1
|
Wang C, Lin A, Zhou Y, Liu Z, Bai P, Zhu Y, Fan J, Bi X, Kuang H, Lian H, Xu P. Mutation in FvPAL2 leads to light red strawberry fruits and yellow-green petioles. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112370. [PMID: 39725163 DOI: 10.1016/j.plantsci.2024.112370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/18/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
In recent years, light red or white strawberries have attracted much attention because of their unusual color, however, the mechanism of strawberry color formation, especially light red strawberry color, is not well understood. By EMS mutagenesis of woodland strawberry (Fragaria vesca), we identified two mutants, rg40 and rg120, with light red fruit and yellow-green petiole, and allelic hybridization and BSA mixed-pool sequencing revealed that the phenotype was caused by mutation in the FvPAL2 protein in the anthocyanin synthesis pathway. Enzyme activity experiments showed that the mutant FvPAL2 protein barely catalyzed the substrate conversion normally, thus blocking anthocyanin synthesis, which in turn led to a decrease in anthocyanin accumulation in fruits and petioles. Analysis of the active pockets of the wild-type and mutant FvPAL2 proteins revealed that the mutant FvPAL2 could not bind to the substrate properly. The specific transcription factors FvMYB10 and FvMYB10L were further found to bind and activate the expression of FvPAL1 and FvPAL2 in both fruit and petiole. The discovery of the key site of FvPAL2 protein activity provides a clear modification target for the breeding of light red strawberry varieties, which has important application value.
Collapse
Affiliation(s)
- Chong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Anqi Lin
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yankong Zhou
- Agricultural Technology Center of Pudong New Area, Shanghai, China
| | - Zheng Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Peng Bai
- Dandong Academy of Agricultural Sciences, Dandong, China
| | - Yuxuan Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Junmiao Fan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyi Bi
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Huiyun Kuang
- Shanghai Agricultural Science and Technology Service Center, Shanghai, China
| | - Hongli Lian
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pengbo Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Xu P, Li M, Ma C, Li X, Bai P, Lin A, Wang C, Zhang L, Kuang H, Lian H. Loss-of-function mutation in anthocyanidin reductase activates the anthocyanin synthesis pathway in strawberry. MOLECULAR HORTICULTURE 2024; 4:33. [PMID: 39272174 PMCID: PMC11401314 DOI: 10.1186/s43897-024-00106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/18/2024] [Indexed: 09/15/2024]
Abstract
Fruit color substantially affects consumer preferences, with darker red strawberries being economically more valuable due to their higher anthocyanin content. However, the molecular basis for the dark red coloration remains unclear. Through screening of an ethyl methanesulfonate mutant library, we identified a rg418 mutant, that demonstrated anthocyanin accumulation during early fruit development stages. Furthermore, the ripening fruits of this mutant had higher anthocyanin content than wild-type (WT) fruits. An analysis of flavonoid content in WT and rg418 mutant fruits revealed substantial changes in metabolic fluxes, with the mutant exhibiting increased levels of anthocyanins and flavonols and decreased levels of proanthocyanidins. Bulked sergeant analysis sequencing indicated that the mutant gene was anthocyanidin reductase (ANR), a key gene in the proanthocyanidin synthesis pathway. Furthermore, transcriptome sequencing revealed the increased expression of MYB105 during the early development stage of mutant fruits, which promoted the expression of UFGT (UDP-glucose flavonoid 3-O-glucosyltransferase), a key gene involved in anthocyanin synthesis, thus substantially enhancing the anthocyanin content in the mutant fruits. Additionally, mutating ANR in a white-fruited strawberry variant (myb10 mutant) resulted in appealing pink-colored fruits, suggesting the diverse roles of ANR in fruit color regulation. Our study provides valuable theoretical insights for improving strawberry fruit color.
Collapse
Affiliation(s)
- Pengbo Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Maobai Li
- Shanghai Agricultural Technology Extension and Service Center, Shanghai, China
| | - Chao Ma
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Bai
- Dandong Academy of Agricultural Sciences, Dandong, China
| | - Anqi Lin
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Liqing Zhang
- Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Huiyun Kuang
- Shanghai Agricultural Science and Technology Service Center, Shanghai, China
| | - Hongli Lian
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Griesser M, Savoi S, Bondada B, Forneck A, Keller M. Berry shrivel in grapevine: a review considering multiple approaches. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2196-2213. [PMID: 38174592 PMCID: PMC11016843 DOI: 10.1093/jxb/erae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
Grapevine berry shrivel, a ripening disorder, causes significant economic losses in the worldwide wine and table grape industries. An early interruption in ripening leads to this disorder, resulting in shriveling and reduced sugar accumulation affecting yield and fruit quality. Loss of sink strength associated with berry mesocarp cell death is an early symptom of this disorder; however, potential internal or external triggers are yet to be explored. No pathogens have been identified that might cause the ripening syndrome. Understanding the underlying causes and mechanisms contributing to berry shrivel is crucial for developing effective mitigation strategies and finding solutions for other ripening disorders associated with climacteric and non-climacteric fruits. This review discusses alterations in the fruit ripening mechanism induced by berry shrivel disorder, focusing primarily on sugar transport and metabolism, cell wall modification and cell death, and changes in the phytohormone profile. The essential open questions are highlighted and analyzed, thus identifying the critical knowledge gaps and key challenges for future research.
Collapse
Affiliation(s)
- Michaela Griesser
- Institute of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
| | - Stefania Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Bhaskar Bondada
- Department of Viticulture and Enology, Washington State University Tri-Cities, Richland, WA 99354, USA
| | - Astrid Forneck
- Institute of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
| | - Markus Keller
- Department of Viticulture and Enology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| |
Collapse
|
4
|
Denoyes B, Prohaska A, Petit J, Rothan C. Deciphering the genetic architecture of fruit color in strawberry. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6306-6320. [PMID: 37386925 PMCID: PMC10627153 DOI: 10.1093/jxb/erad245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023]
Abstract
Fruits of Fragaria species usually have an appealing bright red color due to the accumulation of anthocyanins, water-soluble flavonoid pigments. Octoploid cultivated strawberry (Fragaria × ananassa) is a major horticultural crop for which fruit color and associated nutritional value are main breeding targets. Great diversity in fruit color intensity and pattern is observed not only in cultivated strawberry but also in wild relatives such as its octoploid progenitor F. chiloensis or the diploid woodland strawberry F. vesca, a model for fruit species in the Rosaceae. This review examines our understanding of fruit color formation in strawberry and how ongoing developments will advance it. Natural variations of fruit color as well as color changes during fruit development or in response to several cues have been used to explore the anthocyanin biosynthetic pathway and its regulation. So far, the successful identification of causal genetic variants has been largely driven by the availability of high-throughput genotyping tools and high-quality reference genomes of F. vesca and F. × ananassa. The current completion of haplotype-resolved genomes of F. × ananassa combined with QTL mapping will accelerate the exploitation of the untapped genetic diversity of fruit color and help translate the findings into strawberry improvement.
Collapse
Affiliation(s)
- Béatrice Denoyes
- INRAE and Univ. of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| | - Alexandre Prohaska
- INRAE and Univ. of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
- INVENIO, MIN de Brienne, Bordeaux, France
| | - Johann Petit
- INRAE and Univ. of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| | - Christophe Rothan
- INRAE and Univ. of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| |
Collapse
|
5
|
Zuo X, Miao C, Li M, Gu L, Yang X, Song C, Li M, Du J, Xie C, Liu X, Sun H, Li L, Zhang Z, Wang F. Purple Rehmannnia : investigation of the activation of R2R3-MYB transcription factors involved in anthocyanin biosynthesis. PHYSIOLOGIA PLANTARUM 2023; 175:e13920. [PMID: 37097722 DOI: 10.1111/ppl.13920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/04/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Engineering anthocyanin biosynthesis in herbs could provide health-promoting foods for improving human health. Rehmannia glutinosa is a popular medicinal herb in Asia, and was a health food for the emperors of the Han Dynasty (59 B.C.). In this study, we revealed the differences in anthocyanin composition and content between three Rehmannia species. On the 250, 235 and 206 identified MYBs in the respective species, six could regulate anthocyanin biosynthesis by activating the ANTHOCYANIDIN SYNTHASE (ANS) gene expression. Permanent overexpression of the Rehmannia MYB genes in tobacco strongly promoted anthocyanin content and expression levels of NtANS and other genes. A red appearance of leaves and tubers/roots was observed, and the total anthocyanin content and the cyanidin-3-O-glucoside content were significantly higher in the lines overexpressing RgMYB41, RgMYB42 and RgMYB43 from R. glutinosa,as well as RcMYB1 and RcMYB3 in R. chingii and RhMYB1 from R. henryi plants. Knocking out of RcMYB3 by CRISPR/Cas9 gene editing resulted in the discoloration of the R. chingii corolla lobes, and decreased the content of anthocyanin. R. glutinosa overexpressing RcMYB3 displayed a distinct purple color in the whole plants, and the antioxidant activity of the transgenic plants was significantly enhanced compared to WT. These results indicate that Rehmannia MYBs can be used to engineer anthocyanin biosynthesis in herbs to improve their additional value, such as increased antioxidant contents. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xin Zuo
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Chunyan Miao
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Mingming Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Li Gu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xu Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Ci Song
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Mingjie Li
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiafang Du
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Caixia Xie
- School of medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiangyang Liu
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Hongzheng Sun
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Lianzhen Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhongyi Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fengqing Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
6
|
Lin Y, Wang C, Cao S, Sun Z, Zhang Y, Li M, He W, Wang Y, Chen Q, Zhang Y, Wang X, Luo Y, Tang H. Proanthocyanidins Delay Fruit Coloring and Softening by Repressing Related Gene Expression during Strawberry ( Fragaria × ananassa Duch.) Ripening. Int J Mol Sci 2023; 24:ijms24043139. [PMID: 36834547 PMCID: PMC9962922 DOI: 10.3390/ijms24043139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Proanthocyanidins (PAs), also known as condensed tannins, are widespread throughout the plant kingdom, presenting diverse biological and biochemical activities. Being one of the most abundant groups of natural polyphenolic antioxidant, PAs are applied to improve plant tolerance to (a)biotic stresses and delay the senescence of fruit by scavenging the reactive oxygen species (ROS) and enhancing antioxidant responses. The effects of PAs on coloring and softening of strawberries (Fragaria × ananassa Duch.), a worldwide demanded edible fruit and typical material for studying non-climacteric fruit ripening, were firstly assessed in this work. The results showed that exogenous PAs delayed the decrease in fruit firmness and anthocyanins accumulation but improved the fruit skin brightness. Strawberries treated with PAs had similar total soluble solids, total phenolics, and total flavonoids, but lower titratable acidity content. Moreover, the contents of endogenous PAs, abscisic acid and sucrose, were somehow increased by PA treatment, while no obvious change was found in fructose and glucose content. In addition, the anthocyanin- and firmness-related genes were significantly repressed, while the PA biosynthetic gene (anthocyanin reductase, ANR) was highly up-regulated by PA treatment at the key point for fruit softening and coloring. In summary, the results presented in this study suggest that PAs slow down strawberry coloration and softening by inhibiting the expression of related genes, which could be helpful for a better understanding of the biological role of PAs and provide a new strategy to regulate strawberry ripening.
Collapse
Affiliation(s)
- Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunyan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuaipeng Cao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziqing Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (Y.L.); (H.T.)
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (Y.L.); (H.T.)
| |
Collapse
|
7
|
Nguyen HM, Putterill J, Dare AP, Plunkett BJ, Cooney J, Peng Y, Souleyre EJF, Albert NW, Espley RV, Günther CS. Two genes, ANS and UFGT2, from Vaccinium spp. are key steps for modulating anthocyanin production. FRONTIERS IN PLANT SCIENCE 2023; 14:1082246. [PMID: 36818839 PMCID: PMC9933871 DOI: 10.3389/fpls.2023.1082246] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Anthocyanins are a major group of red to blue spectrum plant pigments with many consumer health benefits. Anthocyanins are derived from the flavonoid pathway and diversified by glycosylation and methylation, involving the concerted action of specific enzymes. Blueberry and bilberry (Vaccinium spp.) are regarded as 'superfruits' owing to their high content of flavonoids, especially anthocyanins. While ripening-related anthocyanin production in bilberry (V. myrtillus) and blueberry (V. corymbosum) is regulated by the transcriptional activator MYBA1, the role of specific structural genes in determining the concentration and composition of anthocyanins has not been functionally elucidated. We isolated three candidate genes, CHALCONE SYNTHASE (VmCHS1), ANTHOCYANIDIN SYNTHASE (VmANS) and UDP-GLUCOSE : FLAVONOID-3-O-GLYCOSYLTRANSFERASE (VcUFGT2), from Vaccinium, which were predominantly expressed in pigmented fruit skin tissue and showed high homology between bilberry and blueberry. Agrobacterium-mediated transient expression of Nicotiana benthamiana showed that overexpression of VcMYBA1 in combination with VmANS significantly increased anthocyanin concentration (3-fold). Overexpression of VmCHS1 showed no effect above that induced by VcMYBA1, while VcUFGT2 modulated anthocyanin composition to produce delphinidin-3-galactosylrhamnoside, not naturally produced in tobacco. In strawberry (Fragaria × ananassa), combined transient overexpression of VcUFGT2 with a FLAVONOID 3´,5´-HYDROXYLASE from kiwifruit (Actinidia melanandra) modulated the anthocyanin profile to include galactosides and arabinosides of delphinidin and cyanidin, major anthocyanins in blueberry and bilberry. These findings provide insight into the role of the final steps of biosynthesis in modulating anthocyanin production in Vaccinium and may contribute to the targeted breeding of new cultivars with improved nutritional properties.
Collapse
Affiliation(s)
- Han M. Nguyen
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
- University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Joanna Putterill
- University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Andrew P. Dare
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Blue J. Plunkett
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Janine Cooney
- The New Zealand Institute for Plant and Food Research Ltd, Hamilton, New Zealand
| | - Yongyan Peng
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | | | - Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Catrin S. Günther
- The New Zealand Institute for Plant and Food Research Ltd, Hamilton, New Zealand
| |
Collapse
|
8
|
Li BJ, Shi YN, Jia HR, Yang XF, Sun YF, Lu J, Giovannoni JJ, Jiang GH, Rose JKC, Chen KS. Abscisic acid mediated strawberry receptacle ripening involves the interplay of multiple phytohormone signaling networks. FRONTIERS IN PLANT SCIENCE 2023; 14:1117156. [PMID: 36794230 PMCID: PMC9923025 DOI: 10.3389/fpls.2023.1117156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
As a canonical non-climacteric fruit, strawberry (Fragaria spp.) ripening is mainly mediated by abscisic acid (ABA), which involves multiple other phytohormone signalings. Many details of these complex associations are not well understood. We present an coexpression network, involving ABA and other phytohormone signalings, based on weighted gene coexpression network analysis of spatiotemporally resolved transcriptome data and phenotypic changes of strawberry receptacles during development and following various treatments. This coexpression network consists of 18,998 transcripts and includes transcripts related to phytohormone signaling pathways, MADS and NAC family transcription factors and biosynthetic pathways associated with fruit quality. Members of eight phytohormone signaling pathways are predicted to participate in ripening and fruit quality attributes mediated by ABA, of which 43 transcripts were screened to consist of the hub phytohormone signalings. In addition to using several genes reported from previous studies to verify the reliability and accuracy of this network, we explored the role of two hub signalings, small auxin up-regulated RNA 1 and 2 in receptacle ripening mediated by ABA, which are also predicted to contribute to fruit quality. These results and publicly accessible datasets provide a valuable resource to elucidate ripening and quality formation mediated by ABA and involves multiple other phytohormone signalings in strawberry receptacle and serve as a model for other non-climacteric fruits.
Collapse
Affiliation(s)
- Bai-Jun Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Yan-Na Shi
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Hao-Ran Jia
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Xiao-Fang Yang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yun-Fan Sun
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Jiao Lu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - James J. Giovannoni
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- United States Department of Agriculture – Agricultural Research Service and Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, United States
| | - Gui-Hua Jiang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jocelyn K. C. Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Kun-Song Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Jiang L, Yue M, Liu Y, Ye Y, Zhang Y, Lin Y, Wang X, Chen Q, Tang H. Alterations of Phenylpropanoid Biosynthesis Lead to the Natural Formation of Pinkish-Skinned and White-Fleshed Strawberry (Fragaria × ananassa). Int J Mol Sci 2022; 23:ijms23137375. [PMID: 35806380 PMCID: PMC9267004 DOI: 10.3390/ijms23137375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/20/2022] Open
Abstract
Anthocyanin content is important for both the external and internal fruit quality of cultivated strawberries, but the mechanism of its accumulation in pinkish-skinned and white-fleshed strawberries is puzzling. Here, we found that the factor determining variation in the flesh color was not the FaMYB10 but the FaC4H in the cultivated strawberry Benihoppe and its white-fleshed mutant Xiaobai. Compared with Benihoppe, there was no significant difference in the coding sequence and expression level of FaMYB10 in Xiaobai’s flesh. Instead, the transcription of FaC4H was dramatically inhibited. The combined analyses of transcriptomics and metabolomics showed that the differential genes and metabolites were significantly enriched in the phenylpropanoid biosynthesis pathway. Furthermore, the transient overexpression of FaC4H greatly restored anthocyanins’ accumulation in Xiaobai’s flesh and did not produce additional pigment species, as in Benihoppe. The transcriptional repression of FaC4H was not directly caused by promoter methylations, lncRNAs, or microRNAs. In addition, the unexpressed FaF3′H, which resulted in the loss of cyanidin 3-O-glucoside in the flesh, was not due to methylation in promoters. Our findings suggested that the repression of FaC4H was responsible for the natural formation of pinkish-skinned and white-fleshed strawberries.
Collapse
Affiliation(s)
- Leiyu Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.J.); (M.Y.); (Y.L.); (Y.Y.); (X.W.)
| | - Maolan Yue
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.J.); (M.Y.); (Y.L.); (Y.Y.); (X.W.)
| | - Yongqiang Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.J.); (M.Y.); (Y.L.); (Y.Y.); (X.W.)
| | - Yuyun Ye
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.J.); (M.Y.); (Y.L.); (Y.Y.); (X.W.)
| | - Yunting Zhang
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Y.L.)
| | - Yuanxiu Lin
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Y.L.)
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.J.); (M.Y.); (Y.L.); (Y.Y.); (X.W.)
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Y.L.)
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.J.); (M.Y.); (Y.L.); (Y.Y.); (X.W.)
- Correspondence: (Q.C.); (H.T.); Tel.: +86-158-9268-5193 (Q.C.); +86-136-0826-4028 (H.T.)
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.J.); (M.Y.); (Y.L.); (Y.Y.); (X.W.)
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Y.L.)
- Correspondence: (Q.C.); (H.T.); Tel.: +86-158-9268-5193 (Q.C.); +86-136-0826-4028 (H.T.)
| |
Collapse
|
10
|
Comparative Transcriptome Analysis of Purple and Green Non-Heading Chinese Cabbage and Function Analyses of BcTT8 Gene. Genes (Basel) 2022; 13:genes13060988. [PMID: 35741750 PMCID: PMC9222865 DOI: 10.3390/genes13060988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023] Open
Abstract
Non-heading Chinese cabbage (Brassica campestris ssp. chinensis) is an important vegetative crop in the south of China. As an antioxidant, anthocyanin is the major quality trait for vegetables with purple leaves or petioles. However, the molecular biosynthetic mechanism of anthocyanin in non-heading Chinese cabbage has not been explained exclusively. In this study, two non-heading Chinese cabbage with contrasting colors in the leaves were used as the materials for RNA-seq. A total of 906 DEGs were detected, and we found that the anthocyanin and flavonoid biosynthetic pathways are significantly enriched in the purple NHCC. The transcriptome result was verified by RT-qPCR. Though bioinformatics analysis, BcTT8 was selected as the candidate gene for the regulation of anthocyanin synthesis, and the characterization of BcTT8 was elucidated by the functional analyses. The results proved that BcTT8 is a nucleus protein and phylogenetically close to the TT8 protein from Brassica. After silencing BcTT8, the total anthocyanin content of pTY-BcTT8 plants decreased by 42.5%, and the relative expression levels of anthocyanin pathway genes BcDFR, BcLODX and BcUF3GT-1 were significantly downregulated, while the transcription level of BcFLS was significantly upregulated. Compared with the wild type, the transgenic Arabidopsis showed obvious violet in the cotyledons part, and the anthocyanin biosynthetic genes such as AtDFR and AtLODX were significantly upregulated. In conclusion, BcTT8 is critical in the anthocyanin synthesis process of non-heading Chinese cabbage. Our findings illustrated the molecular mechanism of anthocyanin biosynthesis in non-heading Chinese cabbage.
Collapse
|
11
|
Zhang K, Yuan M, Xia H, He L, Ma J, Wang M, Zhao H, Hou L, Zhao S, Li P, Tian R, Pan J, Li G, Thudi M, Ma C, Wang X, Zhao C. BSA‑seq and genetic mapping reveals AhRt2 as a candidate gene responsible for red testa of peanut. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1529-1540. [PMID: 35166897 DOI: 10.1007/s00122-022-04051-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The candidate recessive gene AhRt2 responsible for red testa of peanut was identified through combined BSA-seq and linkage mapping approaches. The testa color of peanuts (Arachis hypogaea L.) is an important trait, and those with red testa are particularly popular owing to the high-anthocyanin content. However, the identification of genes underlying the regulation of the red testa trait in peanut are rarely reported. In order to fine map red testa gene, two F2:4 populations were constructed through the cross of YZ9102 (pink testa) with ZH12 (red testa) and ZH2 (red testa). Genetic analysis indicated that red testa was controlled by a single recessive gene named as AhRt2 (Red testa gene 2). Using BSA-seq approach, AhRt2 was preliminary identified on chromosome 12, which was further mapped to a 530-kb interval using 220 recombinant lines through linkage mapping. Furthermore, functional annotation, expression profiling, and the analyses of sequence variation confirmed that the anthocyanin reductase namely (Arahy.IK60LM) was the most likely candidate gene for AhRt2. It was found that a SNP in the third exon of AhRt2 altered the encoding amino acids, and was associated with red testa in peanut. In addition, a closely linked molecular marker linked with red testa trait in peanut was also developed for future studies. Our results provide valuable insight into the molecular mechanism underlying peanut testa color and present significant diagnostic marker resources for marker-assisted selected breeding in peanut.
Collapse
Affiliation(s)
- Kun Zhang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan, 250100, People's Republic of China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Mei Yuan
- Shandong Peanut Research Institute, Qingdao, 266199, Shandong, People's Republic of China
| | - Han Xia
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Liangqiong He
- Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Jing Ma
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Mingxiao Wang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Huiling Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Lei Hou
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Shuzhen Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Pengcheng Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Ruizheng Tian
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Jiaowen Pan
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Guanghui Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Mahendar Thudi
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
- Dr. Rajendra Prasad Central Agricultural University, Pusa, Samsthipur, Bihar, 848125, India
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xingjun Wang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
12
|
Labadie M, Vallin G, Potier A, Petit A, Ring L, Hoffmann T, Gaston A, Munoz-Blanco J, Caballero JL, Schwab W, Rothan C, Denoyes B. High Resolution Quantitative Trait Locus Mapping and Whole Genome Sequencing Enable the Design of an Anthocyanidin Reductase-Specific Homoeo-Allelic Marker for Fruit Colour Improvement in Octoploid Strawberry ( Fragaria × ananassa). FRONTIERS IN PLANT SCIENCE 2022; 13:869655. [PMID: 35371183 PMCID: PMC8972132 DOI: 10.3389/fpls.2022.869655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/24/2022] [Indexed: 05/02/2023]
Abstract
Fruit colour is central to the sensorial and nutritional quality of strawberry fruit and is therefore a major target in breeding programmes of the octoploid cultivated strawberry (Fragaria × ananassa). The red colour of the fruit is caused by the accumulation of anthocyanins, which are water-soluble flavonoids. To facilitate molecular breeding, here we have mapped with high resolution fruit colour quantitative trait loci (QTLs) (COLOUR, scored visually as in selection programmes) and associated flavonoid metabolic QTLs (5 anthocyanins compounds together with 8 flavonols and flavan-3-ols) to specific subgenomes of cultivated strawberry. Two main colour-related QTLs were located on the LG3A linkage group (Fragaria vesca subgenome). Genetic mapping, transcriptome analysis and whole genome sequencing enabled the detection of a homoeo-allelic variant of ANTHOCYANIDIN REDUCTASE (ANR) underlying the major male M3A COLOUR and pelargonidin-3-glucoside (PgGs) QTLs (up to ∼20% of explained variance). Consistent with previously published functional studies, ANR transcript abundance was inversely related with PgGs content in contrasted progeny individuals. Genetic segregation analyses further indicated that a molecular marker designed using an 18 bp deletion found in the 5'UTR of the candidate ANR homoeo-allelic variant is effective in identifying genotypes with intense red fruit colour. Our study provides insights into the genetic and molecular control of colour-related traits in strawberry and further defines a genetic marker for marker-assisted selection of new strawberry varieties with improved colour. The QTLs detected and the underlying candidate genes are different from those described to date, emphasising the importance of screening a wide diversity of genetic resources in strawberry.
Collapse
Affiliation(s)
- Marc Labadie
- Université de Bordeaux, INRAE, UMR BFP, Villenave d’Ornon, France
| | - Guillaume Vallin
- Université de Bordeaux, INRAE, UMR BFP, Villenave d’Ornon, France
| | - Aline Potier
- Université de Bordeaux, INRAE, UMR BFP, Villenave d’Ornon, France
| | | | - Ludwig Ring
- Biotechnology of Natural Products, Technical University of Munich, Freising, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technical University of Munich, Freising, Germany
| | - Amèlia Gaston
- Université de Bordeaux, INRAE, UMR BFP, Villenave d’Ornon, France
| | - Juan Munoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | - José L. Caballero
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technical University of Munich, Freising, Germany
| | - Christophe Rothan
- Université de Bordeaux, INRAE, UMR BFP, Villenave d’Ornon, France
- Christophe Rothan, , orcid.org/0000-0002-6831-2823
| | - Béatrice Denoyes
- Université de Bordeaux, INRAE, UMR BFP, Villenave d’Ornon, France
- *Correspondence: Béatrice Denoyes, , orcid.org/0000-0002-0369-9609
| |
Collapse
|
13
|
Sabbadini S, Capocasa F, Battino M, Mazzoni L, Mezzetti B. Improved nutritional quality in fruit tree species through traditional and biotechnological approaches. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Narvekar AS, Tharayil N. Nitrogen Fertilization Influences the Quantity, Composition, and Tissue Association of Foliar Phenolics in Strawberries. FRONTIERS IN PLANT SCIENCE 2021; 12:613839. [PMID: 33959135 PMCID: PMC8093403 DOI: 10.3389/fpls.2021.613839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Unlike quantitative changes, the compositional changes of plant phenolics and changes in their tissue association as influenced by the nutrient supply are less well understood. We evaluated the quantity, composition, and tissue association of phenolics in leaves of two Fragaria ananassa cultivars in response to different levels of nitrogen (N) fertilization using global metabolomic approaches. Influence of N supply on phenolic content in both cultivars was similar, but the magnitude of this response was compound specific. Ellagitannins, the most abundant class of phenolic oligomers, were less responsive to the applied N treatments, whereas proanthocyanidins, the less abundant class of phenolic oligomers, exhibited higher fold change. Within mono-phenolics, the hydroxycinnamates were more abundant but showed lower fold change than the hydroxybenzoates. Among flavonoids, the hydroxylated flavonols showed higher abundances than the flavones, with a preferential accumulation of dihydroxylated flavonol at lower N levels. Furthermore, glycosylated flavonols were higher than the acylated forms. The extractable fraction of phenolics was more influenced by the N treatment than the fiber-bound fraction. The extensive compositional modification of phenolics and a greater response of non-bound fractions in response to N rates highlight the potential to use precise management of N supply as an effective strategy to enhance the bioactive compounds in crops.
Collapse
|
15
|
Dong NQ, Lin HX. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:180-209. [PMID: 33325112 DOI: 10.1111/jipb.13054] [Citation(s) in RCA: 666] [Impact Index Per Article: 166.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/10/2020] [Indexed: 05/21/2023]
Abstract
Phenylpropanoid metabolism is one of the most important metabolisms in plants, yielding more than 8,000 metabolites contributing to plant development and plant-environment interplay. Phenylpropanoid metabolism materialized during the evolution of early freshwater algae that were initiating terrestrialization and land plants have evolved multiple branches of this pathway, which give rise to metabolites including lignin, flavonoids, lignans, phenylpropanoid esters, hydroxycinnamic acid amides, and sporopollenin. Recent studies have revealed that many factors participate in the regulation of phenylpropanoid metabolism, and modulate phenylpropanoid homeostasis when plants undergo successive developmental processes and are subjected to stressful environments. In this review, we summarize recent progress on elucidating the contribution of phenylpropanoid metabolism to the coordination of plant development and plant-environment interaction, and metabolic flux redirection among diverse metabolic routes. In addition, our review focuses on the regulation of phenylpropanoid metabolism at the transcriptional, post-transcriptional, post-translational, and epigenetic levels, and in response to phytohormones and biotic and abiotic stresses.
Collapse
Affiliation(s)
- Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics and Development, Shanghai Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics and Development, Shanghai Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
16
|
Zhu Y, Xie DY. Docking Characterization and in vitro Inhibitory Activity of Flavan-3-ols and Dimeric Proanthocyanidins Against the Main Protease Activity of SARS-Cov-2. FRONTIERS IN PLANT SCIENCE 2020; 11:601316. [PMID: 33329667 PMCID: PMC7733993 DOI: 10.3389/fpls.2020.601316] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/06/2020] [Indexed: 05/24/2023]
Abstract
We report to use the main protease (Mpro) of SARS-Cov-2 to screen plant flavan-3-ols and proanthocyanidins. Twelve compounds, (-)-afzelechin (AF), (-)-epiafzelechin (EAF), (+)-catechin (CA), (-)-epicatechin (EC), (+)-gallocatechin (GC), (-)-epigallocatechin (EGC), (+)-catechin-3-O-gallate (CAG), (-)-epicatechin-3-O-gallate (ECG), (-)-gallocatechin-3-O-gallate (GCG), (-)-epigallocatechin-3-O-gallate (EGCG), procyanidin A2 (PA2), and procyanidin B2 (PB2), were selected for docking simulation. The resulting data predicted that all 12 metabolites could bind to Mpro. The affinity scores of PA2 and PB2 were predicted to be -9.2, followed by ECG, GCG, EGCG, and CAG, -8.3 to -8.7, and then six flavan-3-ol aglycones, -7.0 to -7.7. Docking characterization predicted that these compounds bound to three or four subsites (S1, S1', S2, and S4) in the binding pocket of Mpro via different spatial ways and various formation of one to four hydrogen bonds. In vitro analysis with 10 available compounds showed that CAG, ECG, GCG, EGCG, and PB2 inhibited the Mpro activity with an IC50 value, 2.98 ± 0.21, 5.21 ± 0.5, 6.38 ± 0.5, 7.51 ± 0.21, and 75.3 ± 1.29 μM, respectively, while CA, EC, EGC, GC, and PA2 did not have inhibitory activities. To further substantiate the inhibitory activities, extracts prepared from green tea (GT), two muscadine grapes (MG), cacao, and dark chocolate (DC), which are rich in CAG, ECG, GAG, EGCG, or/and PB2, were used for inhibitory assay. The resulting data showed that GT, two MG, cacao, and DC extracts inhibited the Mpro activity with an IC50 value, 2.84 ± 0.25, 29.54 ± 0.41, 29.93 ± 0.83, 153.3 ± 47.3, and 256.39 ± 66.3 μg/ml, respectively. These findings indicate that on the one hand, the structural features of flavan-3-ols are closely associated with the affinity scores; on the other hand, the galloylation and oligomeric types of flavan-3-ols are critical in creating the inhibitory activity against the Mpro activity.
Collapse
|
17
|
Gao Q, Luo H, Li Y, Liu Z, Kang C. Genetic modulation of RAP alters fruit coloration in both wild and cultivated strawberry. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1550-1561. [PMID: 31845477 PMCID: PMC7292541 DOI: 10.1111/pbi.13317] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/01/2019] [Accepted: 12/10/2019] [Indexed: 05/09/2023]
Abstract
Fruit colour affects consumer preference and is an important trait for breeding in strawberry. Previously, we isolated the Reduced Anthocyanins in Petioles (RAP) gene encoding a glutathione S-transferase (GST) that binds anthocyanins to facilitate their transport from cytosol to vacuole in the diploid strawberry Fragaria vesca. The parent of rap was the F. vesca variety 'Yellow Wonder' that develops white fruit due to a natural mutation in the FveMYB10 gene. Here, we investigated the application potential of RAP in modulating fruit colours by overexpression of RAP in F. vesca and knockout of RAP in the cultivated strawberry Fragaria × ananassa. Unexpectedly, the RAP overexpression in Yellow Wonder background caused formation of red fruit. In addition, the red coloration occurs precociously at floral stage 10 and continues in the receptacle during early fruit development. Transcriptome analysis revealed that the anthocyanin biosynthesis genes were not up-regulated in RAP-ox; rap myb10 flowers at anthesis and largely inhibited at the turning stage in fruit, suggesting a coloration mechanism independent of FveMYB10. Moreover, we used CRISPR/Cas9 to knockout RAP in cultivated strawberry which is octoploid. Six copies of RAP were simultaneously knocked out in the T0 generation leading to the green stem and white-fruited phenotype. Several T1 progeny have segregated away the CRISPR/Cas9 transgene but maintain the green stem trait. Our results indicate that enhancing the anthocyanin transport could redirect the metabolic flux from proanthocyanidin to anthocyanin production at early developmental stages of fruit and that RAP is one promising candidate gene in fruit colour breeding of strawberry.
Collapse
Affiliation(s)
- Qi Gao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education)College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Huifeng Luo
- Institute of HorticultureHangzhou Academy of Agricultural SciencesHangzhouChina
| | - Yongping Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education)College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Zhongchi Liu
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMDUSA
| | - Chunying Kang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education)College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
18
|
Labadie M, Vallin G, Petit A, Ring L, Hoffmann T, Gaston A, Potier A, Schwab W, Rothan C, Denoyes B. Metabolite Quantitative Trait Loci for Flavonoids Provide New Insights into the Genetic Architecture of Strawberry ( Fragaria × ananassa) Fruit Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6927-6939. [PMID: 32469530 DOI: 10.1021/acs.jafc.0c01855] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Flavonoids are products from specialized metabolism that contribute to fruit sensorial (color) and nutritional (antioxidant properties) quality. Here, using a pseudo full-sibling F1 progeny previously studied for fruit sensorial quality of cultivated strawberry (Fragaria × ananassa), we explored over two successive years the genetic architecture of flavonoid-related traits using liquid chromatography electrospray ionization tandem mass spectrometry (13 compounds including anthocyanins, flavonols, and flavan-3-ols) and colorimetric assays (anthocyanins, flavonoids, phenolics, and total antioxidant capacity (ferric reducing antioxidant power and Trolox equivalent antioxidant capacity)). Network correlation analysis highlighted the high connectivity of flavonoid compounds within each chemical class and low correlation with colorimetric traits except for anthocyanins. Mapping onto the female and male linkage maps of 152 flavonoid metabolic quantitative trait loci (mQTLs) and of 26 colorimetric QTLs indicated colocalization on few linkage groups of major flavonoid- and taste-related QTLs previously uncovered. These results pave the way for the discovery of genetic variations underlying flavonoid mQTLs and for marker-assisted selection of strawberry varieties with improved sensorial and nutritional quality.
Collapse
Affiliation(s)
- Marc Labadie
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d'Ornon F-33140, France
| | - Guillaume Vallin
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d'Ornon F-33140, France
| | - Aurélie Petit
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d'Ornon F-33140, France
- INVENIO, MIN de Brienne, 110 quai de Paludate, Bordeaux 33800, France
| | - Ludwig Ring
- Biotechnology of Natural Products, Technical University Munich, Liesel-Beckmann-Str. 1, Freising 85354, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technical University Munich, Liesel-Beckmann-Str. 1, Freising 85354, Germany
| | - Amèlia Gaston
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d'Ornon F-33140, France
| | - Aline Potier
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d'Ornon F-33140, France
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technical University Munich, Liesel-Beckmann-Str. 1, Freising 85354, Germany
| | | | - Béatrice Denoyes
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d'Ornon F-33140, France
| |
Collapse
|
19
|
Wang H, Zhang H, Yang Y, Li M, Zhang Y, Liu J, Dong J, Li J, Butelli E, Xue Z, Wang A, Wang G, Martin C, Jin W. The control of red colour by a family of MYB transcription factors in octoploid strawberry (Fragaria × ananassa) fruits. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1169-1184. [PMID: 31647169 PMCID: PMC7152614 DOI: 10.1111/pbi.13282] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/19/2019] [Accepted: 10/22/2019] [Indexed: 05/08/2023]
Abstract
Octoploid strawberry (Fragaria × ananassa Duch.) is a model plant for research and one of the most important non-climacteric fruit crops throughout the world. The associations between regulatory networks and metabolite composition were explored for one of the most critical agricultural properties in octoploid strawberry, fruit colour. Differences in the levels of flavonoids are due to the differences in the expression of structural and regulatory genes involved in flavonoid biosynthesis. The molecular mechanisms underlying differences in fruit colour were compared between red and white octoploid strawberry varieties. FaMYB genes had combinatorial effects in determining the red colour of fruit through the regulation of flavonoid biosynthesis in response to the increase in endogenous ABA at the final stage of fruit development. Analysis of alleles of FaMYB10 and FaMYB1 in red and white strawberry varieties led to the discovery of a white-specific variant allele of FaMYB10, FaMYB10-2. Its coding sequence possessed an ACTTATAC insertion in the genomic region encoding the C-terminus of the protein. This insertion introduced a predicted premature termination codon, which suggested the loss of intact FaMYB10 protein playing a critical role in the loss of red colour in white octoploid strawberry.
Collapse
Affiliation(s)
- Hua Wang
- Beijing Academy of Forestry and Pomology SciencesBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture and Rural AffairsBeijingChina
| | - Hui Zhang
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuan Yang
- Beijing Academy of Forestry and Pomology SciencesBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture and Rural AffairsBeijingChina
- Beijing Engineering Research Center for Deciduous Fruit TreesBeijingChina
| | - Maofu Li
- Beijing Academy of Forestry and Pomology SciencesBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture and Rural AffairsBeijingChina
| | - Yuntao Zhang
- Beijing Academy of Forestry and Pomology SciencesBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture and Rural AffairsBeijingChina
- Beijing Engineering Research Center for Deciduous Fruit TreesBeijingChina
| | - Jiashen Liu
- Beijing Academy of Forestry and Pomology SciencesBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture and Rural AffairsBeijingChina
| | - Jing Dong
- Beijing Academy of Forestry and Pomology SciencesBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture and Rural AffairsBeijingChina
- Beijing Engineering Research Center for Deciduous Fruit TreesBeijingChina
| | - Jie Li
- John Innes CentreNorwichUK
| | | | - Zhen Xue
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Aimin Wang
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Guixia Wang
- Beijing Academy of Forestry and Pomology SciencesBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture and Rural AffairsBeijingChina
- Beijing Engineering Research Center for Deciduous Fruit TreesBeijingChina
| | | | - Wanmei Jin
- Beijing Academy of Forestry and Pomology SciencesBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture and Rural AffairsBeijingChina
- John Innes CentreNorwichUK
| |
Collapse
|
20
|
Li Y, Xu P, Chen G, Wu J, Liu Z, Lian H. FvbHLH9 Functions as a Positive Regulator of Anthocyanin Biosynthesis by Forming a HY5-bHLH9 Transcription Complex in Strawberry Fruits. PLANT & CELL PHYSIOLOGY 2020; 61:826-837. [PMID: 32016380 DOI: 10.1093/pcp/pcaa010] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/24/2020] [Indexed: 05/18/2023]
Abstract
Anthocyanin accumulation is transcriptionally regulated by the MYB-bHLH-WD40 complex. Light is indispensable for anthocyanin accumulation, and light-inducible MYB and HY5 were considered to promote anthocyanin accumulation in many fruits. Whether and how light-inducible bHLH transcription factor and HY5 regulate anthocyanin synthesis in strawberry is unknown. In this study, we identified a bHLH transcription factor, FvbHLH9, which was induced by light as well as FvHY5, and found that, similar to FvHY5, the transient overexpression and interference FvbHLH9 in strawberry fruits can promote and decrease anthocyanin accumulation, respectively, indicating FvbHLH9 functions as a positive regulator of anthocyanin biosynthesis. Furthermore, we confirmed that both FvHY5 and FvbHLH9 specifically bind to the promoter region of some key enzyme genes, including FvDFR, and the expression of FvDFR was activated through the heterodimer formation between FvHY5 and FvbHLH9. Finally, we confirmed that FvbHLH9-promoted anthocyanin accumulation is dependent on HY5-bHLH heterodimerisation in Arabidopsis. Our findings provide insights into a mechanism involving the synergistic regulation of light-dependent coloration and anthocyanin biosynthesis via a HY5-bHLH heterodimer formed by the interaction of FvHY5 and FvbHLH9 in strawberry fruits.
Collapse
Affiliation(s)
- Yang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengbo Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanqun Chen
- School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Hongli Lian
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
Vallarino JG, Merchante C, Sánchez‐Sevilla JF, de Luis Balaguer MA, Pott DM, Ariza MT, Casañal A, Posé D, Vioque A, Amaya I, Willmitzer L, Solano R, Sozzani R, Fernie AR, Botella MA, Giovannoni JJ, Valpuesta V, Osorio S. Characterizing the involvement of FaMADS9 in the regulation of strawberry fruit receptacle development. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:929-943. [PMID: 31533196 PMCID: PMC7061862 DOI: 10.1111/pbi.13257] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 09/03/2019] [Accepted: 09/08/2019] [Indexed: 05/08/2023]
Abstract
FaMADS9 is the strawberry (Fragaria x ananassa) gene that exhibits the highest homology to the tomato (Solanum lycopersicum) RIN gene. Transgenic lines were obtained in which FaMADS9 was silenced. The fruits of these lines did not show differences in basic parameters, such as fruit firmness or colour, but exhibited lower Brix values in three of the four independent lines. The gene ontology MapMan category that was most enriched among the differentially expressed genes in the receptacles at the white stage corresponded to the regulation of transcription, including a high percentage of transcription factors and regulatory proteins associated with auxin action. In contrast, the most enriched categories at the red stage were transport, lipid metabolism and cell wall. Metabolomic analysis of the receptacles of the transformed fruits identified significant changes in the content of maltose, galactonic acid-1,4-lactone, proanthocyanidins and flavonols at the green/white stage, while isomaltose, anthocyanins and cuticular wax metabolism were the most affected at the red stage. Among the regulatory genes that were differentially expressed in the transgenic receptacles were several genes previously linked to flavonoid metabolism, such as MYB10, DIV, ZFN1, ZFN2, GT2, and GT5, or associated with the action of hormones, such as abscisic acid, SHP, ASR, GTE7 and SnRK2.7. The inference of a gene regulatory network, based on a dynamic Bayesian approach, among the genes differentially expressed in the transgenic receptacles at the white and red stages, identified the genes KAN1, DIV, ZFN2 and GTE7 as putative targets of FaMADS9. A MADS9-specific CArG box was identified in the promoters of these genes.
Collapse
Affiliation(s)
- José G. Vallarino
- Departamento de Biología Molecular y Bioquímica. Campus de TeatinosInstituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’Universidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
- Unidad Asociada IFAPA‐CSIC Biotecnología y Mejora en FresaMálagaSpain
| | - Catharina Merchante
- Departamento de Biología Molecular y Bioquímica. Campus de TeatinosInstituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’Universidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
| | - José F. Sánchez‐Sevilla
- Unidad Asociada IFAPA‐CSIC Biotecnología y Mejora en FresaMálagaSpain
- Genómica y BiotecnologíaCentro de MálagaInstituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA)MálagaSpain
| | - María Angels de Luis Balaguer
- Plant and Microbial Biology DepartmentNorth Carolina State UniversityRaleighNCUSA
- Present address:
Precision Biosciences, Inc.DurhamNCUSA
| | - Delphine M. Pott
- Departamento de Biología Molecular y Bioquímica. Campus de TeatinosInstituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’Universidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
- Unidad Asociada IFAPA‐CSIC Biotecnología y Mejora en FresaMálagaSpain
| | - María T. Ariza
- Departamento de Biología Molecular y Bioquímica. Campus de TeatinosInstituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’Universidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
- Unidad Asociada IFAPA‐CSIC Biotecnología y Mejora en FresaMálagaSpain
| | - Ana Casañal
- Departamento de Biología Molecular y Bioquímica. Campus de TeatinosInstituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’Universidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
| | - David Posé
- Departamento de Biología Molecular y Bioquímica. Campus de TeatinosInstituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’Universidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
- Unidad Asociada IFAPA‐CSIC Biotecnología y Mejora en FresaMálagaSpain
| | - Amalia Vioque
- Departamento de Biología Molecular y Bioquímica. Campus de TeatinosInstituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’Universidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
| | - Iraida Amaya
- Unidad Asociada IFAPA‐CSIC Biotecnología y Mejora en FresaMálagaSpain
- Genómica y BiotecnologíaCentro de MálagaInstituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA)MálagaSpain
| | - Lothar Willmitzer
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Roberto Solano
- Departmento de Genética Molecular de PlantasCentro Nacional de BiotecnologíaConsejo Superior de Investigaciones Científicas (CNB‐CSIC)MadridSpain
| | - Rosangela Sozzani
- Plant and Microbial Biology DepartmentNorth Carolina State UniversityRaleighNCUSA
- Biomathematics ProgramNorth Carolina State UniversityRaleighNCUSA
| | - Alisdair R. Fernie
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Miguel A. Botella
- Departamento de Biología Molecular y Bioquímica. Campus de TeatinosInstituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’Universidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
- Unidad Asociada IFAPA‐CSIC Biotecnología y Mejora en FresaMálagaSpain
| | - James J. Giovannoni
- Boyce Thompson Institute for Plant Research and USDA‐ARSRobert W. Holley CenterCornell University CampusIthacaNYUSA
| | - Victoriano Valpuesta
- Departamento de Biología Molecular y Bioquímica. Campus de TeatinosInstituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’Universidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
- Unidad Asociada IFAPA‐CSIC Biotecnología y Mejora en FresaMálagaSpain
| | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica. Campus de TeatinosInstituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’Universidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
- Unidad Asociada IFAPA‐CSIC Biotecnología y Mejora en FresaMálagaSpain
| |
Collapse
|
22
|
Yuan Y, Zhang J, Liu X, Meng M, Wang J, Lin J. Tissue-specific transcriptome for Dendrobium officinale reveals genes involved in flavonoid biosynthesis. Genomics 2020; 112:1781-1794. [DOI: 10.1016/j.ygeno.2019.10.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/13/2019] [Indexed: 12/27/2022]
|
23
|
Phytochemical Shift from Condensed Tannins to Flavonoids in Transgenic Betula pendula Decreases Consumption and Growth but Improves Growth Efficiency of Epirrita autumnata Larvae. J Chem Ecol 2019; 46:217-231. [PMID: 31879865 PMCID: PMC7056695 DOI: 10.1007/s10886-019-01134-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/31/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022]
Abstract
Despite active research, antiherbivore activity of specific plant phenolics remains largely unresolved. We constructed silver birch (Betula pendula) lines with modified phenolic metabolism to study the effects of foliar flavonoids and condensed tannins on consumption and growth of larvae of a generalist herbivore, the autumnal moth (Epirrita autumnata). We conducted a feeding experiment using birch lines in which expression of dihydroflavonol reductase (DFR), anthocyanidin synthase (ANS) or anthocyanidin reductase (ANR) had been decreased by RNA interference. Modification-specific effects on plant phenolics, nutrients and phenotype, and on larval consumption and growth were analyzed using uni- and multivariate methods. Inhibiting DFR expression increased the concentration of flavonoids at the expense of condensed tannins, and silencing DFR and ANR decreased leaf and plant size. E. autumnata larvae consumed on average 82% less of DFRi plants than of unmodified controls, suggesting that flavonoids or glandular trichomes deter larval feeding. However, larval growth efficiency was highest on low-tannin DFRi plants, indicating that condensed tannins (or their monomers) are physiologically more harmful than non-tannin flavonoids for E. autumnata larvae. Our results show that genetic manipulation of the flavonoid pathway in plants can effectively be used to produce altered phenolic profiles required for elucidating the roles of low-molecular weight phenolics and condensed tannins in plant–herbivore relationships, and suggest that phenolic secondary metabolites participate in regulation of plant growth.
Collapse
|
24
|
Zhao Y, Mao W, Chen Y, Wang W, Dai Z, Dou Z, Zhang K, Wei L, Li T, Zeng B, Liu T, Fan Y, Yan J, Li B, Jia W. Optimization and standardization of transient expression assays for gene functional analyses in strawberry fruits. HORTICULTURE RESEARCH 2019; 6:53. [PMID: 31069083 PMCID: PMC6491593 DOI: 10.1038/s41438-019-0135-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Strawberry is increasingly used as a model plant for research on fruit growth and development. The transient gene manipulation (TGM) technique is widely used to determine the function of plant genes, including those in strawberry fruits. However, its reliable application for the precise identification of gene function has been difficult owing to the lack of conditional optimization. In this study, we found that successful transient gene manipulation requires optimization, with the vector type, temperature, and fruit developmental stage being three major factors determining success. Notably, we found that transient gene manipulation was feasible only from the large green fruit stage onwards, making it especially suitable for identifying genes involved in strawberry fruit ripening. Furthermore, we established a method called percentage difference of phenotype (PDP), in which the functional effect of a gene could be precisely and efficiently identified in strawberry fruits. This method can be used to estimate the functional effect of a gene as a value from 0 to 100%, such that different genes can be quantitatively compared for their relative abilities to regulate fruit ripening. This study provides a useful tool for accelerating research on the molecular basis of strawberry fruit ripening.
Collapse
Affiliation(s)
- Yaoyao Zhao
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Wenwen Mao
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Yating Chen
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Wei Wang
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Zhengrong Dai
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Zhechao Dou
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Kai Zhang
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Lingzhi Wei
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Tianyu Li
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Baozhen Zeng
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Ting Liu
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Yijuan Fan
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Jiaqi Yan
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Bingbing Li
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Wensuo Jia
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| |
Collapse
|
25
|
Fang Z, Hou Z, Wang S, Liu Z, Wei S, Zhang Y, Song J, Yin J. Transcriptome Analysis Reveals the Accumulation Mechanism of Anthocyanins in Buckwheat ( Fagopyrum esculentum Moench) Cotyledons and Flowers. Int J Mol Sci 2019; 20:E1493. [PMID: 30934615 PMCID: PMC6471586 DOI: 10.3390/ijms20061493] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/20/2019] [Accepted: 03/23/2019] [Indexed: 12/20/2022] Open
Abstract
Buckwheat (Fagopyrum esculentum) is a valuable crop which can produce multiple human beneficial secondary metabolites, for example, the anthocyanins in sprouts and flowers. However, as the predominant group of visible polyphenols in pigmentation, little is known about the molecular mechanisms underlying the anthocyanin biosynthesis within buckwheat. In this study, a comparative transcriptome analysis of green and red common buckwheat cultivars was carried out through RNA sequencing. Overall, 3727 and 5323 differently expressed genes (DEGs) were identified in flowers and cotyledons, respectively. Through GO and KEGG analysis, we revealed that DEGs in flowers and cotyledons are predominately involved in biosynthesis of anthocyanin. A total of 42 unigenes encoding 11 structural enzymes of the anthocyanin biosynthesis were identified as DEGs. We also identified some transcription factor families involved in the regulation of anthocyanin biosynthesis. Real-time qPCR validation of candidate genes was performed in flowers and cotyledons, and the results suggested that the high expression level of structural genes involved in anthocyanin biosynthetic pathway promotes anthocyanin accumulation. Our results provide the insight understanding for coloration of red common buckwheat.
Collapse
Affiliation(s)
- Zhengwu Fang
- Hubei Collaborative Innovation Center for Grain Industry/Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou 434000, China.
| | - Zehao Hou
- Hubei Collaborative Innovation Center for Grain Industry/Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou 434000, China.
| | - Shuping Wang
- Hubei Collaborative Innovation Center for Grain Industry/Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou 434000, China.
| | - Zhixiong Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434000, China.
| | - Shudong Wei
- College of Life Science, Yangtze University, Jingzhou 434000, China.
| | - Yingxin Zhang
- Hubei Collaborative Innovation Center for Grain Industry/Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou 434000, China.
| | - Jinghan Song
- Hubei Collaborative Innovation Center for Grain Industry/Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou 434000, China.
| | - Junliang Yin
- Hubei Collaborative Innovation Center for Grain Industry/Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou 434000, China.
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center/Engendering Research Center of Ecology and Agricultural Use of Waterland, Ministry of Education, Yangtze University, Jingzhou 434000, China.
| |
Collapse
|
26
|
Baldi P, Orsucci S, Moser M, Brilli M, Giongo L, Si-Ammour A. Gene expression and metabolite accumulation during strawberry (Fragaria × ananassa) fruit development and ripening. PLANTA 2018; 248:1143-1157. [PMID: 30066220 DOI: 10.1007/s00425-018-2962-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/25/2018] [Indexed: 05/20/2023]
Abstract
A coordinated regulation of different metabolic pathways was highlighted leading to the accumulation of important compounds that may contribute to the final quality of strawberry fruit. Strawberry fruit development and ripening involve complex physiological and biochemical changes, ranging from sugar accumulation to the production of important volatiles compounds that contribute to the final fruit flavor. To better understand the mechanisms controlling fruit growth and ripening in cultivated strawberry (Fragaria × ananassa), we applied a molecular approach combining suppression subtractive hybridization and next generation sequencing to identify genes regulating developmental stages going from fruit set to full ripening. The results clearly indicated coordinated regulation of several metabolic processes such as the biosynthesis of flavonoid, phenylpropanoid and branched-chain amino acids, together with glycerolipid metabolism and pentose and glucuronate interconversion. In particular, genes belonging to the flavonoid pathway were activated in two distinct phases, the first one at the very early stages of fruit development and the second during ripening. The combination of expression analysis with metabolomic data revealed that the functional meaning of these two inductions is different, as during the early stages gene activation of flavonoid pathway leads to the production of proanthocyanidins and ellagic acid-derived tannins, while during ripening anthocyanins are the main product of flavonoid pathway activation. Moreover, the subtractive approach allowed the identification of different members of the same gene family coding for the same or very similar enzymes that in some cases showed opposite regulation during strawberry fruit development. Such regulation is an important trait that can help to understand how plants specifically channel metabolic intermediates towards separate branches of a biosynthetic pathway or use different isoforms of the same enzyme in different organs or developmental stages.
Collapse
Affiliation(s)
- Paolo Baldi
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy.
| | - Saverio Orsucci
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Mirko Moser
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Matteo Brilli
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Lara Giongo
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Azeddine Si-Ammour
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| |
Collapse
|
27
|
Haugeneder A, Trinkl J, Härtl K, Hoffmann T, Allwood JW, Schwab W. Answering biological questions by analysis of the strawberry metabolome. Metabolomics 2018; 14:145. [PMID: 30830391 PMCID: PMC6394451 DOI: 10.1007/s11306-018-1441-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/08/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND The qualitative and quantitative analysis of all low molecular weight metabolites within a biological sample, known as the metabolome, provides powerful insights into their roles in biological systems and processes. The study of all the chemical structures, concentrations, and interactions of the thousands of metabolites is called metabolomics. However present state of the art methods and equipment can only analyse a small portion of the numerous, structurally diverse groups of chemical substances found in biological samples, especially with respect to samples of plant origin with their huge diversity of secondary metabolites. Nevertheless, metabolite profiling and fingerprinting techniques have been applied to the analysis of the strawberry metabolome since their early beginnings. AIM The application of metabolomics and metabolite profiling approaches within strawberry research was last reviewed in 2011. Here, we aim to summarize the latest results from research of the strawberry metabolome since its last review with a special emphasis on studies that address specific biological questions. KEY SCIENTIFIC CONCEPTS Analysis of strawberry, and other fruits, requires a plethora of analytical methods and approaches encompassing the analysis of primary and secondary metabolites, as well as capturing and quantifying volatile compounds that are related to aroma as well as fruit development, function and plant-to-plant communication. The success and longevity of metabolite and volatile profiling approaches in fruit breeding relies upon the ability of the approach to uncover biologically meaningful insights. The key concepts that must be addressed and are reviewed include: gene function analysis and genotype comparison, analysis of environmental effects and plant protection, screening for bioactive compounds for food and non-food uses, fruit development and physiology as well as fruit sensorial quality. In future, the results will facilitate fruit breeding due to the identification of metabolic QTLs and candidate genes for fruit quality and consumer preference.
Collapse
Affiliation(s)
- Annika Haugeneder
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Johanna Trinkl
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Katja Härtl
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - James William Allwood
- Environmental and Biochemical Sciences Group, The James Hutton Institute, Invergowrie, Dundee, Scotland, DD2 5DA, UK
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany.
| |
Collapse
|
28
|
Delgado LD, Zúñiga PE, Figueroa NE, Pastene E, Escobar-Sepúlveda HF, Figueroa PM, Garrido-Bigotes A, Figueroa CR. Application of a JA-Ile Biosynthesis Inhibitor to Methyl Jasmonate-Treated Strawberry Fruit Induces Upregulation of Specific MBW Complex-Related Genes and Accumulation of Proanthocyanidins. Molecules 2018; 23:molecules23061433. [PMID: 29899259 PMCID: PMC6100305 DOI: 10.3390/molecules23061433] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 11/16/2022] Open
Abstract
Fleshy fruits are an important source of anthocyanins and proanthocyanidins (PAs), which protect plants against stress, and their consumption provides beneficial effects for human health. In strawberry fruit, the application of exogenous methyl jasmonate (MeJA) upregulates anthocyanin accumulation, although the relationship between the jasmonate pathway and anthocyanin and PA biosynthesis in fruits remains to be understood. Anthocyanin and PA accumulation is mainly regulated at the transcriptional level through R2R3-MYB and bHLH transcription factors in different plant species and organs. Here, the effect of jarin-1, a specific inhibitor of bioactive JA (jasmonoyl-isoleucine, JA-Ile) biosynthesis, on anthocyanin and PA accumulation was evaluated during strawberry (Fragaria × ananassa) fruit development using an in vitro ripening system for 48 h. Also, we observed the effects of MeJA and the application of jarin-1 to MeJA-treated fruits (MeJA + jarin-1 treatment). We assessed changes of expression levels for the JA-Ile and MeJA biosynthetic (FaJAR1.2 and FaJMT), JA signaling-related (FaMYC2 and FaJAZ1), MYB-bHLH-WD40 (MBW) complex-related (FabHLH3/33, FaMYB9/10/11, and repressor FaMYB1), and anthocyanin and PA biosynthetic (FaANS, FaUFGT, FaANR, and FaLAR) genes. In addition, the promoter region of MBW complex-related MYB genes was isolated and sequenced. We found a higher redness of strawberry fruit skin and anthocyanin content in MeJA-treated fruits with respect to jarin-1-treated ones concomitant with an upregulation of FaANS and FaUFGT genes. Inversely, the PA content was higher in jarin-1- and MeJA + jarin-1-treated than in MeJA-treated fruits. MeJA + jarin-1 treatment resulted in an upregulation of FaANR and associated transcription factors such as FabHLH33 and FaMYB9/11 along with FaJMT and FaJAR1.2. Finally, we found JA-responsive elements in the promoter regions of FaMYB1/9/10/11 genes. It is proposed that PA biosynthesis-related genes can be upregulated by the application of jarin-1 to MeJA-treated fruit, thus increasing PA accumulation in strawberry.
Collapse
Affiliation(s)
- Laura D Delgado
- Phytohormone Research Laboratory, Institute of Biological Sciences, Universidad de Talca, Talca 3465548, Chile.
| | - Paz E Zúñiga
- Phytohormone Research Laboratory, Institute of Biological Sciences, Universidad de Talca, Talca 3465548, Chile.
| | - Nicolás E Figueroa
- Phytohormone Research Laboratory, Institute of Biological Sciences, Universidad de Talca, Talca 3465548, Chile.
| | - Edgar Pastene
- Laboratorio de Farmacognosia, Faculty of Pharmacy, Universidad de Concepción, Concepción 4070386, Chile.
| | - Hugo F Escobar-Sepúlveda
- Phytohormone Research Laboratory, Institute of Biological Sciences, Universidad de Talca, Talca 3465548, Chile.
| | - Pablo M Figueroa
- Phytohormone Research Laboratory, Institute of Biological Sciences, Universidad de Talca, Talca 3465548, Chile.
| | - Adrián Garrido-Bigotes
- Phytohormone Research Laboratory, Institute of Biological Sciences, Universidad de Talca, Talca 3465548, Chile.
- Faculty of Forest Sciences, Universidad de Concepción, Concepción 4070386, Chile.
| | - Carlos R Figueroa
- Phytohormone Research Laboratory, Institute of Biological Sciences, Universidad de Talca, Talca 3465548, Chile.
| |
Collapse
|
29
|
Luo H, Dai C, Li Y, Feng J, Liu Z, Kang C. Reduced Anthocyanins in Petioles codes for a GST anthocyanin transporter that is essential for the foliage and fruit coloration in strawberry. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2595-2608. [PMID: 29538703 PMCID: PMC5920330 DOI: 10.1093/jxb/ery096] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/04/2018] [Indexed: 05/18/2023]
Abstract
The red color of the foliage and fruit in strawberry comes from anthocyanins stored in the vacuole; however, how this anthocyanin accumulation is regulated remains unclear. A reduced anthocyanin in petioles (rap) mutant was identified in an N-ethyl-N-nitrosourea (ENU) mutagenized population of YW5AF7, a white-fruited variety of the wild strawberry Fragaria vesca. The causative mutation was identified to be a premature stop codon in a glutathione S-transferase (GST) gene. In addition to the foliage coloration, RAP also mediates fruit pigmentation and acts downstream of the fruit-specific transcription factor FvMYB10. Among all eight GST genes in the same subfamily, RAP is most abundantly expressed in the ripening fruit. Expression analysis and transient expression assays demonstrated that RAP is the principal transporter of anthocyanins among the paralogs. Moreover, domain-swap experiments showed that both the N- and C-terminals of RAP are essential for the binding capability of anthocyanins. In addition, transient knock-down of RAP resulted in reduced fruit coloration in cultivated strawberry. Collectively, our results demonstrate that RAP encodes the principal GST transporter of anthocyanins in the strawberry foliage and fruit, and it could be modified to alter the fruit color in strawberry.
Collapse
Affiliation(s)
- Huifeng Luo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Cheng Dai
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongping Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jia Feng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Zhongchi Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Chunying Kang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Correspondence:
| |
Collapse
|
30
|
Hossain MR, Kim HT, Shanmugam A, Nath UK, Goswami G, Song JY, Park JI, Nou IS. Expression Profiling of Regulatory and Biosynthetic Genes in Contrastingly Anthocyanin Rich Strawberry (Fragaria × ananassa) Cultivars Reveals Key Genetic Determinants of Fruit Color. Int J Mol Sci 2018; 19:ijms19030656. [PMID: 29495391 PMCID: PMC5877517 DOI: 10.3390/ijms19030656] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 02/16/2018] [Accepted: 02/22/2018] [Indexed: 11/22/2022] Open
Abstract
Anthocyanins are the resultant end-point metabolites of phenylapropanoid/flavonoid (F/P) pathway which is regulated at transcriptional level via a series of structural genes. Identifying the key genes and their potential interactions can provide us with the clue for novel points of intervention for improvement of the trait in strawberry. We profiled the expressions of putative regulatory and biosynthetic genes of cultivated strawberry in three developmental and characteristically colored stages of fruits of contrastingly anthocyanin rich cultivars: Tokun, Maehyang and Soelhyang. Besides FaMYB10, a well-characterized positive regulator, FaMYB5, FabHLH3 and FabHLH3-delta might also act as potential positive regulators, while FaMYB11, FaMYB9, FabHLH33 and FaWD44-1 as potential negative regulators of anthocyanin biosynthesis in these high-anthocyanin cultivars. Among the early BGs, Fa4CL7, FaF3H, FaCHI1, FaCHI3, and FaCHS, and among the late BGs, FaDFR4-3, FaLDOX, and FaUFGT2 showed significantly higher expression in ripe fruits of high anthocyanin cultivars Maehyang and Soelhyang. Multivariate analysis revealed the association of these genes with total anthocyanins. Increasingly higher expressions of the key genes along the pathway indicates the progressive intensification of pathway flux leading to final higher accumulation of anthocyanins. Identification of these key genetic determinants of anthocyanin regulation and biosynthesis in Korean cultivars will be helpful in designing crop improvement programs.
Collapse
Affiliation(s)
- Mohammad Rashed Hossain
- Department of Horticulture, Suncheon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea.
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | - Hoy-Taek Kim
- Department of Horticulture, Suncheon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea.
- University-Industry Cooperation Foundation, Suncheon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea.
| | - Ashokraj Shanmugam
- Department of Horticulture, Suncheon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea.
| | - Ujjal Kumar Nath
- Department of Horticulture, Suncheon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea.
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | - Gayatri Goswami
- Department of Horticulture, Suncheon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea.
| | - Jae-Young Song
- Department of Crop Science, Chungbuk National University, Chengju 28644, Korea.
| | - Jong-In Park
- Department of Horticulture, Suncheon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea.
| | - Ill-Sup Nou
- Department of Horticulture, Suncheon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea.
| |
Collapse
|
31
|
Passeri V, Martens S, Carvalho E, Bianchet C, Damiani F, Paolocci F. The R2R3MYB VvMYBPA1 from grape reprograms the phenylpropanoid pathway in tobacco flowers. PLANTA 2017; 246:185-199. [PMID: 28299441 DOI: 10.1007/s00425-017-2667-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/13/2017] [Indexed: 05/20/2023]
Abstract
MAIN CONCLUSION This work shows that, in tobacco, the ectopic expression of VvMYBPA1 , a grape regulator of proanthocyanidin biosynthesis, up- or down-regulates different branches of the phenylproanoid pathway, in a structure-specific fashion. Proanthocyanidins are flavonoids of paramount importance for animal and human diet. Research interest increasingly tilts towards generating crops enriched with these health-promoting compounds. Flavonoids synthesis is regulated by the MBW transcriptional complex, made of R2R3MYB, bHLH and WD40 proteins, with the MYB components liable for channeling the complex towards specific branches of the pathway. Hence, using tobacco as a model, here, we tested if the ectopic expression of the proanthocyanidin regulator VvMYBPA1 from grape induces the biosynthesis of these compounds in not-naturally committed cells. Here, we show, via targeted transcriptomic and metabolic analyses of primary transgenic lines and their progeny, that VvMYBPA1 alters the phenylpropanoid pathway in tobacco floral organs, in a structure-specific fashion. We also report that a modest VvMYBPA1 expression is sufficient to induce the expression of both proanthocyanidin-specific and early genes of the phenylpropanoid pathway. Consequently, proanthocyanidins and chlorogenic acids are induced or de novo synthetised in floral limbs, tubes and stamens. Other phenylpropanoid branches are conversely induced or depleted according to the floral structure. Our study documents a novel and distinct function of VvMYBPA1 with respect to other MYBs regulating proanthocyanidins. Present findings may have major implications in designing strategies for enriching crops with health-promoting compounds.
Collapse
Affiliation(s)
- Valentina Passeri
- CNR, Institute of Biosciences and Bioresources, Perugia Division, Via Madonna Alta, 130 06128, Perugia, Italy
| | - Stefan Martens
- Research and Innovation Center, Fondazione Edmund Mach - IASMA, via E. Mach 1, 38010, San Michele All'adige, Italy
| | - Elisabete Carvalho
- Research and Innovation Center, Fondazione Edmund Mach - IASMA, via E. Mach 1, 38010, San Michele All'adige, Italy
| | - Chantal Bianchet
- CNR, Institute of Biosciences and Bioresources, Perugia Division, Via Madonna Alta, 130 06128, Perugia, Italy
| | - Francesco Damiani
- CNR, Institute of Biosciences and Bioresources, Perugia Division, Via Madonna Alta, 130 06128, Perugia, Italy
| | - Francesco Paolocci
- CNR, Institute of Biosciences and Bioresources, Perugia Division, Via Madonna Alta, 130 06128, Perugia, Italy.
| |
Collapse
|
32
|
Liu S, Liu L, Tang Y, Xiong S, Long J, Liu Z, Tian N. Comparative transcriptomic analysis of key genes involved in flavonoid biosynthetic pathway and identification of a flavonol synthase from Artemisia annua L. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:618-629. [PMID: 28267260 DOI: 10.1111/plb.12562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
The regulatory mechanism of flavonoids, which synergise anti-malarial and anti-cancer compounds in Artemisia annua, is still unclear. In this study, an anthocyanidin-accumulating mutant callus was induced from A. annua and comparative transcriptomic analysis of wild-type and mutant calli performed, based on the next-generation Illumina/Solexa sequencing platform and de novo assembly. A total of 82,393 unigenes were obtained and 34,764 unigenes were annotated in the public database. Among these, 87 unigenes were assigned to 14 structural genes involved in the flavonoid biosynthetic pathway and 37 unigenes were assigned to 17 structural genes related to metabolism of flavonoids. More than 30 unigenes were assigned to regulatory genes, including R2R3-MYB, bHLH and WD40, which might regulate flavonoid biosynthesis. A further 29 unigenes encoding flavonoid biosynthetic enzymes or transcription factors were up-regulated in the mutant, while 19 unigenes were down-regulated, compared with the wild type. Expression levels of nine genes involved in the flavonoid pathway were compared using semi-quantitative RT-PCR, and results were consistent with comparative transcriptomic analysis. Finally, a putative flavonol synthase gene (AaFLS1) was identified from enzyme assay in vitro and in vivo through heterogeneous expression, and confirmed comparative transcriptomic analysis of wild-type and mutant callus. The present work has provided important target genes for the regulation of flavonoid biosynthesis in A. annua.
Collapse
Affiliation(s)
- S Liu
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, China
- Department of Tea Science, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, China
| | - L Liu
- Department of Tea Science, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, China
| | - Y Tang
- Department of Tea Science, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, China
| | - S Xiong
- Department of Tea Science, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, China
| | - J Long
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, China
| | - Z Liu
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, China
- Department of Tea Science, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, China
| | - N Tian
- Department of Tea Science, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, China
| |
Collapse
|
33
|
Khidr YA, Flachowsky H, Haselmair-Gosch C, Thill J, Miosic S, Hanke MV, Stich K, Halbwirth H. Evaluation of a MdMYB10/ GFP43 fusion gene for its suitability to act as reporter gene in promoter studies in Fragaria vesca L. 'Rügen'. PLANT CELL, TISSUE AND ORGAN CULTURE 2017; 130:345-356. [PMID: 28781398 PMCID: PMC5515962 DOI: 10.1007/s11240-017-1229-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
A Malus domestica MdMYB10 transcription factor gene was previously used as visible marker for successful plant transformation. We combined the MdMYB10 transcription factor gene with a GFP gene to test its viability as a non-destructive, visual, double reporter system for functional promoter studies in transgenic strawberry plants. The GFP gene was fused to MdMYB10 to provide evidence for promoter activity in red colored cells of transformed plant tissue and to exclude artefacts resulting from stress response or due to other environmental cues. To test this system in a first approach, we evaluated the MdMYB10-GFP43 construct in transgenic strawberries in combination with two constitutive promoters of varying strength, the strong CaMV 35S promoter and a weak flavonoid 3'-hydroxylase (F3'H) promoter isolated from the ornamental plant Cosmos sulphureus. Agrobacterium tumefaciens mediated transformation of Fragaria vesca with the MdMYB10-GFP43 construct combined with the CaMV 35S or F3'H promoter sequences resulted in the regeneration of 6 and 4 transgenic lines, respectively. A complete red coloration of all plant organs was found in four out of six transgenic lines harboring the 35S-MdMYB10-GFP43 construct. Less red coloration of plant organs was found for lines transformed with the F3'H-MdMYB10-GFP43 construct. The MdMYB10 gene shows only limited suitability as a reporter gene for promoter studies in strawberries because weak promoter activity is difficult to distinguish, particularly in tissues showing a strongly colored background such as green leaves. GFP specific fluorescence signals were detectable neither in tissue strongly expressing MdMYB10 nor in green tissue of any transgenic line. The reason for this remained unclear but it can be excluded that it was due to incorrect splicing.
Collapse
Affiliation(s)
- Yehia A. Khidr
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326 Dresden, Germany
- Plant Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, P.O. Box 32897, 5th Zone, Sadat, Egypt
| | - Henryk Flachowsky
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Christian Haselmair-Gosch
- Technische Universität Wien, Institute of Chemical, Environmental and Biological Engineering, Getreidemarkt 9, 1060 Vienna, Austria
| | - Jana Thill
- Technische Universität Wien, Institute of Chemical, Environmental and Biological Engineering, Getreidemarkt 9, 1060 Vienna, Austria
| | - Silvija Miosic
- Technische Universität Wien, Institute of Chemical, Environmental and Biological Engineering, Getreidemarkt 9, 1060 Vienna, Austria
| | - Magda-Viola Hanke
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Karl Stich
- Technische Universität Wien, Institute of Chemical, Environmental and Biological Engineering, Getreidemarkt 9, 1060 Vienna, Austria
| | - Heidi Halbwirth
- Technische Universität Wien, Institute of Chemical, Environmental and Biological Engineering, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
34
|
Crecelius AC, Hölscher D, Hoffmann T, Schneider B, Fischer TC, Hanke MV, Flachowsky H, Schwab W, Schubert US. Spatial and Temporal Localization of Flavonoid Metabolites in Strawberry Fruit (Fragaria × ananassa). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3559-3568. [PMID: 28409937 DOI: 10.1021/acs.jafc.7b00584] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Flavonoids are important metabolites in strawberries (Fragaria × ananassa) because they accomplish an extensive collection of physiological functions and are valuable for human health. However, their localization within the fruit tissue has not been extensively explored. Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) was employed to shed light on the spatial distribution of flavonoids during fruit development. One wild-type (WT) and two transgenic lines were compared, wherein the transgenic enzymes anthocyanidin reductase (ANRi) and flavonol synthase (FLSi), respectively, were down-regulated using an RNAi-based silencing approach. In most cases, fruit development led to a reduction of the investigated flavonoids in the fruit tissue; as a consequence, they were exclusively present in the skin of mature red fruits. In the case of (epi)catechin dimer, both the ANRi and the WT phenotypes revealed low levels in mature red fruits, whereas the ANRi line bore the lowest relative concentration, as analyzed by liquid chromatography-electrospray ionization multiple-step mass spectrometry (LC-ESI-MSn).
Collapse
Affiliation(s)
- Anna C Crecelius
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena , Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena , Philosophenweg 7, 07743 Jena, Germany
| | - Dirk Hölscher
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology , Hans-Knöll-Strasse 8, 07745 Jena, Germany
- Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics (OPATS), University of Kassel , Steinstrasse 19, 37213 Witzenhausen, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technical University Munich , Liesel-Beckmann-Strasse 1, 85354 Freising, Germany
| | - Bernd Schneider
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology , Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Thilo C Fischer
- Biotechnology of Natural Products, Technical University Munich , Liesel-Beckmann-Strasse 1, 85354 Freising, Germany
| | - Magda-Viola Hanke
- Julius Kühn-Institute - Federal Research Centre for Cultivated Plants Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326 Pillnitz, Germany
| | - Henryk Flachowsky
- Julius Kühn-Institute - Federal Research Centre for Cultivated Plants Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326 Pillnitz, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technical University Munich , Liesel-Beckmann-Strasse 1, 85354 Freising, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena , Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena , Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
35
|
Lim SH, You MK, Kim DH, Kim JK, Lee JY, Ha SH. RNAi-mediated suppression of dihydroflavonol 4-reductase in tobacco allows fine-tuning of flower color and flux through the flavonoid biosynthetic pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:482-490. [PMID: 27842297 DOI: 10.1016/j.plaphy.2016.10.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/20/2016] [Accepted: 10/27/2016] [Indexed: 05/07/2023]
Abstract
To examine flux regulation in the flavonoid pathway of tobacco flowers, we suppressed two genes for dihydroflavonol 4-reductase (NtDFR 1 and 2) by RNA interference (Ri)-mediated post transcriptional gene silencing in pink-flowered tobacco. Two phenotypes were observed, pale pink (DFR-Ri_PP)- and white (DFR-Ri_W)-flowered lines. The relative mRNA levels of NtDFR genes in DFR-Ri_PP and DFR-Ri_W lines were reduced by 79%-95% relative to non-transformed (NT) plants. DFR-Ri_W lines had five-fold higher levels of small interference RNAs compared to DFR-Ri_PP lines. Expression of eight structural genes in the flavonoid pathway was significantly increased in DFR-Ri_W lines but not in DFR-Ri_PP lines based on quantitative RT-PCR. Anthocyanin contents correlated with flower color, with a reduction of 72%-97% in DFR-Ri_PP and DFR-Ri_W lines. Decreases in anthocyanin in flower were proportional with reductions of proanthocyanidin content in seeds. Two pale pink lines, DFR-Ri_PP 17 and 20, with anthocyanin decreases and the lowest level of DFR gene silencing, had higher (dihydro) flavonol production than a white flowered line, DFR-Ri_W 67. This finding suggests that suppression of DFR can increase the total levels of flavonoids due to (dihydro) flavonol biosynthesis. Our observations that higher suppression of DFR had a greater influence on the expression of flavonoid biosynthetic genes demonstrates the key role of DFR in the pathway and allows selection among DFR-Ri lines for plants with specific gene expression profiles to fine-tune flux through the pathway.
Collapse
Affiliation(s)
- Sun-Hyung Lim
- National Academy of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea.
| | - Min-Kyung You
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Da-Hye Kim
- National Academy of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences and Bio-Resource and Environmental Center, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jong-Yeol Lee
- National Academy of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Sun-Hwa Ha
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
36
|
Koskela EA, Sønsteby A, Flachowsky H, Heide OM, Hanke MV, Elomaa P, Hytönen T. TERMINAL FLOWER1 is a breeding target for a novel everbearing trait and tailored flowering responses in cultivated strawberry (Fragaria × ananassa Duch.). PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1852-61. [PMID: 26940366 PMCID: PMC5069601 DOI: 10.1111/pbi.12545] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/17/2015] [Accepted: 01/25/2016] [Indexed: 05/18/2023]
Abstract
The effects of daylength and temperature on flowering of the cultivated octoploid strawberry (Fragaria × ananassa Duch.) have been studied extensively at the physiological level, but information on the molecular pathways controlling flowering in the species is scarce. The flowering pathway has been studied at the molecular level in the diploid short-day woodland strawberry (F. vesca L.), in which the FLOWERING LOCUS T1 (FvFT1)-SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (FvSOC1)-TERMINAL FLOWER1 (FvTFL1) pathway is essential for the correct timing of flowering. In this work, we show by transgenic approach that the silencing of the floral repressor FaTFL1 in the octoploid short-day cultivar 'Elsanta' is sufficient to induce perpetual flowering under long days without direct changes in vegetative reproduction. We also demonstrate that although the genes FaFT1 and FaSOC1 show similar expression patterns in different cultivars, the regulation of FaTFL1 varies widely from cultivar to cultivar and is correlated with floral induction, indicating that the transcription of FaTFL1 occurs at least partially independently of the FaFT1-FaSOC1 module. Our results indicate that changing the expression patterns of FaTFL1 through biotechnological or conventional breeding approaches could result in strawberries with specific flowering and runnering characteristics including new types of everbearing cultivars.
Collapse
Affiliation(s)
- Elli Aurora Koskela
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | | | - Henryk Flachowsky
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Ola Mikal Heide
- Department of Ecology and Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Magda-Viola Hanke
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Paula Elomaa
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Song C, Zhao S, Hong X, Liu J, Schulenburg K, Schwab W. A UDP-glucosyltransferase functions in both acylphloroglucinol glucoside and anthocyanin biosynthesis in strawberry (Fragaria × ananassa). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:730-42. [PMID: 26859691 DOI: 10.1111/tpj.13140] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 05/02/2023]
Abstract
Physiologically active acylphloroglucinol (APG) glucosides were recently found in strawberry (Fragaria sp.) fruit. Although the formation of the APG aglycones has been clarified, little is known about APG glycosylation in plants. In this study we functionally characterized ripening-related glucosyltransferase genes in Fragaria by comprehensive biochemical analyses of the encoded proteins and by a RNA interference (RNAi) approach in vivo. The allelic proteins UGT71K3a/b catalyzed the glucosylation of diverse hydroxycoumarins, naphthols and flavonoids as well as phloroglucinols, enzymatically synthesized APG aglycones and pelargonidin. Total enzymatic synthesis of APG glucosides was achieved by co-incubation of recombinant dual functional chalcone/valerophenone synthase and UGT71K3 proteins with essential coenzyme A esters and UDP-glucose. An APG glucoside was identified in strawberry fruit which has not yet been reported in other plants. Suppression of UGT71K3 activity in transient RNAi-silenced fruits led to a loss of pigmentation and a substantial decrease of the levels of various APG glucosides and an anthocyanin. Metabolite analyses of transgenic fruits confirmed UGT71K3 as a UDP-glucose:APG glucosyltransferase in planta. These results provide the foundation for the breeding of fruits with improved health benefits and for the biotechnological production of bioactive natural products.
Collapse
Affiliation(s)
- Chuankui Song
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Strasse 1, Freising, 85354, Germany
| | - Shuai Zhao
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Strasse 1, Freising, 85354, Germany
| | - Xiaotong Hong
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Strasse 1, Freising, 85354, Germany
| | - Jingyi Liu
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Strasse 1, Freising, 85354, Germany
| | - Katja Schulenburg
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Strasse 1, Freising, 85354, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Strasse 1, Freising, 85354, Germany
| |
Collapse
|
38
|
Yang Y, Yao G, Yue W, Zhang S, Wu J. Transcriptome profiling reveals differential gene expression in proanthocyanidin biosynthesis associated with red/green skin color mutant of pear (Pyrus communis L.). FRONTIERS IN PLANT SCIENCE 2015; 6:795. [PMID: 26483812 PMCID: PMC4588701 DOI: 10.3389/fpls.2015.00795] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/13/2015] [Indexed: 05/03/2023]
Abstract
Anthocyanin concentration is the key determinant for red skin color in pear fruit. However, the molecular basis for development of red skin is complicated and has not been well-understood thus far. "Starkrimson" (Pyrus communis L.), an introduced red pear cultivated in the north of China and its green mutant provides a desirable red/green pair for identification of candidate genes involved in color variation. Here, we sequenced and annotated the transcriptome for the red/green color mutant at three stages of development using Illumina RNA-seq technology. The total number of mapped reads ranged from 26 to 46 million in six libraries. About 70.11-71.95% of clean reads could be mapped to the reference genome. Compared with green colored fruit, a total of 2230 differentially expressed genes (DEGs) were identified in red fruit. Gene Ontology (GO) terms were defined for 4886 differential transcripts involved in 15 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Three DEGs were identified as candidate genes in the flavonoid pathway, LAR, ANR, and C3H. Tellingly, higher expression was found for genes encoding ANR and LAR in the green color mutant, promoting the proanthocyanidin (PA) pathway and leading to lower anthocyanin. MYB-binding cis-motifs were identified in the promoter region of LAR and ANR. Based on these findings, we speculate that the regulation of PA biosynthesis might be a key factor for this red/green color mutant. Besides the known MYB and MADS transcription families, two new families, AP2 and WRKY, were identified as having high correlation with anthocyanin biosynthesis in red skinned pear. In addition, qRT-PCR was used to confirm the transcriptome results for 17 DEGs, high correlation of gene expression, further proved that AP2 and WARK regulated the anthocyanin biosynthesis in red skinned "Starkrimson," and ANR and LAR promote PA biosynthesis and contribute to the green skinned variant. This study can serve as a valuable new resource laying a solid foundation for functional gene identification in the anthocyanin pathway of red-skinned pear and provide a good reference for relevant research on molecular mechanisms of color variation in other pear species.
Collapse
Affiliation(s)
- Yanan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural UniversityNanjing, China
| | - Gaifang Yao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural UniversityNanjing, China
| | - Wenquan Yue
- Pear Fruit Research Centre, Changli Institute of Pomology, Hebei Academy of Agriculture and Forestry SciencesChangli, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural UniversityNanjing, China
| | - Jun Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
39
|
Zhou H, Lin-Wang K, Liao L, Gu C, Lu Z, Allan AC, Han Y. Peach MYB7 activates transcription of the proanthocyanidin pathway gene encoding leucoanthocyanidin reductase, but not anthocyanidin reductase. FRONTIERS IN PLANT SCIENCE 2015; 6:908. [PMID: 26579158 PMCID: PMC4620396 DOI: 10.3389/fpls.2015.00908] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/12/2015] [Indexed: 05/22/2023]
Abstract
Proanthocyanidins (PAs) are a group of natural phenolic compounds that have a great effect on both flavor and nutritious value of fruit. It has been shown that PA synthesis is regulated by R2R3-MYB transcription factors (TFs) via activation of PA-specific pathway genes encoding leucoanthocyanidin reductase and anthocyanidin reductase. Here, we report the isolation and characterization of a MYB gene designated PpMYB7 in peach. The peach PpMYB7 represents a new group of R2R3-MYB genes regulating PA synthesis in plants. It is able to activate transcription of PpLAR1 but not PpANR, and has a broader selection of potential bHLH partners compared with PpMYBPA1. Transcription of PpMYB7 can be activated by the peach basic leucine-zipper 5 TF (PpbZIP5) via response to ABA. Our study suggests a transcriptional network regulating PA synthesis in peach, with the results aiding the understanding of the functional divergence between R2R3-MYB TFs in plants.
Collapse
Affiliation(s)
- Hui Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of SciencesWuhan, China
- Graduate University of Chinese Academy of SciencesBeijing, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Ltd., Mt Albert Research CentreAuckland, New Zealand
| | - Liao Liao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of SciencesWuhan, China
| | - Chao Gu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of SciencesWuhan, China
| | - Ziqi Lu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of SciencesWuhan, China
| | - Andrew C. Allan
- The New Zealand Institute for Plant & Food Research Ltd., Mt Albert Research CentreAuckland, New Zealand
- School of Biological Sciences, University of AucklandAuckland, New Zealand
| | - Yuepeng Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of SciencesWuhan, China
- *Correspondence: Yuepeng Han,
| |
Collapse
|
40
|
Lin-Wang K, McGhie TK, Wang M, Liu Y, Warren B, Storey R, Espley RV, Allan AC. Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca). FRONTIERS IN PLANT SCIENCE 2014; 5:651. [PMID: 25477896 PMCID: PMC4237049 DOI: 10.3389/fpls.2014.00651] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/03/2014] [Indexed: 05/18/2023]
Abstract
The woodland strawberry, Fragaria vesca is a model fruit for a number of rosaceous crops. We have engineered altered concentrations of anthocyanin in F. vesca, to determine the impact on plant growth and fruit quality. Anthocyanin concentrations were significantly increased by over-expression or decreased by knock-down of the R2R3 MYB activator, MYB10. In contrast, a potential bHLH partner for MYB10 (bHLH33) did not affect the anthocyanin pathway when knocked down using RNAi constructs. Metabolic analysis of fruits revealed that, of all the polyphenolics surveyed, only cyanidin, and pelargonidin glucoside, and coumaryl hexose were significantly affected by over-expression and knock down of MYB10. Using the F. vesca genome sequence, members of the MYB, bHLH, and WD40 families were examined. Global analysis of gene expression and targeted qPCR analysis of biosynthetic genes and regulators confirmed the effects of altering MYB10 expression, as well as the knock-down of bHLH33. Other members of the MYB transcription factor family were affected by the transgenes. Transient expression of strawberry genes in Nicotiana benthamiana revealed that MYB10 can auto-regulate itself, and potential repressors of MYB10. In tobacco, MYB10's activation of biosynthetic steps is inhibited by the strawberry repressor MYB1.
Collapse
Affiliation(s)
- Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research LimitedAuckland, New Zealand
| | - Tony K. McGhie
- Plant and Food Research LimitedPalmerston North, New Zealand
| | - Mindy Wang
- The New Zealand Institute for Plant and Food Research LimitedAuckland, New Zealand
| | - Yuhui Liu
- Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural UniversityLanzhou, China
| | - Benjamin Warren
- The New Zealand Institute for Plant and Food Research LimitedAuckland, New Zealand
| | - Roy Storey
- Plant and Food Research LimitedTe Puke, New Zealand
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research LimitedAuckland, New Zealand
- *Correspondence: Richard V. Espley, The New Zealand Institute for Plant and Food Research Limited, 120 Mount Albert Road, Private Bag 92169, Auckland 1025, New Zealand e-mail:
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research LimitedAuckland, New Zealand
- School of Biological Sciences, University of AucklandAuckland, New Zealand
- Andrew C. Allan, The New Zealand Institute for Plant and Food Research Limited, 120 Mount Albert Road, Private Bag 92169, Auckland 1025, New Zealand; School of Biological Sciences, University of Auckland, Biology Building, 5 Symonds Street, Private Bag 92019, Auckland 1010, New Zealand e-mail:
| |
Collapse
|