harmful over-reduction of the electron transport chain, leading to PSII damages and impairing the ability to recover after rehydration. Thus, we suggest that dehydration is a selective force shaping the adaptation of this species towards low light. Contrary to the photosynthetic characteristics, the inorganic carbon (C i ) acquisition was equivalent between Klebsormidium and Zygnema. Despite their different habitats and restriction to hydro-terrestrial environment, the three organisms showed similar use of CO2 and HCO3- as source of Ci for photosynthesis, pointing out a similar adaptation of their CO2-concentrating mechanisms to terrestrial life.
Collapse
Affiliation(s)
- Mattia Pierangelini
- Department of Botany, Functional Plant Biology, University of Innsbruck, 6020, Innsbruck, Austria
| | - David Ryšánek
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 12801, Prague 2, Czech Republic
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, v. v. i., Průmyslová 595, 252 42, Vestec, Czech Republic
| | - Ingeborg Lang
- Faculty of Life Sciences, Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Wolfram Adlassnig
- Faculty of Life Sciences, Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
15
|
Suggett DJ, Warner ME, Leggat W. Symbiotic Dinoflagellate Functional Diversity Mediates Coral Survival under Ecological Crisis. Trends Ecol Evol 2017; 32:735-745. [DOI: 10.1016/j.tree.2017.07.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 11/30/2022]
|
16
|
Klein SG, Pitt KA, Nitschke MR, Goyen S, Welsh DT, Suggett DJ, Carroll AR. Symbiodinium mitigate the combined effects of hypoxia and acidification on a noncalcifying cnidarian. GLOBAL CHANGE BIOLOGY 2017; 23:3690-3703. [PMID: 28390081 DOI: 10.1111/gcb.13718] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/28/2017] [Accepted: 04/02/2017] [Indexed: 05/23/2023]
Abstract
Anthropogenic nutrient inputs enhance microbial respiration within many coastal ecosystems, driving concurrent hypoxia and acidification. During photosynthesis, Symbiodinium spp., the microalgal endosymbionts of cnidarians and other marine phyla, produce O2 and assimilate CO2 and thus potentially mitigate the exposure of the host to these stresses. However, such a role for Symbiodinium remains untested for noncalcifying cnidarians. We therefore contrasted the fitness of symbiotic and aposymbiotic polyps of a model host jellyfish (Cassiopea sp.) under reduced O2 (~2.09 mg/L) and pH (~ 7.63) scenarios in a full-factorial experiment. Host fitness was characterized as asexual reproduction and their ability to regulate internal pH and Symbiodinium performance characterized by maximum photochemical efficiency, chla content and cell density. Acidification alone resulted in 58% more asexual reproduction of symbiotic polyps than aposymbiotic polyps (and enhanced Symbiodinium cell density) suggesting Cassiopea sp. fitness was enhanced by CO2 -stimulated Symbiodinium photosynthetic activity. Indeed, greater CO2 drawdown (elevated pH) was observed within host tissues of symbiotic polyps under acidification regardless of O2 conditions. Hypoxia alone produced 22% fewer polyps than ambient conditions regardless of acidification and symbiont status, suggesting Symbiodinium photosynthetic activity did not mitigate its effects. Combined hypoxia and acidification, however, produced similar numbers of symbiotic polyps compared with aposymbiotic kept under ambient conditions, demonstrating that the presence of Symbiodinium was key for mitigating the combined effects of hypoxia and acidification on asexual reproduction. We hypothesize that this mitigation occurred because of reduced photorespiration under elevated CO2 conditions where increased net O2 production ameliorates oxygen debt. We show that Symbiodinium play an important role in facilitating enhanced fitness of Cassiopea sp. polyps, and perhaps also other noncalcifying cnidarian hosts, to the ubiquitous effects of ocean acidification. Importantly we highlight that symbiotic, noncalcifying cnidarians may be particularly advantaged in productive coastal waters that are subject to simultaneous hypoxia and acidification.
Collapse
Affiliation(s)
- Shannon G Klein
- Australian Rivers Institute - Coasts and Estuaries, Griffith School of Environment, Griffith University, Gold Coast, Qld, Australia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kylie A Pitt
- Australian Rivers Institute - Coasts and Estuaries, Griffith School of Environment, Griffith University, Gold Coast, Qld, Australia
| | - Matthew R Nitschke
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, Australia
| | - Samantha Goyen
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, Australia
| | - David T Welsh
- Environmental Futures Research Institute, Griffith School of Environment, Griffith University, Gold Coast, Qld, Australia
| | - David J Suggett
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, Australia
| | - Anthony R Carroll
- Environmental Futures Research Institute, Griffith School of Environment, Griffith University, Gold Coast, Qld, Australia
| |
Collapse
|
17
|
Pierangelini M, Raven JA, Giordano M. The relative availability of inorganic carbon and inorganic nitrogen influences the response of the dinoflagellate Protoceratium reticulatum to elevated CO 2. JOURNAL OF PHYCOLOGY 2017; 53:298-307. [PMID: 27624862 DOI: 10.1111/jpy.12463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/23/2016] [Indexed: 06/06/2023]
Abstract
This work originates from three facts: (i) changes in CO2 availability influence metabolic processes in algal cells; (ii) Spatial and temporal variations of nitrogen availability cause repercussions on phytoplankton physiology; (iii) Growth and cell composition are dependent on the stoichiometry of nutritional resources. In this study, we assess whether the impact of rising pCO2 is influenced by N availability, through the impact that it would have on the C/N stoichiometry, in conditions of N sufficiency. Our experiments used the dinoflagellate Protoceratium reticulatum, which we cultured under three CO2 regimes (400, 1,000, and 5,000 ppmv, pH of 8.1) and either variable (the NO3- concentration was always 2.5 mmol · L-1 ) or constant (NO3- concentration varied to maintain the same Ci /NO3- ratio at all pCO2 ) Ci /NO3- ratio. Regardless of N availability, cells had higher specific growth rates, but lower cell dry weight and C and N quotas, at elevated CO2 . The carbohydrate pool size and the C/N was unaltered in all treatments. The lipid content only decreased at high pCO2 at constant Ci /NO3- ratio. In the variable Ci /NO3- conditions, the relative abundance of Rubisco (and other proteins) also changed; this did not occur at constant Ci /NO3- . Thus, the biomass quality of P. reticulatum for grazers was affected by the Ci /NO3- ratio in the environment and not only by the pCO2 , both with respect to the size of the main organic pools and the composition of the expressed proteome.
Collapse
Affiliation(s)
- Mattia Pierangelini
- Laboratorio di Fisiologia delle Alghe e delle Piante, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, Ancona, 60131, Italy
| | - John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Functional Plant Biology and Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Mario Giordano
- Laboratorio di Fisiologia delle Alghe e delle Piante, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, Ancona, 60131, Italy
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Trěboň, 379 01, Czech Republic
- Institute of Marine Science, National Research Council, Arsenale Castello, 2737/F, 30122, Venezia, Italy
- Istituto di Biologia Agro-Ambientale e Forestale, National Research Council, Via G. Marconi n. 2, Porano, 05010, Terni, Italy
| |
Collapse
|
18
|
Eberlein T, Wohlrab S, Rost B, John U, Bach LT, Riebesell U, Van de Waal DB. Effects of ocean acidification on primary production in a coastal North Sea phytoplankton community. PLoS One 2017; 12:e0172594. [PMID: 28273107 PMCID: PMC5342202 DOI: 10.1371/journal.pone.0172594] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/07/2017] [Indexed: 11/18/2022] Open
Abstract
We studied the effect of ocean acidification (OA) on a coastal North Sea plankton community in a long-term mesocosm CO2-enrichment experiment (BIOACID II long-term mesocosm study). From March to July 2013, 10 mesocosms of 19 m length with a volume of 47.5 to 55.9 m3 were deployed in the Gullmar Fjord, Sweden. CO2 concentrations were enriched in five mesocosms to reach average CO2 partial pressures (pCO2) of 760 μatm. The remaining five mesocosms were used as control at ambient pCO2 of 380 μatm. Our paper is part of a PLOS collection on this long-term mesocosm experiment. Here, we here tested the effect of OA on total primary production (PPT) by performing 14C-based bottle incubations for 24 h. Furthermore, photoacclimation was assessed by conducting 14C-based photosynthesis-irradiance response (P/I) curves. Changes in chlorophyll a concentrations over time were reflected in the development of PPT, and showed higher phytoplankton biomass build-up under OA. We observed two subsequent phytoplankton blooms in all mesocosms, with peaks in PPT around day 33 and day 56. OA had no significant effect on PPT, except for a marginal increase during the second phytoplankton bloom when inorganic nutrients were already depleted. Maximum light use efficiencies and light saturation indices calculated from the P/I curves changed simultaneously in all mesocosms, and suggest that OA did not alter phytoplankton photoacclimation. Despite large variability in time-integrated productivity estimates among replicates, our overall results indicate that coastal phytoplankton communities can be affected by OA at certain times of the seasonal succession with potential consequences for ecosystem functioning.
Collapse
Affiliation(s)
- Tim Eberlein
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, Bremerhaven, Germany
- * E-mail:
| | - Sylke Wohlrab
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, Bremerhaven, Germany
| | - Björn Rost
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, Bremerhaven, Germany
| | - Uwe John
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity Oldenburg (HIFMB), Carl von Ossietzky Straße, Oldenburg Germany
| | - Lennart T. Bach
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, Kiel, Germany
| | - Ulf Riebesell
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, Kiel, Germany
| | - Dedmer B. Van de Waal
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, Bremerhaven, Germany
- Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
19
|
Physiological response to elevated temperature and pCO2 varies across four Pacific coral species: Understanding the unique host+symbiont response. Sci Rep 2015; 5:18371. [PMID: 26670946 PMCID: PMC4680954 DOI: 10.1038/srep18371] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/17/2015] [Indexed: 12/31/2022] Open
Abstract
The physiological response to individual and combined stressors of elevated temperature and pCO2 were measured over a 24-day period in four Pacific corals and their respective symbionts (Acropora millepora/Symbiodinium C21a, Pocillopora damicornis/Symbiodinium C1c-d-t, Montipora monasteriata/Symbiodinium C15, and Turbinaria reniformis/Symbiodinium trenchii). Multivariate analyses indicated that elevated temperature played a greater role in altering physiological response, with the greatest degree of change occurring within M. monasteriata and T. reniformis. Algal cellular volume, protein, and lipid content all increased for M. monasteriata. Likewise, S. trenchii volume and protein content in T. reniformis also increased with temperature. Despite decreases in maximal photochemical efficiency, few changes in biochemical composition (i.e. lipids, proteins, and carbohydrates) or cellular volume occurred at high temperature in the two thermally sensitive symbionts C21a and C1c-d-t. Intracellular carbonic anhydrase transcript abundance increased with temperature in A. millepora but not in P. damicornis, possibly reflecting differences in host mitigated carbon supply during thermal stress. Importantly, our results show that the host and symbiont response to climate change differs considerably across species and that greater physiological plasticity in response to elevated temperature may be an important strategy distinguishing thermally tolerant vs. thermally sensitive species.
Collapse
|
20
|
Blackall LL, Wilson B, van Oppen MJH. Coral-the world's most diverse symbiotic ecosystem. Mol Ecol 2015; 24:5330-47. [DOI: 10.1111/mec.13400] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Linda L. Blackall
- Department of Chemistry and Biotechnology; Faculty of Science, Engineering & Technology; Swinburne University of Technology; Melbourne Vic. 3122 Australia
| | - Bryan Wilson
- Marine Microbiology Research Group; Department of Biology; University of Bergen; Thormøhlensgate 53B 5020 Bergen Norway
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science; PMB No. 3 Townsville MC Qld. 4810 Australia
- School of BioSciences; The University of Melbourne; Parkville Vic. 3010 Australia
| |
Collapse
|
21
|
Suggett DJ, Goyen S, Evenhuis C, Szabó M, Pettay DT, Warner ME, Ralph PJ. Functional diversity of photobiological traits within the genus Symbiodinium appears to be governed by the interaction of cell size with cladal designation. THE NEW PHYTOLOGIST 2015; 208:370-81. [PMID: 26017701 DOI: 10.1111/nph.13483] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/23/2015] [Indexed: 05/13/2023]
Abstract
Dinoflagellates of the genus Symbiodinium express broad diversity in both genetic identity (phylogeny) and photosynthetic function to presumably optimize ecological success across extreme light environments; however, whether differences in the primary photobiological characteristics that govern photosynthetic optimization are ultimately a function of phylogeny is entirely unresolved. We applied a novel fast repetition rate fluorometry approach to screen genetically distinct Symbiodinium types (n = 18) spanning five clades (A-D, F) for potential phylogenetic trends in factors modulating light absorption (effective cross-section, reaction center content) and utilization (photochemical vs dynamic nonphotochemical quenching; [1 - C] vs [1 - Q]) by photosystem II (PSII). The variability of PSII light absorption was independent of phylogenetic designation, but closely correlated with cell size across types, whereas PSII light utilization intriguingly followed one of three characteristic patterns: (1) similar reliance on [1 - C] and [1 - Q] or (2) preferential reliance on [1 - C] (mostly A, B types) vs (3) preferential reliance on [1 - Q] (mostly C, D, F types), and thus generally consistent with cladal designation. Our functional trait-based approach shows, for the first time, how Symbiodinium photosynthetic function is governed by the interplay between phylogenetically dependent and independent traits, and is potentially a means to reconcile complex biogeographic patterns of Symbiodinium phylogenetic diversity in nature.
Collapse
Affiliation(s)
- David J Suggett
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Broadway, 2007, NSW, Australia
| | - Samantha Goyen
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Broadway, 2007, NSW, Australia
| | - Chris Evenhuis
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Broadway, 2007, NSW, Australia
| | - Milán Szabó
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Broadway, 2007, NSW, Australia
| | - D Tye Pettay
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, 19958, USA
| | - Mark E Warner
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, 19958, USA
| | - Peter J Ralph
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Broadway, 2007, NSW, Australia
| |
Collapse
|
22
|
Castillo KD, Ries JB, Bruno JF, Westfield IT. The reef-building coral Siderastrea siderea exhibits parabolic responses to ocean acidification and warming. Proc Biol Sci 2015; 281:rspb.2014.1856. [PMID: 25377455 PMCID: PMC4240989 DOI: 10.1098/rspb.2014.1856] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Anthropogenic increases in atmospheric CO2 over this century are predicted to cause global average surface ocean pH to decline by 0.1–0.3 pH units and sea surface temperature to increase by 1–4°C. We conducted controlled laboratory experiments to investigate the impacts of CO2-induced ocean acidification (pCO2 = 324, 477, 604, 2553 µatm) and warming (25, 28, 32°C) on the calcification rate of the zooxanthellate scleractinian coral Siderastrea siderea, a widespread, abundant and keystone reef-builder in the Caribbean Sea. We show that both acidification and warming cause a parabolic response in the calcification rate within this coral species. Moderate increases in pCO2 and warming, relative to near-present-day values, enhanced coral calcification, with calcification rates declining under the highest pCO2 and thermal conditions. Equivalent responses to acidification and warming were exhibited by colonies across reef zones and the parabolic nature of the corals' response to these stressors was evident across all three of the experiment's 30-day observational intervals. Furthermore, the warming projected by the Intergovernmental Panel on Climate Change for the end of the twenty-first century caused a fivefold decrease in the rate of coral calcification, while the acidification projected for the same interval had no statistically significant impact on the calcification rate—suggesting that ocean warming poses a more immediate threat than acidification for this important coral species.
Collapse
Affiliation(s)
- Karl D Castillo
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3300, USA
| | - Justin B Ries
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3300, USA Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, MA 01908, USA
| | - John F Bruno
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 29599-3280, USA
| | - Isaac T Westfield
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3300, USA Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, MA 01908, USA
| |
Collapse
|
23
|
Natural high pCO2 increases autotrophy in Anemonia viridis (Anthozoa) as revealed from stable isotope (C, N) analysis. Sci Rep 2015; 5:8779. [PMID: 25739995 PMCID: PMC4350107 DOI: 10.1038/srep08779] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/03/2015] [Indexed: 11/23/2022] Open
Abstract
Contemporary cnidarian-algae symbioses are challenged by increasing CO2 concentrations (ocean warming and acidification) affecting organisms' biological performance. We examined the natural variability of carbon and nitrogen isotopes in the symbiotic sea anemone Anemonia viridis to investigate dietary shifts (autotrophy/heterotrophy) along a natural pCO2 gradient at the island of Vulcano, Italy. δ13C values for both algal symbionts (Symbiodinium) and host tissue of A. viridis became significantly lighter with increasing seawater pCO2. Together with a decrease in the difference between δ13C values of both fractions at the higher pCO2 sites, these results indicate there is a greater net autotrophic input to the A. viridis carbon budget under high pCO2 conditions. δ15N values and C/N ratios did not change in Symbiodinium and host tissue along the pCO2 gradient. Additional physiological parameters revealed anemone protein and Symbiodinium chlorophyll a remained unaltered among sites. Symbiodinium density was similar among sites yet their mitotic index increased in anemones under elevated pCO2. Overall, our findings show that A. viridis is characterized by a higher autotrophic/heterotrophic ratio as pCO2 increases. The unique trophic flexibility of this species may give it a competitive advantage and enable its potential acclimation and ecological success in the future under increased ocean acidification.
Collapse
|
24
|
Traveset A, Richardson DM. Mutualistic Interactions and Biological Invasions. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2014. [DOI: 10.1146/annurev-ecolsys-120213-091857] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutualisms structure ecosystems and mediate their functioning. They also enhance invasions of many alien species. Invasions disrupt native mutualisms, often leading to population declines, reduced biodiversity, and altered ecosystem functioning. Focusing on three main types of mutualisms (pollination, seed dispersal, and plant-microbial symbioses) and drawing on examples from different ecosystems and from species- and community-level studies, we review the key mechanisms whereby such positive interactions mediate invasions and are in turn influenced by invasions. High interaction generalization is “the norm” in most systems, allowing alien species to infiltrate recipient communities. We identify traits that influence invasiveness (e.g., selfing capacity in plants, animal behavioral traits) or invasibility (e.g., partner choice in mycorrhizas/rhizobia) through mutualistic interactions. Mutualistic disruptions due to invasions are pervasive, and subsequent cascading effects are also widespread. Ecological networks provide a useful framework for predicting tipping points for community collapse in response to invasions and other synergistic drivers of global change.
Collapse
Affiliation(s)
- Anna Traveset
- Mediterranean Institute of Advanced Studies, E07190 Esporles, Mallorca, Balearic Islands, Spain
| | - David M. Richardson
- Centre for Invasion Biology, Department of Botany and Zoology, University of Stellenbosch, Matieland 7602, South Africa
| |
Collapse
|
25
|
Roberty S, Bailleul B, Berne N, Franck F, Cardol P. PSI Mehler reaction is the main alternative photosynthetic electron pathway in Symbiodinium sp., symbiotic dinoflagellates of cnidarians. THE NEW PHYTOLOGIST 2014; 204:81-91. [PMID: 24975027 DOI: 10.1111/nph.12903] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/17/2014] [Indexed: 05/04/2023]
Abstract
Photosynthetic organisms have developed various photoprotective mechanisms to cope with exposure to high light intensities. In photosynthetic dinoflagellates that live in symbiosis with cnidarians, the nature and relative amplitude of these regulatory mechanisms are a matter of debate. In our study, the amplitude of photosynthetic alternative electron flows (AEF) to oxygen (chlororespiration, Mehler reaction), the mitochondrial respiration and the Photosystem I (PSI) cyclic electron flow were investigated in strains belonging to three clades (A1, B1 and F1) of Symbiodinium. Cultured Symbiodinium strains were maintained under identical environmental conditions, and measurements of oxygen evolution, fluorescence emission and absorption changes at specific wavelengths were used to evaluate PSI and PSII electron transfer rates (ETR). A light- and O2 -dependent ETR was observed in all strains. This electron transfer chain involves PSII and PSI and is insensitive to inhibitors of mitochondrial activity and carbon fixation. We demonstrate that in all strains, the Mehler reaction responsible for photoreduction of oxygen by the PSI under high light, is the main AEF at the onset and at the steady state of photosynthesis. This sustained photosynthetic AEF under high light intensities acts as a photoprotective mechanism and leads to an increase of the ATP/NADPH ratio.
Collapse
Affiliation(s)
- Stéphane Roberty
- Laboratoire d'Ecologie Animale et d'Ecotoxicologie, Département de Biologie, Ecologie et Evolution, Université de Liège, 11 Allée du 6 Août, B-4000, Liège, Belgium
- Laboratoire de Bioénergétique, Institut de Botanique, Université de Liège, 27 Bld du Rectorat, B-4000, Liège, Belgium
| | - Benjamin Bailleul
- Laboratoire de Génétique et Physiologie des Microalgues, Institut de Botanique, Université de Liège, 27 Bld du Rectorat, B-4000, Liège, Belgium
| | - Nicolas Berne
- Laboratoire de Génétique et Physiologie des Microalgues, Institut de Botanique, Université de Liège, 27 Bld du Rectorat, B-4000, Liège, Belgium
| | - Fabrice Franck
- Laboratoire de Bioénergétique, Institut de Botanique, Université de Liège, 27 Bld du Rectorat, B-4000, Liège, Belgium
- PhytoSYSTEMS, Université de Liège, B-4000, Liège, Belgium
| | - Pierre Cardol
- Laboratoire de Génétique et Physiologie des Microalgues, Institut de Botanique, Université de Liège, 27 Bld du Rectorat, B-4000, Liège, Belgium
- PhytoSYSTEMS, Université de Liège, B-4000, Liège, Belgium
| |
Collapse
|
26
|
Ramsby BD, Shirur KP, Iglesias-Prieto R, Goulet TL. Symbiodinium photosynthesis in Caribbean octocorals. PLoS One 2014; 9:e106419. [PMID: 25192405 PMCID: PMC4156329 DOI: 10.1371/journal.pone.0106419] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/06/2014] [Indexed: 01/17/2023] Open
Abstract
Symbioses with the dinoflagellate Symbiodinium form the foundation of tropical coral reef communities. Symbiodinium photosynthesis fuels the growth of an array of marine invertebrates, including cnidarians such as scleractinian corals and octocorals (e.g., gorgonian and soft corals). Studies examining the symbioses between Caribbean gorgonian corals and Symbiodinium are sparse, even though gorgonian corals blanket the landscape of Caribbean coral reefs. The objective of this study was to compare photosynthetic characteristics of Symbiodinium in four common Caribbean gorgonian species: Pterogorgia anceps, Eunicea tourneforti, Pseudoplexaura porosa, and Pseudoplexaura wagenaari. Symbiodinium associated with these four species exhibited differences in Symbiodinium density, chlorophyll a per cell, light absorption by chlorophyll a, and rates of photosynthetic oxygen production. The two Pseudoplexaura species had higher Symbiodinium densities and chlorophyll a per Symbiodinium cell but lower chlorophyll a specific absorption compared to P. anceps and E. tourneforti. Consequently, P. porosa and P. wagenaari had the highest average photosynthetic rates per cm2 but the lowest average photosynthetic rates per Symbiodinium cell or chlorophyll a. With the exception of Symbiodinium from E. tourneforti, isolated Symbiodinium did not photosynthesize at the same rate as Symbiodinium in hospite. Differences in Symbiodinium photosynthetic performance could not be attributed to Symbiodinium type. All P. anceps (n = 9) and P. wagenaari (n = 6) colonies, in addition to one E. tourneforti and three P. porosa colonies, associated with Symbiodinium type B1. The B1 Symbiodinium from these four gorgonian species did not cluster with lineages of B1 Symbiodinium from scleractinian corals. The remaining eight E. tourneforti colonies harbored Symbiodinium type B1L, while six P. porosa colonies harbored type B1i. Understanding the symbioses between gorgonian corals and Symbiodinium will aid in deciphering why gorgonian corals dominate many Caribbean reefs.
Collapse
Affiliation(s)
- Blake D. Ramsby
- Department of Biology, University of Mississippi, University, Mississippi, United States of America
| | - Kartick P. Shirur
- Department of Biology, University of Mississippi, University, Mississippi, United States of America
| | - Roberto Iglesias-Prieto
- Unidad Académica de Sistemas Arrecifales (Puerto Morelos), Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Cancún, México
| | - Tamar L. Goulet
- Department of Biology, University of Mississippi, University, Mississippi, United States of America
| |
Collapse
|
27
|
Eberlein T, Van de Waal DB, Rost B. Differential effects of ocean acidification on carbon acquisition in two bloom-forming dinoflagellate species. PHYSIOLOGIA PLANTARUM 2014; 151:468-79. [PMID: 24320746 PMCID: PMC4277689 DOI: 10.1111/ppl.12137] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/18/2013] [Accepted: 11/21/2013] [Indexed: 05/22/2023]
Abstract
Dinoflagellates represent a cosmopolitan group of phytoplankton with the ability to form harmful algal blooms. Featuring a Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) with very low CO2 affinities, photosynthesis of this group may be particularly prone to carbon limitation and thus benefit from rising atmospheric CO2 partial pressure (pCO2) under ocean acidification (OA). Here, we investigated the consequences of OA on two bloom-forming dinoflagellate species, the calcareous Scrippsiella trochoidea and the toxic Alexandrium tamarense. Using dilute batch incubations, we assessed growth characteristics over a range of pCO2 (i.e. 180-1200 µatm). To understand the underlying physiology, several aspects of inorganic carbon acquisition were investigated by membrane-inlet mass spectrometry. Our results show that both species kept growth rates constant over the tested pCO2 range, but we observed a number of species-specific responses. For instance, biomass production and cell size decreased in S. trochoidea, while A. tamarense was not responsive to OA in these measures. In terms of oxygen fluxes, rates of photosynthesis and respiration remained unaltered in S. trochoidea whereas respiration increased in A. tamarense under OA. Both species featured efficient carbon concentrating mechanisms (CCMs) with a CO2-dependent contribution of HCO3(-) uptake. In S. trochoidea, the CCM was further facilitated by exceptionally high and CO2-independent carbonic anhydrase activity. Comparing both species, a general trade-off between maximum rates of photosynthesis and respective affinities is indicated. In conclusion, our results demonstrate effective CCMs in both species, yet very different strategies to adjust their carbon acquisition. This regulation in CCMs enables both species to maintain growth over a wide range of ecologically relevant pCO2 .
Collapse
Affiliation(s)
- Tim Eberlein
- Department of Marine Biogeoscience, Alfred Wegener Institute for Polar and Marine ResearchBremerhaven, Germany
| | - Dedmer B Van de Waal
- Department of Marine Biogeoscience, Alfred Wegener Institute for Polar and Marine ResearchBremerhaven, Germany
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW)6700 AB, Wageningen, The Netherlands
| | - Björn Rost
- Department of Marine Biogeoscience, Alfred Wegener Institute for Polar and Marine ResearchBremerhaven, Germany
| |
Collapse
|