1
|
Zhao T, Xu Y, Bi M, Li H, Li G, Rillig MC. Soil properties explain the variability in tire wear particle effects in soil based on a laboratory test with 59 soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126271. [PMID: 40252749 DOI: 10.1016/j.envpol.2025.126271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Tire wear particles (TWPs) are among the most prevalent microplastics in the environment, with potential detrimental effects on ecosystem health and functionality. While little is known how the effects of TWPs on soil physicochemical and microbial properties vary across different soil types, and if so, which factors contribute to this variability. To address this knowledge gap, we conducted a laboratory experiment involving soils from 59 grassland plots across two sampling regions in Germany, each experienced varying land-use intensities. These soils were treated with (at a concentration of 10 mg g-1) and without TWPs. At harvest, we measured soil water-stable aggregates (WSA), pH, respiration, and decomposition rate. Our results revealed that TWPs negatively, neutrally, or positively impacted these parameters depending on soil types. Random forest analysis indicated that the variability in TWP effects was significantly explained by grazing frequency for WSA (14.5 %), by clay content for pH (9 %), by bulk density for respiration (7.9 %), and by silt content for decomposition rate (12 %). Partial dependence analysis and piecewise regression further suggested that low-intensity grazing (∼0.7-1.2) reduced TWP effects on WSA; clay content (420-550 g kg-1) increased TWP effects on pH; bulk density (0.75-0.88) decreased TWP effects, and silt content (460-620 g kg-1) enhanced TWP effects on decomposition rate, with the identified thresholds of 1.45, 353 g kg-1, 0.84, and 327 353 g kg-1, respectively. These results highlighted the context-dependent nature of TWP pollution, with significant variability observed across different sampling points. Additionally, our findings suggest that TWP pollution is particularly of concern in soils with high clay, silt, high bulk density, and areas with intensive land-use intensity. Our study contributes to a better understanding of the mechanisms by which TWPs impact soil, and how these effects are regulated by environmental factors.
Collapse
Affiliation(s)
- Tingting Zhao
- Plant Ecology, Institute of Biology, Freie Universität Berlin, D-14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany.
| | - Yaqi Xu
- Plant Ecology, Institute of Biology, Freie Universität Berlin, D-14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany.
| | - Mohan Bi
- Plant Ecology, Institute of Biology, Freie Universität Berlin, D-14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany.
| | - Huiying Li
- Plant Ecology, Institute of Biology, Freie Universität Berlin, D-14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany.
| | - Guanlin Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Matthias C Rillig
- Plant Ecology, Institute of Biology, Freie Universität Berlin, D-14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany.
| |
Collapse
|
2
|
Mazumder S, Bhattacharya D, Lahiri D, Nag M. Rhizobacteria and Arbuscular Mycorrhizal Fungi (AMF) Community in Growth Management and Mitigating Stress in Millets: A Plant-Soil Microbe Symbiotic Relationship. Curr Microbiol 2025; 82:242. [PMID: 40220175 DOI: 10.1007/s00284-025-04230-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
Millets, commonly referred to as the "future crop," provide a practical solution for addressing hunger and reducing the impact of climate change. The nutritional and physiological well-being of soil is crucial for the survival and resilience of plants while countering environmental stressors, both abiotic and biotic, that arise from the current climate change scenario. The health and production of millet are directly influenced by the soil microbial community. Millets have several plant growth-promoting rhizobacteria such as Pseudomonas, Azotobacter, Bacillus, Rhizobium, and fungi like Penicillium sp., that increase nutrient uptake, growth, and productivity and protect against abiotic and biotic stressors. Rhizobacteria enhance plant productivity by many mechanisms, including the release of plant hormones and secondary metabolic compounds, the conversion of nutrients into soluble forms, the ability to fix nitrogen, and the provision of resistance to both biotic and abiotic stresses. The microbial populations in the rhizosphere have a significant impact on the growth and production of millet such as enhancing soil fertility and plant nourishment. Additionally, arbuscular mycorrhizal fungi invade the roots of millets. The taxon Glomus is the most prevalent in association with millet plant soil, followed by Acaulospora, Funneliformis, and Rhizophagus. The symbiotic relationship between arbuscular mycorrhizal fungi and millet plants improves plant growth and nutrient absorption under diverse soil and environmental circumstances, including challenging abiotic factors like drought and salinity.
Collapse
Affiliation(s)
- Saikat Mazumder
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India
- Department of Food Technology, Guru Nanak Institute of Technology, Kolkata, West Bengal, India
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India
| | - Dibyajit Lahiri
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India.
| | - Moupriya Nag
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India.
| |
Collapse
|
3
|
Meng X, Wang B, Zhang X, Liu C, Ji J, Hao X, Yang B, Wang W, Xu D, Zhang S, Wang X, Cao M, Wang Y. Long-Term Crop Rotation Revealed the Relationship Between Soil Organic Carbon Physical Fraction and Bacterial Community at Aggregate Scales. Microorganisms 2025; 13:496. [PMID: 40142389 PMCID: PMC11944754 DOI: 10.3390/microorganisms13030496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/30/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Crop rotation enhances soil fertility and health by modulating microbial communities, with soil organic carbon (SOC) dynamics governed by aggregate-microbial interplay. To date, the effects of different crop rotations on SOC fractions and relevant bacterial communities at aggregate scales remain uncertain. Here, a 17-year field experiment was used to reveal the effects of maize monoculture (MM), soybean monoculture (SS), and maize and soybean rotation on the SOC fractions and bacterial communities. Compared with the SS treatment, only the MS treatment significantly increased the particulate organic carbon (POC) content at the aggregate scale. Nevertheless, higher mineral-associated organic carbon (MaOC) contents were observed under the MS and MM treatments than under the SS treatment. The microbial co-occurrence networks for macro- and microaggregates were divided into three main ecological clusters. The specific taxa in Cluster 1 and Cluster 2 are involved in SOC fraction turnover within macro- and microaggregates, respectively. In total, the Vicinamibacteraceae-driven Cluster 1 community dominated the MaOC turnover process within macroaggregates, whereas the Actinobacteria- and Pyrinomonadaceae-driven Cluster 2 communities changed the MaOC turnover process within microaggregates. This study strengthens our understanding of the role of the microbial community in the accumulation of SOC fractions under different crop rotation practices.
Collapse
Affiliation(s)
- Xianghai Meng
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (B.W.); (X.Z.); (C.L.); (B.Y.); (W.W.); (D.X.); (S.Z.); (X.W.)
| | - Baicheng Wang
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (B.W.); (X.Z.); (C.L.); (B.Y.); (W.W.); (D.X.); (S.Z.); (X.W.)
| | - Xingzhe Zhang
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (B.W.); (X.Z.); (C.L.); (B.Y.); (W.W.); (D.X.); (S.Z.); (X.W.)
| | - Chunguang Liu
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (B.W.); (X.Z.); (C.L.); (B.Y.); (W.W.); (D.X.); (S.Z.); (X.W.)
| | - Jinghong Ji
- Heilongjiang Academy of Black Soil Conservation & Utilization, Harbin 150086, China; (J.J.); (X.H.)
| | - Xiaoyu Hao
- Heilongjiang Academy of Black Soil Conservation & Utilization, Harbin 150086, China; (J.J.); (X.H.)
| | - Bing Yang
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (B.W.); (X.Z.); (C.L.); (B.Y.); (W.W.); (D.X.); (S.Z.); (X.W.)
| | - Wenhui Wang
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (B.W.); (X.Z.); (C.L.); (B.Y.); (W.W.); (D.X.); (S.Z.); (X.W.)
| | - Dehai Xu
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (B.W.); (X.Z.); (C.L.); (B.Y.); (W.W.); (D.X.); (S.Z.); (X.W.)
| | - Shuai Zhang
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (B.W.); (X.Z.); (C.L.); (B.Y.); (W.W.); (D.X.); (S.Z.); (X.W.)
| | - Xiaomei Wang
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (B.W.); (X.Z.); (C.L.); (B.Y.); (W.W.); (D.X.); (S.Z.); (X.W.)
| | - Minghui Cao
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yuming Wang
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
de Goede SPC, Hannula SE, Jansen B, Morriën E. Fungal-mediated soil aggregation as a mechanism for carbon stabilization. THE ISME JOURNAL 2025; 19:wraf074. [PMID: 40249290 DOI: 10.1093/ismejo/wraf074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/17/2024] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
Soils can potentially be turned into net carbon sinks for atmospheric carbon to offset anthropogenic greenhouse gas emissions. Occlusion of soil organic carbon in soil aggregates is a key mechanism, which temporarily protects it from decomposition by soil organisms. Filamentous fungi are recognized for their positive role in the formation and stabilization of aggregates. In this review, we assess the current knowledge of the contribution of fungi to soil aggregation and set a new research agenda to quantify fungal-mediated aggregation across different climates and soils. Our review highlights three main knowledge gaps: (1) the lack of quantitative data and mechanistic understanding of aggregate turnover under field conditions, (2) lack of data on the biochemical and biological mechanisms by which filamentous fungi influence soil aggregation, and (3) uncharacterized contribution of soil fungi across environments. Adopting a trait-based approach to increase the level of mechanistic understanding between fungal diversity and soil structure seems promising, but will need additional experiments in which fungal diversity is manipulated by either removal through sieving or dilution, or addition through using synthetic communities of cultured fungi. We stress the importance of integrating ecological and physicochemical perspectives for accurate modelling of soil aggregation and soil organic carbon cycling, which is needed to successfully predict the effects of land management strategies.
Collapse
Affiliation(s)
- Steven P C de Goede
- Department of Ecosystem and Landscape Dynamics, Institute of Biodiversity and Ecosystem Dynamics (IBED-ELD), University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
| | - S Emilia Hannula
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
- Department of Environmental Biology, Institute of Environmental Sciences (CML), Leiden University, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| | - Boris Jansen
- Department of Ecosystem and Landscape Dynamics, Institute of Biodiversity and Ecosystem Dynamics (IBED-ELD), University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Elly Morriën
- Department of Ecosystem and Landscape Dynamics, Institute of Biodiversity and Ecosystem Dynamics (IBED-ELD), University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
| |
Collapse
|
5
|
Wu B, Li X, Lin S, Jiao R, Yang X, Shi A, Nie X, Lin Q, Qiu R. Miscanthus sp. root exudate alters rhizosphere microbial community to drive soil aggregation for heavy metal immobilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175009. [PMID: 39053533 DOI: 10.1016/j.scitotenv.2024.175009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
The heavy metals (HMs) spatial distribution in soil is intricately shaped by aggregation processes involving chemical reactions and biological activities, which modulate HMs toxicity, migration, and accumulation. Pioneer plants play a central role in preventing HMs at source, yet the precise mechanisms underlying their involvement in soil aggregation remain unclear. This study investigates HMs distribution within rhizosphere and bulk soil aggregates of Miscanthus sp. grown in tailings to elucidate the impact of root exudates (REs) and rhizosphere microbes. The results indicate that Miscanthus sp. enhance soil stability, increasing the proportion of macroaggregates by 4.06 %-9.78 %. HMs tend to concentrate in coarse-aggregates, particularly within rhizosphere environments, while diminishing in fine-aggregates. Under HMs stress, lipids and lipid-like molecules are the most abundant REs produced by Miscanthus sp., accounting for under up to 26.74 %. These REs form complex with HMs, promoting microaggregates formation. Charged components such as sugars and amino acids further contribute to soil aggregation. REs also regulates rhizosphere bacteria and fungi, with Acidobacteriota, Chloroflexi were the dominant bacterial phyla, while Ascomycota and Basidiomycota dominate the fungal community. The synergistic effect of REs and microorganisms impact soil organic matter and nutrient content, facilitating HMs nanoparticle heteroaggregation and macroaggregates formation. Consequently, soil structure and REs shape the distribution of HMs in soil aggregation. Pioneer plants mediate REs interaction with rhizosphere microbes, promoting the distribution of HMs into macroaggregates, leading to immobilization. This study sheds light on the role of pioneer plants in regulating soil HMs, offering valuable insights for soil remediation strategies.
Collapse
Affiliation(s)
- Bohan Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiao Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shukun Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ruifang Jiao
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China
| | - Xu Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Aoao Shi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xinxing Nie
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Yan B, Deng T, Shi L. Towards Sustainable Productivity of Greenhouse Vegetable Soils: Limiting Factors and Mitigation Strategies. PLANTS (BASEL, SWITZERLAND) 2024; 13:2885. [PMID: 39458833 PMCID: PMC11511448 DOI: 10.3390/plants13202885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Greenhouse vegetable production has become increasingly important in meeting the increasing global food demand. Yet, it faces severe challenges in terms of how to maintain soil productivity from a long-term perspective. This review discusses the main soil productivity limiting factors for vegetables grown in greenhouses and identifies strategies that attempt to overcome these limitations. The main processes leading to soil degradation include physical (e.g., compaction), chemical (e.g., salinization, acidification, and nutrient imbalances), and biological factors (e.g., biodiversity reduction and pathogen buildup). These processes are often favored by intensive greenhouse cultivation. Mitigation strategies involve managing soil organic matter and mineral nutrients and adopting crop rotation. Future research should focus on precisely balancing soil nutrient supply with vegetable crop demands throughout their life cycle and using targeted organic amendments to manage specific soil properties. To ensure the successful adoption of recommended strategies, socioeconomic considerations are also necessary. Future empirical research is required to adapt socioeconomic frameworks, such as Science and Technology Backyard 2.0, from cereal production systems to greenhouse vegetable production systems. Addressing these issues will enable the productivity of greenhouse vegetable soils that meet growing vegetable demand to be sustained using limited soil resources.
Collapse
Affiliation(s)
- Bofang Yan
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Tenghaobo Deng
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Liangliang Shi
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| |
Collapse
|
7
|
Wang X, Huang P, Ma M, Shan K, Wu S. Effects of riparian pioneer plants on soil aggregate stability: Roles of root traits and rhizosphere microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173584. [PMID: 38823692 DOI: 10.1016/j.scitotenv.2024.173584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Pioneer plants are vital in stabilizing soil structure while restoring reservoir drawdown areas. However, uncertainties persist regarding the mechanism of pioneer plants to soil stability in these delicate ecosystems. This study aims to unravel the plant-soil feedback mechanisms from the roles of root traits and rhizosphere microorganisms. We conducted a mesocosm experiment focusing on four common pioneer plants from the drawdown area of Three Gorges Reservoir, China. Using the wet sieving methodology, trait-based approach and high-throughput sequencing technology, we explored soil aggregate stability parameters, plant root traits and rhizosphere microbial communities in experimental plant groups. The interacting effect of pioneer plant species richness, root traits, and rhizosphere microbial communities on soil aggregate stability was quantified by statistical and machine-learning models. Our results demonstrate that diverse pioneer plant communities significantly enhance soil aggregate stability. Notably, specific species, such as Cynodon dactylon (L.) Pers. and Xanthium strumarium L., exert a remarkably strong influence on soil stability due to their distinctive root traits. Root length density (RLD) and root specific surface area (RSA) were identified as crucial root traits mediating the impact of plant diversity on soil aggregate stability. Additionally, our study highlights the link between increased rhizosphere fungal richness, accompanied by plant species richness, and enhanced soil aggregate stability, likely attributable to elevated RLD and RSA. These insights deepen our understanding of the role of pioneer vegetation in soil structure and stability, providing valuable implications for ecological restoration and management practices in reservoir drawdown areas.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- CAS Key Lab on Reservoir Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Ping Huang
- CAS Key Lab on Reservoir Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Maohua Ma
- CAS Key Lab on Reservoir Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Kun Shan
- CAS Key Lab on Reservoir Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Shengjun Wu
- CAS Key Lab on Reservoir Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
8
|
Li MY, Wang W, Ma Y, Chen Y, Tao HY, Zhao ZY, Wang PY, Zhu L, Ma B, Xiao YL, Li SS, Ashraf M, Wang WY, Xiong XB, Zhu Y, Zhang JL, Irum M, Song YJ, Kavagi L, Xiong YC. Plastic footprint deteriorates dryland carbon footprint across soil-plant-atmosphere continuum. ENVIRONMENT INTERNATIONAL 2024; 186:108632. [PMID: 38583296 DOI: 10.1016/j.envint.2024.108632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Plastic fragments are widely found in the soil profile of terrestrial ecosystems, forming plastic footprint and posing increasing threat to soil functionality and carbon (C) footprint. It is unclear how plastic footprint affects C cycling, and in particularly permanent C sequestration. Integrated field observations (including 13C labelling) were made using polyethylene and polylactic acid plastic fragments (low-, medium- and high-concentrations as intensifying footprint) landfilling in soil, to track C flow along soil-plant-atmosphere continuum (SPAC). The result indicated that increased plastic fragments substantially reduced photosynthetic C assimilation (p < 0.05), regardless of fragment degradability. Besides reducing C sink strength, relative intensity of C emission increased significantly, displaying elevated C source. Moreover, root C fixation declined significantly from 21.95 to 19.2 mg m-2, and simultaneously root length density, root weight density, specific root length and root diameter and surface area were clearly reduced. Similar trends were observed in the two types of plastic fragments (p > 0.05). Particularly, soil aggregate stability was significantly lowered as affected by plastic fragments, which accelerated the decomposition rate of newly sequestered C (p < 0.05). More importantly, net C rhizodeposition declined averagely from 39.77 to 29.41 mg m-2, which directly led to significant decline of permanent C sequestration in soil. Therefore, increasing plastic footprint considerably worsened C footprint regardless of polythene and biodegradable fragments. The findings unveiled the serious effects of plastic residues on permanent C sequestration across SPAC, implying that current C assessment methods clearly overlook plastic footprint and their global impact effects.
Collapse
Affiliation(s)
- Meng-Ying Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wei Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yue Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth 6001, WA, Australia
| | - Hong-Yan Tao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Ze-Ying Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Peng-Yang Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Li Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China; College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China
| | - Baoluo Ma
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa K1A 0C6, Canada
| | - Yun-Li Xiao
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China
| | - Shi-Sheng Li
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Wen-Ying Wang
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Xiao-Bin Xiong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Ying Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Jin-Lin Zhang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Momena Irum
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Ya-Jie Song
- Global Institute of Eco-environment for Sustainable Development (GIESD), 40 Pleasant Street, New Haven, CT 06511, USA
| | - Levis Kavagi
- Division of Ecosystems and Biodiversity, United Nations Environment Programme, Nairobi 00100, Kenya
| | - You-Cai Xiong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
9
|
Wang T, Hu C, Zhou T, Zhang Y, Hu H, Zou L, Zhou W, Gao H, Ren X, Wang J, Hu S. Artificial utilization of saline-sodic land promotes carbon stock: The importance of large macroaggregates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120343. [PMID: 38364541 DOI: 10.1016/j.jenvman.2024.120343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Soil aggregates are essential functional units involved in soil carbon sequestration, particularly in saline-sodic soils prone to severe carbon loss. In the present study, the distribution of aggregate-associated carbon fractions and their influencing factors were investigated after artificial utilization of saline soil in the Songnen Plain, Northeast China. Physicochemical properties, enzymatic activities, and bacterial communities were measured in various hierarchical aggregates among two natural land-use types (saline wasteland and degraded grassland) and three anthropogenic land-use types (artificial forest, upland field, and paddy field). The results indicated that, compared to saline wasteland, anthropogenic land use was witnessed an increase in macroaggregate proportions, and PF in large macroaggregates increased the most, while UF and FL were mainly increased in small macroaggregates. After transforming from natural land to anthropogenic land, the aggregate-associated carbon fractions (total organic carbon, readily soluble organic carbon, dissolved organic carbon, and microbial biomass carbon) increased, especially in small macroaggregates. All enzyme activities increased after artificial utilization, hydrolase (urease, amylase, and invertase), catalase, and β-glucosidase activities were highest in the small macroaggregates. Bacterial biomass was increased in all three aggregate types compared to natural land. Due to the influence of various factors on soil carbon storage, through partial least squares path modeling revealed that large macroaggregates were conducive to carbon storage. These findings suggested that artificial utilization of saline soil can increase large macroaggregate proportions and the abundance of aggregate-associated carbon, resulting in increased soil carbon stocks, with PF having the greatest carbon sequestration capacity.
Collapse
Affiliation(s)
- Tianhao Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Canmin Hu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Tairan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Yun Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Hao Hu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Li Zou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Wenfeng Zhou
- Department of Applied Chemistry, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Haixiang Gao
- Department of Applied Chemistry, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Xueqin Ren
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
| | - Shuwen Hu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
| |
Collapse
|
10
|
Kim JW, Lim HB, Jang JY, Shin HS. Sludge-based candidate reference materials for enhanced quality control of particulate processes in total organic carbon analysis for wastewater 1. CHEMOSPHERE 2024; 352:141458. [PMID: 38364920 DOI: 10.1016/j.chemosphere.2024.141458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Accurate analyses of total organic carbon (TOC) encompassing particulate organic carbon in wastewater are key for evaluating the behavior of particulate organic contaminants and maintaining the carbon mass balance throughout the wastewater treatment process. This study was conducted to develop candidate reference materials of environmental origin from excess sludge collected from wastewater treatment facilities, primarily receiving industrial wastewater and livestock manure as the main sources. Homogeneity and stability assessments for total carbon (TC) and TOC were conducted in the particle samples following the standardized procedures of ISO Guide 35 and ISO 13258. The results showed that high inorganic carbon (IC) content in particles, such as YJ(500) (IC: 29%), rendered them unsuitable for TOC quality control (QC), as they increased uncertainty in both homogeneity and stability assessments. Additionally, a13C NMR analysis revealed that samples with a high (O-alkyl)/(C-H-alkyl) ratio in their carbon structures exhibited relatively low stability. Through the homogeneity and stability assessments, a particle sample, YJ(100), was selected as the reference material (RM); the assigned values were as follows: 30.78% for TC and 27.94% for TOC, with uncertainties of 0.01% and 1.1%, respectively. Furthermore, considering sample transportation conditions, the safe storage period for the RM particles was determined to be 2 weeks under harsh conditions (at 40 °C). In our inter-laboratory test (n = 8) using the particle samples, we confirmed that the particle samples can effectively enhance particle processing QC and validate a proposed suspended solids pretreatment method. This study showcases valuable environmental particle sample production and evaluation, offering potential advancements in the QC of TOC analysis for wastewater samples.
Collapse
Affiliation(s)
- Joo-Won Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, South Korea
| | - Hye-Bin Lim
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jun-Young Jang
- Material Science and Environmental Engineering Unit, Tampere University, Tampere, 33014, Finland
| | - Hyun-Sang Shin
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, South Korea.
| |
Collapse
|
11
|
Määttä T, Malhotra A. The hidden roots of wetland methane emissions. GLOBAL CHANGE BIOLOGY 2024; 30:e17127. [PMID: 38337165 DOI: 10.1111/gcb.17127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 02/12/2024]
Abstract
Wetlands are the largest natural source of methane (CH4 ) globally. Climate and land use change are expected to alter CH4 emissions but current and future wetland CH4 budgets remain uncertain. One important predictor of wetland CH4 flux, plants, play an important role in providing substrates for CH4 -producing microbes, increasing CH4 consumption by oxygenating the rhizosphere, and transporting CH4 from soils to the atmosphere. Yet, there remain various mechanistic knowledge gaps regarding the extent to which plant root systems and their traits influence wetland CH4 emissions. Here, we present a novel conceptual framework of the relationships between a range of root traits and CH4 processes in wetlands. Based on a literature review, we propose four main CH4 -relevant categories of root function: gas transport, carbon substrate provision, physicochemical influences and root system architecture. Within these categories, we discuss how individual root traits influence CH4 production, consumption, and transport (PCT). Our findings reveal knowledge gaps concerning trait functions in physicochemical influences, and the role of mycorrhizae and temporal root dynamics in PCT. We also identify priority research needs such as integrating trait measurements from different root function categories, measuring root-CH4 linkages along environmental gradients, and following standardized root ecology protocols and vocabularies. Thus, our conceptual framework identifies relevant belowground plant traits that will help improve wetland CH4 predictions and reduce uncertainties in current and future wetland CH4 budgets.
Collapse
Affiliation(s)
- Tiia Määttä
- Department of Geography, University of Zürich, Zürich, Switzerland
| | - Avni Malhotra
- Department of Geography, University of Zürich, Zürich, Switzerland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
12
|
Meidl P, Lehmann A, Bi M, Breitenreiter C, Benkrama J, Li E, Riedo J, Rillig MC. Combined application of up to ten pesticides decreases key soil processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11995-12004. [PMID: 38227255 PMCID: PMC11289034 DOI: 10.1007/s11356-024-31836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Natural systems are under increasing pressure by a range of anthropogenic global change factors. Pesticides represent a nearly ubiquitously occurring global change factor and have the potential to affect soil functions. Currently the use of synthetic pesticides is at an all-time high with over 400 active ingredients being utilized in the EU alone, with dozens of these pesticides occurring concurrently in soil. However, we presently do not understand the impacts of the potential interaction of multiple pesticides when applied simultaneously. Using soil collected from a local grassland, we utilize soil microcosms to examine the role of both rate of change and number of a selection of ten currently used pesticides on soil processes, including litter decomposition, water stable aggregates, aggregate size, soil pH, and EC. Additionally, we used null models to enrich our analyses to examine potential patterns caused by interactions between pesticide treatments. We find that both gradual and abrupt pesticide application have negative consequences for soil processes. Notably, pesticide number plays a significant role in affecting soil health. Null models also reveal potential synergistic behavior between pesticides which can further their consequences on soil processes. Our research highlights the complex impacts of pesticides, and the need for environmental policy to address the threats posed by pesticides.
Collapse
Affiliation(s)
- Peter Meidl
- Institut Für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Anika Lehmann
- Institut Für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Mohan Bi
- Institut Für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Carla Breitenreiter
- Institut Für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Jasmina Benkrama
- Institut Für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Erqin Li
- Institut Für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Judith Riedo
- Institut Für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Matthias C Rillig
- Institut Für Biologie, Freie Universität Berlin, Berlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.
| |
Collapse
|
13
|
Liu Y, Cordero I, Bardgett RD. Defoliation and fertilisation differentially moderate root trait effects on soil abiotic and biotic properties. THE JOURNAL OF ECOLOGY 2023; 111:2733-2749. [PMID: 38516387 PMCID: PMC10952586 DOI: 10.1111/1365-2745.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/15/2023] [Indexed: 03/23/2024]
Abstract
Root functional traits are known to influence soil properties that underpin ecosystem functioning. Yet few studies have explored how root traits simultaneously influence physical, chemical, and biological properties of soil, or how these responses are modified by common grassland perturbations that shape roots, such as defoliation and fertilisation.Here, we explored how root traits of a wide range of grassland plant species with contrasting resource acquisition strategies (i.e. conservative vs. exploitative strategy plant species) respond to defoliation and fertilisation individually and in combination, and examined cascading impacts on a range of soil abiotic and biotic properties that underpin ecosystem functioning.We found that the amplitude of the response of root traits to defoliation and fertilisation varied among plant species, in most cases independently of plant resource acquisition strategies. However, the direction of the root trait responses (increase or decrease) to perturbations was consistent across all plant species, with defoliation and fertilisation exerting opposing effects on root traits. Specific root length increased relative to non-perturbed control in response to defoliation, while root biomass, root mass density, and root length density decreased. Fertilisation induced the opposite responses. We also found that both defoliation and fertilisation individually enhanced the role of root traits in regulating soil biotic and abiotic properties, especially soil aggregate stability. Synthesis: Our results indicate that defoliation and fertilisation, two common grassland perturbations, have contrasting impacts on root traits of grassland plant species, with direct and indirect short-term consequences for a wide range of soil abiotic and biotic properties that underpin ecosystem functioning.
Collapse
Affiliation(s)
- Yan Liu
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterUK
| | - Irene Cordero
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterUK
- Department of Community EcologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Richard D. Bardgett
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterUK
| |
Collapse
|
14
|
Dejene T, Merga B, Martín-Pinto P. Green trees preservation: A sustainable source of valuable mushrooms for Ethiopian local communities. PLoS One 2023; 18:e0294633. [PMID: 38019803 PMCID: PMC10686473 DOI: 10.1371/journal.pone.0294633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023] Open
Abstract
In Ethiopia, Pinus radiata and Pinus patula are extensively cultivated. Both plantations frequently serve as habitats for edible fungi, providing economic and ecological importance. Our study aims were: (i) to investigate how plantation age and tree species influence the variety of edible fungi and sporocarps production; (ii) to determine edaphic factors contributing to variations in sporocarps composition; and (iii) to establish a relationship between the most influencing edaphic factors and the production of valuable edible mushrooms for both plantation types. Sporocarps were collected weekly from permanent plots (100 m2) established in 5-, 14-, and 28-year-old stands of both species in 2020. From each plot, composite soil samples were also collected to determine explanatory edaphic variables for sporocarps production and composition. A total of 24 edible species, comprising 21 saprophytic and three ectomycorrhizal ones were identified. Agaricus campestroides, Morchella sp., Suillus luteus, Lepista sordida, and Tylopilus niger were found in both plantations. Sporocarp yields showed significant variation, with the highest mean production in 28-year-old stands of both Pinus stands. Differences in sporocarps variety were also observed between the two plantations, influenced by factors such as pH, nitrogen, phosphorus, potassium, and cation exchange capacity. Bovista dermoxantha, Coprinellus domesticus, and A. campestroides made contributions to the variety. The linear regression models indicated that the abundance of specific fungi was significantly predicted by organic matter. This insight into the nutrient requirements of various fungal species can inform for a better plantation management to produce both wood and non-wood forest products. Additionally, higher sporocarps production in older stands suggests that retaining patches of mature trees after the final cut can enhance fungal habitat, promoting diversity and yield. Thus, implementing this approach could provide supplementary income opportunities from mushroom sales and enhance the economic outputs of plantations, while mature trees could serve as a source of fungal inoculum for new plantations.
Collapse
Affiliation(s)
- Tatek Dejene
- Sustainable Forest Management Research Institute UVa-INIA, Avenida Madrid, Palencia, Spain
- Ethiopian Forestry Development (EFD), Forest Products Innovation Center of Excellency, Addis Ababa, Ethiopia
| | - Bulti Merga
- Sustainable Forest Management Research Institute UVa-INIA, Avenida Madrid, Palencia, Spain
| | - Pablo Martín-Pinto
- Sustainable Forest Management Research Institute UVa-INIA, Avenida Madrid, Palencia, Spain
| |
Collapse
|
15
|
Abdalla M, Bitterlich M, Jansa J, Püschel D, Ahmed MA. The role of arbuscular mycorrhizal symbiosis in improving plant water status under drought. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4808-4824. [PMID: 37409696 DOI: 10.1093/jxb/erad249] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) have been presumed to ameliorate crop tolerance to drought. Here, we review the role of AMF in maintaining water supply to plants from drying soils and the underlying biophysical mechanisms. We used a soil-plant hydraulic model to illustrate the impact of several AMF mechanisms on plant responses to edaphic drought. The AMF enhance the soil's capability to transport water and extend the effective root length, thereby attenuating the drop in matric potential at the root surface during soil drying. The synthesized evidence and the corresponding simulations demonstrate that symbiosis with AMF postpones the stress onset limit, which is defined as the disproportionality between transpiration rates and leaf water potentials, during soil drying. The symbiosis can thus help crops survive extended intervals of limited water availability. We also provide our perspective on future research needs and call for reconciling the dynamic changes in soil and root hydraulics in order to better understand the role of AMF in plant water relations in the face of climate changes.
Collapse
Affiliation(s)
- Mohanned Abdalla
- Chair of Root-Soil Interaction, School of Life Sciences, Technical University of Munich, Freising, Germany
- Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
- Department of Horticulture, Faculty of Agriculture, University of Khartoum, Khartoum North, Sudan
| | - Michael Bitterlich
- Humboldt-Universität zu Berlin, Thaer-Institute, Division Urban Plant Ecophysiology, Berlin, Germany
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - David Püschel
- Department of Mycorrhizal Symbioses, Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Mutez A Ahmed
- Chair of Root-Soil Interaction, School of Life Sciences, Technical University of Munich, Freising, Germany
- Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
16
|
Magnucka EG, Kulczycki G, Oksińska MP, Kucińska J, Pawęska K, Milo Ł, Pietr SJ. The Effect of Various Forms of Sulfur on Soil Organic Matter Fractions and Microorganisms in a Pot Experiment with Perennial Ryegrass ( Lolium perenne L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2649. [PMID: 37514266 PMCID: PMC10384080 DOI: 10.3390/plants12142649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
This article focuses on the agronomic evaluation of the supplementation of mineral NPKMg fertilizers with elemental sulfur, magnesium, potassium, or ammonium sulfates in pot experiments with ryegrass growing in a sandy Arenosol with very low sulfur content. A benefit evaluation was carried out on the basis of biomass production, crop nutritional status, and changes in the content of soil organic matter fractions. Furthermore, the total number of bacteria, nitrogen-fixing bacteria, and fungi was estimated using the qPCR technique in soil samples after 60 days of ryegrass growth. The combined application of NPKMg and sulfur or sulfate fertilizers significantly increased the summary yield of three cuttings of fresh ryegrass biomass in the range of 32.3% to 82.7%. The application, especially in the form of sulfates, significantly decreased the content of free phenolic acids. Furthermore, compared to the control, i.e., soil with NPKMg applied alone, an increase in the content of glomalin-related proteins and a decrease in the amount of water-soluble organic carbon compounds were observed. Neither the number of DNA marker copy numbers of the total bacterial community nor the nitrogen-fixing bacteria were noticeably different. In turn, the total number of genetic markers for fungi was significantly higher in soils with potassium or ammonium sulfates compared to the control soil. The general results suggest that the application of sulfur fertilizers with NPKMg mineral fertilizer can benefit crops and support soil fertility due to the stabilization of aggregates and the decrease in water-soluble organic compounds.
Collapse
Affiliation(s)
- Elżbieta G Magnucka
- Laboratory of Biogeochemistry and Environmental Microbiology, Department of Plant Protection, Wrocław University of Environmental & Life Sciences, Grunwaldzka St. 53, 50-357 Wrocław, Poland
| | - Grzegorz Kulczycki
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wrocław University of Environmental & Life Sciences, Grunwaldzka St. 53, 50-357 Wrocław, Poland
| | - Małgorzata P Oksińska
- Laboratory of Biogeochemistry and Environmental Microbiology, Department of Plant Protection, Wrocław University of Environmental & Life Sciences, Grunwaldzka St. 53, 50-357 Wrocław, Poland
| | - Jolanta Kucińska
- Laboratory of Biogeochemistry and Environmental Microbiology, Department of Plant Protection, Wrocław University of Environmental & Life Sciences, Grunwaldzka St. 53, 50-357 Wrocław, Poland
| | - Katarzyna Pawęska
- Institute of Environmental Engineering, Wrocław University of Environmental & Life Sciences, Grunwaldzki Sq. 24, 50-363 Wrocław, Poland
| | - Łukasz Milo
- Chemical Plants "Siarkopol" Tarnobrzeg Ltd., Chemiczna St. 3, 39-400 Tarnobrzeg, Poland
| | - Stanisław J Pietr
- Laboratory of Biogeochemistry and Environmental Microbiology, Department of Plant Protection, Wrocław University of Environmental & Life Sciences, Grunwaldzka St. 53, 50-357 Wrocław, Poland
| |
Collapse
|
17
|
Gkimprixi E, Lagos S, Nikolaou CN, Karpouzas DG, Tsikou D. Veterinary drug albendazole inhibits root colonization and symbiotic function of the arbuscular mycorrhizal fungus Rhizophagus irregularis. FEMS Microbiol Ecol 2023; 99:fiad048. [PMID: 37156498 PMCID: PMC10696295 DOI: 10.1093/femsec/fiad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/23/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are plant symbionts that have a pivotal role in maintaining soil fertility and nutrient cycling. However, these microsymbionts may be exposed to organic pollutants like pesticides or veterinary drugs known to occur in agricultural soils. Anthelminthics are veterinary drugs that reach soils through the application of contaminated manures in agricultural settings. Their presence might threaten the function of AMF, considered as sensitive indicators of the toxicity of agrochemicals to the soil microbiota. We determined the impact of the anthelminthic compounds albendazole and ivermectin on the establishment and functionality of the symbiosis between the model-legume Lotus japonicus and the AMF Rhizophagus irregularis. Our analyses revealed negative effects of albendazole on the development and functionality of arbuscules, the symbiotic organelle of AMF, at a concentration of 0.75 μg g-1. The impairment of the symbiotic function was verified by the reduced expression of genes SbtM1, PT4 and AMT2;2 involved in arbuscules formation, P and N uptake, and the lower phosphorus shoot content detected in the albendazole-treated plants. Our results provide first evidence for the toxicity of albendazole on the colonization capacity and function of R. irregularis at concentrations that may occur in agricultural soils systematically amended with drug-containing manures.
Collapse
Affiliation(s)
- Eleni Gkimprixi
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Stathis Lagos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Christina N Nikolaou
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Daniela Tsikou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| |
Collapse
|
18
|
Multi-factor correlation analysis of the effect of root-promoting practices on tobacco rhizosphere microecology in growth stages. Microbiol Res 2023; 270:127349. [PMID: 36870194 DOI: 10.1016/j.micres.2023.127349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
Some agronomic practices not only promote the development of crop roots and increase overall plant performance but also affect colonisation by rhizosphere microorganisms. However, the composition and temporal dynamics of the tobacco rhizosphere microbiota under different root-promoting practices are poorly understood. Here, we characterised the tobacco rhizosphere microbiota at the knee-high, vigorous growing, and maturity stages under the application of potassium fulvic acid (PFA), γ-Polyglutamic acid (PGA), soymilk root irrigation (SRI), and conventional fertilization (CK) and its correlation with root characteristics and soil nutrients. The results showed that three root-promoting practices notably improved the dry and fresh root weights. Total nitrogen and phosphorus, available phosphorus and potassium, and organic matter contents in the rhizosphere markedly increased at the vigorous growing stage. The rhizosphere microbiota was changed through root-promoting practices. However, with tobacco growth, the change of rhizosphere microbiota showed a pattern of slow first and then fast and the microbiota of different treatments gradually approached. SRI reduced plant-pathogenic fungi but increased chemoheterotrophic and phototrophic bacteria, and arbuscular mycorrhizal fungi. PFA and PGA markedly increased arbuscular mycorrhizal and ectomycorrhizal fungi at the knee-high stage, which benefitted tobacco nutrient absorption. The correlation between rhizosphere microorganisms and environmental factors varied at different growth stages. Notably, the rhizosphere microbiota was more sensitive to environmental factors at the vigorous growing stage, and the interactions were more complex than in other stages. Furthermore, a variance partitioning analysis showed that the influence of root-soil interaction on the rhizosphere microbiota increased with tobacco growth. Overall, all three root-promoting practices could improve root characteristics, rhizosphere nutrient, and rhizosphere microbiota to varying degrees and increase the tobacco biomass, among which PGA had the most obvious effect and most suitable for tobacco cultivation. Our findings revealed the role of root-promoting practices in shaping the rhizosphere microbiota during plant growth and elucidated the assembly patterns and environmental drivers of crop rhizosphere microbiota driven by the application of root-promoting practices in agricultural production.
Collapse
|
19
|
Zhou Y. Root traits in response to frequent fires: Implications for belowground carbon dynamics in fire-prone savannas. FRONTIERS IN PLANT SCIENCE 2023; 14:1106531. [PMID: 36959938 PMCID: PMC10028150 DOI: 10.3389/fpls.2023.1106531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Predicting how belowground carbon storage reflects changes in aboveground vegetation biomass is an unresolved challenge in most ecosystems. This is especially true for fire-prone savannas, where frequent fires shape the fraction of carbon allocated to root traits for post-fire vegetation recovery. Here I review evidence on how root traits may respond to frequent fires and propose to leverage root traits to infer belowground carbon dynamics in fire-prone savannas. Evidently, we still lack an understanding of trade-offs in root acquisitive vs. conservative traits in response to frequent fires, nor have we determined which root traits are functionally important to mediate belowground carbon dynamics in a frequently burned environment. Focusing research efforts along these topics should improve our understanding of savanna carbon cycling under future changes in fire regimes.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Wildland Resources, Utah State University, Logan, UT, United States
- Ecology Center, Utah State University, Logan, UT, United States
| |
Collapse
|
20
|
Yang H, Mai S, Liu W, Fu J, Yang Q, Zhang B, Huang B. Variations of arbuscular mycorrhizal fungi following succession stages in a tropical lowland rainforest ecosystem of South China. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1125749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
IntroductionThe grasslands in the Nature Reserve of Ganshenling, in the south of Hainan Island, were first formed after deforestation disturbance before a natural restoration of shrubs and secondary forests. However, the stages of grassland and shrubs in some parts of Ganshenling regions could not be naturally restored to secondary forests. In addition, the forest form of the secondary forest after 40 years (40a) of succession was similar to that of the secondary forest of 60 years (60a). However, it was not known whether the microorganisms recovered to the level of the secondary forest of 60a. Arbuscular mycorrhizal fungi (AMF) are plant root symbionts that can improve the nitrogen and phosphorus absorption of plants and play a key role in secondary forest succession. An understanding of the essential role of soil AMF in secondary forest succession of tropical rainforest in Ganshenling regions is still limited.MethodsTherefore, the soil of 0–10 cm was collected with the help of a 5-point sampling method in grassland, shrubs, and second tropical lowland rainforest of 40a and 60a. We studied community changes in AMF with the succession and explored the impacts of soil physicochemical properties on soil AMF.ResultsOur findings were as follows: (1) Different successional stages showed divergent effects on soil AMF communities. (2) After 40a recovery, the alpha-diversity indices of AMF recovered to the level of secondary forest of 60a, but the similarity of soil AMF communities only recovered to 25.3%. (3) Species richness of common species, rare species, and all the species of AMF showed a significantly positive correlation with soil nitrogen. (4) OTU10; OTU6, OTU9, and OTU141; OTU3 and OTU38; and OTU2, OTU15, OTU23, and OTU197 were significantly unique AMF for grasslands, shrubs, and secondary forests of 40a and 60a, respectively. (5) The phylogenetic tree and the heatmap of AMF showed that the OTUs in grasslands and shrubs were in contrast to the OTUs in secondary forests of 40a and 60a.DiscussionWe concluded that the succession of a secondary forest after deforestation disturbance was probably limited by its AMF community.
Collapse
|
21
|
Linking Rhizosphere Soil Aggregates with Belowground and Aboveground Plant Traits. ECOLOGIES 2023. [DOI: 10.3390/ecologies4010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Rhizosphere soil ecosystems are represented by the diversity of different soil aggregate-size classes, such as large macroaggregates, small macroaggregates, mesoaggregates, and microaggregates. Though these aggregate-size classes represent distinct biological, chemical, and physical properties, little is known about their dynamics and relationships with belowground and aboveground plant traits. In this study, we examined the relationships of various soil aggregate-size classes and their organic carbon contents with many aboveground and belowground soybean plant traits. Our study revealed several novel and interesting relationships between soil structural properties and plant traits. Notably, small macroaggregates represented a major portion of the rhizosphere soil ecosystem of soybean plants while organic carbon contents decreased with decreasing size of soil aggregates. Only microaggregates showed a significant relationship with root architectural traits, such as length and surface area. Among all soil aggregate size classes, the abundance of small macroaggregates and the organic carbon contents of microaggregates were better correlated with plant traits. In general, organic carbon contents of different soil aggregate-size classes showed positive correlations with leaf trichome density (defense traits) and major macronutrients, such as root P, K, and S contents; while there were mostly negative correlations with some micronutrient (Ca, Mn, Zn, Cu, B, and Mg) contents of roots and shoots. However, the abundance of small macroaggregates mostly positively correlated with the mineral contents of plant roots and shoots. Collectively, the positive and negative correlations of organic carbon contents of different soil aggregate-size classes with trichomes (defense) and physiological traits (micro-mineral contents) suggest their significance in plant nutrition and defense. Though our results suggest the relationships of soil aggregate properties with aboveground and belowground traits, further research is needed to discern the role of soil structural traits in mediating plant growth, development, defense, and physiology.
Collapse
|
22
|
Zuo Y, Zeng W, Ao C, Chen H, Huang J. Effects of multiwalled carbon nanotube and Bacillus atrophaeus application on crop root zone thermal characteristics of saline farmland. Heliyon 2023; 9:e13510. [PMID: 36846674 PMCID: PMC9947265 DOI: 10.1016/j.heliyon.2023.e13510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Presently, the effects of crop roots on crop root zone thermal characteristics are poorly understood, and new fertilizers are rarely considered from the perspective of changing crop root zone thermal characteristics. This study explored the effect of applying two new fertilizers, multiwalled carbon nanotubes (MWCNTs) and Bacillus atrophaeus (B. atrophaeus), on the crop root zone thermal characteristics of saline farmland soils through in situ measurements. The results showed that MWCNTs and B. atrophaeus could indirectly affect crop root zone thermal characteristics by changing the crop root growth. Combined application of MWCNTs and B. atrophaeus could promote both to induce positive effects, promote crop root growth, and significantly alleviate the adverse effects of soil salinization. The thermal conductivity and heat capacity of the shallow root zone were reduced due to the presence of crop roots, while the opposite was true in the deep root zone. For example, the thermal conductivity of the 0-5 cm rich root zone in the MWCNT treatment was 0.8174 W m-1 ·K-1, and the thermal conductivity of the poor root zone was 13.42% higher than that of the rich root zone. MWCNTs and B. atrophaeus can also change the spatial distribution of soil moisture, soil salt, and soil particle size characteristics by influencing the root-soil interactions and indirectly affecting crop root zone thermal characteristics. In addition, MWCNTs and B. atrophaeus could directly affect the root zone thermal characteristics by changing the soil properties. The higher the soil salt content was, the more obvious the effect of the MWCNTs and B. atrophaeus on the crop root zone thermal characteristics. The thermal conductivity and heat capacity of the crop root zone were positively correlated with the soil moisture content, soil salt content and soil particle specific surface area and negatively correlated with the soil particle size and the fresh and dry root weights. In summary, MWCNTs and B. atrophaeus significantly affected crop root zone thermal characteristics directly and indirectly and could adjust the temperature of the crop root zone.
Collapse
Affiliation(s)
- Yutian Zuo
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China,Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Wenzhi Zeng
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China,Corresponding author.
| | - Chang Ao
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
| | - Haorui Chen
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Jiesheng Huang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China,Corresponding author.
| |
Collapse
|
23
|
Giovannetti M, Salvioli di Fossalunga A, Stringlis IA, Proietti S, Fiorilli V. Unearthing soil-plant-microbiota crosstalk: Looking back to move forward. FRONTIERS IN PLANT SCIENCE 2023; 13:1082752. [PMID: 36762185 PMCID: PMC9902496 DOI: 10.3389/fpls.2022.1082752] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
The soil is vital for life on Earth and its biodiversity. However, being a non-renewable and threatened resource, preserving soil quality is crucial to maintain a range of ecosystem services critical to ecological balances, food production and human health. In an agricultural context, soil quality is often perceived as the ability to support field production, and thus soil quality and fertility are strictly interconnected. The concept of, as well as the ways to assess, soil fertility has undergone big changes over the years. Crop performance has been historically used as an indicator for soil quality and fertility. Then, analysis of a range of physico-chemical parameters has been used to routinely assess soil quality. Today it is becoming evident that soil quality must be evaluated by combining parameters that refer both to the physico-chemical and the biological levels. However, it can be challenging to find adequate indexes for evaluating soil quality that are both predictive and easy to measure in situ. An ideal soil quality assessment method should be flexible, sensitive enough to detect changes in soil functions, management and climate, and should allow comparability among sites. In this review, we discuss the current status of soil quality indicators and existing databases of harmonized, open-access topsoil data. We also explore the connections between soil biotic and abiotic features and crop performance in an agricultural context. Finally, based on current knowledge and technical advancements, we argue that the use of plant health traits represents a powerful way to assess soil physico-chemical and biological properties. These plant health parameters can serve as proxies for different soil features that characterize soil quality both at the physico-chemical and at the microbiological level, including soil quality, fertility and composition of soil microbial communities.
Collapse
Affiliation(s)
- Marco Giovannetti
- Department of Biology, University of Padova, Padova, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | | - Ioannis A. Stringlis
- Plant - Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| | - Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
24
|
Liu Z, Wang M, Zhou J, Chen Z, Xu X, Zhu Y. Soil aggregation is more important than mulching and nitrogen application in regulating soil organic carbon and total nitrogen in a semiarid calcareous soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158790. [PMID: 36116642 DOI: 10.1016/j.scitotenv.2022.158790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/15/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Evaluating soil aggregation and microbial activities within soil aggregates contributes to understanding carbon (C) and nitrogen (N) cycling. Here we examined soil aggregate distribution, C and N pools, and extracellular enzymatic activities (EEAs) in soil aggregates after 16-year mulching (CT, no mulch; RF, plastic-mulched ridges and straw-mulched furrows; SM, straw mulch) and N fertilization (0, 120, and 240 kg ha-1). RF and SM significantly increased macroaggregate formation and aggregate stability (MWD, mean weight diameter) but N rate did not. Mulching had similar effects on aggregate-associated SOC (soil organic C) and TN (total N), with the order SM > RF > CT in macroaggregates and macroaggregate-occluded microaggregates. N input significantly increased TN in most cases, whereas its effect on SOC was only significant in SM. Notably, the majority of SOC and TN was isolated in the macroaggregate-occluded silt and clay fractions. SOC, TN, microbial biomass C (MBC), and microbial biomass N (MBN) decreased as aggregate-size decreased, whereas C- and N-acquiring enzymes varied greatly across aggregate fractions. Mulching had greater effects than N-fertilization on soil C and N pools and EEAs, whilst SM performed more beneficial effects than RF on SOC, TN, MBC, MBN, and EEAs. MBC rather than SOC was associated with MWD in bulk soil, while significant relations between MWD and SOC were observed in macroaggregates and macroaggregate-occluded microaggregates. Partial least squares path modeling illustrated that soil aggregation was the most important factor affecting SOC and TN, followed by mulching and N addition. Regression analysis further revealed that α-glucosidase and leucine aminopeptidase were major variables mediating SOC and TN dynamics at the aggregate scale. This study highlights the importance of macroaggregate-occluded microaggregate fraction sensitively evaluating soil C and N dynamics, and straw mulch can effectively increase soil aggregation and stabilization of C and N in semiarid areas with infertile soils.
Collapse
Affiliation(s)
- Zhanjun Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Mingda Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jianbin Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zhujun Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xinpeng Xu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuanjun Zhu
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling 712100, China
| |
Collapse
|
25
|
Guest EJ, Palfreeman LJ, Holden J, Chapman PJ, Firbank LG, Lappage MG, Helgason T, Leake JR. Soil macroaggregation drives sequestration of organic carbon and nitrogen with three-year grass-clover leys in arable rotations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158358. [PMID: 36049686 DOI: 10.1016/j.scitotenv.2022.158358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 08/04/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Conventional arable cropping with annual crops established by ploughing and harrowing degrades larger soil aggregates that contribute to storing soil organic carbon (SOC). The urgent need to increase SOC content of arable soils to improve their functioning and sequester atmospheric CO2 has motivated studies into the effects of reintroducing leys into long-term conventional arable fields. However, effects of short-term leys on total SOC accumulation have been equivocal. As soil aggregation may be important for carbon storage, we investigated the effects of arable-to-ley conversion on cambisol soil after three years of ley, on concentrations and stocks of SOC, nitrogen and their distributions in different sized water-stable aggregates. These values were benchmarked against soil from beneath hedgerow margins. SOC stocks (0-7 cm depth) rose from 20.3 to 22.6 Mg ha-1 in the arable-to-ley conversion, compared to 30 Mg ha-1 in hedgerows, but this 2.3 Mg ha-1 difference (or 0.77 Mg C ha-1 yr-1) was not significant). However, the proportion of large macroaggregates (> 2000 μm) increased 5.4-fold in the arable-to-ley conversion, recovering to similar abundance as hedgerow soils, driving near parallel increases in SOC and nitrogen within large macroaggregates (5.1 and 5.7-fold respectively). The total SOC (0-7 cm depth) stored in large macroaggregates increased from 2.0 to 9.6 Mg ha-1 in the arable-to-ley conversion, which no longer differed significantly from the 12.1 Mg ha-1 under hedgerows. The carbon therefore accumulated three times faster, at 2.53 Mg C ha-1 yr-1, in the large macroaggregates compared to the bulk soil. These findings highlight the value of monitoring large macroaggregate-bound SOC as a key early indicator of shifts in soil quality in response to change in field management, and the benefits of leys in soil aggregation, carbon accumulation, and soil functioning, providing justification for fiscal incentives that encourage wider use of leys in arable rotations.
Collapse
Affiliation(s)
- Emily J Guest
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK; ADAS Boxworth, Battle Gate Road, Cambridge CB23 4NN, UK.
| | - Lucy J Palfreeman
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK.
| | - Joseph Holden
- School of Geography, The University of Leeds, Leeds LS2 9JT, UK.
| | - Pippa J Chapman
- School of Geography, The University of Leeds, Leeds LS2 9JT, UK.
| | - Les G Firbank
- School of Biology, The University of Leeds, Leeds LS2 9JT, UK.
| | | | - Thorunn Helgason
- Department of Biology, The University of York, York, YO10 5DD, UK; School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3JR, UK.
| | - Jonathan R Leake
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
26
|
Situ G, Zhao Y, Zhang L, Yang X, Chen D, Li S, Wu Q, Xu Q, Chen J, Qin H. Linking the chemical nature of soil organic carbon and biological binding agent in aggregates to soil aggregate stability following biochar amendment in a rice paddy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157460. [PMID: 35868400 DOI: 10.1016/j.scitotenv.2022.157460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Changes in soil aggregation with biochar amendment have been investigated extensively, but how biochar affects the chemical composition of organic carbon (C) and biological binding agents in aggregates and their linkage with soil aggregate stability remains unclear. Soil samples were collected in a rice paddy treated with 0 (C0, control), 10 t ha-1 (C10), 20 t ha-1 (C20) and 40 t ha-1 (C40) biochar for twenty months. The amount and chemical composition of soil organic C (SOC), microbial abundances and glomalin-related soil protein (GRSP) were determined in bulk soil and four fractions: large macroaggregates (>2000 μm), small macroaggregates (250-2000 μm), microaggregates (53-250 μm), and silt + clay (<53 μm). Our results showed that the proportion of >250 μm water-stable aggregates and mean weight diameter were gradually increased with increasing biochar addition rate. The concentrations of SOC, readily oxidizable C and microbial biomass C increased most in the small macroaggregates, followed by microaggregates under biochar amendment. Increasing biochar addition rate gradually decreased the relative contents of alkyl C, O-alkyl C and carbonyl C, but increased those of aromatic C across the aggregates, resulting in a higher aromaticity and hydrophobicity of SOC with respect to the control. The abundances of bacteria, fungi and archaea and the content of GRSP were significantly enhanced in the large and small macroaggregates under the C40 treatment. The proportion of >250 μm aggregates was significantly correlated with the contents of soil organic C fractions, GRSP and microbial abundance. Structural equation modeling further revealed that changes in SOC hydrophobicity and GRSP content under biochar amendment had significant and direct effects on the soil aggregate size distribution. In summary, our findings suggest that biochar amendment in rice paddy could improve soil aggregation through altering the chemical composition of soil organic C and the abundance of biological binding agents.
Collapse
Affiliation(s)
- Gaoming Situ
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Yuanlai Zhao
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Lei Zhang
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Xingqi Yang
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - De Chen
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Songhao Li
- Agricultural Technology Extension Centre, Lin'an Municipal Bureau of Agriculture, Lin'an, Hangzhou 311300, China
| | - Qifeng Wu
- Agricultural Technology Extension Centre, Lin'an Municipal Bureau of Agriculture, Lin'an, Hangzhou 311300, China
| | - Qiufang Xu
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Junhui Chen
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China.
| | - Hua Qin
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China.
| |
Collapse
|
27
|
Yang H, Fang C, Li Y, Wu Y, Fransson P, Rillig MC, Zhai S, Xie J, Tong Z, Zhang Q, Sheteiwy MS, Li F, Weih M. Temporal complementarity between roots and mycorrhizal fungi drives wheat nitrogen use efficiency. THE NEW PHYTOLOGIST 2022; 236:1168-1181. [PMID: 35927946 DOI: 10.1111/nph.18419] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Improving nitrogen (N) use efficiency (NUE) to reduce the application of N fertilisers in a way that benefits the environment and reduces farmers' costs is an ongoing objective for sustainable wheat production. However, whether and how arbuscular mycorrhizal fungi (AMF) affect NUE in wheat is still not well explored. Three independent but complementary experiments were conducted to decipher the contribution of roots and AMF to the N uptake and utilisation efficiency in wheat. We show a temporal complementarity pattern between roots and AMF in shaping NUE of wheat. Pre-anthesis N uptake efficiency mainly depends on root functional traits, but the efficiency to utilise the N taken up during pre-anthesis for producing grains (EN,g ) is strongly affected by AMF, which might increase the uptake of phosphorus and thereby improve photosynthetic carbon assimilation. Root association with AMF reduced the N remobilisation efficiency in varieties with high EN,g ; whilst the overall grain N concentration increased, due to a large improvement in post-anthesis N uptake supported by AMF and/or other microbes. The findings provide evidence for the importance of managing AMF in agroecosystems, and an opportunity to tackle the contradiction between maximising grain yield and protein concentration in wheat breeding.
Collapse
Affiliation(s)
- Haishui Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chun Fang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yifan Li
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongcheng Wu
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Petra Fransson
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - Silong Zhai
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junjie Xie
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zongyi Tong
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Zhang
- Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing, 100091, China
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Fengmin Li
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Martin Weih
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| |
Collapse
|
28
|
Karpouzas DG, Vryzas Z, Martin-Laurent F. Pesticide soil microbial toxicity: setting the scene for a new pesticide risk assessment for soil microorganisms (IUPAC Technical Report). PURE APPL CHEM 2022. [DOI: 10.1515/pac-2022-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Pesticides constitute an integral part of modern agriculture. However, there are still concerns about their effects on non-target organisms. To address this the European Commission has imposed a stringent regulatory scheme for new pesticide compounds. Assessment of the aquatic toxicity of pesticides is based on a range of advanced tests. This does not apply to terrestrial ecosystems, where the toxicity of pesticides on soil microorganisms, is based on an outdated and crude test (N mineralization). This regulatory gap is reinforced by the recent methodological and standardization advances in soil microbial ecology. The inclusion of such standardized tools in a revised risk assessment scheme will enable the accurate estimation of the toxicity of pesticides on soil microorganisms and on associated ecosystem services. In this review we (i) summarize recent work in the assessment of the soil microbial toxicity of pesticides and point to ammonia-oxidizing microorganisms (AOM) and arbuscular mycorrhizal fungi (AMF) as most relevant bioindicator groups (ii) identify limitations in the experimental approaches used and propose mitigation solutions, (iii) identify scientific gaps and (iv) propose a new risk assessment procedure to assess the effects of pesticides on soil microorganisms.
Collapse
Affiliation(s)
- Dimitrios G. Karpouzas
- Department of Biochemistry and Biotechnology , Laboratory of Plant and Environmental Biotechnology, University of Thessaly , Viopolis 41500 , Larissa , Greece
| | - Zisis Vryzas
- Department of Agricultural Development , Democritus University of Thrace , Orestiada , Greece
| | | |
Collapse
|
29
|
Chamberlain LA, Aguayo T, Zerega NJC, Dybzinski R, Egerton-Warburton LM. Rapid improvement in soil health following the conversion of abandoned farm fields to annual or perennial agroecosystems. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1010298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Incorporating perennial crops into agroecosystems has been shown to mitigate soil degradation and improve soil health by enhancing soil aggregation and soil organic carbon (SOC) accrual. However, our understanding of the ability and timeframe for perennial crop systems to build soil health within the context of conversion from abandoned crop land remains limited. Here, we examined changes in soil health in the first year following the conversion of an abandoned crop field into an agroecosystem planted with various treatments, including: novel perennial grain (intermediate wheatgrass, IWG; Thinopyrum intermedium), IWG/ alfalfa biculture, forage grass, tallgrass prairie, or annual wheat. We analyzed factors considered central to the concept of mitigating soil degradation to improve soil health (soil aggregation, aggregate organic carbon (OC), bulk SOC) and their soil biological and physicochemical correlates throughout the first growing season. Comparisons between treatments showed that both annual and perennial treatments rapidly and significantly improved soil health metrics including aggregation, aggregate stability, and OC levels compared to pre-conversion conditions. Such increases were positively correlated with the abundance of arbuscular mycorrhizal fungi (AMF hyphae, root colonization), labile SOC and microbial activity. Notably, IWG/ alfalfa biculture resulted in significantly higher levels of macroaggregate OC in comparison to other treatments, including tallgrass prairie, supporting the potential of perennial grasses to contribute to soil carbon gains. Overall, the conversion of this abandoned land to an agroecosystem produced rapid and substantial increases in soil health in the first year after planting.
Collapse
|
30
|
Chen H, Xiong J, Fang L, Han F, Zhao X, Fan Q, Tan W. Sequestration of heavy metals in soil aggregates induced by glomalin-related soil protein: A five-year phytoremediation field study. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129445. [PMID: 35897177 DOI: 10.1016/j.jhazmat.2022.129445] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/05/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Glomalin-related soil protein (GRSP) is an essential bioactive component that may respond to heavy metal stress; however, its exact influence on metal bioavailability and the associated mechanism remains poorly understood. This study investigated the speciation and distribution of heavy metals in soil aggregates associated with GRSP through macroscopic and microscopic approaches. A field study showed that the metal ions were distributed to the macro-aggregate fraction by partitioning the particle size classes during phytoremediation. Partial least squares path modeling (PLS-PM) demonstrated that the heavy metal bioavailability was negatively affected by aggregate stability (61.5%) and GRSP content (52.8%), suggesting that the soil aggregate properties regarding GRSP were vital drivers in mitigating environmental risk closely associated with toxic metal migration in soil-plant systems. The nonideal competitive adsorption (NICA)-Donnan model fitting suggested that GRSP were rich in acid site density, and the complexation with deprotonated groups dominated the speciation of heavy metals in soil. Further, the microfocus X-ray absorption/fluorescence spectroscopy analysis indicated that GRSP might promote the formation of stable metal species by binding with sulfur-containing sites. This study highlights the role of GRSP in heavy metal sequestration in contaminated soils, providing new guidance on the GRSP intervention for phytoremediation strategies.
Collapse
Affiliation(s)
- Hansong Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and the Ministry of Water Resources, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| | - Juan Xiong
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and the Ministry of Water Resources, Yangling 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xian 710061, China.
| | - Fu Han
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and the Ministry of Water Resources, Yangling 712100, China
| | - Xiaolan Zhao
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Qiaohui Fan
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Wenfeng Tan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and the Ministry of Water Resources, Yangling 712100, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
31
|
Chaudhary VB, Holland EP, Charman-Anderson S, Guzman A, Bell-Dereske L, Cheeke TE, Corrales A, Duchicela J, Egan C, Gupta MM, Hannula SE, Hestrin R, Hoosein S, Kumar A, Mhretu G, Neuenkamp L, Soti P, Xie Y, Helgason T. What are mycorrhizal traits? Trends Ecol Evol 2022; 37:573-581. [PMID: 35504748 DOI: 10.1016/j.tree.2022.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 12/29/2022]
Abstract
Traits are inherent properties of organisms, but how are they defined for organismal networks such as mycorrhizal symbioses? Mycorrhizal symbioses are complex and diverse belowground symbioses between plants and fungi that have proved challenging to fit into a unified and coherent trait framework. We propose an inclusive mycorrhizal trait framework that classifies traits as morphological, physiological, and phenological features that have functional implications for the symbiosis. We further classify mycorrhizal traits by location - plant, fungus, or the symbiosis - which highlights new questions in trait-based mycorrhizal ecology designed to charge and challenge the scientific community. This new framework is an opportunity for researchers to interrogate their data to identify novel insights and gaps in our understanding of mycorrhizal symbioses.
Collapse
Affiliation(s)
- V Bala Chaudhary
- Department of Environmental Studies, Dartmouth College, Hanover, NH 03755, USA.
| | | | | | - Aidee Guzman
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lukas Bell-Dereske
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Tanya E Cheeke
- School of Biological Sciences, Washington State University, Richland, WA 99354, USA
| | - Adriana Corrales
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 110151, Colombia
| | - Jessica Duchicela
- Departamento de Ciencias de la Vida, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador
| | - Cameron Egan
- Department of Biology, Okanagan College, 1000 KLO Rd, Kelowna, BC, Canada V1Y 4X8
| | - Manju M Gupta
- Department of Biology, University of Delhi, Sri Aurobindo College, Delhi 110017, India
| | - S Emilia Hannula
- Institute of Environmental Sciences, Leiden University, Leiden 2333, The Netherlands
| | - Rachel Hestrin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Shabana Hoosein
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523, USA
| | - Amit Kumar
- Institute of Ecology, Faculty of Sustainability, Leuphana University of Lüneburg, 21335 Lüneburg, Germany
| | - Genet Mhretu
- Department of Biology, Mekelle University, Mekelle 231, Ethiopia
| | - Lena Neuenkamp
- University of Bern, Institute of Plant Sciences, Berne 3013, Switzerland; Department of Ecology and Multidisciplinary Institute for Environment Studies 'Ramon Margalef', University of Alicante, Alicante 03009, Spain
| | - Pushpa Soti
- Biology Department, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Yichun Xie
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077
| | | |
Collapse
|
32
|
Chandrasekaran M. Arbuscular Mycorrhizal Fungi Mediated Enhanced Biomass, Root Morphological Traits and Nutrient Uptake under Drought Stress: A Meta-Analysis. J Fungi (Basel) 2022; 8:jof8070660. [PMID: 35887417 PMCID: PMC9323047 DOI: 10.3390/jof8070660] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
Drought stress remains the major constraint in affecting crop productivity in several arid and semi-arid areas highlighting climate change perspectives. Arbuscular mycorrhizal fungi (AMF) belong to a versatile class of plant−fungal symbiotic associations establishing drought stress alleviation. Nevertheless, the mechanistic mode of sustainable agriculture necessitates rigorous assessment for authentic and reproducible plant growth parameters. Understanding the plant growth promotion, root morphological changes, and nutrient uptake response in AMF-inoculated plants to drought is very important for sustainable agriculture. Therefore, conducted a meta-analysis of published research articles for determining the efficacy of AMF in alleviating drought stress. Overall analysis showed that AM inoculated plants had 49% higher plant growth promotion than the non-mycorrhizal plants under drought stress. Biomass analysis depicted the root dry weight increase by 49%, shoot dry weight increase by 54%, and total dry weight increase by 58% indicating plant biomass traits augmentation. Root morphological traits analysis corresponded to increased root length (37%), root surface (31%), and root volume (65%). Notably, nutrient uptake assessment showed variable increases in uptake patterns such as P uptake by 86%, N uptake by 35%, and K uptake by 46%. Furthermore, the prominent efficacy of AMF was significantly larger under drought for P uptake (p < 0.001) and root volume (p < 0.001) indicating the linear relationship between root length and P uptake. Thus, the present meta-analysis confirms that drought stress alleviation emancipated by AMF is mediated by root traits modification and phosphorous acquisition efficacy. Hence, meta-analyses along with experimental validations with field trial evaluations will certainly provide the AMF research for escalated applications for better plant productivity, stress alleviation, and sustainable agriculture.
Collapse
Affiliation(s)
- Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, Sejong University, 209-Neundong-ro, Gwangjin-gu, Seoul 05006, Korea
| |
Collapse
|
33
|
Chen J, Song D, Liu D, Sun J, Wang X, Zhou W, Liang G. Soil Aggregation Shaped the Distribution and Interaction of Bacterial-Fungal Community Based on a 38-Year Fertilization Experiment in China. Front Microbiol 2022; 13:824681. [PMID: 35391728 PMCID: PMC8981921 DOI: 10.3389/fmicb.2022.824681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
Soil aggregates provide different ecological niches for microorganisms, and in turn, the microbial interactions affect soil aggregation process. The response of the microbial community in bulk soil to different fertilization regimes has been well studied; however, the co-occurrence patterns of bacteria and fungi in different aggregates under various fertilization regimes remain unclear. Based on the long-term field experiment, we found that fertilization regimes contributed more to fungal than to bacterial community composition. Long-term fertilization decreased microbial interactions in large macroaggregates (LM), macroaggregates (MA) and silt and clay (SC) fractions, but increased in microaggregates (MI). The application of manure with inorganic fertilizers (NPKM) significantly increased the intensive cooperation between bacteria and fungi in LM and MA. Microbial communities in LM and MA were well separated and showed strong competition against microbes in MI and SC; hence, we concluded that the microbial habitat could be divided into two groups, large fractions (LM and MA) and small fractions (MI and SC). The bacterial genera Anaerolinea, Nocardioides, Ohtaekwangia, Geoalkalibacter, Lysobacter, Pedomicrobium, and Flavisolibacter were keystone taxa in inorganic fertilization, and Roseiflexus, Nitrospira, and Blastocatella were keystone taxa in NPKM, which were all sensitive to soil aggregation. In this study, we demonstrated that the NPKM decreased the microbial interactions within and between kingdoms in LM, MA, and SC, but enhanced nutrient availability and microbial interactions in MI, leading to the formation of biofilms and the strengthening of stress tolerance, which finally stimulated the formation and stabilization of soil aggregates. Thus, this study revealed how soil microbial competition or cooperation responded to different fertilization regimes at aggregate scales, and provided evidence for the stimulation of soil stability.
Collapse
Affiliation(s)
- Jie Chen
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dali Song
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Donghai Liu
- Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jingwen Sun
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiubin Wang
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhou
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guoqing Liang
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
34
|
Yu L, Zhang H, Zhang W, Liu K, Liu M, Shao X. Cooperation between arbuscular mycorrhizal fungi and plant growth-promoting bacteria and their effects on plant growth and soil quality. PeerJ 2022; 10:e13080. [PMID: 35341045 PMCID: PMC8944337 DOI: 10.7717/peerj.13080] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/16/2022] [Indexed: 01/12/2023] Open
Abstract
The roles of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) in improving nutrition uptake and soil quality have been well documented. However, few studies have explored their effects on root morphology and soil properties. In this study, we inoculated Elymus nutans Griseb with AMF and/or PGPR in order to explore their effects on plant growth, soil physicochemical properties, and soil enzyme activities. The results showed that AMF and/or PGPR inoculation significantly enhanced aboveground and belowground vegetation biomass. Both single and dual inoculations were beneficial for plant root length, surface area, root branches, stem diameter, height, and the ratio of shoot to root, but decreased root volume and root average diameter. Soil total nitrogen, alkaline phosphatase, and urease activities showed significant growth, and soil electrical conductivity and pH significantly declined under the inoculation treatments. Specific root length showed a negative correlation with belowground biomass, but a positive correlation with root length and root branches. These results indicated that AMF and PGPR had synergetic effects on root morphology, soil nutrient availability, and plant growth.
Collapse
Affiliation(s)
- Lu Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Hui Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Wantong Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Kesi Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Miao Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Xinqing Shao
- College of Grassland Science and Technology, China Agricultural University, Beijing, China,Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai, China
| |
Collapse
|
35
|
Frew A, Antunes PM, Cameron DD, Hartley SE, Johnson SN, Rillig MC, Bennett AE. Plant herbivore protection by arbuscular mycorrhizas: a role for fungal diversity? THE NEW PHYTOLOGIST 2022; 233:1022-1031. [PMID: 34618922 DOI: 10.1111/nph.17781] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Adam Frew
- School of Sciences, University of Southern Queensland, Toowoomba, Qld, 4350, Australia
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Qld, 4350, Australia
| | - Pedro M Antunes
- Department of Biology, Algoma University, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Duncan D Cameron
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
- Institute for Sustainable Food, University of Sheffield, Sheffield, S10 2TN, UK
| | - Susan E Hartley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, 2751, Australia
| | - Matthias C Rillig
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, Berlin, D-14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, D-14195, Germany
| | - Alison E Bennett
- Department of Evolution, Ecology & Organismal Biology, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
36
|
Thanni B, Merckx R, De Bauw P, Boeraeve M, Peeters G, Hauser S, Honnay O. Spatial variability and environmental drivers of cassava-arbuscular mycorrhiza fungi (AMF) associations across Southern Nigeria. MYCORRHIZA 2022; 32:1-13. [PMID: 34981190 PMCID: PMC8786768 DOI: 10.1007/s00572-021-01058-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Cassava, forming starch-rich, tuberous roots, is an important staple crop in smallholder farming systems in sub-Saharan Africa. Its relatively good tolerance to drought and nutrient-poor soils may be partly attributed to the crop's association with arbuscular mycorrhiza fungi (AMF). Yet insights into AMF-community composition and richness of cassava, and knowledge of its environmental drivers are still limited. Here, we sampled 60 cassava fields across three major cassava-growing agro-ecological zones in Nigeria and used a DNA meta-barcoding approach to quantify large-scale spatial variation and evaluate the effects of soil characteristics and common agricultural practices on AMF community composition, richness and Shannon diversity. We identified 515 AMF operational taxonomic units (OTUs), dominated by Glomus, with large variation across agro-ecological zones, and with soil pH explaining most of the variation in AMF community composition. High levels of soil available phosphorus reduced OTU richness without affecting Shannon diversity. Long fallow periods (> 5 years) reduced AMF richness compared with short fallows, whereas both zero tillage and tractor tillage reduced AMF diversity compared with hoe tillage. This study reveals that the symbiotic relationship between cassava and AMF is strongly influenced by soil characteristics and agricultural management and that it is possible to adjust cassava cultivation practices to modify AMF diversity and community structure.
Collapse
Affiliation(s)
- Bolaji Thanni
- Division Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20, box-3001, 3001, Heverlee, Leuven, Belgium.
- Root and Tuber Agronomy, International Institute of Tropical Agriculture, Ibadan, Nigeria.
| | - Roel Merckx
- Division Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20, box-3001, 3001, Heverlee, Leuven, Belgium
| | - Pieterjan De Bauw
- Division Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20, box-3001, 3001, Heverlee, Leuven, Belgium
| | - Margaux Boeraeve
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, B-3001, Leuven, Belgium
| | - Gerrit Peeters
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, B-3001, Leuven, Belgium
| | - Stefan Hauser
- Root and Tuber Agronomy, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Olivier Honnay
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, B-3001, Leuven, Belgium
| |
Collapse
|
37
|
Agnihotri R, Sahni S, Sharma MP, Gupta MM. Facets of AM Fungi in Sequestering Soil Carbon and Improving Soil Health. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Xiao L, Zhang W, Hu P, Xiao D, Yang R, Ye Y, Wang K. The formation of large macroaggregates induces soil organic carbon sequestration in short-term cropland restoration in a typical karst area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149588. [PMID: 34425448 DOI: 10.1016/j.scitotenv.2021.149588] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/15/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Cropland restoration induces litter and root inputs and promotes the development of biological soil crusts (BSCs), which may promote aggregate formation and soil organic carbon (SOC) sequestration. However, litter, roots and BSCs have not been simultaneously considered when assessing soil aggregate and aggregate-associated SOC fraction responses to cropland restoration in subtropical areas. Here, we measured particulate organic carbon (POC) and mineral-associated organic carbon (MOC) in bulk soils and soil aggregates after 15 years of cropland restoration. Soil samples of cropland (CL) and four cropland restoration types (plantation forest [PF], forage grassland [FG], mixed plantation of forest and forage grassland [FF], and abandoned natural grassland [NG]) from depths of 0-30 cm were collected. Cropland restoration significantly increased SOC and POC in bulk soil at the 0-5 cm depth. However, only in FG did SOC significantly increase at depths of 5-15 cm, and POC significantly increased at depths of 5-30 cm. The large macroaggregate (5-10 mm and 2-5 mm) proportions increased significantly at the 0-15 cm depth after cropland restoration, and FG, FF and NG also increased the 5-10 mm aggregate proportions at the 15-30 cm depth. The SOC sequestration in bulk soil with cropland restoration was attributed to increases in the aggregate-associated organic carbon (AAOC) pool in large macroaggregates, which was mainly attributed to the increased aggregate amount rather than the increased AAOC concentration in large macroaggregates. Our results also indicated that an increase in aggregate-associated particulate organic carbon (AAPOC) led to an increase in AAOC. Variation partitioning indicated that the formation of large macroaggregates was controlled by the litter-moss-root interactive effect in this karst area. FG could be a better short-term cropland restoration strategy, increasing large macroaggregates in deeper soil layers better than the other vegetation types and promoting soil carbon sequestration in deeper soil layers.
Collapse
Affiliation(s)
- Lumei Xiao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Huanjiang 547100, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Wei Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Huanjiang 547100, China.
| | - Peilei Hu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Huanjiang 547100, China
| | - Dan Xiao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Huanjiang 547100, China
| | - Rong Yang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Huanjiang 547100, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Yingying Ye
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Huanjiang 547100, China
| | - Kelin Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Huanjiang 547100, China.
| |
Collapse
|
39
|
Li Y, Yu P, Shen L. Changes in soil aggregate stability and aggregate-associated organic carbon during old-field succession in karst valley. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 194:15. [PMID: 34881406 DOI: 10.1007/s10661-021-09662-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Soil is the largest carbon pool whose change will have an impact on the terrestrial carbon cycle in the terrestrial ecosystem. Old-field succession on abandoned farmland, which usually has a noticeable effect on soil status, is a common phenomenon in karst valley where human activity alters frequently. In order to understand the changes in the accumulation of organic carbon (OC) in aggregates and bulk soil in different stages of old-field succession on abandoned farmland in the karst valley area, soil samples were collected at 0-10-cm and 10-20-cm depth representing three typical stages of old-field succession, i.e., abandoned farmland, secondary grass, and secondary shrub in Qingmuguan karst valley area, Chongqing City, Southwest China. Results displayed that during old-field succession (1) the mean weight diameter and geometric mean diameter of the aggregates increased and the fractal dimension decreased; (2) OC content within aggregates and bulk soil had no significant change in topsoil (0-10 cm); OC content within microaggregates and bulk soil had a significant reduction in subsoil (10-20 cm); the OC content within silt and clay fractions was significantly higher than that within the other two kinds of aggregates; (3) bulk-soil OC storage had no significant change but its accumulation relied more on the increase in the number of larger aggregates. It is concluded that the old-field succession in karst valley was beneficial to protect against soil erosion by improving soil aggregate stability, but had a limited effect on soil organic carbon sequestration.
Collapse
Affiliation(s)
- Yixuan Li
- School of Geographical Sciences, Southwest University, Chongqing, 400715, China.
| | - Pujia Yu
- School of Geographical Sciences, Southwest University, Chongqing, 400715, China.
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Tiansheng Road, Chongqing, 400715, China.
| | - Licheng Shen
- School of Geographical Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
40
|
Freschet GT, Pagès L, Iversen CM, Comas LH, Rewald B, Roumet C, Klimešová J, Zadworny M, Poorter H, Postma JA, Adams TS, Bagniewska‐Zadworna A, Bengough AG, Blancaflor EB, Brunner I, Cornelissen JHC, Garnier E, Gessler A, Hobbie SE, Meier IC, Mommer L, Picon‐Cochard C, Rose L, Ryser P, Scherer‐Lorenzen M, Soudzilovskaia NA, Stokes A, Sun T, Valverde‐Barrantes OJ, Weemstra M, Weigelt A, Wurzburger N, York LM, Batterman SA, Gomes de Moraes M, Janeček Š, Lambers H, Salmon V, Tharayil N, McCormack ML. A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. THE NEW PHYTOLOGIST 2021; 232:973-1122. [PMID: 34608637 PMCID: PMC8518129 DOI: 10.1111/nph.17572] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/22/2021] [Indexed: 05/17/2023]
Abstract
In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I-VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers' views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning.
Collapse
Affiliation(s)
- Grégoire T. Freschet
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
- Station d’Ecologie Théorique et ExpérimentaleCNRS2 route du CNRS09200MoulisFrance
| | - Loïc Pagès
- UR 1115 PSHCentre PACA, site AgroparcINRAE84914Avignon cedex 9France
| | - Colleen M. Iversen
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Louise H. Comas
- USDA‐ARS Water Management Research Unit2150 Centre Avenue, Bldg D, Suite 320Fort CollinsCO80526USA
| | - Boris Rewald
- Department of Forest and Soil SciencesUniversity of Natural Resources and Life SciencesVienna1190Austria
| | - Catherine Roumet
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Jitka Klimešová
- Department of Functional EcologyInstitute of Botany CASDukelska 13537901TrebonCzech Republic
| | - Marcin Zadworny
- Institute of DendrologyPolish Academy of SciencesParkowa 562‐035KórnikPoland
| | - Hendrik Poorter
- Plant Sciences (IBG‐2)Forschungszentrum Jülich GmbHD‐52425JülichGermany
- Department of Biological SciencesMacquarie UniversityNorth RydeNSW2109Australia
| | | | - Thomas S. Adams
- Department of Plant SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Agnieszka Bagniewska‐Zadworna
- Department of General BotanyInstitute of Experimental BiologyFaculty of BiologyAdam Mickiewicz UniversityUniwersytetu Poznańskiego 661-614PoznańPoland
| | - A. Glyn Bengough
- The James Hutton InstituteInvergowrie, Dundee,DD2 5DAUK
- School of Science and EngineeringUniversity of DundeeDundee,DD1 4HNUK
| | | | - Ivano Brunner
- Forest Soils and BiogeochemistrySwiss Federal Research Institute WSLZürcherstr. 1118903BirmensdorfSwitzerland
| | - Johannes H. C. Cornelissen
- Department of Ecological ScienceFaculty of ScienceVrije Universiteit AmsterdamDe Boelelaan 1085Amsterdam1081 HVthe Netherlands
| | - Eric Garnier
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Arthur Gessler
- Forest DynamicsSwiss Federal Research Institute WSLZürcherstr. 1118903BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH Zurich8092ZurichSwitzerland
| | - Sarah E. Hobbie
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSt PaulMN55108USA
| | - Ina C. Meier
- Functional Forest EcologyUniversity of HamburgHaidkrugsweg 122885BarsbütelGermany
| | - Liesje Mommer
- Plant Ecology and Nature Conservation GroupDepartment of Environmental SciencesWageningen University and ResearchPO Box 476700 AAWageningenthe Netherlands
| | | | - Laura Rose
- Station d’Ecologie Théorique et ExpérimentaleCNRS2 route du CNRS09200MoulisFrance
- Senckenberg Biodiversity and Climate Research Centre (BiK-F)Senckenberganlage 2560325Frankfurt am MainGermany
| | - Peter Ryser
- Laurentian University935 Ramsey Lake RoadSudburyONP3E 2C6Canada
| | | | - Nadejda A. Soudzilovskaia
- Environmental Biology DepartmentInstitute of Environmental SciencesCMLLeiden UniversityLeiden2300 RAthe Netherlands
| | - Alexia Stokes
- INRAEAMAPCIRAD, IRDCNRSUniversity of MontpellierMontpellier34000France
| | - Tao Sun
- Institute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Oscar J. Valverde‐Barrantes
- International Center for Tropical BotanyDepartment of Biological SciencesFlorida International UniversityMiamiFL33199USA
| | - Monique Weemstra
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Alexandra Weigelt
- Systematic Botany and Functional BiodiversityInstitute of BiologyLeipzig UniversityJohannisallee 21-23Leipzig04103Germany
| | - Nina Wurzburger
- Odum School of EcologyUniversity of Georgia140 E. Green StreetAthensGA30602USA
| | - Larry M. York
- Biosciences Division and Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Sarah A. Batterman
- School of Geography and Priestley International Centre for ClimateUniversity of LeedsLeedsLS2 9JTUK
- Cary Institute of Ecosystem StudiesMillbrookNY12545USA
| | - Moemy Gomes de Moraes
- Department of BotanyInstitute of Biological SciencesFederal University of Goiás1974690-900Goiânia, GoiásBrazil
| | - Štěpán Janeček
- School of Biological SciencesThe University of Western Australia35 Stirling HighwayCrawley (Perth)WA 6009Australia
| | - Hans Lambers
- School of Biological SciencesThe University of Western AustraliaCrawley (Perth)WAAustralia
| | - Verity Salmon
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Nishanth Tharayil
- Department of Plant and Environmental SciencesClemson UniversityClemsonSC29634USA
| | - M. Luke McCormack
- Center for Tree ScienceMorton Arboretum, 4100 Illinois Rt. 53LisleIL60532USA
| |
Collapse
|
41
|
Inter and intra-specific variability in arbuscular mycorrhizal fungi affects hosts and soil health. Symbiosis 2021. [DOI: 10.1007/s13199-021-00812-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
42
|
Sand Particle Size and Phosphorus Amount Affect Rhizophagus irregularis Spore Production Using In Vitro Propagated Spore as a Starter Inoculum in Rhizosphere of Maize ( Zea mays) Plantlets. J Fungi (Basel) 2021; 7:jof7100846. [PMID: 34682267 PMCID: PMC8541049 DOI: 10.3390/jof7100846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Microbial inoculants, particularly arbuscular mycorrhizal (AM) fungi, have great potential for sustainable crop management. In this study, monoxenic culture of indigenous R. irregularis was developed and used as a tool to determine the minimum phosphorus (P) level for maximum spore production under the in vitro conditions. This type of starter AM fungal inoculum was then applied to an in vivo substrate-based mass-cultivation system. Spore production, colonization rate, and plant growth were examined in maize (Zea mays L.) plant inoculated with the monoxenic culture of R. irregularis in sand graded by particle size with varying P levels in nutrient treatments. In the in vitro culture, the growth medium supplemented with 20 µM P generated the maximum number of spores (400 spores/mL media) of R. irregularis. In the in vivo system, the highest sporulation (≈500 spores g−1 sand) occurred when we added a half-strength Hoagland solution (20 µM P) in the sand with particle size between 500 µm and 710 µm and omitted P after seven weeks. However, the highest colonization occurred when we added a half-strength Hoagland solution in the sand with particle sizes between 710 µm and 1000 µm and omitted P after seven weeks. This study suggests that substrate particle size and P reduction and regulation might have a strong influence on the maximization of sporulation and colonization of R. irregularis in sand substrate-based culture.
Collapse
|
43
|
Retention of Matured Trees to Conserve Fungal Diversity and Edible Sporocarps from Short-Rotation Pinus radiata Plantations in Ethiopia. J Fungi (Basel) 2021; 7:jof7090702. [PMID: 34575740 PMCID: PMC8471983 DOI: 10.3390/jof7090702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/08/2021] [Accepted: 08/21/2021] [Indexed: 11/19/2022] Open
Abstract
This study is conducted in the short-rotation plantations from the Afromontane Region of Ethiopia. Sporocarps were sampled weekly in a set of permanent plots (100 m2) in young, medium-aged, and mature Pinus radiata (Don) plantations. Fungal richness, diversity, and sporocarp yields were estimated. Composite soil samples were also collected from each plot to determine explanatory edaphic variables for taxa composition. We collected 92 fungal taxa, of which 8% were ectomycorrhizal (ECM). Taxa richness, the Shannon diversity index, and ECM species richness were higher in mature stands. Interestingly, 26% of taxa were classified as edible. Sporocarp yield showed increasing trends towards matured stands. OM and C/N ratio significantly affected fungal composition and sporocarp production. The deliberate retention of mature trees in a patch form rather than clear felling of the plantations could be useful to conserve and promote fungal diversity and production, including valuable taxa such as Morchella, Suillus, and Tylopilus in older stands. This approach has important implications for forest floor microhabitats, which are important for macrofungal occurrence and production. Thus, this strategy could improve the economic outputs of these plantations in the Afromontane Region, while the mature trees could serve as a bridge for providing fungal inocula to the new plantations.
Collapse
|
44
|
Wang C, Pan Y, Zhang Z, Xiao R, Zhang M. Effect of straw decomposition on organic carbon fractions and aggregate stability in salt marshes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145852. [PMID: 33676213 DOI: 10.1016/j.scitotenv.2021.145852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Straw addition can increase the content of soil organic carbon (SOC), and affect the content of aggregates and organic carbon fractions. The changes in aggregates and organic carbon fractions in the natural salt marsh, 10-year and 15-year freshwater pumping areas in the Yellow River Estuary were studied by 120-day field in situ culture experiments with Phragmites australis straw addition. The results showed that straw addition mainly enhanced the soil aggregate stability in the 10-year freshwater pumping area, and the organic carbon content of small macro-aggregates increased significantly by 26.36% (P < 0.05). In particular, the content of coarse particulate organic carbon (cPOC) with small macro-aggregates in all areas increased significantly with the addition of straw (P < 0.05). For small macro-aggregates in the 10-year pumping area, the cPOC contents increased significantly by 21.73 g/kg (P < 0.05); and were significantly higher than the fine particulate organic carbon (fPOC) and mineral-associated organic carbon (mSOC) contents, as the fPOC contents in micro-aggregates increased by 85.92% (P < 0.05). Additionally, the cPOC contents of small macro-aggregates and fPOC contents of micro-aggregates increased by 34.59% and 43.24% in the 15-year pumping area. The contents of mSOC were the lowest in different aggregates across all areas. Thus, straw addition had a significant effect on the contents of cPOC and fPOC, while freshwater pumping in the YRE could affect the distribution of fPOC and mSOC with aggregates.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yueyan Pan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Zhenming Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Rong Xiao
- College of Environment and Resources, Fuzhou University, Fuzhou 350116, China.
| | - Mingxiang Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
45
|
Organic fertilization improves soil aggregation through increases in abundance of eubacteria and products of arbuscular mycorrhizal fungi. Sci Rep 2021; 11:12548. [PMID: 34131156 PMCID: PMC8206353 DOI: 10.1038/s41598-021-91653-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/26/2021] [Indexed: 11/08/2022] Open
Abstract
An important goal of sustainable agriculture is to maintain soil quality. Soil aggregation, which can serve as a measure of soil quality, plays an important role in maintaining soil structure, fertility, and stability. The process of soil aggregation can be affected through impacts on biotic and abiotic factors. Here, we tested whether soil management involving application of organic and mineral fertilizers could significantly improve soil aggregation and if variation among differently fertilized soils could be specifically attributed to a particular biotic and/or abiotic soil parameter. In a field experiment within Central Europe, we assessed stability of 1-2 mm soil aggregates together with other parameters of soil samples from differently fertilized soils. Application of compost and digestates increased stability of soil aggregates. Most of the variation in soil aggregation caused by different fertilizers was associated with soil organic carbon lability, occurrence of aromatic functional groups, and variations in abundance of eubacteria, total glomalins, concentrations of total S, N, C, and hot water extractable C. In summary, we have shown that application of compost and digestates improves stability of soil aggregates and that this is accompanied by increased soil fertility, decomposition resistance, and abundance of total glomalins and eubacteria. These probably play significant roles in increasing stability of soil aggregates.
Collapse
|
46
|
Bui A, Orr D, Lepori-Bui M, Konicek K, Young HS, Moeller HV. Soil fungal community composition and functional similarity shift across distinct climatic conditions. FEMS Microbiol Ecol 2021; 96:5909968. [PMID: 32960210 DOI: 10.1093/femsec/fiaa193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/18/2020] [Indexed: 11/15/2022] Open
Abstract
A large part of ecosystem function in woodland systems depends on soil fungal communities. However, global climate change has the potential to fundamentally alter these communities as fungal species are filtered with changing environmental conditions. In this study, we examined the potential effects of climate on host-associated (i.e. tree-associated) soil fungal communities at climatically distinct sites in the Tehachapi Mountains in California, where more arid conditions represent likely regional climate futures. We found that soil fungal community composition changes strongly across sites, with species richness and diversity being highest at the most arid site. However, host association may buffer the effects of climate on community composition, as host-associated fungal communities are more similar to each other across climatically distinct sites than the whole fungal community. Lastly, an examination of functional traits for ectomycorrhizal fungi, a well-studied guild of fungal mutualist species, showed that stress-tolerant traits were more abundant at arid sites than mesic sites, providing a mechanistic understanding of these community patterns. Taken together, our results indicate that fungal community composition will likely shift with future climate change but that host association may buffer these effects, with shifts in functional traits having implications for future ecosystem function.
Collapse
Affiliation(s)
- An Bui
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9620, USA
| | - Devyn Orr
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9620, USA
| | - Michelle Lepori-Bui
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9620, USA
| | - Kelli Konicek
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9620, USA
| | - Hillary S Young
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9620, USA
| | - Holly V Moeller
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9620, USA
| |
Collapse
|
47
|
Zhu Y, Shen H, Feng Y, Li H, Akinyemi DS, Hu H, Fang J. Effects of shrub encroachment on soil aggregates and organic carbon vary in different grasslands in Inner Mongolia, China. Ecosphere 2021. [DOI: 10.1002/ecs2.3363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yankun Zhu
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing100093China
- University of Chinese Academy of Sciences Beijing100049China
| | - Haihua Shen
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing100093China
- University of Chinese Academy of Sciences Beijing100049China
| | - Yinping Feng
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing100093China
- University of Chinese Academy of Sciences Beijing100049China
| | - He Li
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing100093China
| | - Damilare Stephen Akinyemi
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing100093China
- University of Chinese Academy of Sciences Beijing100049China
| | - Huifeng Hu
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing100093China
| | - Jingyun Fang
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing100093China
- University of Chinese Academy of Sciences Beijing100049China
- Department of Ecology College of Urban and Environment Key Laboratory of Earth Surface Processes of the Ministry of Education Peking University Beijing100871China
| |
Collapse
|
48
|
Keller AB, Brzostek ER, Craig ME, Fisher JB, Phillips RP. Root‐derived inputs are major contributors to soil carbon in temperate forests, but vary by mycorrhizal type. Ecol Lett 2021; 24:626-635. [DOI: 10.1111/ele.13651] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Adrienne B. Keller
- Department of Biology Indiana University Bloomington Bloomington IM USA
- Department of Ecology, Evolution and Behavior University of Minnesota Twin Cities Minneapolis MN USA
| | | | - Matthew E. Craig
- Environmental Sciences Division and Climate Change Science Institute Oak Ridge National Laboratory Oak Ridge TN USA
| | - Joshua B. Fisher
- Jet Propulsion Laboratory California Institute of Technology Joint Institute for Regional Earth System Science and EngineeringUniversity of California at Los Angeles Los Angeles CA USA
| | | |
Collapse
|
49
|
Leifheit EF, Lehmann A, Rillig MC. Potential Effects of Microplastic on Arbuscular Mycorrhizal Fungi. FRONTIERS IN PLANT SCIENCE 2021; 12:626709. [PMID: 33597964 PMCID: PMC7882630 DOI: 10.3389/fpls.2021.626709] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/05/2021] [Indexed: 05/22/2023]
Abstract
Microplastics (MPs) are ubiquitously found in terrestrial ecosystems and are increasingly recognized as a factor of global change (GCF). Current research shows that MP can alter plant growth, soil inherent properties, and the composition and activity of microbial communities. However, knowledge about how microplastic affects arbuscular mycorrhizal fungi (AMF) is scarce. For plants it has been shown that microplastic can both increase and decrease the aboveground biomass and reduce the root diameter, which could indirectly cause a change in AMF abundance and activity. One of the main direct effects of microplastic is the reduction of the soil bulk density, which translates to an altered soil pore structure and water transport. Moreover, especially fibers can have considerable impacts on soil structure, namely the size distribution and stability of soil aggregates. Therefore, microplastic alters a number of soil parameters that determine habitat space and conditions for AMF. We expect that this will influence functions mediated by AMF, such as soil aggregation, water and nutrient transport. We discuss how the impacts of microplastic on AMF could alter how plants deal with other GCFs in the context of sustainable food production. The co-occurrence of several GCFs, e.g., elevated temperature, drought, pesticides, and microplastic could modify the impact of microplastic on AMF. Furthermore, the ubiquitous presence of microplastic also relates to earth system processes, e.g., net primary production (NPP), carbon and nitrogen cycling, which involve AMF as key soil organisms. For future research, we outline which experiments should be prioritized.
Collapse
Affiliation(s)
- Eva F. Leifheit
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
- *Correspondence: Eva F. Leifheit,
| | - Anika Lehmann
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Matthias C. Rillig
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| |
Collapse
|
50
|
Role of Useful Fungi in Agriculture Sustainability. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|