1
|
Mewa DB, Caspersen A, Fiedler JD, Hu G, Gao D. Genetic analysis and molecular mapping of the purple leaf sheath in barley (Hordeum vulgare). THE PLANT GENOME 2025; 18:e70034. [PMID: 40275436 PMCID: PMC12022192 DOI: 10.1002/tpg2.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025]
Abstract
Although anthocyanin is frequently found in various barley organs, the genetic basis of the pigmentation is still poorly understood. In this study, we examined the development of anthocyanin in GemCraft, a malting barley cultivar showing purple leaf sheath (PLS), and found that the pigmentation became visible on the leaf sheath at the early tillering stage. This study employed single nucleotide polymorphism (SNP) array genotyping data in two F2 populations developed using GemCraft and two barley lines with green leaf sheath throughout the plant development. Genetic and quantitative trait locus (QTL) analyses suggested regulation of the purple pigment accumulation by a single major QTL that was inherited as a dominant allele, which was necessary for the phenotype to develop. A major QTL, named qPLS2 (purple leaf sheath2 locus), was found on chromosome 2H and explained >70% of the trait variation. Nonetheless, the genetic model in the two mapping populations resonated between multiple loci and a single locus that determines the trait variation. Accordingly, in one of the populations, three minor QTL were also detected on chromosomes 1H and 5H: each of these QTL explained <5% variation and showed influence in regulation of the purple pigment intensity. In the qPLS2 QTL interval, comparative genomic analysis of annotated genes that are widely known to regulate anthocyanin development in plants identified a single candidate gene encoding a basic helix-loop-helix (bHLH) transcription factor. The study identified a new major QTL associated with the purple leaf sheath and generated further information for validation and cloning the causal gene for effective utilization of anthocyanin in barley genetic improvement.
Collapse
Affiliation(s)
- Demeke B. Mewa
- USDA‐ARS Small Grains and Potato Germplasm Research UnitAberdeenIdahoUSA
| | - Ann Caspersen
- USDA‐ARS Small Grains and Potato Germplasm Research UnitAberdeenIdahoUSA
| | - Jason D. Fiedler
- USDA‐ARS Cereal Crops Improvement Research Unit, Edward T. Schafer Agricultural Research CenterFargoNorth DakotaUSA
| | - Gongshe Hu
- USDA‐ARS Small Grains and Potato Germplasm Research UnitAberdeenIdahoUSA
| | - Dongying Gao
- USDA‐ARS Small Grains and Potato Germplasm Research UnitAberdeenIdahoUSA
| |
Collapse
|
2
|
Halpin-McCormick A, Campbell Q, Negrão S, Morrell PL, Hübner S, Neyhart JL, Kantar MB. Environmental genomic selection to leverage polygenic local adaptation in barley landraces. Commun Biol 2025; 8:618. [PMID: 40240546 PMCID: PMC12003830 DOI: 10.1038/s42003-025-08045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Climate change is threatening agricultural production across the globe. Germplasm collections provide an opportunity to explore where variation exists with important crop species. Genome environment association (GEA) is a standard approach for investigating the genetic basis of adaptation to natural environments. While these analyses provide insight into local adaptation, they have not been widely adopted in breeding or conservation programs. This may be attributable to the difficulty in identifying the best individuals for transplantation/relocation in conservation efforts or identification of the best parents in breeding programs. To explore the potential utility in future breeding programs, we used the cereal crop - barley (Hordeum vulgare L.) due to its wide adaptability to different environments and agroecologies, ranging from marginal and low input fields to high-productive farms. Here, we conduct environmental genomic selection (EGS) on 753 landrace barley accessions using a mini-core of 31 landrace accessions and a de-novo core of 100 as the training populations. Since local adaptation to the environment is polygenic, a whole-genome approach is likely to be more accurate for selection. Here we show how an integrative approach coupling environmental genomic selection and species distribution modelling can help identify key parents for adaptation to specific environmental variables.
Collapse
Affiliation(s)
- Anna Halpin-McCormick
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Quinn Campbell
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Sónia Negrão
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Sariel Hübner
- Department of Bioinformatics and Galilee Research Institute (MIGAL), Tel Hai Academic College, Upper Galilee, Israel
| | - Jeffrey L Neyhart
- USDA, Agricultural Research Service, Genetic Improvement for Fruits & Vegetables Laboratory, Chatsworth, NJ, USA.
| | - Michael B Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA.
| |
Collapse
|
3
|
Žydelis R, Chiarella R, Weihermüller L, Herbst M, Loit-Harro E, Szulc W, Schröder P, Povilaitis V, Mench M, Rineau F, Bakšienė E, Volungevičius J, Rutkowska B, Povilaitis A. Modeling Study on Optimizing Water and Nitrogen Management for Barley in Marginal Soils. PLANTS (BASEL, SWITZERLAND) 2025; 14:704. [PMID: 40094624 PMCID: PMC11901529 DOI: 10.3390/plants14050704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Water and N availability are key factors limiting crop yield, particularly in marginal soils. This study evaluated the effects of water and N stress on barley grown in marginal soils using field trials and the AgroC model. Experiments from 2020 to 2022 in Lithuania with spring barley cv. KWS Fantex under two N fertilization treatments on sandy soil provided data for model parameterization. The AgroC model simulated barley growth to assess yield potential and yield gaps due to water and N stress. Potential grain yields (assuming no water or N stress) ranged from 4.8 to 6.02 t DW ha-1, with yield losses up to 54.4% assuming only N stress and 59.2% assuming only water stress, even with the N100 treatment (100 kg N ha-1 yr-1). A synthetic case study varying N fertilization from 0 to 200 kg N ha-1 yr-1 showed that increasing N still enhanced yield, but the optimal rate of 100-120 kg N ha-1 yr-1 depended on climatic conditions, leading to uncertainty in fertilization recommendations. This study underscores the importance of integrating advanced modeling techniques with sustainable agricultural practices to boost yield potential and resilience in marginal soils. Incorporating remote sensing data to capture soil and crop variability is recommended for improving simulation accuracy, contributing to sustainable agriculture strategies in the Baltic-Nordic region.
Collapse
Affiliation(s)
- Renaldas Žydelis
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, 58344 Kėdainiai, Lithuania; (V.P.); (E.B.); (J.V.)
- Department of Water Engineering, Vytautas Magnus University, 44248 Kaunas, Lithuania;
| | - Rafaella Chiarella
- Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (R.C.); (L.W.); (M.H.)
| | - Lutz Weihermüller
- Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (R.C.); (L.W.); (M.H.)
| | - Michael Herbst
- Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (R.C.); (L.W.); (M.H.)
| | - Evelin Loit-Harro
- Field Crops and Plant Biology, Estonian University of Life Sciences, 51006 Tartu, Estonia;
| | - Wieslaw Szulc
- Institute of Agriculture, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland; (W.S.); (B.R.)
| | - Peter Schröder
- Department Experimental Environmental Simulation, Helmholtz Center for Environmental Health, Neuherberg, 85764 Oberschleißheim, Germany
| | - Virmantas Povilaitis
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, 58344 Kėdainiai, Lithuania; (V.P.); (E.B.); (J.V.)
| | - Michel Mench
- University of Bordeaux, INRAE, Biogeco, Bat B2, Allée G. St-Hilaire, F-33615 Pessac CEDEX, France;
| | - Francois Rineau
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| | - Eugenija Bakšienė
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, 58344 Kėdainiai, Lithuania; (V.P.); (E.B.); (J.V.)
| | - Jonas Volungevičius
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, 58344 Kėdainiai, Lithuania; (V.P.); (E.B.); (J.V.)
| | - Beata Rutkowska
- Institute of Agriculture, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland; (W.S.); (B.R.)
| | - Arvydas Povilaitis
- Department of Water Engineering, Vytautas Magnus University, 44248 Kaunas, Lithuania;
| |
Collapse
|
4
|
Campbell Q, Bedford JA, Yu Y, Halpin-McCormick A, Castaneda-Alvarez N, Runck B, Neyhart J, Ewing P, Ortiz-Barrientos D, Gao L, Wang D, Chapman MA, Rieseberg LH, Kantar MB. Agricultural landscape genomics to increase crop resilience. PLANT COMMUNICATIONS 2025; 6:101260. [PMID: 39849843 PMCID: PMC11897451 DOI: 10.1016/j.xplc.2025.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/19/2024] [Accepted: 01/21/2025] [Indexed: 01/25/2025]
Abstract
Populations are continually adapting to their environment. Knowledge of which populations and individuals harbor unique and agriculturally useful variations has the potential to accelerate crop adaptation to the increasingly challenging environments predicted for the coming century. Landscape genomics, which identifies associations between environmental and genomic variation, provides a means for obtaining this knowledge. However, despite extensive efforts to assemble and characterize ex situ collections of crops and their wild relatives, gaps remain in the genomic and environmental datasets needed to robustly implement this approach. This article outlines the history of landscape genomics, which, to date, has mainly been used in conservation and evolutionary studies, provides an overview of crops and wild relative collections that have the necessary data for implementation and identifies areas where new data generation is needed. We find that 60% of the crops covered by the International Treaty on Plant Genetic Resources for Food and Agriculture lack the data necessary to conduct this kind of analysis, necessitating identification of crops in need of more collections, sequencing, or phenotyping. By highlighting these aspects, we aim to help develop agricultural landscape genomics as a sub-discipline that brings together evolutionary genetics, landscape ecology, and plant breeding, ultimately enhancing the development of resilient and adaptable crops for future environmental challenges.
Collapse
Affiliation(s)
- Quinn Campbell
- Department of Tropical Plant & Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - James A Bedford
- Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yue Yu
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Anna Halpin-McCormick
- Department of Tropical Plant & Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | | | - Bryan Runck
- Department of Tropical Plant & Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | | | | | - Daniel Ortiz-Barrientos
- School of the Environment and Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, Australia
| | - Lexuan Gao
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Diane Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Michael B Kantar
- Department of Tropical Plant & Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA.
| |
Collapse
|
5
|
Jiang C, Kan J, Gao G, Dockter C, Li C, Wu W, Yang P, Stein N. Barley2035: A decadal vision for barley research and breeding. MOLECULAR PLANT 2025; 18:195-218. [PMID: 39690737 DOI: 10.1016/j.molp.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
Barley (Hordeum vulgare ssp. vulgare) is one of the oldest founder crops in human civilization and has been widely dispersed across the globe to support human society as a livestock feed and a raw material for the brewing industries. Since the early half of the 20th century, it has been used for innovative research on cytogenetics, biochemistry, and genetics, facilitated by its mode of reproduction through self-pollination and its true diploid status, which have contributed to the accumulation of numerous germplasm and mutant resources. In the era of molecular genomics and biology, a multitude of barley genes and their related regulatory mechanisms have been identified and functionally validated, providing a paradigm for equivalent studies in other Triticeae crops. This review highlights important advances on barley research over the past decade, focusing mainly on genomics and genomics-assisted germplasm exploration, genetic dissection of developmental and adaptation-related traits, and the complex dynamics of yield and quality formation. In the coming decade, the prospect of integrating these innovations in barley research and breeding shows great promise. Barley is proposed as a reference Triticeae crop for the discovery and functional validation of new genes and the dissection of their molecular mechanisms. The application of precise genome editing as well as genomic prediction and selection, further enhanced by artificial intelligence-based tools and applications, is expected to promote barley improvement to efficiently meet the evolving global demands for this important crop.
Collapse
Affiliation(s)
- Congcong Jiang
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinhong Kan
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangqi Gao
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen, Denmark
| | - Chengdao Li
- Western Crop Genetic Alliance, Murdoch University, Perth, WA 6150, Australia
| | - Wenxue Wu
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ping Yang
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany; Crop Plant Genetics, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
6
|
He X, Su C, Zhang X, Shi Z, Wang Y, Peng H, Fang S, Chen X, Yin H, Zeng J, Mu P. Identification of crucial drought-tolerant genes of barley through comparative transcriptomic analysis and yeast-based stress assay. Front Genet 2024; 15:1524118. [PMID: 39717481 PMCID: PMC11664224 DOI: 10.3389/fgene.2024.1524118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Drought is a persistent and serious threat to crop yield and quality. The identification and functional characterization of drought tolerance-related genes is thus vital for efforts to support the genetic improvement of drought-tolerant crops. Barley is highly adaptable and renowned for its robust stress resistance, making it an ideal subject for efforts to explore genes related to drought tolerance. In this study, two barley materials with different drought tolerance were subjected to soil drought treatment, including a variety with strong drought tolerance (Hindmarsh) and a genotype with weaker drought tolerance (XZ5). Transcriptomic sequencing data from the aboveground parts of these plants led to the identification of 1,206 differentially expressed genes associated with drought tolerance. These genes were upregulated in Hindmarsh following drought stress exposure but downregulated or unchanged in XZ5 under these same conditions, or were unchanged in Hindmarsh but downregulated in XZ5. Pathway enrichment analyses suggested that these genes are most closely associated with defense responses, signal recognition, photosynthesis, and the biosynthesis of various secondary metabolites. Using protein-protein interaction networks, the ankyrin repeat domain-containing protein 17-like isoform X2 was predicted to impact other drought tolerance-related protein targets in Hindmarsh. In MapMan metabolic pathway analyses, genes found to be associated with the maintenance of drought tolerance in Hindmarsh under adverse conditions were predicted to include genes involved in the abscisic acid, cytokinin, and gibberellin phytohormone signaling pathways, genes associated with redox homeostasis related to ascorbate and glutathione S-transferase, transporters including ABC and AAAP, transcription factors such as AP2/ERF and bHLH, the heat shock proteins HSP60 and HSP70, and the sucrose non-fermenting-1-related protein kinase. Heterologous HvSnRK2 (one of the identified genes, which encodes the sucrose non-fermenting-1-related protein kinase) gene expression in yeast conferred significant drought tolerance, highlighting the functional importance of this gene as one linked with drought tolerance. This study revealed the drought tolerance mechanism of Hindmarsh by comparing transcriptomes while also providing a set of candidate genes for genetic efforts to improve drought tolerance in this and other crop species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jianbin Zeng
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Ping Mu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
7
|
QuZhen N, Namgyal L, Dondrup D, Wang Y, Wang Z, Cai XX, Lu BR, Qiong L. Abundant Genetic Diversity Harbored by Traditional Naked Barley Varieties on Tibetan Plateau: Implications in Their Effective Conservation and Utilization. BIOLOGY 2024; 13:1018. [PMID: 39765685 PMCID: PMC11674022 DOI: 10.3390/biology13121018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Naked barley (Hordeum vulgare var. nudum) is a staple food crop, contributing significantly to global food security. Understanding genetic diversity will facilitate its effective conservation and utilization. To determine genetic diversity and its distribution within and among varieties, we characterized 30 naked barley varieties from Tibet, representing the traditional, modern, and germplasm-resources-bank gene pools, by analyzing SSR molecular fingerprints. The results demonstrate abundant genetic diversity in Tibetan naked barley varieties, particularly those in the traditional gene pool that holds much more private (unique) alleles. Principal coordinates and STRUCTURE analyses indicate substantial deviation of the modern varieties from the traditional and germplasm-resources-bank varieties. A considerable amount of seed mixture is detected in the modern varieties, suggesting the practices of using mixed seeds in modern-variety cultivation. Cluster analyses further indicate the narrow genetic background of the modern varieties, likely due to the limited number of traditional/germplasm-resources-bank varieties applied in breeding. Relationships between increases in genetic diversity and sample sizes within naked barley varieties highlight the importance of effective sampling strategies for field collections. The findings from this study have important implications for the sustainable utilization and effective conservation of different types of naked barley germplasm, both in Tibet and in other regions around the world.
Collapse
Affiliation(s)
- NiMa QuZhen
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850000, China;
- Yani Observation and Research Station for Wetland Ecosystem of the Tibet (Xizang) Autonomous Region, Tibet University, Lhasa 850000, China
| | - Lhundrup Namgyal
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850000, China; (L.N.); (D.D.)
| | - Dawa Dondrup
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850000, China; (L.N.); (D.D.)
| | - Ying Wang
- Department of Ecology and Evolutionary Biology, Fudan University, Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Shanghai 200438, China; (Y.W.); (Z.W.); (X.-X.C.)
| | - Zhi Wang
- Department of Ecology and Evolutionary Biology, Fudan University, Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Shanghai 200438, China; (Y.W.); (Z.W.); (X.-X.C.)
| | - Xing-Xing Cai
- Department of Ecology and Evolutionary Biology, Fudan University, Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Shanghai 200438, China; (Y.W.); (Z.W.); (X.-X.C.)
| | - Bao-Rong Lu
- Department of Ecology and Evolutionary Biology, Fudan University, Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Shanghai 200438, China; (Y.W.); (Z.W.); (X.-X.C.)
| | - La Qiong
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850000, China;
- Yani Observation and Research Station for Wetland Ecosystem of the Tibet (Xizang) Autonomous Region, Tibet University, Lhasa 850000, China
| |
Collapse
|
8
|
Suresh K, Bhattacharyya S, Carvajal J, Ghosh R, Zeisler-Diehl VV, Böckem V, Nagel KA, Wojciechowski T, Schreiber L. Effects of water stress on apoplastic barrier formation in soil grown roots differ from hydroponically grown roots: Histochemical, biochemical and molecular evidence. PLANT, CELL & ENVIRONMENT 2024; 47:4917-4931. [PMID: 39110071 DOI: 10.1111/pce.15067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/20/2024] [Indexed: 11/06/2024]
Abstract
In root research, hydroponic plant cultivation is commonly used and soil experiments are rare. We investigated the response of 12-day-old barley roots, cultivated in soil-filled rhizotrons, to different soil water potentials (SWP) comparing a modern cultivar (cv. Scarlett) with a wild accession ICB181243 from Pakistan. Water potentials were quantified in soils with different relative water contents. Root anatomy was studied using histochemistry and microscopy. Suberin and lignin amounts were quantified by analytical chemistry. Transcriptomic changes were observed by RNA-sequencing. Compared with control with decreasing SWP, total root length decreased, the onset of endodermal suberization occurred much closer towards the root tips, amounts of suberin and lignin increased, and corresponding biosynthesis genes were upregulated in response to decreasing SWP. We conclude that decreasing water potentials enhanced root suberization and lignification, like osmotic stress experiments in hydroponic cultivation. However, in soil endodermal cell suberization was initiated very close towards the root tip, and root length as well as suberin amounts were about twofold higher compared with hydroponic cultivation.
Collapse
Affiliation(s)
- Kiran Suresh
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Sabarna Bhattacharyya
- Plant Cell Biology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Jorge Carvajal
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Rajdeep Ghosh
- Department of Experimental Plant Biology, Charles University, Praha, Czech Republic
| | - Viktoria V Zeisler-Diehl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Vera Böckem
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Kerstin A Nagel
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Jayakodi M, Lu Q, Pidon H, Rabanus-Wallace MT, Bayer M, Lux T, Guo Y, Jaegle B, Badea A, Bekele W, Brar GS, Braune K, Bunk B, Chalmers KJ, Chapman B, Jørgensen ME, Feng JW, Feser M, Fiebig A, Gundlach H, Guo W, Haberer G, Hansson M, Himmelbach A, Hoffie I, Hoffie RE, Hu H, Isobe S, König P, Kale SM, Kamal N, Keeble-Gagnère G, Keller B, Knauft M, Koppolu R, Krattinger SG, Kumlehn J, Langridge P, Li C, Marone MP, Maurer A, Mayer KFX, Melzer M, Muehlbauer GJ, Murozuka E, Padmarasu S, Perovic D, Pillen K, Pin PA, Pozniak CJ, Ramsay L, Pedas PR, Rutten T, Sakuma S, Sato K, Schüler D, Schmutzer T, Scholz U, Schreiber M, Shirasawa K, Simpson C, Skadhauge B, Spannagl M, Steffenson BJ, Thomsen HC, Tibbits JF, Nielsen MTS, Trautewig C, Vequaud D, Voss C, Wang P, Waugh R, Westcott S, Rasmussen MW, Zhang R, Zhang XQ, Wicker T, Dockter C, Mascher M, Stein N. Structural variation in the pangenome of wild and domesticated barley. Nature 2024; 636:654-662. [PMID: 39537924 PMCID: PMC11655362 DOI: 10.1038/s41586-024-08187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Pangenomes are collections of annotated genome sequences of multiple individuals of a species1. The structural variants uncovered by these datasets are a major asset to genetic analysis in crop plants2. Here we report a pangenome of barley comprising long-read sequence assemblies of 76 wild and domesticated genomes and short-read sequence data of 1,315 genotypes. An expanded catalogue of sequence variation in the crop includes structurally complex loci that are rich in gene copy number variation. To demonstrate the utility of the pangenome, we focus on four loci involved in disease resistance, plant architecture, nutrient release and trichome development. Novel allelic variation at a powdery mildew resistance locus and population-specific copy number gains in a regulator of vegetative branching were found. Expansion of a family of starch-cleaving enzymes in elite malting barleys was linked to shifts in enzymatic activity in micro-malting trials. Deletion of an enhancer motif is likely to change the developmental trajectory of the hairy appendages on barley grains. Our findings indicate that allelic diversity at structurally complex loci may have helped crop plants to adapt to new selective regimes in agricultural ecosystems.
Collapse
Affiliation(s)
- Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Department of Soil and Crop Sciences, Texas A&M AgriLife Research-Dallas, Dallas, TX, USA
| | - Qiongxian Lu
- Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Hélène Pidon
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- IPSiM, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | | | | - Thomas Lux
- PGSB-Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Yu Guo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Benjamin Jaegle
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture et Agri-Food Canada, Brandon, Manitoba, Canada
| | - Wubishet Bekele
- Ottawa Research and Development Centre, Agriculture et Agri-Food Canada, Ottawa, Ontario, Canada
| | - Gurcharn S Brar
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Agricultural, Life and Environmental Sciences (ALES), University of Alberta, Edmonton, Alberta, Canada
| | | | - Boyke Bunk
- DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Kenneth J Chalmers
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
| | - Brett Chapman
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | | | - Jia-Wu Feng
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Manuel Feser
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Heidrun Gundlach
- PGSB-Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Georg Haberer
- PGSB-Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Mats Hansson
- Department of Biology, Lund University, Lund, Sweden
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Iris Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Robert E Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Haifei Hu
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | | - Patrick König
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Sandip M Kale
- Carlsberg Research Laboratory, Copenhagen, Denmark
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Nadia Kamal
- PGSB-Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Gabriel Keeble-Gagnère
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Agribio, La Trobe University, Bundoora, Victoria, Australia
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Manuela Knauft
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Ravi Koppolu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
- Department of Primary Industry and Regional Development, Government of Western Australia, Perth, Western Australia, Australia
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Marina P Marone
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Andreas Maurer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Klaus F X Mayer
- PGSB-Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | | | - Sudharsan Padmarasu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | - Curtis J Pozniak
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Shun Sakuma
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kazuhiro Sato
- Kazusa DNA Research Institute, Kisarazu, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Danuta Schüler
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Thomas Schmutzer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | | | | | | | | | - Manuel Spannagl
- PGSB-Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | | | - Josquin F Tibbits
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Agribio, La Trobe University, Bundoora, Victoria, Australia
| | | | - Corinna Trautewig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | | | - Cynthia Voss
- Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Penghao Wang
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | - Robbie Waugh
- The James Hutton Institute, Dundee, UK
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Sharon Westcott
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | | | | | - Xiao-Qi Zhang
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| | | | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
10
|
Goswami V, Deepika S, Sharma P, Kothamasi D. Recycling steel slag as fertiliser proxy in agriculture is good circular economy but disrupts plant microbial symbioses in the soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176750. [PMID: 39383960 DOI: 10.1016/j.scitotenv.2024.176750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Modern agriculture depends on synthetic fertilisers to ensure food security but their manufacture and use accounts for ~5 % of the global greenhouse gas emissions. Achieving climate change targets therefore requires alternatives, that while maintaining crop productivity, reduce emissions across the lifecycle of fertiliser utilisation. Steel slag, a nutrient-rich by-product of steel manufacture, offers a viable alternative. Being substantially cheaper than fertilisers, it is economically attractive for farmers, particularly in low-middle income countries of the Global South. However, slag application in agriculture poses risk of pollutant transfer to the human food chain and disruption of key plant-microbe symbioses like the arbuscular mycorrhizal fungi (AMF). Here, using barley as a model crop, we tested the suitability of slag as a fertiliser proxy. Mycorrhizal and non-mycorrhizal barley were grown in soils ameliorated with slag in concentrations of 0, 2, 5 and 10 t ha-1. We analysed slag-mycorrhiza interaction and their combined effects on crop yield and risks to human nourishment. Slag increased grain yield by respective 32 and 21 % in mycorrhizal and non-mycorrhizal barley. Grain concentration of metal pollutants in mycorrhizal and non-mycorrhizal barley fertilised with slag were within the WHO recommended limits. But slag reduced mycorrhizal colonisation in barley roots and extraradical hyphal spread in the soil. The consequent decline in symbiont function lowered AMF-mediated plant nutrient uptake and increased mineral losses in leachates. AMF are keystone species of the soil microbiome. Loss of AMF function presents long-term ecological consequences for agriculture and necessitates a careful evaluation of slag application to soil.
Collapse
Affiliation(s)
- Vikrant Goswami
- Laboratory of Soil Biology and Microbial Ecology, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Sharma Deepika
- Laboratory of Soil Biology and Microbial Ecology, Department of Environmental Studies, University of Delhi, Delhi 110 007, India; Department of Botany, Zakir Husain Delhi College, University of Delhi, Delhi 110002, India
| | - Pulkit Sharma
- Biodiversity Parks Programme, Centre for Environmental Management of Degraded Ecosystems, University of Delhi, Delhi 110007, India
| | - David Kothamasi
- Laboratory of Soil Biology and Microbial Ecology, Department of Environmental Studies, University of Delhi, Delhi 110 007, India; Strathclyde Law School, University of Strathclyde, Glasgow G4 0LT, United Kingdom.
| |
Collapse
|
11
|
Feng X, Zhu G, Meng Q, Zeng J, He X, Liu W. Comprehensive analysis of PLATZ family genes and their responses to abiotic stresses in Barley. BMC PLANT BIOLOGY 2024; 24:982. [PMID: 39420254 PMCID: PMC11488246 DOI: 10.1186/s12870-024-05690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Plant A/T-rich protein and zinc-binding protein (PLATZ) transcription factors are pivotal regulators in various aspects of plant biology, including growth, development, and responses to environmental stresses. While PLATZ genes have been extensively studied and functionally characterized in various plants, limited information is available for these genes in barley. RESULTS Here, we discovered a total of 11 PLATZ genes distributed across seven chromosomes in barley. Based on phylogenetic and conserved motif analysis, we classified PLATZ into five subfamilies, comprising 3, 1, 2, 1 and 4 genes, respectively. Analysis of gene structure demonstrated that these 11 HvPLATZ genes typically possessed two to four exons. Most HvPLATZ genes were found to possess at least one ABRE cis-element in their promoter regions, and a few of them also contained LTR, CAT-box, MRE, and DRE cis-elements. Then, we conducted an exploration of the expression patterns of HvPLATZs, which displayed notable differences across various tissues and in response to abiotic stresses. Functional analysis of HvPLATZ6 and HvPLATZ8 in yeast cells showed that they may be involved in drought tolerance. Additionally, we constructed a regulatory network including miRNA-targeted gene predictions and identified two miRNAs targeting two HvPLATZs, such as hvu-miR5053 and hvu-miR6184 targeting HvPLATZ2, hvu-miR6184 targeting HvPLATZ10. CONCLUSION In summary, these findings provide valuable insights for future functional verification of HvPLATZs and contribute to a deeper understanding of the role of HvPLATZs in response to stress conditions in barley.
Collapse
Affiliation(s)
- Xue Feng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Gehao Zhu
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Quan Meng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jianbin Zeng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoyan He
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenxing Liu
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, School of Life Sciences, Ministry of Education, Shandong University, Qingdao, Shandong Province, 266237, China.
| |
Collapse
|
12
|
Rolhauser AG, Isaac ME, Violle C, Martin AR, Vasseur F, Lemoine T, Mahaut L, Fort F, Rotundo JL, Vile D. Phenotypic limits of crop diversity: a data exploration of functional trait space. THE NEW PHYTOLOGIST 2024; 244:708-718. [PMID: 39183372 DOI: 10.1111/nph.20050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024]
Abstract
Relationships between crop genetic and functional diversity are key to addressing contemporary agricultural challenges. Yet, there are few approaches for quantifying the relationship between genetic diversity and crop functional trait expression. Here, we introduce 'functional space accumulation curves' to analyze how trait space increases with the number of crop genotypes within a species. We explore the potential for functional space accumulating curves to quantify genotype-trait space relationships in four common annual crop species: barley (Hordeum vulgare), rice (Oryza sativa), soybean (Glycine max), and durum wheat (Triticum durum). We also employ these curves to describe genotype-trait space relationships in the wild annual Arabidopsis thaliana, which has not been subjected to artificial selection. All five species exhibited asymptotic functional space accumulation curves, suggesting a limit to intraspecific functional crop diversity, likely due to: dominant phenotypes represented by several genotypes; or functional redundancy that might exist among genotypes. Our findings indicate that there is a diminishing return of functional diversity with increasing number of genotypes. Our analysis demonstrates the efficacy of functional space accumulation curves in quantifying trait space occupancy of crops, with implications for managing crop diversity in agroecosystems, and genetic diversity in crop breeding programs.
Collapse
Affiliation(s)
- Andrés G Rolhauser
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, M1C1A4, ON, Canada
- Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, C1417DSE, Argentina
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, C1417DSE, Argentina
| | - Marney E Isaac
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, M1C1A4, ON, Canada
- Department of Global Development Studies, University of Toronto Scarborough, Toronto, M1C1A4, ON, Canada
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - Adam R Martin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, M1C1A4, ON, Canada
| | - François Vasseur
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - Taina Lemoine
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - Lucie Mahaut
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - Florian Fort
- CEFE, Univ Montpellier, Institut Agro, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - José L Rotundo
- Corteva Agriscience, 7250 NW 62nd Ave., Johnston, 50310, IA, USA
| | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, 34000, France
| |
Collapse
|
13
|
Langan P, Cavel E, Henchy J, Bernád V, Ruel P, O'Dea K, Yatagampitiya K, Demailly H, Gutierrez L, Negrão S. Evaluating waterlogging stress response and recovery in barley (Hordeum vulgare L.): an image-based phenotyping approach. PLANT METHODS 2024; 20:146. [PMID: 39342219 PMCID: PMC11438059 DOI: 10.1186/s13007-024-01256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/02/2024] [Indexed: 10/01/2024]
Abstract
Waterlogging is expected to become a more prominent yield restricting stress for barley as rainfall frequency is increasing in many regions due to climate change. The duration of waterlogging events in the field is highly variable throughout the season, and this variation is also observed in experimental waterlogging studies. Such variety of protocols make intricate physiological responses challenging to assess and quantify. To assess barley waterlogging tolerance in controlled conditions, we present an optimal duration and setup of simulated waterlogging stress using image-based phenotyping. Six protocols durations, 5, 10, and 14 days of stress with and without seven days of recovery, were tested. To quantify the physiological effects of waterlogging on growth and greenness, we used top down and side view RGB (Red-Green-Blue) images. These images were taken daily throughout each of the protocols using the PSI PlantScreen™ imaging platform. Two genotypes of two-row spring barley, grown in glasshouse conditions, were subjected to each of the six protocols, with stress being imposed at the three-leaf stage. Shoot biomass and root imaging data were analysed to determine the optimal stress protocol duration, as well as to quantify the growth and morphometric changes of barley in response to waterlogging stress. Our time-series results show a significant growth reduction and alteration of greenness, allowing us to determine an optimal protocol duration of 14 days of stress and seven days of recovery for controlled conditions. Moreover, to confirm the reproducibility of this protocol, we conducted the same experiment in a different facility equipped with RGB and chlorophyll fluorescence imaging sensors. Our results demonstrate that the selected protocol enables the assessment of genotypic differences, which allow us to further determine tolerance responses in a glasshouse environment. Altogether, this work presents a new and reproducible image-based protocol to assess early stage waterlogging tolerance, empowering a precise quantification of waterlogging stress relevant markers such as greenness, Fv/Fm and growth rates.
Collapse
Affiliation(s)
- Patrick Langan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Emilie Cavel
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules Verne, Amiens, France
| | - Joey Henchy
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Villő Bernád
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Paul Ruel
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules Verne, Amiens, France
| | - Katie O'Dea
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Keshawa Yatagampitiya
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Hervé Demailly
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules Verne, Amiens, France
| | - Laurent Gutierrez
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules Verne, Amiens, France
| | - Sónia Negrão
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
14
|
Rohman MM, Begum S, Mohi-Ud-Din M. A 7×7 diallel cross for developing high-yielding and saline-tolerant barley ( Hordeum vulgare L.). Heliyon 2024; 10:e34278. [PMID: 39082039 PMCID: PMC11284426 DOI: 10.1016/j.heliyon.2024.e34278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/25/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024] Open
Abstract
In this experiment, F1s produced from a 7 × 7 half-diallel cross along with their parents were evaluated to develop high yielding and saline-tolerant barley lines. The investigation focused on the general combining ability (GCA) of parents, specific combining ability (SCA) of offspring, genetic action, and heterosis of eight quantitative variables. Genetic analysis and potence ratio suggested that different degrees of dominance controlling the inheritance of the studied traits. Significant GCA and SCA variances suggested the presence of both additive and non-additive gene actions controlling the traits. However, a GCA:SCA ratio lower than 1 indicated the preponderance of the non-additive gene action involved in the expression of the traits. The parents P5 and P6 possess the genetic potential favorable for early and short stature in their F1s. Conversely, P2 and P4 were more likely to produce short F1s with high yield potential. Based on the mean performance, SCA, and heterobeltiosis, crosses P2 × P3, P2 × P7, P3 × P4, P4 × P5, P5 × P6, and P6 × P7 were selected as promising F1s for earliness, short stature, and high yield potential. These crosses are recommended for further breeding to obtain early-maturing and high-yielding segregants. To identify saline-tolerant F1s, screening was conducted in saline media prepared in half-strength Hoagland solution. The salinity stress involved exposing F1s to 100 mM NaCl for first 10 days, and followed by an increase to 150 mM until maturity. Among the F1s, five crosses (P1 × P2, P2 × P3, P3 × P5, P4 × P6, and P4 × P7) exhibited promising signs of saline tolerance based on a comprehensive evaluation of healthy seed set, K+/Na+ ratio, root volume, generation of reactive oxygen species (O2 •- and H2O2), and activities of key antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and glutathione reductase (GR). These crosses will undergo further evaluation in the next filial generation to confirm heritable saline tolerance.
Collapse
Affiliation(s)
- Md. Motiar Rohman
- Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Shahnewaz Begum
- Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Mohammed Mohi-Ud-Din
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
15
|
Cheng B, Pei W, Wan K, Pan R, Zhang W. LncRNA cis- and trans-regulation provides new insight into drought stress responses in wild barley. PHYSIOLOGIA PLANTARUM 2024; 176:e14424. [PMID: 38973627 DOI: 10.1111/ppl.14424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
Drought is one of the most common abiotic stresses that affect barley productivity. Long noncoding RNA (lncRNA) has been reported to be widely involved in abiotic stress, however, its function in the drought stress response in wild barley remains unclear. In this study, RNA sequencing was performed to identify differentially expressed lncRNAs (DElncRNA) among two wild barley and two cultivated barley genotypes. Then, the cis-regulatory networks were according to the chromosome position and the expression level correction. The GO annotation indicates that these cis-target genes are mainly involved in "ion transport transporter activity" and "metal ion transport transporter activity". Through weighted gene co-expression network analysis (WGCNA), 10 drought-related modules were identified to contract trans-regulatory networks. The KEGG annotation demonstrated that these trans-target genes were enriched for photosynthetic physiology, brassinosteroid biosynthesis, and flavonoid metabolism. In addition, we constructed the lncRNA-mediated ceRNA regulatory network by predicting the microRNA response elements (MREs). Furthermore, the expressions of lncRNAs were verified by RT-qPCR. Functional verification of a candidate lncRNA, MSTRG.32128, demonstrated its positive role in drought response and root growth and development regulation. Hormone content analysis provided insights into the regulatory mechanisms of MSTRG.32128 in root development, revealing its involvement in auxin and ethylene signal transduction pathways. These findings advance our understanding of lncRNA-mediated regulatory mechanisms in barley under drought stress. Our results will provide new insights into the functions of lncRNAs in barley responding to drought stress.
Collapse
Affiliation(s)
- Bingyun Cheng
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, China
| | - Wenyu Pei
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, China
| | - Kui Wan
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, China
| | - Rui Pan
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, China
| | - Wenying Zhang
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, China
| |
Collapse
|
16
|
Zhang R, Chen Y, Wang W, Chen J, Liu D, Zhang L, Xiang Q, Zhao K, Ma M, Yu X, Chen Q, Penttinen P, Gu Y. Combined transcriptomic and metabolomic analysis revealed that pH changes affected the expression of carbohydrate and ribosome biogenesis-related genes in Aspergillus niger SICU-33. Front Microbiol 2024; 15:1389268. [PMID: 38962137 PMCID: PMC11220263 DOI: 10.3389/fmicb.2024.1389268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
The process of carbohydrate metabolism and genetic information transfer is an important part of the study on the effects of the external environment on microbial growth and development. As one of the most significant environmental parameters, pH has an important effect on mycelial growth. In this study, the effects of environmental pH on the growth and nutrient composition of Aspergillus niger (A. niger) filaments were determined. The pH values of the medium were 5, 7, and 9, respectively, and the molecular mechanism was further investigated by transcriptomics and metabolomics methods. The results showed that pH 5 and 9 significantly inhibited filament growth and polysaccharide accumulation of A. niger. Further, the mycelium biomass of A. niger and the crude polysaccharide content was higher when the medium's pH was 7. The DEGs related to ribosome biogenesis were the most abundant, and the downregulated expression of genes encoding XRN1, RRM, and RIO1 affected protein translation, modification, and carbohydrate metabolism in fungi. The dynamic changes of pargyline and choline were in response to the oxidative metabolism of A. niger SICU-33. The ribophorin_I enzymes and DL-lactate may be important substances related to pH changes during carbohydrate metabolism of A.niger SICU-33. The results of this study provide useful transcriptomic and metabolomic information for further analyzing the bioinformatic characteristics of A. niger and improving the application in ecological agricultural fermentation.
Collapse
Affiliation(s)
- Runji Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yulan Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Wenxian Wang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Juan Chen
- Liangshan Tobacco Corporation of Sichuan Province, Xichang, China
| | - Dongyang Liu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
- Liangshan Tobacco Corporation of Sichuan Province, Xichang, China
| | - Lingzi Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Menggen Ma
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiumei Yu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Petri Penttinen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yunfu Gu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
17
|
Bohle F, Klaus A, Ingelfinger J, Tegethof H, Safari N, Schwarzländer M, Hochholdinger F, Hahn M, Meyer AJ, Acosta IF, Müller-Schüssele SJ. Contrasting cytosolic glutathione redox dynamics under abiotic and biotic stress in barley as revealed by the biosensor Grx1-roGFP2. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2299-2312. [PMID: 38301663 DOI: 10.1093/jxb/erae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Barley is a staple crop of major global importance and relatively resilient to a wide range of stress factors in the field. Transgenic reporter lines to investigate physiological parameters during stress treatments remain scarce. We generated and characterized transgenic homozygous barley lines (cv. Golden Promise Fast) expressing the genetically encoded biosensor Grx1-roGFP2, which indicates the redox potential of the major antioxidant glutathione in the cytosol. Our results demonstrated functionality of the sensor in living barley plants. We determined the glutathione redox potential (EGSH) of the cytosol to be in the range of -308 mV to -320 mV. EGSH was robust against a combined NaCl (150 mM) and water deficit treatment (-0.8 MPa) but responded with oxidation to infiltration with the phytotoxic secretome of the necrotrophic fungus Botrytis cinerea. The generated reporter lines are a novel resource to study biotic and abiotic stress resilience in barley, pinpointing that even severe abiotic stress leading to a growth delay does not automatically induce cytosolic EGSH oxidation, while necrotrophic pathogens can undermine this robustness.
Collapse
Affiliation(s)
- Finja Bohle
- Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633 Kaiserslautern, Germany
- Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Alina Klaus
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Julian Ingelfinger
- Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633 Kaiserslautern, Germany
| | - Hendrik Tegethof
- Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Nassim Safari
- Phytopathology, Department of Biology, RPTU Kaiserslautern-Landau, D-67633 Kaiserslautern, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143 Münster, Germany
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Matthias Hahn
- Phytopathology, Department of Biology, RPTU Kaiserslautern-Landau, D-67633 Kaiserslautern, Germany
| | - Andreas J Meyer
- Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Ivan F Acosta
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | | |
Collapse
|
18
|
Cosenza F, Shrestha A, Van Inghelandt D, Casale FA, Wu PY, Weisweiler M, Li J, Wespel F, Stich B. Genetic mapping reveals new loci and alleles for flowering time and plant height using the double round-robin population of barley. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2385-2402. [PMID: 38330219 PMCID: PMC11016846 DOI: 10.1093/jxb/erae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
Flowering time and plant height are two critical determinants of yield potential in barley (Hordeum vulgare). Despite their role in plant physiological regulation, a complete overview of the genetic complexity of flowering time and plant height regulation in barley is still lacking. Using a double round-robin population originated from the crossings of 23 diverse parental inbred lines, we aimed to determine the variance components in the regulation of flowering time and plant height in barley as well as to identify new genetic variants by single and multi-population QTL analyses and allele mining. Despite similar genotypic variance, we observed higher environmental variance components for plant height than flowering time. Furthermore, we detected new QTLs for flowering time and plant height. Finally, we identified a new functional allelic variant of the main regulatory gene Ppd-H1. Our results show that the genetic architecture of flowering time and plant height might be more complex than reported earlier and that a number of undetected, small effect, or low-frequency genetic variants underlie the control of these two traits.
Collapse
Affiliation(s)
- Francesco Cosenza
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Asis Shrestha
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Delphine Van Inghelandt
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Federico A Casale
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Po-Ya Wu
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Marius Weisweiler
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jinquan Li
- Max Planck Institute for Plant Breeding Research, 50829 Köln, Germany
| | - Franziska Wespel
- Saatzucht Josef Breun GmbH Co. KG, Amselweg 1, 91074 Herzogenaurach, Germany
| | - Benjamin Stich
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, 50829 Köln, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
19
|
Miloro F, Kis A, Havelda Z, Dalmadi Á. Barley AGO4 proteins show overlapping functionality with distinct small RNA-binding properties in heterologous complementation. PLANT CELL REPORTS 2024; 43:96. [PMID: 38480545 PMCID: PMC10937801 DOI: 10.1007/s00299-024-03177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
KEY MESSAGE Barley AGO4 proteins complement expressional changes of epigenetically regulated genes in Arabidopsis ago4-3 mutant and show a distinct affinity for the 5' terminal nucleotide of small RNAs, demonstrating functional conservation and divergence. The function of Argonaute 4 (AGO4) in Arabidopsis thaliana has been extensively characterized; however, its role in monocots, which have large genomes abundantly supplemented with transposable elements (TEs), remains elusive. The study of barley AGO4 proteins can provide insights into the conserved aspects of RNA-directed DNA methylation (RdDM) and could also have further applications in the field of epigenetics or crop improvement. Bioinformatic analysis of RNA sequencing data identified two active AGO4 genes in barley, HvAGO4a and HvAGO4b. These genes function similar to AtAGO4 in an Arabidopsis heterologous complementation system, primarily binding to 24-nucleotide long small RNAs (sRNAs) and triggering methylation at specific target loci. Like AtAGO4, HvAGO4B exhibits a preference for binding sRNAs with 5' adenine residue, while also accepting 5' guanine, uracil, and cytosine residues. In contrast, HvAGO4A selectively binds only sRNAs with a 5' adenine residue. The diverse binding capacity of barley AGO4 proteins is reflected in TE-derived sRNAs and in their varying abundance. Both barley AGO4 proteins effectively restore the levels of extrachromosomal DNA and transcript abundancy of the heat-activated ONSEN retrotransposon to those observed in wild-type Arabidopsis plants. Our study provides insight into the distinct binding specificities and involvement in TE regulation of barley AGO4 proteins in Arabidopsis by heterologous complementation.
Collapse
Affiliation(s)
- Fabio Miloro
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Gödöllő, Hungary
| | - András Kis
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
| | - Zoltán Havelda
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Gödöllő, Hungary
| | - Ágnes Dalmadi
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary.
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Gödöllő, Hungary.
| |
Collapse
|
20
|
Zhou Y, Song R, Nevo E, Fu X, Wang X, Wang Y, Wang C, Chen J, Sun G, Sun D, Ren X. Genomic evidence for climate-linked diversity loss and increased vulnerability of wild barley spanning 28 years of climate warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169679. [PMID: 38163608 DOI: 10.1016/j.scitotenv.2023.169679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
The information on how plant populations respond genetically to climate warming is scarce. Here, landscape genomic and machine learning approaches were integrated to assess genetic response of 10 wild barley (Hordeum vulgare ssp. spontaneum; WB) populations in the past and future, using whole genomic sequencing (WGS) data. The WB populations were sampled in 1980 and again in 2008. Phylogeny of accessions was roughly in conformity with sampling sites, which accompanied by admixture/introgressions. The 28-y climate warming resulted in decreased genetic diversity, increased selection pressure, and an increase in deleterious single nucleotide polymorphism (dSNP) numbers, heterozygous deleterious and total deleterious burdens for WB. Genome-environment associations identified some candidate genes belonging to peroxidase family (HORVU2Hr1G057450, HORVU4Hr1G052060 and HORVU4Hr1G057210) and heat shock protein 70 family (HORVU2Hr1G112630). The gene HORVU2Hr1G120170 identified by selective sweep analysis was under strong selection during the climate warming of the 28-y, and its derived haplotypes were fixed by WB when faced with the 28-y increasingly severe environment. Temperature variables were found to be more important than precipitation variables in influencing genomic variation, with an eco-physiological index gdd5 (growing degree-days at the baseline threshold temperature of 5 °C) being the most important determinant. Gradient forest modelling revealed higher predicted genomic vulnerability in Sede Boqer under future climate scenarios at 2041-2070 and 2071-2100. Additionally, estimates of effective population size (Ne) tracing back to 250 years indicated a forward decline in all populations over time. Our assessment about past genetic response and future vulnerability of WB under climate warming is crucial for informing conservation efforts for wild cereals and rational use strategies.
Collapse
Affiliation(s)
- Yu Zhou
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ruilian Song
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Eviator Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, 31905 Haifa, Israel
| | - Xiaoqin Fu
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaofang Wang
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yixiang Wang
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chengyang Wang
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Junpeng Chen
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Genlou Sun
- Saint Mary's University, Halifax, NS B3H 3C3, Canada
| | - Dongfa Sun
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xifeng Ren
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
21
|
Aleksza D, Spiridon A, Tarkka M, Hauser MT, Hann S, Causon T, Kratena N, Stanetty C, George TS, Russell J, Oburger E. Phytosiderophore pathway response in barley exposed to iron, zinc or copper starvation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111919. [PMID: 37992897 DOI: 10.1016/j.plantsci.2023.111919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
Efficient micronutrient acquisition is a critical factor in selecting micronutrient dense crops for human consumption. Enhanced exudation and re-uptake of metal chelators, so-called phytosiderophores, by roots of graminaceous plants has been implicated in efficient micronutrient acquisition. We compared PS biosynthesis and exudation as a response mechanism to either Fe, Zn or Cu starvation. Two barley (Hordeum vulgare L.) lines with contrasting micronutrient grain yields were grown hydroponically and PS exudation (LC-MS) and root gene expression (RNAseq) were determined after either Fe, Zn, or Cu starvation. The response strength of the PS pathway was micronutrient dependent and decreased in the order Fe > Zn > Cu deficiency. We observed a stronger expression of PS pathway genes and greater PS exudation in the barley line with large micronutrient grain yield suggesting that a highly expressed PS pathway might be an important trait involved in high micronutrient accumulation. In addition to several metal specific transporters, we also found that the expression of IRO2 and bHLH156 transcription factors was not only induced under Fe but also under Zn and Cu deficiency. Our study delivers important insights into the role of the PS pathway in the acquisition of different micronutrients.
Collapse
Affiliation(s)
- David Aleksza
- University of Natural Resources and Life Sciences, Department of Forest and Soil Science, Institute of Soil Research, Konrad-Lorenz Strasse 24, Tulln an der Donau 3430, Austria; University of Natural Resources and Life Sciences, Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Andreea Spiridon
- University of Natural Resources and Life Sciences, Department of Forest and Soil Science, Institute of Soil Research, Konrad-Lorenz Strasse 24, Tulln an der Donau 3430, Austria
| | - Mika Tarkka
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, Theodor-Lieser-Strasse 4, D-06120 Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
| | - Marie-Theres Hauser
- University of Natural Resources and Life Sciences, Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Stephan Hann
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Tim Causon
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Nicolas Kratena
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christian Stanetty
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 1060 Vienna, Austria
| | | | - Joanne Russell
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Eva Oburger
- University of Natural Resources and Life Sciences, Department of Forest and Soil Science, Institute of Soil Research, Konrad-Lorenz Strasse 24, Tulln an der Donau 3430, Austria.
| |
Collapse
|
22
|
Nowak K, Wójcikowska B, Gajecka M, Elżbieciak A, Morończyk J, Wójcik AM, Żemła P, Citerne S, Kiwior-Wesołowska A, Zbieszczyk J, Gaj MD. The improvement of the in vitro plant regeneration in barley with the epigenetic modifier of histone acetylation, trichostatin A. J Appl Genet 2024; 65:13-30. [PMID: 37962803 PMCID: PMC10789698 DOI: 10.1007/s13353-023-00800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
Genotype-limited plant regeneration is one of the main obstacles to the broader use of genetic transformation in barley breeding. Thus, developing new approaches that might improve responses of in vitro recalcitrant genotypes remains at the center of barley biotechnology. Here, we analyzed different barley genotypes, including "Golden Promise," a genotype commonly used in the genetic transformation, and four malting barley cultivars of poor regenerative potential. The expression of hormone-related transcription factor (TF) genes with documented roles in plant regeneration was analyzed in genotypes with various plant-regenerating capacities. The results indicated differential expression of auxin-related TF genes between the barley genotypes in both the explants and the derived cultures. In support of the role of auxin in barley regeneration, distinct differences in the accumulation of free and oxidized auxin were observed in explants and explant-derived callus cultures of barley genotypes. Following the assumption that modifying gene expression might improve plant regeneration in barley, we treated the barley explants with trichostatin A (TSA), which affects histone acetylation. The effects of TSA were genotype-dependent as TSA treatment improved plant regeneration in two barley cultivars. TSA-induced changes in plant regeneration were associated with the increased expression of auxin biosynthesis-involved TFs. The study demonstrated that explant treatment with chromatin modifiers such as TSA might provide a new and effective epigenetic approach to improving plant regeneration in recalcitrant barley genotypes.
Collapse
Affiliation(s)
- Katarzyna Nowak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland.
| | - Barbara Wójcikowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
| | - Monika Gajecka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
| | - Anna Elżbieciak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
| | - Joanna Morończyk
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
| | - Anna M Wójcik
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
| | - Przemysław Żemła
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
- Toxicology Research Group, Łukasiewicz Research Network, Institute of Industrial Organic Chemistry Branch Pszczyna, Doświadczalna 27, 43-200, Pszczyna, Poland
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Agnieszka Kiwior-Wesołowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
| | - Justyna Zbieszczyk
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
| | - Małgorzata D Gaj
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
| |
Collapse
|
23
|
Schreiber M, Wonneberger R, Haaning AM, Coulter M, Russell J, Himmelbach A, Fiebig A, Muehlbauer GJ, Stein N, Waugh R. Genomic resources for a historical collection of cultivated two-row European spring barley genotypes. Sci Data 2024; 11:66. [PMID: 38216606 PMCID: PMC10786862 DOI: 10.1038/s41597-023-02850-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024] Open
Abstract
Barley genomic resources are increasing rapidly, with the publication of a barley pangenome as one of the latest developments. Two-row spring barley cultivars are intensely studied as they are the source of high-quality grain for malting and distilling. Here we provide data from a European two-row spring barley population containing 209 different genotypes registered for the UK market between 1830 to 2014. The dataset encompasses RNA-sequencing data from six different tissues across a range of barley developmental stages, phenotypic datasets from two consecutive years of field-grown trials in the United Kingdom, Germany and the USA; and whole genome shotgun sequencing from all cultivars, which was used to complement the RNA-sequencing data for variant calling. The outcomes are a filtered SNP marker file, a phenotypic database and a large gene expression dataset providing a comprehensive resource which allows for downstream analyses like genome wide association studies or expression associations.
Collapse
Affiliation(s)
- Miriam Schreiber
- Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, Scotland, DD2 5DA, UK
| | - Ronja Wonneberger
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Allison M Haaning
- Department of Agronomy and Plant Genetics, The University of Minnesota, St. Paul, MN, 55108, USA
| | - Max Coulter
- Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, Scotland, DD2 5DA, UK
| | - Joanne Russell
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, Scotland, DD2 5DA, UK
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, The University of Minnesota, St. Paul, MN, 55108, USA
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Robbie Waugh
- Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, Scotland, DD2 5DA, UK.
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, Scotland, DD2 5DA, UK.
| |
Collapse
|
24
|
Bukowski MR, Goslee S. Climate-based variability in the essential fatty acid composition of soybean oil. Am J Clin Nutr 2024; 119:58-68. [PMID: 38176781 DOI: 10.1016/j.ajcnut.2023.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Soybean oil is a major dietary source of the essential fatty acids linoleic acid (LA) and α-linolenic acid (ALA); however, high-daytime temperatures during seed development reduce desaturase activity in soybeans. The resultant reduction in LA and ALA levels is a phenomenon well-known to soybean breeders, although the impact of this interaction between plants and environment on human nutrition is poorly understood. OBJECTIVES Using data from the literature, we developed a model for soybean essential fatty acid composition. Combining this model with contemporary agricultural and meteorological data sets, we determined whether insufficiency of essential fatty acids could result from geographic, intrayear, or interyear variability. METHODS We modeled this change using 233 data points from 16 studies that provided fatty acid composition data from plants grown under daytime high temperatures ranging from 15°C to 40°C. RESULTS As temperature increased, LA and ALA concentrations decreased from 55% to 30% and 13% to 3.5%, respectively. Application of the model to daytime high temperatures from 2 growth periods over 6 y showed significant regional, interyear, and intrayear variation in essential fatty acid content (P < 0.05). Using county yield data, we developed oil fatty acid models for the 3 top-producing regions of the United States. From this work, it was determined that soybean oil manufactured from soybeans in the southern United States may contain insufficient ALA to meet human nutritional needs because of high-daytime temperatures. CONCLUSIONS This work suggests that climate-based variation may result in many human populations not achieving an adequate daily intake of ALA.
Collapse
Affiliation(s)
- Michael R Bukowski
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, MD, United States.
| | - Sarah Goslee
- Pasture Systems & Watershed Management Research Unit, USDA-ARS, University Park, PA, United States
| |
Collapse
|
25
|
Esmail SM, Jarquín D, Börner A, Sallam A. Genome-wide association mapping highlights candidate genes and immune genotypes for net blotch and powdery mildew resistance in barley. Comput Struct Biotechnol J 2023; 21:4923-4932. [PMID: 37867969 PMCID: PMC10585327 DOI: 10.1016/j.csbj.2023.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
Net blotch (NB) and powdery mildew (PM) are major barley diseases with the potential to cause a dramatic loss in grain yield. Breeding for resistant barley genotypes in combination with identifying candidate resistant genes will accelerate the genetic improvement for resistance to NB and PM. To address this challenge, a set of 122 highly diverse barley genotypes from 34 countries were evaluated for NB and PM resistance under natural infection for in two growing seasons. Moreover, four yield traits; plant height (Ph), spike length (SL), spike weight (SW), and the number of spikelets per spike (NOS) were recorded. High genetic variation was found among genotypes in all traits scored in this study. No significant phenotypic correlation was found in the resistance between PM and NB. Immune genotypes for NB and PM were identified. A total of 21 genotypes were immune to both diseases. Of the 21 genotypes, the German genotype HOR_9570 was selected as the most promising genotype that can be used for future breeding programs. Furthermore, a genome-wide association study (GWAS) was used to identify resistant alleles to PM and NB. The results of GWAS revealed a set of 14 and 25 significant SNPs that were associated with increased resistance to PM and NB, respectively. This study provided very important genetic resources that are highly resistant to the Egyptian PM and NB pathotypes and revealed SNP markers that can be utilized to genetically improve resistance to PM and NB.
Collapse
Affiliation(s)
- Samar M. Esmail
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Diego Jarquín
- Department of Agronomy, University of Florida, Gainesville, FL 32611, USA
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Ahmed Sallam
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- Department of Genetics, Faculty of Agriculture, Assiut University, 71526 Assiut, Egypt
| |
Collapse
|
26
|
Vilchez AC, Villasuso AL, Wilke N. Biophysical Properties of Lipid Membranes from Barley Roots during Low-Temperature Exposure and Recovery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11664-11674. [PMID: 37561912 DOI: 10.1021/acs.langmuir.3c01244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Glycerolipid remodeling, a dynamic mechanism for plant subsistence under cold stress, has been posited to affect the biophysical properties of cell membranes. In barley roots, remodeling has been observed to take place upon exposure to chilling stress and to be partially reverted during stress relief. In this study, we explored the biophysical characteristics of membranes formed with lipids extracted from barley roots subjected to chilling stress, or during a subsequent short- or long-term recovery. Our aim was to determine to what extent barley roots were able to offset the adverse effects of temperature on their cell membranes. For this purpose, we analyzed the response of the probe Laurdan inserted in bilayers of different extracts, the zeta potential of liposomes, and the behavior of Langmuir monolayers upon compression. We found important changes in the order of water molecules, which is in agreement with the changes in the unsaturation index of lipids due to remodeling. Regarding Langmuir monolayers, we found that films from all the extracts showed a reorganization at a surface pressure that depends on temperature. This reorganization occurred with an increase in entropy for extracts from control plants and without entropy changes for extracts from acclimated plants. In summary, some membrane properties were recovered after the stress, while others were not, suggesting that the membrane biophysical properties play a role in the mechanism of plant acclimation to chilling. These findings contribute to our understanding of the impact of lipid remodeling on biophysical modifications in plant roots.
Collapse
Affiliation(s)
- Ana Carolina Vilchez
- CONICET, Universidad Nacional de Río Cuarto, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, X5804BYA Córdoba, Argentina
- FCEFQyN, Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, X5804BYA Córdoba, Argentina
| | - Ana Laura Villasuso
- CONICET, Universidad Nacional de Río Cuarto, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, X5804BYA Córdoba, Argentina
- FCEFQyN, Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, X5804BYA Córdoba, Argentina
| | - Natalia Wilke
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| |
Collapse
|
27
|
Wonneberger R, Schreiber M, Haaning A, Muehlbauer GJ, Waugh R, Stein N. Major chromosome 5H haplotype switch structures the European two-rowed spring barley germplasm of the past 190 years. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:174. [PMID: 37477711 PMCID: PMC10361897 DOI: 10.1007/s00122-023-04418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
KEY MESSAGE Selection over 70 years has led to almost complete fixation of a haplotype spanning ~ 250 Mbp of chomosome 5H in European two-rowed spring barleys, possibly originating from North Africa. Plant breeding and selection have shaped the genetic composition of modern crops over the past decades and centuries and have led to great improvements in agronomic and quality traits. Knowledge of the genetic composition of breeding germplasm is essential to make informed decisions in breeding programs. In this study, we characterized the structure and composition of 209 barley cultivars representative of the European two-rowed spring barley germplasm of the past 190 years. Utilizing high-density SNP marker data, we identified a distinct centromeric haplotype spanning a ~ 250 Mbp large region on chromosome 5H which likely was first introduced into the European breeding germplasm in the early to mid-twentieth century and has been non-recombining and under strong positive selection over the past 70 years. Almost all cultivars in our panel that were released after 2000 carry this new haplotype, suggesting that this region carries one or several genes conferring highly beneficial traits. Using the global barley collection of the German Federal ex situ gene bank at IPK Gatersleben, we found the new haplotype at high frequencies in six-rowed spring-type landraces from Northern Africa, from which it may have been introduced into modern European barley germplasm via southern European landraces. The presence of a 250 Mbp genomic region characterized by lack of recombination and high levels of fixation in modern barley germplasm has substantial implications for the genetic diversity of the modern barley germplasm and for barley breeding.
Collapse
Affiliation(s)
- Ronja Wonneberger
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Miriam Schreiber
- Division of Plant Sciences, University of Dundee, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Information and Computational Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Allison Haaning
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Robbie Waugh
- Division of Plant Sciences, University of Dundee, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany.
- Center for Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen, Germany.
| |
Collapse
|
28
|
Mikołajczak K, Kuczyńska A, Krajewski P, Kempa M, Witaszak N. Global Proteome Profiling Revealed the Adaptive Reprogramming of Barley Flag Leaf to Drought and Elevated Temperature. Cells 2023; 12:1685. [PMID: 37443719 PMCID: PMC10340373 DOI: 10.3390/cells12131685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Plants, as sessile organisms, have developed sophisticated mechanisms to survive in changing environments. Recent advances in omics approaches have facilitated the exploration of plant genomes; however, the molecular mechanisms underlying the responses of barley and other cereals to multiple abiotic stresses remain largely unclear. Exposure to stress stimuli affects many proteins with regulatory and protective functions. In the present study, we employed liquid chromatography coupled with high-resolution mass spectrometry to identify stress-responsive proteins on the genome-wide scale of barley flag leaves exposed to drought, heat, or both. Profound alterations in the proteome of genotypes with different flag leaf sizes were found. The role of stress-inducible proteins was discussed and candidates underlying the universal stress response were proposed, including dehydrins. Moreover, the putative functions of several unknown proteins that can mediate responses to stress stimuli were explored using Pfam annotation, including calmodulin-like proteins. Finally, the confrontation of protein and mRNA abundances was performed. A correlation network between transcripts and proteins performance revealed several components of the stress-adaptive pathways in barley flag leaf. Taking the findings together, promising candidates for improving the tolerance of barley and other cereals to multivariate stresses were uncovered. The presented proteomic landscape and its relationship to transcriptomic remodeling provide novel insights for understanding the molecular responses of plants to environmental cues.
Collapse
Affiliation(s)
- Krzysztof Mikołajczak
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (A.K.); (P.K.); (M.K.); (N.W.)
| | | | | | | | | |
Collapse
|
29
|
Schmidt SB, Brown LK, Booth A, Wishart J, Hedley PE, Martin P, Husted S, George TS, Russell J. Heritage genetics for adaptation to marginal soils in barley. TRENDS IN PLANT SCIENCE 2023; 28:544-551. [PMID: 36858842 DOI: 10.1016/j.tplants.2023.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 05/22/2023]
Abstract
Future crops need to be sustainable in the face of climate change. Modern barley varieties have been bred for high productivity and quality; however, they have suffered considerable genetic erosion, losing crucial genetic diversity. This renders modern cultivars vulnerable to climate change and stressful environments. We highlight the potential to tailor crops to a specific environment by utilising diversity inherent in an adapted landrace population. Tapping into natural biodiversity, while incorporating information about local environmental and climatic conditions, allows targeting of key traits and genotypes, enabling crop production in marginal soils. We outline future directions for the utilisation of genetic resources maintained in landrace collections to support sustainable agriculture through germplasm development via the use of genomics technologies and big data.
Collapse
Affiliation(s)
- Sidsel Birkelund Schmidt
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; Innovation Centre for Organic Farming, Agro Food Park 26, 8200 Aarhus N., Denmark
| | - Lawrie K Brown
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Allan Booth
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - John Wishart
- Agronomy Institute, Orkney College, University of the Highlands and Islands, Orkney, UK
| | - Pete E Hedley
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Peter Martin
- Agronomy Institute, Orkney College, University of the Highlands and Islands, Orkney, UK
| | - Søren Husted
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1879 Frederiksberg C., Denmark
| | | | - Joanne Russell
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| |
Collapse
|
30
|
Zhu Z, Esche F, Babben S, Trenner J, Serfling A, Pillen K, Maurer A, Quint M. An exotic allele of barley EARLY FLOWERING 3 contributes to developmental plasticity at elevated temperatures. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2912-2931. [PMID: 36449391 DOI: 10.1093/jxb/erac470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/28/2022] [Indexed: 06/06/2023]
Abstract
Increase in ambient temperatures caused by climate change affects various morphological and developmental traits of plants, threatening crop yield stability. In the model plant Arabidopsis thaliana, EARLY FLOWERING 3 (ELF3) plays prominent roles in temperature sensing and thermomorphogenesis signal transduction. However, how crop species respond to elevated temperatures is poorly understood. Here, we show that the barley ortholog of AtELF3 interacts with high temperature to control growth and development. We used heterogeneous inbred family (HIF) pairs generated from a segregating mapping population and systematically studied the role of exotic ELF3 variants in barley temperature responses. An exotic ELF3 allele of Syrian origin promoted elongation growth in barley at elevated temperatures, whereas plant area and estimated biomass were drastically reduced, resulting in an open canopy architecture. The same allele accelerated inflorescence development at high temperature, which correlated with early transcriptional induction of MADS-box floral identity genes BM3 and BM8. Consequently, barley plants carrying the exotic ELF3 allele displayed stable total grain number at elevated temperatures. Our findings therefore demonstrate that exotic ELF3 variants can contribute to phenotypic and developmental acclimation to elevated temperatures, providing a stimulus for breeding of climate-resilient crops.
Collapse
Affiliation(s)
- Zihao Zhu
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
| | - Finn Esche
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
| | - Steve Babben
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
| | - Jana Trenner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
| | - Albrecht Serfling
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Erwin-Baur-Str. 27, D-06484, Quedlinburg, Germany
| | - Klaus Pillen
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120, Halle (Saale), Germany
| | - Andreas Maurer
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120, Halle (Saale), Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Puschstrasse 4, D-04103, Leipzig, Germany
| |
Collapse
|
31
|
van Zonneveld M, Kindt R, McMullin S, Achigan-Dako EG, N’Danikou S, Hsieh WH, Lin YR, Dawson IK. Forgotten food crops in sub-Saharan Africa for healthy diets in a changing climate. Proc Natl Acad Sci U S A 2023; 120:e2205794120. [PMID: 36972432 PMCID: PMC10083591 DOI: 10.1073/pnas.2205794120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/31/2023] [Indexed: 03/29/2023] Open
Abstract
As climate changes in sub-Saharan Africa (SSA), Africa's "forgotten" food crops offer a wide range of options to diversify major staple production as a key measure toward achieving zero hunger and healthy diets. So far, however, these forgotten food crops have been neglected in SSA's climate-change adaptation strategies. Here, we quantified their capacity to adapt cropping systems of SSA's major staples of maize, rice, cassava, and yams to changing climates for the four subregions of West, Central, East, and Southern Africa. We used climate-niche modeling to explore their potential for crop diversification or the replacement of these major staples by 2070, and assessed the possible effects on micronutrient supply. Our results indicated that approximately 10% of the present production locations of these four major staples in SSA may experience novel climate conditions in 2070, ranging from a high of almost 18% in West Africa to a low of less than 1% in Southern Africa. From an initial candidate panel of 138 African forgotten food crops embracing leafy vegetables, other vegetables, fruits, cereals, pulses, seeds and nuts, and roots and tubers, we selected those that contributed most to covering projected future and contemporary climate conditions of the major staples' production locations. A prioritized shortlist of 58 forgotten food crops, able to complement each other in micronutrient provision, was determined, which covered over 95% of assessed production locations. The integration of these prioritized forgotten food crops in SSA's cropping systems will support the "double-win" of more climate-resilient and nutrient-sensitive food production in the region.
Collapse
Affiliation(s)
| | - Roeland Kindt
- Trees Research Theme, World Agroforestry, CIFOR-ICRAF, Nairobi, 00100, Kenya
| | - Stepha McMullin
- Trees Research Theme, World Agroforestry, CIFOR-ICRAF, Nairobi, 00100, Kenya
| | - Enoch G. Achigan-Dako
- Unit of Genetics, Biotechnology and Seed Sciences, Faculty of Agronomic Sciences, University of Abomey-Calavi01 BP 526, Cotonou, Republic of Benin
| | - Sognigbé N’Danikou
- World Vegetable Center, Eastern and Southern Africa, Duluti, Arusha, Tanzania
| | - Wei-hsun Hsieh
- Department of Agronomy, National Taiwan University, Taipei10617, Taiwan
| | - Yann-rong Lin
- World Vegetable Center, Headquarters, Shanhua, Tainan74151, Taiwan
- Department of Agronomy, National Taiwan University, Taipei10617, Taiwan
| | - Ian K. Dawson
- Trees Research Theme, World Agroforestry, CIFOR-ICRAF, Nairobi, 00100, Kenya
- Principal’s Research Group, Scotland’s Rural College, Edinburgh, EH9 3JG, UK
| |
Collapse
|
32
|
Ayachi I, Ghabriche R, Zineb AB, Hanana M, Abdelly C, Ghnaya T. NaCl effect on Cd accumulation and cell compartmentalization in barley. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49215-49225. [PMID: 36773250 DOI: 10.1007/s11356-023-25791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
The effect of sodium chloride (NaCl) on cadmium (Cd) tolerance, uptake, translocation, and compartmentation was investigated in 3 barley genotypes. Seedlings were cultivated hydroponically in the absence of NaCl and Cd (control), in the presence of 50 mM NaCl alone, in the presence of 10 µM Cd alone, and in the combined addition of NaCl (50 mM) and Cd (10 µM). Plants were cultivated during one month under 16 h light period at a minimal light intensity of 250 µmol m-2 s-1, a temperature of 25 ± 3 °C, and 70-80% of relative humidity. Results showed that NaCl alone did not significantly affect plant development and biomass production; however, Cd alone reduced plant development rate leading to a decline in biomass production in Raihane and Giza 127 but did not affect that in Amalou. NaCl addition in Cd-treated plants accentuated the Cd effect on plant growth. NaCl limited Cd accumulation in the roots and in the shoots in all tested barley varieties by reducing Cd-absorption efficiency and the translocation of Cd from the root to the shoot. In all Cd-treated plants, cell Cd compartmentalization showed the following gradient: organelles < cell wall < vacuole. NaCl in the medium increased Cd accumulation in the soluble fraction and reduced that in organelle and cell wall fractions. Globally our results showed that, although NaCl reduces Cd accumulation in barley, it accentuates the Cd toxic effects, hence limiting the plant yield. We advise farmers to avoid barley cultivation near mine sites and its irrigation with moderately salty water, although this plant is considered as salt tolerant.
Collapse
Affiliation(s)
- Imen Ayachi
- Laboratory of Extremophile Plants, Biotechnology Center of Borj Cedria, Hammam-Lif 2050, BP 901, Tunis, Tunisia
| | - Rim Ghabriche
- Laboratory of Extremophile Plants, Biotechnology Center of Borj Cedria, Hammam-Lif 2050, BP 901, Tunis, Tunisia
| | - Ameni Ben Zineb
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901 Hammam-Lif 2050, Borj-Cedria, Tunisia
| | - Mohsen Hanana
- Laboratory of Extremophile Plants, Biotechnology Center of Borj Cedria, Hammam-Lif 2050, BP 901, Tunis, Tunisia
| | - Chedly Abdelly
- Laboratory of Extremophile Plants, Biotechnology Center of Borj Cedria, Hammam-Lif 2050, BP 901, Tunis, Tunisia
| | - Tahar Ghnaya
- Higher Institute of Arts and Crafts of Tataouine, University of Gabes, Rue Omarr Eben Khattab, 6029, Zerig-Gabes, Tunisia.
- Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, Institute of Arid Land, University of Gabes, 4100, MedenineZerig-Gabes, Tunisia.
| |
Collapse
|
33
|
Li T, Li Y, Shangguan H, Bian J, Luo R, Tian Y, Li Z, Nie X, Cui L. BarleyExpDB: an integrative gene expression database for barley. BMC PLANT BIOLOGY 2023; 23:170. [PMID: 37003963 PMCID: PMC10064564 DOI: 10.1186/s12870-023-04193-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND RNA-sequencing (RNA-seq) has been widely used to study the dynamic expression patterns of transcribed genes, which can lead to new biological insights. However, processing and analyzing these huge amounts of histological data remains a great challenge for wet labs and field researchers who lack bioinformatics experience and computational resources. RESULTS We present BarleyExpDB, an easy-to-operate, free, and web-accessible database that integrates transcriptional profiles of barley at different growth and developmental stages, tissues, and stress conditions, as well as differential expression of mutants and populations to build a platform for barley expression and visualization. The expression of a gene of interest can be easily queried by searching by known gene ID or sequence similarity. Expression data can be displayed as a heat map, along with functional descriptions as well as Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Proteins Families Database, and Simple Modular Architecture Research Tool annotations. CONCLUSIONS BarleyExpDB will serve as a valuable resource for the barley research community to leverage the vast publicly available RNA-seq datasets for functional genomics research and crop molecular breeding.
Collapse
Affiliation(s)
- Tingting Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Hongbin Shangguan
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Jianxin Bian
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325 Shandong China
| | - Ruihan Luo
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Yuan Tian
- Xintai Urban and Rural Development Group Co., Ltd, Taian, 271200 Shandong China
| | - Zhimin Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| |
Collapse
|
34
|
Meng G, Rasmussen SK, Christensen CSL, Fan W, Torp AM. Molecular breeding of barley for quality traits and resilience to climate change. Front Genet 2023; 13:1039996. [PMID: 36685930 PMCID: PMC9851277 DOI: 10.3389/fgene.2022.1039996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Barley grains are a rich source of compounds, such as resistant starch, beta-glucans and anthocyanins, that can be explored in order to develop various products to support human health, while lignocellulose in straw can be optimised for feed in husbandry, bioconversion into bioethanol or as a starting material for new compounds. Existing natural variations of these compounds can be used to breed improved cultivars or integrated with a large number of mutant lines. The technical demands can be in opposition depending on barley's end use as feed or food or as a source of biofuel. For example beta-glucans are beneficial in human diets but can lead to issues in brewing and poultry feed. Barley breeders have taken action to integrate new technologies, such as induced mutations, transgenics, marker-assisted selection, genomic selection, site-directed mutagenesis and lastly machine learning, in order to improve quality traits. Although only a limited number of cultivars with new quality traits have so far reached the market, research has provided valuable knowledge and inspiration for future design and a combination of methodologies to achieve the desired traits. The changes in climate is expected to affect the quality of the harvested grain and it is already a challenge to mitigate the unpredictable seasonal and annual variations in temperature and precipitation under elevated [CO2] by breeding. This paper presents the mutants and encoded proteins, with a particular focus on anthocyanins and lignocellulose, that have been identified and characterised in detail and can provide inspiration for continued breeding to achieve desired grain and straw qualities.
Collapse
Affiliation(s)
- Geng Meng
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Søren K. Rasmussen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Weiyao Fan
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Anna Maria Torp
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
35
|
Clare SJ, Çelik Oğuz A, Effertz K, Karakaya A, Azamparsa MR, Brueggeman RS. Wild barley (Hordeum spontaneum) and landraces (Hordeum vulgare) from Turkey contain an abundance of novel Rhynchosporium commune resistance loci. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:15. [PMID: 36662256 DOI: 10.1007/s00122-023-04245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Rhynchosporium commune is a globally devastating pathogen of barley. Wild and landrace barley are underutilized, however, contain an abundance of loci that can be used as potential sources of resistance. Rhynchosporium commune, the causal agent of the disease scald or leaf blotch of barley, is a hemibiotrophic fungal pathogen of global importance, responsible for yield losses ranging from 30 to 40% on susceptible varieties. To date, over 150 resistance loci have been characterized in barley. However, due to the suspected location of the R. commune host jump in Europe, European germplasm has been the primary source used to screen for R. commune resistance leaving wild (Hordeum spontaneum) and landrace (H. vulgare) barley populations from the center of origin largely underutilized. A diverse population consisting of 94 wild and 188 barley landraces from Turkey were genotyped using PCR-GBS amplicon sequencing and screened with six Turkish R. commune isolates. The isolates were collected from distinct geographic regions of Turkey with two from the Aegean region, two from central Turkey and two from the Fertile Crescent region. The data set was utilized for association mapping analysis with a total of 21 loci identified, of which 12 were novel, indicating that these diverse primary barley gene pools contain an abundance of novel R. commune resistances that could be utilized for resistance breeding.
Collapse
Affiliation(s)
- Shaun J Clare
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Arzu Çelik Oğuz
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Dışkapı, 06110, Ankara, Turkey
| | - Karl Effertz
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Aziz Karakaya
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Dışkapı, 06110, Ankara, Turkey
| | - Mohammad Reza Azamparsa
- Department of Plant Protection, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, USA.
- Department of Crop and Soil Sciences, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Johnson Hall Rm. 115, PO Box 646420, Pullman, WA, 99164-6420, USA.
| |
Collapse
|
36
|
Shrestha A, Cosenza F, van Inghelandt D, Wu PY, Li J, Casale FA, Weisweiler M, Stich B. The double round-robin population unravels the genetic architecture of grain size in barley. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7344-7361. [PMID: 36094852 PMCID: PMC9730814 DOI: 10.1093/jxb/erac369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Grain number, size and weight primarily determine the yield of barley. Although the genes regulating grain number are well studied in barley, the genetic loci and the causal gene for sink capacity are poorly understood. Therefore, the primary objective of our work was to dissect the genetic architecture of grain size and weight in barley. We used a multi-parent population developed from a genetic cross between 23 diverse barley inbreds in a double round-robin design. Seed size-related parameters such as grain length, grain width, grain area and thousand-grain weight were evaluated in the HvDRR population comprising 45 recombinant inbred line sub-populations. We found significant genotypic variation for all seed size characteristics, and observed 84% or higher heritability across four environments. The quantitative trait locus (QTL) detection results indicate that the genetic architecture of grain size is more complex than previously reported. In addition, both cultivars and landraces contributed positive alleles at grain size QTLs. Candidate genes identified using genome-wide variant calling data for all parental inbred lines indicated overlapping and potential novel regulators of grain size in cereals. Furthermore, our results indicated that sink capacity was the primary determinant of grain weight in barley.
Collapse
Affiliation(s)
- Asis Shrestha
- Institute for Quantitative Genetics and Genomics of Plants, Biology Department, Heinrich Heine University, Dusseldorf, Germany
| | - Francesco Cosenza
- Institute for Quantitative Genetics and Genomics of Plants, Biology Department, Heinrich Heine University, Dusseldorf, Germany
| | - Delphine van Inghelandt
- Institute for Quantitative Genetics and Genomics of Plants, Biology Department, Heinrich Heine University, Dusseldorf, Germany
| | - Po-Ya Wu
- Institute for Quantitative Genetics and Genomics of Plants, Biology Department, Heinrich Heine University, Dusseldorf, Germany
| | - Jinquan Li
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Federico A Casale
- Institute for Quantitative Genetics and Genomics of Plants, Biology Department, Heinrich Heine University, Dusseldorf, Germany
| | - Marius Weisweiler
- Institute for Quantitative Genetics and Genomics of Plants, Biology Department, Heinrich Heine University, Dusseldorf, Germany
| | | |
Collapse
|
37
|
Bretani G, Shaaf S, Tondelli A, Cattivelli L, Delbono S, Waugh R, Thomas W, Russell J, Bull H, Igartua E, Casas AM, Gracia P, Rossi R, Schulman AH, Rossini L. Multi-environment genome -wide association mapping of culm morphology traits in barley. FRONTIERS IN PLANT SCIENCE 2022; 13:926277. [PMID: 36212331 PMCID: PMC9539552 DOI: 10.3389/fpls.2022.926277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/28/2022] [Indexed: 06/16/2023]
Abstract
In cereals with hollow internodes, lodging resistance is influenced by morphological characteristics such as internode diameter and culm wall thickness. Despite their relevance, knowledge of the genetic control of these traits and their relationship with lodging is lacking in temperate cereals such as barley. To fill this gap, we developed an image analysis-based protocol to accurately phenotype culm diameters and culm wall thickness across 261 barley accessions. Analysis of culm trait data collected from field trials in seven different environments revealed high heritability values (>50%) for most traits except thickness and stiffness, as well as genotype-by-environment interactions. The collection was structured mainly according to row-type, which had a confounding effect on culm traits as evidenced by phenotypic correlations. Within both row-type subsets, outer diameter and section modulus showed significant negative correlations with lodging (<-0.52 and <-0.45, respectively), but no correlation with plant height, indicating the possibility of improving lodging resistance independent of plant height. Using 50k iSelect SNP genotyping data, we conducted multi-environment genome-wide association studies using mixed model approach across the whole panel and row-type subsets: we identified a total of 192 quantitative trait loci (QTLs) for the studied traits, including subpopulation-specific QTLs and 21 main effect loci for culm diameter and/or section modulus showing effects on lodging without impacting plant height. Providing insights into the genetic architecture of culm morphology in barley and the possible role of candidate genes involved in hormone and cell wall-related pathways, this work supports the potential of loci underpinning culm features to improve lodging resistance and increase barley yield stability under changing environments.
Collapse
Affiliation(s)
- Gianluca Bretani
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Salar Shaaf
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Tondelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Stefano Delbono
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - William Thomas
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Joanne Russell
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Hazel Bull
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Ernesto Igartua
- Aula Dei Experimental Station (EEAD-CSIC), Spanish Research Council, Zaragoza, Spain
| | - Ana M. Casas
- Aula Dei Experimental Station (EEAD-CSIC), Spanish Research Council, Zaragoza, Spain
| | - Pilar Gracia
- Aula Dei Experimental Station (EEAD-CSIC), Spanish Research Council, Zaragoza, Spain
| | - Roberta Rossi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Alan H. Schulman
- Viikki Plant Sciences Centre, Natural Resources Institue (LUKE), HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Laura Rossini
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
38
|
Chen Y, Schreiber M, Bayer MM, Dawson IK, Hedley PE, Lei L, Akhunova A, Liu C, Smith KP, Fay JC, Muehlbauer GJ, Steffenson BJ, Morrell PL, Waugh R, Russell JR. The evolutionary patterns of barley pericentromeric chromosome regions, as shaped by linkage disequilibrium and domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1580-1594. [PMID: 35834607 PMCID: PMC9546296 DOI: 10.1111/tpj.15908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 05/17/2023]
Abstract
The distribution of recombination events along large cereal chromosomes is uneven and is generally restricted to gene-rich telomeric ends. To understand how the lack of recombination affects diversity in the large pericentromeric regions, we analysed deep exome capture data from a final panel of 815 Hordeum vulgare (barley) cultivars, landraces and wild barleys, sampled from across their eco-geographical ranges. We defined and compared variant data across the pericentromeric and non-pericentromeric regions, observing a clear partitioning of diversity both within and between chromosomes and germplasm groups. Dramatically reduced diversity was found in the pericentromeres of both cultivars and landraces when compared with wild barley. We observed a mixture of completely and partially differentiated single-nucleotide polymorphisms (SNPs) between domesticated and wild gene pools, suggesting that domesticated gene pools were derived from multiple wild ancestors. Patterns of genome-wide linkage disequilibrium, haplotype block size and number, and variant frequency within blocks showed clear contrasts among individual chromosomes and between cultivars and wild barleys. Although most cultivar chromosomes shared a single major pericentromeric haplotype, chromosome 7H clearly differentiated the two-row and six-row types associated with different geographical origins. Within the pericentromeric regions we identified 22 387 non-synonymous SNPs, 92 of which were fixed for alternative alleles in cultivar versus wild accessions. Surprisingly, only 29 SNPs found exclusively in the cultivars were predicted to be 'highly deleterious'. Overall, our data reveal an unconventional pericentromeric genetic landscape among distinct barley gene pools, with different evolutionary processes driving domestication and diversification.
Collapse
Affiliation(s)
- Yun‐Yu Chen
- The James Hutton Institute, InvergowrieDundeeDD2 5DAUK
- Fios GenomicsBioQuarter, 13 Little France RdEdinburghEH16 4UXUK
| | - Miriam Schreiber
- The James Hutton Institute, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences, School of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHUK
| | | | - Ian K. Dawson
- The James Hutton Institute, InvergowrieDundeeDD2 5DAUK
- Scotland's Rural College, Kings BuildingsWest Mains RdEdinburghEH9 3JGUK
| | | | - Li Lei
- Department of Agronomy & Plant GeneticsUniversity of Minnesota411 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
| | - Alina Akhunova
- Department of Agronomy & Plant GeneticsUniversity of Minnesota411 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
- Department of Plant PathologyKansas State UniversityThrockmorton HallManhattanKS66506USA
| | - Chaochih Liu
- Department of Agronomy & Plant GeneticsUniversity of Minnesota411 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
| | - Kevin P. Smith
- Department of Agronomy & Plant GeneticsUniversity of Minnesota411 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
| | - Justin C. Fay
- Department of BiologyUniversity of Rochester319 HutchisonRochesterNY14627USA
| | - Gary J. Muehlbauer
- Department of Agronomy & Plant GeneticsUniversity of Minnesota411 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
| | - Brian J. Steffenson
- Department of Plant PathologyUniversity of Minnesota495 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
| | - Peter L. Morrell
- Department of Agronomy & Plant GeneticsUniversity of Minnesota411 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
| | - Robbie Waugh
- The James Hutton Institute, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences, School of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHUK
| | | |
Collapse
|
39
|
Willcox MC, Burgueño JA, Jeffers D, Rodriguez-Chanona E, Guadarrama-Espinoza A, Kehel Z, Chepetla D, Shrestha R, Swarts K, Buckler ES, Hearne S, Chen C. Mining alleles for tar spot complex resistance from CIMMYT's maize Germplasm Bank. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.937200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The tar spot complex (TSC) is a devastating disease of maize (Zea mays L.), occurring in 17 countries throughout Central, South, and North America and the Caribbean, and can cause grain yield losses of up to 80%. As yield losses from the disease continue to intensify in Central America, Phyllachora maydis, one of the causal pathogens of TSC, was first detected in the United States in 2015, and in 2020 in Ontario, Canada. Both the distribution and yield losses due to TSC are increasing, and there is a critical need to identify the genetic resources for TSC resistance. The Seeds of Discovery Initiative at CIMMYT has sought to combine next-generation sequencing technologies and phenotypic characterization to identify valuable alleles held in the CIMMYT Germplasm Bank for use in germplasm improvement programs. Individual landrace accessions of the “Breeders' Core Collection” were crossed to CIMMYT hybrids to form 918 unique accessions topcrosses (F1 families) which were evaluated during 2011 and 2012 for TSC disease reaction. A total of 16 associated SNP variants were identified for TSC foliar leaf damage resistance and increased grain yield. These variants were confirmed by evaluating the TSC reaction of previously untested selections of the larger F1 testcross population (4,471 accessions) based on the presence of identified favorable SNPs. We demonstrated the usefulness of mining for donor alleles in Germplasm Bank accessions for newly emerging diseases using genomic variation in landraces.
Collapse
|
40
|
Coulter M, Entizne JC, Guo W, Bayer M, Wonneberger R, Milne L, Schreiber M, Haaning A, Muehlbauer GJ, McCallum N, Fuller J, Simpson C, Stein N, Brown JWS, Waugh R, Zhang R. BaRTv2: a highly resolved barley reference transcriptome for accurate transcript-specific RNA-seq quantification. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1183-1202. [PMID: 35704392 PMCID: PMC9546494 DOI: 10.1111/tpj.15871] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/02/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Accurate characterisation of splice junctions (SJs) as well as transcription start and end sites in reference transcriptomes allows precise quantification of transcripts from RNA-seq data, and enables detailed investigations of transcriptional and post-transcriptional regulation. Using novel computational methods and a combination of PacBio Iso-seq and Illumina short-read sequences from 20 diverse tissues and conditions, we generated a comprehensive and highly resolved barley reference transcript dataset from the European 2-row spring barley cultivar Barke (BaRTv2.18). Stringent and thorough filtering was carried out to maintain the quality and accuracy of the SJs and transcript start and end sites. BaRTv2.18 shows increased transcript diversity and completeness compared with an earlier version, BaRTv1.0. The accuracy of transcript level quantification, SJs and transcript start and end sites have been validated extensively using parallel technologies and analysis, including high-resolution reverse transcriptase-polymerase chain reaction and 5'-RACE. BaRTv2.18 contains 39 434 genes and 148 260 transcripts, representing the most comprehensive and resolved reference transcriptome in barley to date. It provides an important and high-quality resource for advanced transcriptomic analyses, including both transcriptional and post-transcriptional regulation, with exceptional resolution and precision.
Collapse
Affiliation(s)
- Max Coulter
- Division of Plant SciencesUniversity of Dundee, James Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Juan Carlos Entizne
- Division of Plant SciencesUniversity of Dundee, James Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Wenbin Guo
- Information and Computational SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Micha Bayer
- Information and Computational SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Ronja Wonneberger
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstrasse 3D‐06466Stadt SeelandGermany
| | - Linda Milne
- Information and Computational SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Miriam Schreiber
- Division of Plant SciencesUniversity of Dundee, James Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Allison Haaning
- Department of Agronomy and Plant GeneticsUniversity of Minnesota1991 Upper Buford Circle, 542 Borlaug HallSt PaulMinnesota55108USA
| | - Gary J. Muehlbauer
- Department of Agronomy and Plant GeneticsUniversity of Minnesota1991 Upper Buford Circle, 542 Borlaug HallSt PaulMinnesota55108USA
| | - Nicola McCallum
- Cell and Molecular SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - John Fuller
- Cell and Molecular SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Craig Simpson
- Cell and Molecular SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstrasse 3D‐06466Stadt SeelandGermany
- Center for Integrated Breeding Research (CiBreed)Georg‐August‐UniversityGöttingenGermany
| | - John W. S. Brown
- Division of Plant SciencesUniversity of Dundee, James Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
- Cell and Molecular SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Robbie Waugh
- Division of Plant SciencesUniversity of Dundee, James Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
- Cell and Molecular SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
- School of Agriculture and Wine & Waite Research InstituteUniversity of AdelaideWaite CampusGlen OsmondSouth Australia5064Australia
| | - Runxuan Zhang
- Information and Computational SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| |
Collapse
|
41
|
Wang Y, Du F, Wang J, Wang K, Tian C, Qi X, Lu F, Liu X, Ye X, Jiao Y. Improving bread wheat yield through modulating an unselected AP2/ERF gene. NATURE PLANTS 2022; 8:930-939. [PMID: 35851621 DOI: 10.1038/s41477-022-01197-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Crop breeding heavily relies on natural genetic variation. However, additional new variations are desired to meet the increasing human demand. Inflorescence architecture determines grain number per spike, a major determinant of bread wheat (Triticum aestivum L.) yield. Here, using Brachypodium distachyon as a wheat proxy, we identified DUO-B1, encoding an APETALA2/ethylene response factor (AP2/ERF) transcription factor, regulating spike inflorescence architecture in bread wheat. Mutations of DUO-B1 lead to mild supernumerary spikelets, increased grain number per spike and, importantly, increased yield under field conditions without affecting other major agronomic traits. DUO-B1 suppresses cell division and promotes the expression of BHt/WFZP, whose mutations could lead to branched 'miracle-wheat'. Pan-genome analysis indicated that DUO-B1 has not been utilized in breeding, and holds promise to increase wheat yield further.
Collapse
Affiliation(s)
- Yuange Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fei Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jian Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Ke Wang
- National Key Facility of Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Caihuan Tian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Lu
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xingguo Ye
- National Key Facility of Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China.
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China.
| |
Collapse
|
42
|
Nyiraguhirwa S, Grana Z, Ouabbou H, Iraqi D, Ibriz M, Mamidi S, Udupa SM. A Genome-Wide Association Study Identifying Single-Nucleotide Polymorphisms for Iron and Zinc Biofortification in a Worldwide Barley Collection. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11101349. [PMID: 35631775 PMCID: PMC9148054 DOI: 10.3390/plants11101349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 05/12/2023]
Abstract
Micronutrient deficiency affects half of the world’s population, mostly in developing countries. Severe health issues such as anemia and inadequate growth in children below five years of age and pregnant women have been linked to mineral deficiencies (mostly zinc and iron). Improving the mineral content in staple crops, also known as mineral biofortification, remains the best approach to address mineral malnutrition. Barley is a staple crop in some parts of the world and is a healthy choice since it contains β-glucan, a high dietary protein. Barley mineral biofortification, especially with zinc and iron, can be beneficial since barley easily adapts to marginalized areas and requires less input than other frequently consumed cereals. In this study, we analyzed zinc and iron content in 496 barley samples. The samples were genotyped with an Illumina 50 K SNP chip. Genome-wide association studies (GWAS) identified 62 SNPs and 68 SNPs (p < 0.001) associated with iron and zinc content in grains, respectively. After a Bonferroni correction (p < 0.005), there were 12 SNPs (single-nucleotide polymorphism) associated with Zn and 6 for iron. SNP annotations revealed proteins involved in membrane transport, Zn and Fe binding, linked to nutrient remobilization in grains. These results can be used to develop biofortified barley via marker-assisted selection (MAS), which could alleviate mineral malnutrition.
Collapse
Affiliation(s)
- Solange Nyiraguhirwa
- International Center for Agriculture Research in Dry Areas (ICARDA), Rue Hafiane Chekaoui, P.O. Box 6299, Rabat 10000, Morocco; (S.N.); (Z.G.)
- Institut National de Recherche Agronomique (INRA), Avenue Ennasr, P.O. Box 415, Rabat 10080, Morocco; (H.O.); (D.I.)
- Faculty of Sciences, Ibn Tofail University, University Campus, P.O. Box 133, Kénitra 14000, Morocco;
| | - Zahra Grana
- International Center for Agriculture Research in Dry Areas (ICARDA), Rue Hafiane Chekaoui, P.O. Box 6299, Rabat 10000, Morocco; (S.N.); (Z.G.)
- Institut National de Recherche Agronomique (INRA), Avenue Ennasr, P.O. Box 415, Rabat 10080, Morocco; (H.O.); (D.I.)
- Faculty of Sciences, Ibn Tofail University, University Campus, P.O. Box 133, Kénitra 14000, Morocco;
| | - Hassan Ouabbou
- Institut National de Recherche Agronomique (INRA), Avenue Ennasr, P.O. Box 415, Rabat 10080, Morocco; (H.O.); (D.I.)
| | - Driss Iraqi
- Institut National de Recherche Agronomique (INRA), Avenue Ennasr, P.O. Box 415, Rabat 10080, Morocco; (H.O.); (D.I.)
| | - Mohammed Ibriz
- Faculty of Sciences, Ibn Tofail University, University Campus, P.O. Box 133, Kénitra 14000, Morocco;
| | - Sujan Mamidi
- Hudson Alpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA;
| | - Sripada M. Udupa
- International Center for Agriculture Research in Dry Areas (ICARDA), Rue Hafiane Chekaoui, P.O. Box 6299, Rabat 10000, Morocco; (S.N.); (Z.G.)
- Correspondence: ; Tel.: +212-673346102
| |
Collapse
|
43
|
Nefissi Ouertani R, Arasappan D, Ruhlman TA, Ben Chikha M, Abid G, Mejri S, Ghorbel A, Jansen RK. Effects of Salt Stress on Transcriptional and Physiological Responses in Barley Leaves with Contrasting Salt Tolerance. Int J Mol Sci 2022; 23:5006. [PMID: 35563398 PMCID: PMC9103072 DOI: 10.3390/ijms23095006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Salt stress negatively impacts crop production worldwide. Genetic diversity among barley (Hordeum vulgare) landraces adapted to adverse conditions should provide a valuable reservoir of tolerance genes for breeding programs. To identify molecular and biochemical differences between barley genotypes, transcriptomic and antioxidant enzyme profiles along with several morpho-physiological features were compared between salt-tolerant (Boulifa) and salt-sensitive (Testour) genotypes subjected to salt stress. Decreases in biomass, photosynthetic parameters, and relative water content were low in Boulifa compared to Testour. Boulifa had better antioxidant protection against salt stress than Testour, with greater antioxidant enzymes activities including catalase, superoxide dismutase, and guaiacol peroxidase. Transcriptome assembly for both genotypes revealed greater accumulation of differentially expressed transcripts in Testour compared to Boulifa, emphasizing the elevated transcriptional response in Testour following salt exposure. Various salt-responsive genes, including the antioxidant catalase 3, the osmoprotectant betaine aldehyde dehydrogenase 2, and the transcription factors MYB20 and MYB41, were induced only in Boulifa. By contrast, several genes associated with photosystems I and II, and light receptor chlorophylls A and B, were more repressed in Testour. Co-expression network analysis identified specific gene modules correlating with differences in genotypes and morpho-physiological traits. Overall, salinity-induced differential transcript accumulation underlies the differential morpho-physiological response in both genotypes and could be important for breeding salt tolerance in barley.
Collapse
Affiliation(s)
- Rim Nefissi Ouertani
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (M.B.C.); (S.M.); (A.G.)
| | - Dhivya Arasappan
- Center for Biomedical Research Support, University of Texas at Austin, Austin, TX 78712, USA;
| | - Tracey A. Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA;
| | - Mariem Ben Chikha
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (M.B.C.); (S.M.); (A.G.)
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agrosystems, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia;
| | - Samiha Mejri
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (M.B.C.); (S.M.); (A.G.)
| | - Abdelwahed Ghorbel
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (M.B.C.); (S.M.); (A.G.)
| | - Robert K. Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA;
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| |
Collapse
|
44
|
Szymańska S, Lis MI, Piernik A, Hrynkiewicz K. Pseudomonas stutzeri and Kushneria marisflavi Alleviate Salinity Stress-Associated Damages in Barley, Lettuce, and Sunflower. Front Microbiol 2022; 13:788893. [PMID: 35350624 PMCID: PMC8957930 DOI: 10.3389/fmicb.2022.788893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/11/2022] [Indexed: 11/25/2022] Open
Abstract
Soil salinity is one of the most important abiotic factors limiting plant productivity. The aim of this study was to determine the effect of selected halotolerant plant growth-promoting endophytes (PGPEs, Pseudomonas stutzeri ISE12 and Kushneria marisflavi CSE9) on the growth parameters of barley (Hordeum vulgare), lettuce (Lactuca sativa), and sunflower (Helianthus annuus) cultivated under salt stress conditions. A negative effect of two higher tested salinities (150 and 300 mM NaCl) was observed on the growth parameters of all investigated plants, including germination percentage and index (decreasing compared to the non-saline control variant in the ranges 5.3-91.7 and 13.6-90.9%, respectively), number of leaves (2.2-39.2%), fresh weight (24.2-81.6%); however, differences in salt stress tolerance among the investigated crops were observed (H. annuus > H. vulgare > L. sativa). Our data showed that the most crucial traits affected by endophyte inoculation under salt stress were chlorophyll concentration, leaf development, water storage, root development, and biomass accumulation. Thus, the influence of endophytes was species specific. K. marisflavi CSE9 promoted the growth of all tested plant species and could be considered a universal PGPEs for many plant genotypes cultivated under saline conditions (e.g., increasing of fresh weight compared to the non-inoculated control variant of barley, lettuce, and sunflower in the ranges 11.4-246.8, 118.9-201.2, and 16.4-77.7%, respectively). P. stutzeri ISE12 stimulated growth and mitigated salinity stress only in the case of barley. Bioaugmentation of crops with halotolerant bacterial strains can alleviate salt stress and promote plant growth; however, the selection of compatible strains and the verification of universal plant stress indicators are the key factors.
Collapse
Affiliation(s)
- Sonia Szymańska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Marta Izabela Lis
- Department of Geobotany and Landscape Planning, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Agnieszka Piernik
- Department of Geobotany and Landscape Planning, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
45
|
Mikołajczak K, Kuczyńska A, Ogrodowicz P, Kiełbowicz-Matuk A, Ćwiek-Kupczyńska H, Daszkowska-Golec A, Szarejko I, Surma M, Krajewski P. High-throughput sequencing data revealed genotype-specific changes evoked by heat stress in crown tissue of barley sdw1 near-isogenic lines. BMC Genomics 2022; 23:177. [PMID: 35246029 PMCID: PMC8897901 DOI: 10.1186/s12864-022-08410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High temperature shock is becoming increasingly common in our climate, affecting plant growth and productivity. The ability of a plant to survive stress is a complex phenomenon. One of the essential tissues for plant performance under various environmental stimuli is the crown. However, the molecular characterization of this region remains poorly investigated. Gibberellins play a fundamental role in whole-plant stature formation. This study identified plant stature modifications and crown-specific transcriptome re-modeling in gibberellin-deficient barley sdw1.a (BW827) and sdw1.d (BW828) mutants exposed to increased temperature. RESULTS The deletion around the sdw1 gene in BW827 was found to encompass at least 13 genes with primarily regulatory functions. A bigger genetic polymorphism of BW828 than of BW827 in relation to wild type was revealed. Transcriptome-wide sequencing (RNA-seq) revealed several differentially expressed genes involved in gibberellin metabolism and heat response located outside of introgression regions. It was found that HvGA20ox4, a paralogue of the HvGA20ox2 gene, was upregulated in BW828 relative to other genotypes, which manifested as basal internode elongation. The transcriptome response to elevated temperature differed in the crown of sdw1.a and sdw1.d mutants; it was most contrasting for HvHsf genes upregulated under elevated temperature in BW828, whereas those specific to BW827 were downregulated. In-depth examination of sdw1 mutants revealed also some differences in their phenotypes and physiology. CONCLUSIONS We concluded that despite the studied sdw1 mutants being genetically related, their heat response seemed to be genotype-specific and observed differences resulted from genetic background diversity rather than single gene mutation, multiple gene deletion, or allele-specific expression of the HvGA20ox2 gene. Differences in the expressional reaction of genes to heat in different sdw1 mutants, found to be independent of the polymorphism, could be further explained by in-depth studies of the regulatory factors acting in the studied system. Our findings are particularly important in genetic research area since molecular response of crown tissue has been marginally investigated, and can be useful for wide genetic research of crops since barley has become a model plant for them.
Collapse
Affiliation(s)
| | - Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | | | | | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Maria Surma
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland.
| |
Collapse
|
46
|
Tsivelikas AL, Ben Ghanem H, El-Baouchi A, Kehel Z. Single-Plant Selection at Ultra-Low Density Enhances Buffering Capacity of Barley Varieties and Landraces to Unpredictable Environments and Improves Their Agronomic Performance. FRONTIERS IN PLANT SCIENCE 2022; 13:838536. [PMID: 35251108 PMCID: PMC8895306 DOI: 10.3389/fpls.2022.838536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Rainfall and temperature are unpredictable factors in Mediterranean environments that result in irregular environmental conditions for crop growth, thus being a critical source of uncertainty for farmers. This study applied divergent single-plant selection for high and low yield within five barley varieties and two Tunisian landraces under semi-arid conditions at an ultra-low density of 1.2 plants/m2 for two consecutive years. Progeny evaluation under dense stands following farmers' practices was conducted in two semi-arid locations in Tunisia during one cropping season and in one location during a second season, totalling three environments. The results revealed significant genotypic effects for all recorded agronomic and physiological traits. No genotype × environment interaction was shown for biological yield, implying a biomass buffering capacity for selected lines under different environmental conditions. However, genotype × environment interaction was present in terms of grain yield since plasticity for biomass production under drought stress conditions was not translated directly to yield compensation for some of the lines. Nevertheless, several lines selected for high yield were identified to surpass their source material and best checks in each environment, while one line (IH4-4) outperformed consistently by 62.99% on average, in terms of grain yield, the best check across all environments. In addition, improved agronomic performance under drought conditions induced an indirect effect on some grain quality traits. Most of the lines selected for high yield maintained or even improved their grain protein content in comparison to their source material (average increase by 2.33%). On the other hand, most of the lines selected for low yield indicated a poor agronomic performance, further confirming the coherence between selection under ultra-low density and performance under dense stand.
Collapse
Affiliation(s)
- Athanasios L. Tsivelikas
- Genetic Resources Section, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Hajer Ben Ghanem
- Field Crop Laboratory, National Institute of Agricultural Research, University of Carthage, Tunis, Tunisia
| | - Adil El-Baouchi
- African Integrated Plant and Soil Research Group (AiPlaS), AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Zakaria Kehel
- Genetic Resources Section, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| |
Collapse
|
47
|
Impact of Heading Shift of Barley Cultivars on the Weather Patterns around Heading and Yield in Alaska. ATMOSPHERE 2022. [DOI: 10.3390/atmos13020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Barley heading date has advanced in Fairbanks (64.83° N, 147.77° W), Alaska, USA. However, it is unclear if this advance coincidently causes weather pattern changes around heading and leads to yield loss. Using the Variety Trial and weather data in Fairbanks and Delta Junction (64.05° N, 145.60° W) from 1991 to 2018, two barley cultivars were selected to analyze the yield and weather trends, the yield variation explained by weather, and the effect of extreme weather on yield. The results showed that the heading date of ‘Otal’ significantly advanced and yield significantly declined in Fairbanks while there were no heading and yield changes of ‘Otal’ in Delta Junction and of ‘Thual’ in both Fairbanks and Delta Junction. The weather pattern changed around heading due to advanced heading of ‘Otal’ in Fairbanks. The climate factors at 7–10 days around heading explained over 50% of ‘Otal’ yield variation in Fairbanks. The results suggest that ‘Otal’ can still be good to plant in Delta Junction but not in Fairbanks. To cope with the climate change in Alaska, the farmers should increase the diversity of barley cultivars, select non-photoperiod sensitive cultivars and cultivars with longer duration from planting to heading, and sow late to avoid the impact on heading and yield.
Collapse
|
48
|
Liu J, Wang Z, Chen Z, White JF, Malik K, Chen T, Li C. Inoculation of Barley (Hordeum vulgare) with the Endophyte Epichloë bromicola Affects Plant Growth, and the Microbial Community in Roots and Rhizosphere Soil. J Fungi (Basel) 2022; 8:jof8020172. [PMID: 35205925 PMCID: PMC8876963 DOI: 10.3390/jof8020172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Hordeum vulgare is an important source of feed and forage for livestock, and of food and drink for humans, but its utilization rate is lower than that of other cereal crops, thus it is crucial to improve barley agronomic traits and production. Epichloë bromicola is an endophyte that was isolated from wild barley (Hordeum brevisubulatum). Previous studies have found that Epichloë can indirectly influence the growth of host plants by affecting soil chemical characteristics, the microbial community, and by producing a range of secondary metabolites. However, underlying effects of Epichloë on the abundance and diversity of soil and root microbes have not been well-studied. In addition, there is a question regarding the relationship between endophyte-produced alkaloids and effects on the root and rhizosphere microbial communities. The objective of this study was to investigate changes in agronomic traits, nutritional properties, peramine, soil chemical and microbial community in the fourth generation of new barley symbionts EI (E. bromicola-infection) and EF (E. bromicola-free) in LQ+4 and LZ+4. We understand the plant height and biomass of EI in LZ+4 were significantly higher than those of EF. The HPLC analysis showed that the peramine content of EI in LQ+4 and LZ+4 was 0.085 and 0.1 mg/g, respectively. We compared the bacterial and fungal communities by analyzing the 16s rRNA (for bacteria) and ITS rDNA regions (for fungi). Our data revealed that the composition of fungal communities in rhizosphere soil of LZ+4 EI are higher than EF. In addition, the diversity and richness of fungal communities in root and rhizosphere soil of LQ+4 EI and LZ+4 EI are significantly higher than EF. Rhizosphere soil microbial community composition was higher than that in roots in LQ+4 and LZ+4. Peramine was significantly and positively correlated with the richness of the soil fungal community. Moreover, the principal component analysis (PCoA) results indicated that E. bromicola significantly influenced the community composition of root and rhizosphere soil microbes in both LQ+4 and LZ+4. Our results illustrate that E. bromicola can influence barley growth, peramine production and microbial communities associated with barley.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry (Ministry of Education), Gansu Tech Innovation Centre of Western China Grassland Industry, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (J.L.); (Z.C.); (K.M.); (T.C.)
| | - Zhengfeng Wang
- Economic Crops and Malt Barley Research Institute, Gansu Academy of Agricultural Science, Lanzhou 730070, China;
| | - Zhenjiang Chen
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry (Ministry of Education), Gansu Tech Innovation Centre of Western China Grassland Industry, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (J.L.); (Z.C.); (K.M.); (T.C.)
| | - James F. White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Kamran Malik
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry (Ministry of Education), Gansu Tech Innovation Centre of Western China Grassland Industry, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (J.L.); (Z.C.); (K.M.); (T.C.)
| | - Taixiang Chen
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry (Ministry of Education), Gansu Tech Innovation Centre of Western China Grassland Industry, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (J.L.); (Z.C.); (K.M.); (T.C.)
| | - Chunjie Li
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry (Ministry of Education), Gansu Tech Innovation Centre of Western China Grassland Industry, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (J.L.); (Z.C.); (K.M.); (T.C.)
- Grassland Research Center of National Forestry and Grassland Administration, Chinese Academy of Forestry Sciences, Beijing 100091, China
- Correspondence:
| |
Collapse
|
49
|
Decouard B, Bailly M, Rigault M, Marmagne A, Arkoun M, Soulay F, Caïus J, Paysant-Le Roux C, Louahlia S, Jacquard C, Esmaeel Q, Chardon F, Masclaux-Daubresse C, Dellagi A. Genotypic Variation of Nitrogen Use Efficiency and Amino Acid Metabolism in Barley. FRONTIERS IN PLANT SCIENCE 2022; 12:807798. [PMID: 35185958 PMCID: PMC8854266 DOI: 10.3389/fpls.2021.807798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/02/2021] [Indexed: 06/01/2023]
Abstract
Owing to the large genetic diversity of barley and its resilience under harsh environments, this crop is of great value for agroecological transition and the need for reduction of nitrogen (N) fertilizers inputs. In the present work, we investigated the diversity of a North African barley genotype collection in terms of growth under limiting N (LN) or ample N (HN) supply and in terms of physiological traits including amino acid content in young seedlings. We identified a Moroccan variety, Laanaceur, accumulating five times more lysine in its leaves than the others under both N nutritional regimes. Physiological characterization of the barley collection showed the genetic diversity of barley adaptation strategies to LN and highlighted a genotype x environment interaction. In all genotypes, N limitation resulted in global biomass reduction, an increase in C concentration, and a higher resource allocation to the roots, indicating that this organ undergoes important adaptive metabolic activity. The most important diversity concerned leaf nitrogen use efficiency (LNUE), root nitrogen use efficiency (RNUE), root nitrogen uptake efficiency (RNUpE), and leaf nitrogen uptake efficiency (LNUpE). Using LNUE as a target trait reflecting barley capacity to deal with N limitation, this trait was positively correlated with plant nitrogen uptake efficiency (PNUpE) and RNUpE. Based on the LNUE trait, we determined three classes showing high, moderate, or low tolerance to N limitation. The transcriptomic approach showed that signaling, ionic transport, immunity, and stress response were the major functions affected by N supply. A candidate gene encoding the HvNRT2.10 transporter was commonly up-regulated under LN in the three barley genotypes investigated. Genes encoding key enzymes required for lysine biosynthesis in plants, dihydrodipicolinate synthase (DHPS) and the catabolic enzyme, the bifunctional Lys-ketoglutarate reductase/saccharopine dehydrogenase are up-regulated in Laanaceur and likely account for a hyperaccumulation of lysine in this genotype. Our work provides key physiological markers of North African barley response to low N availability in the early developmental stages.
Collapse
Affiliation(s)
- Bérengère Decouard
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Marlène Bailly
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Martine Rigault
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Mustapha Arkoun
- Agro Innovation International - Laboratoire Nutrition Végétale, TIMAC AGRO International SAS, Saint Malo, France
| | - Fabienne Soulay
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - José Caïus
- Université Paris-Saclay, CNRS, INRAE, University of Évry Val d′Essonne, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Christine Paysant-Le Roux
- Université Paris-Saclay, CNRS, INRAE, University of Évry Val d′Essonne, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Said Louahlia
- Natural Resources and Environment Lab, Faculté Polydiscipliniare de Taza, Université Sidi Mohamed Ben Abdellah, Taza, Morocco
| | - Cédric Jacquard
- Université de Reims Champagne Ardenne, RIBP EA 4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, RIBP EA 4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Céline Masclaux-Daubresse
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Alia Dellagi
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
50
|
Guerra D, Morcia C, Badeck F, Rizza F, Delbono S, Francia E, Milc JA, Monostori I, Galiba G, Cattivelli L, Tondelli A. Extensive allele mining discovers novel genetic diversity in the loci controlling frost tolerance in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:553-569. [PMID: 34757472 PMCID: PMC8866391 DOI: 10.1007/s00122-021-03985-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/26/2021] [Indexed: 05/24/2023]
Abstract
Exome sequencing-based allele mining for frost tolerance suggests HvCBF14 rather than CNV at Fr-H2 locus is the main responsible of frost tolerance in barley. Wild relatives, landraces and old cultivars of barley represent a reservoir of untapped and potentially important genes for crop improvement, and the recent sequencing technologies provide the opportunity to mine the existing genetic diversity and to identify new genes/alleles for the traits of interest. In the present study, we use frost tolerance and vernalization requirement as case studies to demonstrate the power of allele mining carried out on exome sequencing data generated from > 400 barley accessions. New deletions in the first intron of VRN-H1 were identified and linked to a reduced vernalization requirement, while the allelic diversity of HvCBF2a, HvCBF4b and HvCBF14 was investigated by combining the analysis of SNPs and read counts. This approach has proven very effective to identify gene paralogs and copy number variants of HvCBF2 and the HvCBF4b-HvCBF2a segment. A multiple linear regression model which considers allelic variation at these genes suggests a major involvement of HvCBF14, rather than copy number variation of HvCBF4b-HvCBF2a, in controlling frost tolerance in barley. Overall, the present study provides powerful resource and tools to discover novel alleles at relevant genes in barley.
Collapse
Affiliation(s)
- Davide Guerra
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy.
| | - Caterina Morcia
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy
| | - Franz Badeck
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy
| | - Fulvia Rizza
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy
| | - Stefano Delbono
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy
| | - Enrico Francia
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, Pad. Besta, 42122, Reggio Emilia, Italy
| | - Justyna Anna Milc
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, Pad. Besta, 42122, Reggio Emilia, Italy
| | - Istvan Monostori
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, Martonvásár, 2462, Hungary
| | - Gabor Galiba
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, Martonvásár, 2462, Hungary
- Department of Environmental Sustainability, Festetics Doctoral School, IES, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Keszthely, 8360, Hungary
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy
| | - Alessandro Tondelli
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy
| |
Collapse
|