1
|
Mase H, Sumiura A, Yoshitake Y, Kohchi T, Takahashi T, Motose H. Involvement of a NIMA-related kinase in cell division of the liverwort Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2025; 66:815-832. [PMID: 39960765 DOI: 10.1093/pcp/pcaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 06/01/2025]
Abstract
Never-in-mitosis A (NIMA)-related kinases (NEKs) regulate a series of mitotic events in fungi and animals, whereas plant NEKs have been shown to control the growth direction of cells and organs. Plant NEKs are highly expressed in the meristem, but whether they regulate meristematic activity remains unknown. The liverwort Marchantia polymorpha has a single functional MpNEK1 gene, and its knockout results in twisted rhizoid growth. For a gain-of-function approach, we generated lines for the inducible expression of MpNEK1 using an estrogen receptor-mediated system. Estradiol treatment effectively induced the accumulation of MpNEK1 mRNA and MpNEK1-Citrine fusion protein throughout the plant. MpNEK1 overexpression severely suppressed rhizoid and thallus growth, ultimately leading to the lethality of juvenile plants. This severe effect was observed even at the nanomolar level of estradiol. EdU (5-ethynyl-2'-deoxyuridine) staining and microtubule imaging clearly indicated suppression of cell division by estradiol-induced MpNEK1. MpNEK1 induction also reduced cortical microtubule density and dynamics but did not severely affect cell growth and morphology in thalli. Overexpression of kinase-deficient MpNEK1 also suppressed thallus and rhizoid growth, although to a slightly lesser extent than wild-type MpNEK1, indicating a phosphorylation-independent mechanism of growth suppression. Furthermore, Mpnek1 mutants exhibited growth suppression in their reproductive organs, the gametangiophores. This supports the role of MpNEK1 in cell division, as observed in both fungi and animals.
Collapse
Affiliation(s)
- Hikari Mase
- Department of Biological Science, Graduate School of Natural Science & Technology, Okayama University, Tsushimanaka 3-1-1, Okayama 700-8530, Japan
| | - Aoi Sumiura
- Department of Biological Science, Graduate School of Natural Science & Technology, Okayama University, Tsushimanaka 3-1-1, Okayama 700-8530, Japan
| | - Yoshihiro Yoshitake
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-oiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-oiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - Taku Takahashi
- Department of Biological Science, Graduate School of Natural Science & Technology, Okayama University, Tsushimanaka 3-1-1, Okayama 700-8530, Japan
| | - Hiroyasu Motose
- Department of Biological Science, Graduate School of Natural Science & Technology, Okayama University, Tsushimanaka 3-1-1, Okayama 700-8530, Japan
| |
Collapse
|
2
|
Yin Z, Gan Y, Chen Y, Kozgunova E, Yi P. The Microtubule Cytoskeleton in Bryophytes. Cytoskeleton (Hoboken) 2025. [PMID: 40040596 DOI: 10.1002/cm.22009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
Microtubules (MTs) are essential cytoskeletal elements in all eukaryotes, playing critical roles in cell shape, intercellular organization, cell division, and cell motility. The organization of the MT network has undergone significant changes throughout plant evolution. Some MT structures, such as the preprophase band and phragmoplast, are innovations in plant lineages, while others, including the centriole and flagellum, have been lost over time. Bryophytes, consisting of mosses, liverworts, and hornworts, are the earliest land plants and occupy a key phylogenetic position in the evolution of MT organization. In the past two decades, advances in genomics, genetics, and cell imaging technologies have significantly enhanced our understanding of MT organization and function. Two representative species, Physcomitrium patens (moss) and Marchantia polymorph (liverwort), have become established model organisms, and new models for hornworts are emerging. In this review, we summarize the current knowledge of the MT cytoskeleton, drawing from early electron microscopy studies and recent advances in these emerging models. Our aim is to provide a comprehensive overview of the major MT array types and key factors involved in MT organization in bryophytes, offering insights into MT adaptation during plant evolution.
Collapse
Affiliation(s)
- Zihan Yin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Yirong Gan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Yin Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Elena Kozgunova
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Peishan Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
3
|
Hazelwood OS, Arif Ashraf M. Molecular markers in cell cycle visualisation during development and stress conditions in Arabidopsis thaliana. QUANTITATIVE PLANT BIOLOGY 2024; 5:e14. [PMID: 39777029 PMCID: PMC11706682 DOI: 10.1017/qpb.2024.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/27/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
Abstract
Plant growth and development are tightly regulated by cell division, elongation, and differentiation. A visible plant phenotype at the tissue or organ level is coordinated at the cellular level. Among these cellular regulations (cell division, elongation and differentiation), cell division in plants follows the same universal mechanisms across kingdoms of life, and involves conserved cell cycle regulatory proteins (cyclins, cyclin-dependent kinase and cell cycle inhibitors). Cell division is regulated through distinct cell cycle steps (G1, S, G2 and M), and these individual steps are visualised using transgenic marker lines. As a result, a quantitative cell cycle approach in plants during development and stress conditions relies on the accuracy of cell cycle markers. In this perspective article, we highlight the available cell cycle marker lines in plants, common practices within plant biology communities based on existing literature and provide a road map to a thorough quantitative approach of cell cycle regulation in plants.
Collapse
Affiliation(s)
| | - M. Arif Ashraf
- Department of Biology, Howard University, Washington, DC, USA
| |
Collapse
|
4
|
Attrill ST, Dolan L. KATANIN-mediated microtubule severing is required for MTOC organisation and function in Marchantia polymorpha. Development 2024; 151:dev202672. [PMID: 38572965 PMCID: PMC11112166 DOI: 10.1242/dev.202672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Microtubule organising centres (MTOCs) are sites of localised microtubule nucleation in eukaryotic cells. Regulation of microtubule dynamics often involves KATANIN (KTN): a microtubule severing enzyme that cuts microtubules to generate new negative ends, leading to catastrophic depolymerisation. In Arabidopsis thaliana, KTN is required for the organisation of microtubules in the cell cortex, preprophase band, mitotic spindle and phragmoplast. However, as angiosperms lack MTOCs, the role of KTN in MTOC formation has yet to be studied in plants. Two unique MTOCs - the polar organisers - form on opposing sides of the preprophase nucleus in liverworts. Here, we show that KTN-mediated microtubule depolymerisation regulates the number and organisation of polar organisers formed in Marchantia polymorpha. Mpktn mutants that lacked KTN function had supernumerary disorganised polar organisers compared with wild type. This was in addition to defects in the microtubule organisation in the cell cortex, preprophase band, mitotic spindle and phragmoplast. These data are consistent with the hypothesis that KTN-mediated microtubule dynamics are required for the de novo formation of MTOCs, a previously unreported function in plants.
Collapse
Affiliation(s)
- Sarah T. Attrill
- Gregor Mendel Institute, Dr Bohr-Gasse 3, Vienna 1030, Austria
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Liam Dolan
- Gregor Mendel Institute, Dr Bohr-Gasse 3, Vienna 1030, Austria
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
5
|
Robinson K, Chia KS, Guyon A, Schornack S, Carella P. An efficient sulfadiazine selection scheme for stable transformation in the model liverwort Marchantia polymorpha. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5585-5591. [PMID: 38824404 PMCID: PMC11427837 DOI: 10.1093/jxb/erae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/06/2024] [Indexed: 06/03/2024]
Abstract
Plant macroevolutionary studies leverage the phylogenetic position of non-flowering model systems like the liverwort Marchantia polymorpha to investigate the origin and evolution of key plant processes. To date, most molecular genetic studies in Marchantia rely on hygromycin and/or chlorsulfuron herbicide resistance markers for the selection of stable transformants. Here, we used a sulfonamide-resistant dihydropteroate synthase (DHPS) gene to enable sulfadiazine-based transformation selection in M. polymorpha. We demonstrate the reliability of sulfadiazine selection on its own and in combination with existing hygromycin and chlorsulfuron selection schemes through transgene stacking experiments. The utility of this system is further demonstrated through confocal microscopy of a triple transgenic line carrying fluorescent proteins labelling the plasma membrane, cortical microtubules, and the nucleus. Collectively, our findings and resources broaden the capacity to genetically manipulate the increasingly popular model liverwort M. polymorpha.
Collapse
Affiliation(s)
- Kayla Robinson
- Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | - Khong-Sam Chia
- Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | - Alex Guyon
- University of Cambridge, Sainsbury Laboratory, Bateman Street, Cambridge, CB2 1LRUK
| | - Sebastian Schornack
- University of Cambridge, Sainsbury Laboratory, Bateman Street, Cambridge, CB2 1LRUK
| | - Philip Carella
- Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| |
Collapse
|
6
|
Gutsche N, Koczula J, Trupp M, Holtmannspötter M, Appelfeller M, Rupp O, Busch A, Zachgo S. MpTGA, together with MpNPR, regulates sexual reproduction and independently affects oil body formation in Marchantia polymorpha. THE NEW PHYTOLOGIST 2024; 241:1559-1573. [PMID: 38095258 DOI: 10.1111/nph.19472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/21/2023] [Indexed: 01/26/2024]
Abstract
In angiosperms, basic leucine-zipper (bZIP) TGACG-motif-binding (TGA) transcription factors (TFs) regulate developmental and stress-related processes, the latter often involving NON EXPRESSOR OF PATHOGENESIS-RELATED GENES (NPR) coregulator interactions. To gain insight into their functions in an early diverging land-plant lineage, the single MpTGA and sole MpNPR genes were investigated in the liverwort Marchantia polymorpha. We generated Marchantia MpTGA and MpNPR knockout and overexpression mutants and conducted morphological, transcriptomic and expression studies. Furthermore, we investigated MpTGA interactions with wild-type and mutagenized MpNPR and expanded our analyses including TGA TFs from two streptophyte algae. Mptga mutants fail to induce the switch from vegetative to reproductive development and lack gametangiophore formation. MpTGA and MpNPR proteins interact and Mpnpr mutant analysis reveals a novel coregulatory NPR role in sexual reproduction. Additionally, MpTGA acts independently of MpNPR as a repressor of oil body (OB) formation and can thereby affect herbivory. The single MpTGA TF exerts a dual role in sexual reproduction and OB formation in Marchantia. Common activities of MpTGA/MpNPR in sexual development suggest that coregulatory interactions were established after emergence of land-plant-specific NPR genes and contributed to the diversification of TGA TF functions during land-plant evolution.
Collapse
Affiliation(s)
- Nora Gutsche
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Jens Koczula
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Melanie Trupp
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Michael Holtmannspötter
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | | | - Oliver Rupp
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Andrea Busch
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Sabine Zachgo
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| |
Collapse
|
7
|
Aggarwal B, Karlowski WM, Nuc P, Jarmolowski A, Szweykowska-Kulinska Z, Pietrykowska H. MiRNAs differentially expressed in vegetative and reproductive organs of Marchantia polymorpha - insights into their expression pattern, gene structures and function. RNA Biol 2024; 21:1-12. [PMID: 38303117 PMCID: PMC10841014 DOI: 10.1080/15476286.2024.2303555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
MicroRNAs regulate gene expression affecting a variety of plant developmental processes. The evolutionary position of Marchantia polymorpha makes it a significant model to understand miRNA-mediated gene regulatory pathways in plants. Previous studies focused on conserved miRNA-target mRNA modules showed their critical role in Marchantia development. Here, we demonstrate that the differential expression of conserved miRNAs among land plants and their targets in selected organs of Marchantia additionally underlines their role in regulating fundamental developmental processes. The main aim of this study was to characterize selected liverwort-specific miRNAs, as there is a limited knowledge on their biogenesis, accumulation, targets, and function in Marchantia. We demonstrate their differential accumulation in vegetative and generative organs. We reveal that all liverwort-specific miRNAs examined are encoded by independent transcriptional units. MpmiR11737a, MpmiR11887 and MpmiR11796, annotated as being encoded within protein-encoding genes, have their own independent transcription start sites. The analysis of selected liverwort-specific miRNAs and their pri-miRNAs often reveal correlation in their levels, suggesting transcriptional regulation. However, MpmiR11796 shows a reverse correlation to its pri-miRNA level, suggesting post-transcriptional regulation. Moreover, we identify novel targets for selected liverwort-specific miRNAs and demonstrate an inverse correlation between their expression and miRNA accumulation. In the case of one miRNA precursor, we provide evidence that it encodes two functional miRNAs with two independent targets. Overall, our research sheds light on liverwort-specific miRNA gene structure, provides new data on their biogenesis and expression regulation. Furthermore, identifying their targets, we hypothesize the potential role of these miRNAs in early land plant development and functioning.
Collapse
Affiliation(s)
- Bharti Aggarwal
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Wojciech Maciej Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Przemyslaw Nuc
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Halina Pietrykowska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
8
|
Bonfanti A, Smithers ET, Bourdon M, Guyon A, Carella P, Carter R, Wightman R, Schornack S, Jönsson H, Robinson S. Stiffness transitions in new walls post-cell division differ between Marchantia polymorpha gemmae and Arabidopsis thaliana leaves. Proc Natl Acad Sci U S A 2023; 120:e2302985120. [PMID: 37782806 PMCID: PMC10576037 DOI: 10.1073/pnas.2302985120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/17/2023] [Indexed: 10/04/2023] Open
Abstract
Plant morphogenesis is governed by the mechanics of the cell wall-a stiff and thin polymeric box that encloses the cells. The cell wall is a highly dynamic composite material. New cell walls are added during cell division. As the cells continue to grow, the properties of cell walls are modulated to undergo significant changes in shape and size without breakage. Spatial and temporal variations in cell wall mechanical properties have been observed. However, how they relate to cell division remains an outstanding question. Here, we combine time-lapse imaging with local mechanical measurements via atomic force microscopy to systematically map the cell wall's age and growth, with their stiffness. We make use of two systems, Marchantia polymorpha gemmae, and Arabidopsis thaliana leaves. We first characterize the growth and cell division of M. polymorpha gemmae. We then demonstrate that cell division in M. polymorpha gemmae results in the generation of a temporary stiffer and slower-growing new wall. In contrast, this transient phenomenon is absent in A. thaliana leaves. We provide evidence that this different temporal behavior has a direct impact on the local cell geometry via changes in the junction angle. These results are expected to pave the way for developing more realistic plant morphogenetic models and to advance the study into the impact of cell division on tissue growth.
Collapse
Affiliation(s)
- Alessandra Bonfanti
- Sainsbury Laboratory Cambridge University, CambridgeCB2 1LR, United Kingdom
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milan20133, Italy
| | | | - Matthieu Bourdon
- Sainsbury Laboratory Cambridge University, CambridgeCB2 1LR, United Kingdom
| | - Alex Guyon
- Sainsbury Laboratory Cambridge University, CambridgeCB2 1LR, United Kingdom
| | - Philip Carella
- Sainsbury Laboratory Cambridge University, CambridgeCB2 1LR, United Kingdom
- Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Ross Carter
- Sainsbury Laboratory Cambridge University, CambridgeCB2 1LR, United Kingdom
| | - Raymond Wightman
- Sainsbury Laboratory Cambridge University, CambridgeCB2 1LR, United Kingdom
| | | | - Henrik Jönsson
- Sainsbury Laboratory Cambridge University, CambridgeCB2 1LR, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CambridgeCB3 0WA, United Kingdom
- Department of Astronomy and Theoretical Physics, Computational Biology and Biological Physics, Lund University, Lund223 62, Sweden
| | - Sarah Robinson
- Sainsbury Laboratory Cambridge University, CambridgeCB2 1LR, United Kingdom
| |
Collapse
|
9
|
Yoshida MW, Oguri N, Goshima G. Physcomitrium patens SUN2 Mediates MTOC Association with the Nuclear Envelope and Facilitates Chromosome Alignment during Spindle Assembly. PLANT & CELL PHYSIOLOGY 2023; 64:1106-1117. [PMID: 37421143 DOI: 10.1093/pcp/pcad074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 07/09/2023]
Abstract
Plant cells lack centrosomes and instead utilize acentrosomal microtubule organizing centers (MTOCs) to rapidly increase the number of microtubules at the onset of spindle assembly. Although several proteins required for MTOC formation have been identified, how the MTOC is positioned at the right place is not known. Here, we show that the inner nuclear membrane protein SUN2 is required for MTOC association with the nuclear envelope (NE) during mitotic prophase in the moss Physcomitrium patens. In actively dividing protonemal cells, microtubules accumulate around the NE during prophase. In particular, regional MTOC is formed at the apical surface of the nucleus. However, microtubule accumulation around the NE was impaired and apical MTOCs were mislocalized in sun2 knockout cells. Upon NE breakdown, the mitotic spindle was assembled with mislocalized MTOCs. However, completion of chromosome alignment in the spindle was delayed; in severe cases, the chromosome was transiently detached from the spindle body. SUN2 tended to localize to the apical surface of the nucleus during prophase in a microtubule-dependent manner. Based on these results, we propose that SUN2 facilitates the attachment of microtubules to chromosomes during spindle assembly by localizing microtubules to the NE. MTOC mispositioning was also observed during the first division of the gametophore tissue. Thus, this study suggests that microtubule-nucleus linking, a well-known function of SUN in animals and yeast, is conserved in plants.
Collapse
Affiliation(s)
- Mari W Yoshida
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Noiri Oguri
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Gohta Goshima
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 429-63 Sugashima-cho, Toba, 517-0004 Japan
| |
Collapse
|
10
|
Uyehara AN, Rasmussen CG. Redundant mechanisms in division plane positioning. Eur J Cell Biol 2023; 102:151308. [PMID: 36921356 DOI: 10.1016/j.ejcb.2023.151308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Redundancies in plant cell division contribute to the maintenance of proper division plane orientation. Here we highlight three types of redundancy: 1) Temporal redundancy, or correction of earlier defects that results in proper final positioning, 2) Genetic redundancy, or functional compensation by homologous genes, and 3) Synthetic redundancy, or redundancy within or between pathways that contribute to proper division plane orientation. Understanding the types of redundant mechanisms involved provides insight into current models of division plane orientation and opens up new avenues for exploration.
Collapse
Affiliation(s)
- Aimee N Uyehara
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, USA
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, USA.
| |
Collapse
|
11
|
Bowman JL, Arteaga-Vazquez M, Berger F, Briginshaw LN, Carella P, Aguilar-Cruz A, Davies KM, Dierschke T, Dolan L, Dorantes-Acosta AE, Fisher TJ, Flores-Sandoval E, Futagami K, Ishizaki K, Jibran R, Kanazawa T, Kato H, Kohchi T, Levins J, Lin SS, Nakagami H, Nishihama R, Romani F, Schornack S, Tanizawa Y, Tsuzuki M, Ueda T, Watanabe Y, Yamato KT, Zachgo S. The renaissance and enlightenment of Marchantia as a model system. THE PLANT CELL 2022; 34:3512-3542. [PMID: 35976122 PMCID: PMC9516144 DOI: 10.1093/plcell/koac219] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/21/2022] [Indexed: 05/07/2023]
Abstract
The liverwort Marchantia polymorpha has been utilized as a model for biological studies since the 18th century. In the past few decades, there has been a Renaissance in its utilization in genomic and genetic approaches to investigating physiological, developmental, and evolutionary aspects of land plant biology. The reasons for its adoption are similar to those of other genetic models, e.g. simple cultivation, ready access via its worldwide distribution, ease of crossing, facile genetics, and more recently, efficient transformation, genome editing, and genomic resources. The haploid gametophyte dominant life cycle of M. polymorpha is conducive to forward genetic approaches. The lack of ancient whole-genome duplications within liverworts facilitates reverse genetic approaches, and possibly related to this genomic stability, liverworts possess sex chromosomes that evolved in the ancestral liverwort. As a representative of one of the three bryophyte lineages, its phylogenetic position allows comparative approaches to provide insights into ancestral land plants. Given the karyotype and genome stability within liverworts, the resources developed for M. polymorpha have facilitated the development of related species as models for biological processes lacking in M. polymorpha.
Collapse
Affiliation(s)
| | - Mario Arteaga-Vazquez
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa VER 91090, México
| | - Frederic Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Liam N Briginshaw
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne VIC 3800, Australia
| | - Philip Carella
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Adolfo Aguilar-Cruz
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa VER 91090, México
| | - Kevin M Davies
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4442, New Zealand
| | - Tom Dierschke
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Liam Dolan
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Ana E Dorantes-Acosta
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa VER 91090, México
| | - Tom J Fisher
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne VIC 3800, Australia
| | - Eduardo Flores-Sandoval
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne VIC 3800, Australia
| | - Kazutaka Futagami
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | | | - Rubina Jibran
- The New Zealand Institute for Plant & Food Research Limited, Auckland 1142, New Zealand
| | - Takehiko Kanazawa
- Division of Cellular Dynamics, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Hirotaka Kato
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Jonathan Levins
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Hirofumi Nakagami
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Facundo Romani
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Masayuki Tsuzuki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - Sabine Zachgo
- Division of Botany, School of Biology and Chemistry, Osnabrück University, Osnabrück 49076, Germany
| |
Collapse
|
12
|
Hotta T, Lee YRJ, Higaki T, Hashimoto T, Liu B. Two Kinesin-14A Motors Oligomerize to Drive Poleward Microtubule Convergence for Acentrosomal Spindle Morphogenesis in Arabidopsis thaliana. Front Cell Dev Biol 2022; 10:949345. [PMID: 35982853 PMCID: PMC9380777 DOI: 10.3389/fcell.2022.949345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Plant cells form acentrosomal spindles with microtubules (MTs) converged toward two structurally undefined poles by employing MT minus end-directed Kinesin-14 motors. To date, it is unclear whether the convergent bipolar MT array assumes unified poles in plant spindles, and if so, how such a goal is achieved. Among six classes of Kinesin-14 motors in Arabidopsis thaliana, the Kinesin-14A motors ATK1 (KatA) and ATK5 share the essential function in spindle morphogenesis. To understand how the two functionally redundant Kinesin-14A motors contributed to the spindle assembly, we had ATK1-GFP and ATK5-GFP fusion proteins expressed in their corresponding null mutants and found that they were functionally comparable to their native forms. Although ATK1 was a nuclear protein and ATK5 cytoplasmic prior to nuclear envelop breakdown, at later mitotic stages, the two motors shared similar localization patterns of uniform association with both spindle and phragmoplast MTs. We found that ATK1 and ATK5 were rapidly concentrated toward unified polar foci when cells were under hyperosmotic conditions. Concomitantly, spindle poles became perfectly focused as if there were centrosome-like MT-organizing centers where ATK1 and ATK5 were highly enriched and at which kinetochore fibers pointed. The separation of ATK1/ATK5-highlighted MTs from those of kinetochore fibers suggested that the motors translocated interpolar MTs. Our protein purification and live-cell imaging results showed that ATK1 and ATK5 are associated with each other in vivo. The stress-induced spindle pole convergence was also accompanied by poleward accumulation of the MT nucleator γ-tubulin. These results led to the conclusion that the two Kinesin-14A motors formed oligomeric motor complexes that drove MT translocation toward the spindle pole to establish acentrosomal spindles with convergent poles.
Collapse
Affiliation(s)
- Takashi Hotta
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, CA, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Takashi Hashimoto
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, CA, United States
- *Correspondence: Bo Liu,
| |
Collapse
|
13
|
Weiss JD, McVey SL, Stinebaugh SE, Sullivan CF, Dawe RK, Nannas NJ. Frequent Spindle Assembly Errors Require Structural Rearrangement to Complete Meiosis in Zea mays. Int J Mol Sci 2022; 23:ijms23084293. [PMID: 35457112 PMCID: PMC9031645 DOI: 10.3390/ijms23084293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
The success of an organism is contingent upon its ability to faithfully pass on its genetic material. In the meiosis of many species, the process of chromosome segregation requires that bipolar spindles be formed without the aid of dedicated microtubule organizing centers, such as centrosomes. Here, we describe detailed analyses of acentrosomal spindle assembly and disassembly in time-lapse images, from live meiotic cells of Zea mays. Microtubules organized on the nuclear envelope with a perinuclear ring structure until nuclear envelope breakdown, at which point microtubules began bundling into a bipolar form. However, the process and timing of spindle assembly was highly variable, with frequent assembly errors in both meiosis I and II. Approximately 61% of cells formed incorrect spindle morphologies, with the most prevalent being tripolar spindles. The erroneous spindles were actively rearranged to bipolar through a coalescence of poles before proceeding to anaphase. Spindle disassembly occurred as a two-state process with a slow depolymerization, followed by a quick collapse. The results demonstrate that maize meiosis I and II spindle assembly is remarkably fluid in the early assembly stages, but otherwise proceeds through a predictable series of events.
Collapse
Affiliation(s)
- Jodi D. Weiss
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (J.D.W.); (S.L.M.); (S.E.S.); (C.F.S.)
| | - Shelby L. McVey
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (J.D.W.); (S.L.M.); (S.E.S.); (C.F.S.)
| | - Sarah E. Stinebaugh
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (J.D.W.); (S.L.M.); (S.E.S.); (C.F.S.)
| | - Caroline F. Sullivan
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (J.D.W.); (S.L.M.); (S.E.S.); (C.F.S.)
| | - R. Kelly Dawe
- Department of Genetics, University of Georgia, Athens, GA 30602, USA;
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Natalie J. Nannas
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (J.D.W.); (S.L.M.); (S.E.S.); (C.F.S.)
- Correspondence:
| |
Collapse
|
14
|
Sakai Y, Higaki T, Ishizaki K, Nishihama R, Kohchi T, Hasezawa S. Migration of prospindle before the first asymmetric division in germinating spore of Marchantia polymorpha. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:5-12. [PMID: 35800969 PMCID: PMC9200083 DOI: 10.5511/plantbiotechnology.21.1217b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/17/2021] [Indexed: 05/11/2023]
Abstract
The development of the plant body starts with spore germination in bryophytes. In many cases, the first division of the spore occurs after germination and cell elongation of the spore. In Marchantia polymorpha, asymmetric division occurs upon spore germination to generate two daughter cells: the larger one retains the ability to divide and develops into the thallus via sporeling or protonema, while the smaller one maintains tip growth and differentiates into the first rhizoid, providing a scaffold for initial development. Although spore germination of M. polymorpha was described in the 19th century, the intracellular processes of the first asymmetric division of the spore have not been well characterized. In this study, we used live-cell imaging analyses to elucidate microtubule dynamics during the first asymmetric division concomitantly with germination. In particular, we demonstrated that the preprophase band was not formed in the spore and that the bipolar prospindle, which is a microtubule structure surrounding the nucleus during prophase, migrated from the center to the periphery in the spore, suggesting that it was the earliest visible sign of cell polarity. We also showed that the occurrence of asymmetric division depended on actin filaments. Our findings regarding the first division of the spore in M. polymorpha will lead to a better model for cell-autonomous asymmetric division in plants.
Collapse
Affiliation(s)
- Yuuki Sakai
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
- Graduate School of Sciences, Kobe University, Nada-ku, Kobe 657-8501, Japan
- E-mail: Tel: +81-78-803-5727
| | - Takumi Higaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
- Faculty of Advanced Science and Technology, Kumamoto University, Chuo-ku, Kumamoto 860-8555 Japan
| | - Kimitsune Ishizaki
- Graduate School of Sciences, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Seiichiro Hasezawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
- Graduate School of Science and Engineering, Hosei University, Koganei, Tokyo 184-8584 Japan
| |
Collapse
|
15
|
Naramoto S, Hata Y, Fujita T, Kyozuka J. The bryophytes Physcomitrium patens and Marchantia polymorpha as model systems for studying evolutionary cell and developmental biology in plants. THE PLANT CELL 2022; 34:228-246. [PMID: 34459922 PMCID: PMC8773975 DOI: 10.1093/plcell/koab218] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/25/2021] [Indexed: 05/03/2023]
Abstract
Bryophytes are nonvascular spore-forming plants. Unlike in flowering plants, the gametophyte (haploid) generation of bryophytes dominates the sporophyte (diploid) generation. A comparison of bryophytes with flowering plants allows us to answer some fundamental questions raised in evolutionary cell and developmental biology. The moss Physcomitrium patens was the first bryophyte with a sequenced genome. Many cell and developmental studies have been conducted in this species using gene targeting by homologous recombination. The liverwort Marchantia polymorpha has recently emerged as an excellent model system with low genomic redundancy in most of its regulatory pathways. With the development of molecular genetic tools such as efficient genome editing, both P. patens and M. polymorpha have provided many valuable insights. Here, we review these advances with a special focus on polarity formation at the cell and tissue levels. We examine current knowledge regarding the cellular mechanisms of polarized cell elongation and cell division, including symmetric and asymmetric cell division. We also examine the role of polar auxin transport in mosses and liverworts. Finally, we discuss the future of evolutionary cell and developmental biological studies in plants.
Collapse
Affiliation(s)
| | - Yuki Hata
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Tomomichi Fujita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
16
|
Matsumoto A, Schlüter T, Melkonian K, Takeda A, Nakagami H, Mine A. A versatile Tn 7 transposon-based bioluminescence tagging tool for quantitative and spatial detection of bacteria in plants. PLANT COMMUNICATIONS 2022; 3:100227. [PMID: 35059625 PMCID: PMC8760037 DOI: 10.1016/j.xplc.2021.100227] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/24/2021] [Accepted: 07/19/2021] [Indexed: 06/14/2023]
Abstract
Investigation of plant-bacteria interactions requires quantification of in planta bacterial titers by means of cumbersome and time-consuming colony-counting assays. Here, we devised a broadly applicable tool for bioluminescence-based quantitative and spatial detection of bacteria in plants. We developed vectors that enable Tn7 transposon-mediated integration of the luxCDABE luciferase operon into a specific genomic location found ubiquitously across bacterial phyla. These vectors allowed for the generation of bioluminescent transformants of various plant pathogenic bacteria from the genera Pseudomonas, Rhizobium (Agrobacterium), and Ralstonia. Direct luminescence measurements of plant tissues inoculated with bioluminescent Pseudomonas syringae pv. tomato DC3000 (Pto-lux) reported bacterial titers as accurately as conventional colony-counting assays in Arabidopsis thaliana, Solanum lycopersicum, Nicotiana benthamiana, and Marchantia polymorpha. We further showed the usefulness of our vectors in converting previously generated Pto derivatives to isogenic bioluminescent strains. Importantly, quantitative bioluminescence assays using these Pto-lux strains accurately reported the effects of plant immunity and bacterial effectors on bacterial growth, with a dynamic range of four orders of magnitude. Moreover, macroscopic bioluminescence imaging illuminated the spatial patterns of Pto-lux growth in/on inoculated plant tissues. In conclusion, our vectors offer untapped opportunities to develop bioluminescence-based assays for a variety of plant-bacteria interactions.
Collapse
Affiliation(s)
- Ayumi Matsumoto
- Research Organization of Science and Technology, Ritsumeikan University, Shiga 525-8577, Japan
| | - Titus Schlüter
- Basic Immune System of Plants, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Katharina Melkonian
- Basic Immune System of Plants, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Atsushi Takeda
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Hirofumi Nakagami
- Basic Immune System of Plants, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Akira Mine
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
- JST PRESTO, Kawaguchi-shi, Saitama 332-0012, Japan
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
17
|
Althoff F, Wegner L, Ehlers K, Buschmann H, Zachgo S. Developmental Plasticity of the Amphibious Liverwort Riccia fluitans. FRONTIERS IN PLANT SCIENCE 2022; 13:909327. [PMID: 35677239 PMCID: PMC9168770 DOI: 10.3389/fpls.2022.909327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/27/2022] [Indexed: 05/21/2023]
Abstract
The colonization of land by ancestors of embryophyte plants was one of the most significant evolutionary events in the history of life on earth. The lack of a buffering aquatic environment necessitated adaptations for coping with novel abiotic challenges, particularly high light intensities and desiccation as well as the formation of novel anchoring structures. Bryophytes mark the transition from freshwater to terrestrial habitats and form adaptive features such as rhizoids for soil contact and water uptake, devices for gas exchange along with protective and repellent surface layers. The amphibious liverwort Riccia fluitans can grow as a land form (LF) or water form (WF) and was employed to analyze these critical traits in two different habitats. A combination of light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies was conducted to characterize and compare WF and LF morphologies. A complete phenotypic adaptation of a WF plant to a terrestrial habitat is accomplished within 15 days after the transition. Stable transgenic R. fluitans lines expressing GFP-TUBULIN and mCherry proteins were generated to study cell division and differentiation processes and revealed a higher cell division activity in enlarged meristematic regions at LF apical notches. Morphological studies demonstrated that the R. fluitans WF initiates air pore formation. However, these pores are arrested at an early four cell stage and do not develop further into open pores that could mediate gas exchange. Similarly, also arrested rhizoid initial cells are formed in the WF, which exhibit a distinctive morphology compared to other ventral epidermal cells. Furthermore, we detected that the LF thallus has a reduced surface permeability compared to the WF, likely mediated by formation of thicker LF cell walls and a distinct cuticle compared to the WF. Our R. fluitans developmental plasticity studies can serve as a basis to further investigate in a single genotype the molecular mechanisms of adaptations essential for plants during the conquest of land.
Collapse
Affiliation(s)
- Felix Althoff
- Department of Botany, Osnabrück University, Osnabrück, Germany
| | - Linus Wegner
- Department of Botany, Justus-Liebig University, Gießen, Germany
| | - Katrin Ehlers
- Department of Botany, Justus-Liebig University, Gießen, Germany
| | - Henrik Buschmann
- Department of Molecular Biotechnology, University of Applied Sciences Mittweida, Mittweida, Germany
| | - Sabine Zachgo
- Department of Botany, Osnabrück University, Osnabrück, Germany
- *Correspondence: Sabine Zachgo,
| |
Collapse
|
18
|
Shaw SL, Siebe M, Cioffi T. Imaging Chambers for Arabidopsis Seedlings for Mitotic Studies. Methods Mol Biol 2022; 2415:47-59. [PMID: 34972945 DOI: 10.1007/978-1-0716-1904-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Flowering plants evolved away from creating centrosomes or conventional microtubule organizing centers. Therein, plants have posed a long-standing challenge to many of the conventional ideas for mitotic spindle construction and the process of chromosome segregation. The Arabidopsis seedling has emerged as a leading model for plant cell biological studies of the cytoskeleton and vesicle trafficking. Here we describe methods for creating a reusable chamber for mitotic studies in both seedling root and shoot cells with instruction for best practices with conventional microscopic techniques.
Collapse
Affiliation(s)
- Sidney L Shaw
- Department of Biology, Indiana University, Bloomington, IN, USA.
| | - Mathew Siebe
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Timothy Cioffi
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
19
|
Iwakawa H, Melkonian K, Schlüter T, Jeon HW, Nishihama R, Motose H, Nakagami H. Agrobacterium-Mediated Transient Transformation of Marchantia Liverworts. PLANT & CELL PHYSIOLOGY 2021; 62:1718-1727. [PMID: 34383076 DOI: 10.1093/pcp/pcab126] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Agrobacterium-mediated transient gene expression is a rapid and useful approach for characterizing functions of gene products in planta. However, the practicability of the method in the model liverwort Marchantia polymorpha has not yet been thoroughly described. Here we report a simple and robust method for Agrobacterium-mediated transient transformation of Marchantia thalli and its applicability. When thalli of M. polymorpha were co-cultured with Agrobacterium tumefaciens carrying β-glucuronidase (GUS) genes, GUS staining was observed primarily in assimilatory filaments and rhizoids. GUS activity was detected 2 days after infection and saturated 3 days after infection. We were able to transiently co-express fluorescently tagged proteins with proper localizations. Furthermore, we demonstrate that our method can be used as a novel pathosystem to study liverwort-bacteria interactions. We also provide evidence that air chambers support bacterial colonization.
Collapse
Affiliation(s)
- Hidekazu Iwakawa
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Katharina Melkonian
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| | - Titus Schlüter
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| | - Hyung-Woo Jeon
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hiroyasu Motose
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Hirofumi Nakagami
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| |
Collapse
|
20
|
Kamamoto N, Tano T, Fujimoto K, Shimamura M. Rotation angle of stem cell division plane controls spiral phyllotaxis in mosses. JOURNAL OF PLANT RESEARCH 2021; 134:457-473. [PMID: 33877466 DOI: 10.1007/s10265-021-01298-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/02/2021] [Indexed: 05/29/2023]
Abstract
The spiral arrangement (phyllotaxis) of leaves is a shared morphology in land plants, and exhibits diversity constrained to the Fibonacci sequence. Phyllotaxis in vascular plants is produced at a multicellular meristem, whereas bryophyte phyllotaxis emerges from a single apical stem cell (AC) that is embedded in a growing tip of the gametophyte. An AC is asymmetrically divided into itself and a single 'merophyte', producing a future leaf and a portion of the stem. Although it has been suggested that the arrangement of merophytes is regulated by a rotation of the division plane of an AC, the quantitative description of the merophyte arrangement and its regulatory mechanism remain unclear. To clarify them, we examined three moss species, Tetraphis pellucida, Physcomitrium patens, and Niphotrichum japonicum, which exhibit 1/3, 2/5, and 3/8 spiral phyllotaxis, respectively. We measured the angle between the centroids of adjacent merophytes relative to the AC centroid on cross-transverse sections. At the outer merophytes, this divergence angle converged to nearly 120[Formula: see text] in T. pellucida, 136[Formula: see text] in N. japonicum, and 141[Formula: see text] in P. patens, which was nearly consistent with phyllotaxis, whereas the divergence angle deviated from the converged angle at the inner merophytes near an AC. A mathematical model, which assumes scaling growth of AC and merophytes and a constant angle of division plane rotation, quantitatively reproduced the sequence of the divergence angles. This model showed that successive relocations of the centroid position of an AC upon its division inevitably result in the transient deviation of the divergence angle. As a result, the converged divergence angle was equal to the rotation angle, predicting that the latter is a major regulator of the spiral phyllotaxis diversity in mosses.
Collapse
Affiliation(s)
- Naoya Kamamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Taishi Tano
- Department of Biological Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Koichi Fujimoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
| | - Masaki Shimamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8528, Japan.
| |
Collapse
|
21
|
Umeda M, Ikeuchi M, Ishikawa M, Ito T, Nishihama R, Kyozuka J, Torii KU, Satake A, Goshima G, Sakakibara H. Plant stem cell research is uncovering the secrets of longevity and persistent growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:326-335. [PMID: 33533118 PMCID: PMC8252613 DOI: 10.1111/tpj.15184] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 05/07/2023]
Abstract
Plant stem cells have several extraordinary features: they are generated de novo during development and regeneration, maintain their pluripotency, and produce another stem cell niche in an orderly manner. This enables plants to survive for an extended period and to continuously make new organs, representing a clear difference in their developmental program from animals. To uncover regulatory principles governing plant stem cell characteristics, our research project 'Principles of pluripotent stem cells underlying plant vitality' was launched in 2017, supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Japanese government. Through a collaboration involving 28 research groups, we aim to identify key factors that trigger epigenetic reprogramming and global changes in gene networks, and thereby contribute to stem cell generation. Pluripotent stem cells in the shoot apical meristem are controlled by cytokinin and auxin, which also play a crucial role in terminating stem cell activity in the floral meristem; therefore, we are focusing on biosynthesis, metabolism, transport, perception, and signaling of these hormones. Besides, we are uncovering the mechanisms of asymmetric cell division and of stem cell death and replenishment under DNA stress, which will illuminate plant-specific features in preserving stemness. Our technology support groups expand single-cell omics to describe stem cell behavior in a spatiotemporal context, and provide correlative light and electron microscopic technology to enable live imaging of cell and subcellular dynamics at high spatiotemporal resolution. In this perspective, we discuss future directions of our ongoing projects and related research fields.
Collapse
Affiliation(s)
- Masaaki Umeda
- Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkoma630‐0192Japan
| | - Momoko Ikeuchi
- Department of BiologyFaculty of ScienceNiigata UniversityNiigata950‐2181Japan
| | - Masaki Ishikawa
- National Institute for Basic BiologyOkazaki444‐8585Japan
- Department of Basic BiologyThe Graduate University for Advanced Studies (SOKENDAI)Okazaki444‐8585Japan
| | - Toshiro Ito
- Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkoma630‐0192Japan
| | | | - Junko Kyozuka
- Graduate School of Life SciencesTohoku UniversitySendai980‐8577Japan
| | - Keiko U. Torii
- Howard Hughes Medical Institute and Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
- Institute of Transformative Biomolecules (WPI‐ITbM)Nagoya UniversityNagoya464‐8601Japan
| | - Akiko Satake
- Department of BiologyFaculty of ScienceKyushu UniversityFukuoka819‐0395Japan
| | - Gohta Goshima
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoya464‐8602Japan
- Sugashima Marine Biological LaboratoryGraduate School of ScienceNagoya UniversityToba517‐0004Japan
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoya464‐8601Japan
| |
Collapse
|
22
|
Kanazawa T, Morinaka H, Ebine K, Shimada TL, Ishida S, Minamino N, Yamaguchi K, Shigenobu S, Kohchi T, Nakano A, Ueda T. The liverwort oil body is formed by redirection of the secretory pathway. Nat Commun 2020; 11:6152. [PMID: 33262353 PMCID: PMC7708844 DOI: 10.1038/s41467-020-19978-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/09/2020] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic cells acquired novel organelles during evolution through mechanisms that remain largely obscure. The existence of the unique oil body compartment is a synapomorphy of liverworts that represents lineage-specific acquisition of this organelle during evolution, although its origin, biogenesis, and physiological function are yet unknown. We find that two paralogous syntaxin-1 homologs in the liverwort Marchantia polymorpha are distinctly targeted to forming cell plates and the oil body, suggesting that these structures share some developmental similarity. Oil body formation is regulated by an ERF/AP2-type transcription factor and loss of the oil body increases M. polymorpha herbivory. These findings highlight a common strategy for the acquisition of organelles with distinct functions in plants, via periodical redirection of the secretory pathway depending on cellular phase transition.
Collapse
Affiliation(s)
- Takehiko Kanazawa
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Hatsune Morinaka
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Takashi L Shimada
- Department of Applied Biological Chemistry, Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, Japan
| | - Sakiko Ishida
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology (NIBB), Okazaki, Aichi, 444-8585, Japan
| | - Shuji Shigenobu
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Functional Genomics Facility, National Institute for Basic Biology (NIBB), Okazaki, Aichi, 444-8585, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
23
|
Westermann J, Koebke E, Lentz R, Hülskamp M, Boisson-Dernier A. A Comprehensive Toolkit for Quick and Easy Visualization of Marker Proteins, Protein-Protein Interactions and Cell Morphology in Marchantia polymorpha. FRONTIERS IN PLANT SCIENCE 2020; 11:569194. [PMID: 33178238 PMCID: PMC7593560 DOI: 10.3389/fpls.2020.569194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/22/2020] [Indexed: 05/17/2023]
Abstract
Even though stable genomic transformation of sporelings and thalli of Marchantia polymorpha is straightforward and efficient, numerous problems can arise during critical phases of the process such as efficient spore production, poor selection capacity of antibiotics or low transformation efficiency. It is therefore also desirable to establish quick methods not relying on stable transgenics to analyze the localization, interactions and functions of proteins of interest. The introduction of foreign DNA into living cells via biolistic mechanisms has been first reported roughly 30 years ago and has been commonly exploited in established plant model species such as Arabidopsis thaliana or Nicotiana benthamiana. Here, we report the fast and reliable transient biolistic transformation of Marchantia thallus epidermal cells using fluorescent protein fusions. We present a catalog of fluorescent markers which can be readily used for tagging of a variety of subcellular compartments. Moreover, we report the functionality of the bimolecular fluorescence complementation (BiFC) in M. polymorpha with the example of the p-body markers MpDCP1/2. Finally, we provide standard staining procedures for live cell imaging in M. polymorpha, applicable to visualize cell boundaries or cellular structures, to complement or support protein localizations and to understand how results gained by transient transformations can be embedded in cell architecture and dynamics. Taken together, we offer a set of easy and quick tools for experiments that aim at understanding subcellular localization, protein-protein interactions and thus functions of proteins of interest in the emerging early diverging land plant model M. polymorpha.
Collapse
Affiliation(s)
| | | | | | | | - Aurélien Boisson-Dernier
- Institute for Plant Sciences, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
24
|
Dual functions of Expansin in cell wall extension and compression during cotton fiber development. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00514-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Buschmann H, Müller S. Update on plant cytokinesis: rule and divide. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:97-105. [PMID: 31542698 DOI: 10.1016/j.pbi.2019.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/28/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Many decisions made during plant development depend on the placement of the cytokinetic wall. Cytokinesis involves the biogenesis of the cell plate that progresses centrifugally and until the fusion of the cell plate with the parental cell wall. The phragmoplast facilitates the growth of the cell plate and directs it's insertion at the cell cortex by a mechanism known as phragmoplast guidance. Communication between the phragmoplast and its destination, the cortical division zone, however, is not well understood. The preprophase band predicts the site of cell plate fusion, seemingly controlling the site of the cortical division zone establishment, but recent results suggest the role of this cytoskeletal array to be rather subtle. This is indirectly supported by certain types of phragmoplast-driven cell division in mosses and algae, which lack preprophase bands. In this review article, we summarize recent insight concerning phragmoplast expansion and guidance.
Collapse
Affiliation(s)
| | - Sabine Müller
- Center for Plant Molecular Biology, University of Tübingen, Germany.
| |
Collapse
|
26
|
Lee YRJ, Liu B. Microtubule nucleation for the assembly of acentrosomal microtubule arrays in plant cells. THE NEW PHYTOLOGIST 2019; 222:1705-1718. [PMID: 30681146 DOI: 10.1111/nph.15705] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/07/2019] [Indexed: 05/15/2023]
Abstract
Contents Summary I. Introduction II. MT arrays in plant cells III. γ-Tubulin and MT nucleation IV. MT nucleation sites or flexible MTOCs in plant cells V. MT-dependent MT nucleation VI. Generating new MTs for spindle assembly VII. Generation of MTs for phragmoplast expansion during cytokinesis VIII. MT generation for the cortical MT array IX. MT nucleation: looking forward Acknowledgements References SUMMARY: Cytoskeletal microtubules (MTs) have a multitude of functions including intracellular distribution of molecules and organelles, cell morphogenesis, as well as segregation of the genetic material and separation of the cytoplasm during cell division among eukaryotic organisms. In response to internal and external cues, eukaryotic cells remodel their MT network in a regulated manner in order to assemble physiologically important arrays for cell growth, cell proliferation, or for cells to cope with biotic or abiotic stresses. Nucleation of new MTs is a critical step for MT remodeling. Although many key factors contributing to MT nucleation and organization are well conserved in different kingdoms, the centrosome, representing the most prominent microtubule organizing centers (MTOCs), disappeared during plant evolution as angiosperms lack the structure. Instead, flexible MTOCs may emerge on the plasma membrane, the nuclear envelope, and even organelles depending on types of cells and organisms and/or physiological conditions. MT-dependent MT nucleation is particularly noticeable in plant cells because it accounts for the primary source of MT generation for assembling spindle, phragmoplast, and cortical arrays when the γ-tubulin ring complex is anchored and activated by the augmin complex. It is intriguing what proteins are associated with plant-specific MTOCs and how plant cells activate or inactivate MT nucleation activities in spatiotemporally regulated manners.
Collapse
Affiliation(s)
- Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
27
|
Abstract
Plant cells divide their cytoplasmic content by forming a new membrane compartment, the cell plate, via a rerouting of the secretory pathway toward the division plane aided by a dynamic cytoskeletal apparatus known as the phragmoplast. The phragmoplast expands centrifugally and directs the cell plate to the preselected division site at the plasma membrane to fuse with the parental wall. The division site is transiently decorated by the cytoskeletal preprophase band in preprophase and prophase, whereas a number of proteins discovered over the last decade reside continuously at the division site and provide a lasting spatial reference for phragmoplast guidance. Recent studies of membrane fusion at the cell plate have revealed the contribution of functionally conserved eukaryotic proteins to distinct stages of cell plate biogenesis and emphasize the coupling of cell plate formation with phragmoplast expansion. Together with novel findings concerning preprophase band function and the setup of the division site, cytokinesis and its spatial control remain an open-ended field with outstanding and challenging questions to resolve.
Collapse
Affiliation(s)
- Pantelis Livanos
- Department of Developmental Genetics, Center for Plant Molecular Biology, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany; ,
| | - Sabine Müller
- Department of Developmental Genetics, Center for Plant Molecular Biology, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany; ,
| |
Collapse
|
28
|
Plant cell division - defining and finding the sweet spot for cell plate insertion. Curr Opin Cell Biol 2019; 60:9-18. [PMID: 30999231 DOI: 10.1016/j.ceb.2019.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
The plant microtubules form unique arrays using acentrosomal microtubule nucleation pathways, yet utilizing evolutionary conserved centrosomal proteins. In cytokinesis, a multi-component cytoskeletal apparatus, the phragmoplast mediates the biosynthesis of the new cell plate by dynamic centrifugal expansion, a process that demands exquisite coordination of microtubule turnover and endomembrane trafficking. At the same time, the phragmoplast is guided to meet with the parental wall at a cortical site that is predefined before mitotic entry and transiently marked by the preprophase band of microtubules. The cortical division zone maintains positional information of the selected division plane for the entire duration of cell division and for the guidance of the phragmoplast during cytokinesis. Its establishment is an essential requirement for normal plant organogenesis, due to the confinement of cells by rigid cell walls.
Collapse
|
29
|
Higo A, Kawashima T, Borg M, Zhao M, López-Vidriero I, Sakayama H, Montgomery SA, Sekimoto H, Hackenberg D, Shimamura M, Nishiyama T, Sakakibara K, Tomita Y, Togawa T, Kunimoto K, Osakabe A, Suzuki Y, Yamato KT, Ishizaki K, Nishihama R, Kohchi T, Franco-Zorrilla JM, Twell D, Berger F, Araki T. Transcription factor DUO1 generated by neo-functionalization is associated with evolution of sperm differentiation in plants. Nat Commun 2018; 9:5283. [PMID: 30538242 PMCID: PMC6290024 DOI: 10.1038/s41467-018-07728-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022] Open
Abstract
Evolutionary mechanisms underlying innovation of cell types have remained largely unclear. In multicellular eukaryotes, the evolutionary molecular origin of sperm differentiation is unknown in most lineages. Here, we report that in algal ancestors of land plants, changes in the DNA-binding domain of the ancestor of the MYB transcription factor DUO1 enabled the recognition of a new cis-regulatory element. This event led to the differentiation of motile sperm. After neo-functionalization, DUO1 acquired sperm lineage-specific expression in the common ancestor of land plants. Subsequently the downstream network of DUO1 was rewired leading to sperm with distinct morphologies. Conjugating green algae, a sister group of land plants, accumulated mutations in the DNA-binding domain of DUO1 and lost sperm differentiation. Our findings suggest that the emergence of DUO1 was the defining event in the evolution of sperm differentiation and the varied modes of sexual reproduction in the land plant lineage.
Collapse
Affiliation(s)
- Asuka Higo
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomokazu Kawashima
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr Gasse 3, 1030, Vienna, Austria
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - Michael Borg
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr Gasse 3, 1030, Vienna, Austria
| | - Mingmin Zhao
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Irene López-Vidriero
- Unidad de Genómica, Centro Nacional de Biotecnología, CNB-CSIC, Campus de Cantoblanco, C/Darwin 3, 28049, Madrid, Spain
| | - Hidetoshi Sakayama
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Sean A Montgomery
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr Gasse 3, 1030, Vienna, Austria
| | - Hiroyuki Sekimoto
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Dieter Hackenberg
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Masaki Shimamura
- Department of Biology, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Keiko Sakakibara
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Yuki Tomita
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Taisuke Togawa
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, 649-6493, Japan
| | - Kan Kunimoto
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Akihisa Osakabe
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr Gasse 3, 1030, Vienna, Austria
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, 649-6493, Japan
| | - Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - José M Franco-Zorrilla
- Unidad de Genómica, Centro Nacional de Biotecnología, CNB-CSIC, Campus de Cantoblanco, C/Darwin 3, 28049, Madrid, Spain
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr Gasse 3, 1030, Vienna, Austria.
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
30
|
Yi P, Goshima G. Microtubule nucleation and organization without centrosomes. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:1-7. [PMID: 29981930 DOI: 10.1016/j.pbi.2018.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Centrosomes play various critical roles in animal cells such as microtubule nucleation and stabilization, mitotic spindle morphogenesis, and spindle orientation. Land plants have lost centrosomes and yet must execute many of these functions. Recent studies have revealed the crucial roles played by morphologically distinct cytoplasmic microtubule-organizing centers (MTOCs) in initiating spindle bipolarity and maintaining spindle orientation robustness. These MTOCs resemble centrosomes in many aspects, implying an evolutionary divergence of MT-organizing structures in plants. However, their functions rely on conserved nucleation and amplification mechanisms, indicating a similarity in MT network establishment between animals and plants. Moreover, recent characterization of a plant-specific MT minus-end tracking protein suggests that plants have developed functionally equivalent modules to stabilize and organize MTs at minus ends. These findings support the theory that plants overcome centrosome loss by utilizing modified but substantially conserved mechanisms to organize MT networks.
Collapse
Affiliation(s)
- Peishan Yi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
31
|
Rasmussen CG, Bellinger M. An overview of plant division-plane orientation. THE NEW PHYTOLOGIST 2018; 219:505-512. [PMID: 29701870 DOI: 10.1111/nph.15183] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/20/2018] [Indexed: 05/10/2023]
Abstract
Contents Summary 505 I. Introduction 505 II. Models of plant cell division 505 III. Establishing the division plane 506 IV. Maintaining the division plane during mitosis and cytokinesis 509 Acknowledgements 510 References 510 SUMMARY: Plants, a significant source of planet-wide biomass, have an unique type of cell division in which a new cell wall is constructed de novo inside the cell and guided towards the cell edge to complete division. The elegant control over positioning this new cell wall is essential for proper patterning and development. Plant cells, lacking migration, tightly coordinate division orientation and directed expansion to generate organized shapes. Several emerging lines of evidence suggest that the proteins required for division-plane establishment are distinct from those required for division-plane maintenance. We discuss recent shape-based computational models and mutant analyses that raise questions about, and identify unexpected connections between, the roles of well-known proteins and structures during division-plane orientation.
Collapse
Affiliation(s)
- Carolyn G Rasmussen
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Marschal Bellinger
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
32
|
Otani K, Ishizaki K, Nishihama R, Takatani S, Kohchi T, Takahashi T, Motose H. An evolutionarily conserved NIMA-related kinase directs rhizoid tip growth in the basal land plant Marchantia polymorpha. Development 2018; 145:dev.154617. [PMID: 29440300 DOI: 10.1242/dev.154617] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/23/2018] [Indexed: 12/30/2022]
Abstract
Tip growth is driven by turgor pressure and mediated by the polarized accumulation of cellular materials. How a single polarized growth site is established and maintained is unclear. Here, we analyzed the function of NIMA-related protein kinase 1 (MpNEK1) in the liverwort Marchantia polymorpha In the wild type, rhizoid cells differentiate from the ventral epidermis and elongate through tip growth to form hair-like protrusions. In Mpnek1 knockout mutants, rhizoids underwent frequent changes in growth direction, resulting in a twisted and/or spiral morphology. The functional MpNEK1-Citrine protein fusion localized to microtubule foci in the apical growing region of rhizoids. Mpnek1 knockouts exhibited increases in both microtubule density and bundling in the apical dome of rhizoids. Treatment with the microtubule-stabilizing drug taxol phenocopied the Mpnek1 knockout. These results suggest that MpNEK1 directs tip growth in rhizoids through microtubule organization. Furthermore, MpNEK1 expression rescued ectopic outgrowth of epidermal cells in the Arabidopsis thaliana nek6 mutant, strongly supporting an evolutionarily conserved NEK-dependent mechanism of directional growth. It is possible that such a mechanism contributed to the evolution of the early rooting system in land plants.
Collapse
Affiliation(s)
- Kento Otani
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Ryuichi Nishihama
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shogo Takatani
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Takayuki Kohchi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Taku Takahashi
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Hiroyasu Motose
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| |
Collapse
|
33
|
Kosetsu K, Murata T, Yamada M, Nishina M, Boruc J, Hasebe M, Van Damme D, Goshima G. Cytoplasmic MTOCs control spindle orientation for asymmetric cell division in plants. Proc Natl Acad Sci U S A 2017; 114:E8847-E8854. [PMID: 28973935 PMCID: PMC5651782 DOI: 10.1073/pnas.1713925114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Proper orientation of the cell division axis is critical for asymmetric cell divisions that underpin cell differentiation. In animals, centrosomes are the dominant microtubule organizing centers (MTOC) and play a pivotal role in axis determination by orienting the mitotic spindle. In land plants that lack centrosomes, a critical role of a microtubular ring structure, the preprophase band (PPB), has been observed in this process; the PPB is required for orienting (before prophase) and guiding (in telophase) the mitotic apparatus. However, plants must possess additional mechanisms to control the division axis, as certain cell types or mutants do not form PPBs. Here, using live imaging of the gametophore of the moss Physcomitrella patens, we identified acentrosomal MTOCs, which we termed "gametosomes," appearing de novo and transiently in the prophase cytoplasm independent of PPB formation. We show that gametosomes are dispensable for spindle formation but required for metaphase spindle orientation. In some cells, gametosomes appeared reminiscent of the bipolar MT "polar cap" structure that forms transiently around the prophase nucleus in angiosperms. Specific disruption of the polar caps in tobacco cells misoriented the metaphase spindles and frequently altered the final division plane, indicating that they are functionally analogous to the gametosomes. These results suggest a broad use of transient MTOC structures as the spindle orientation machinery in plants, compensating for the evolutionary loss of centrosomes, to secure the initial orientation of the spindle in a spatial window that allows subsequent fine-tuning of the division plane axis by the guidance machinery.
Collapse
Affiliation(s)
- Ken Kosetsu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Takashi Murata
- Division of Evolutionary Biology, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Myodaiji-cho, Okazaki 444-8585, Japan
| | - Moé Yamada
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Momoko Nishina
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Joanna Boruc
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Myodaiji-cho, Okazaki 444-8585, Japan
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan;
| |
Collapse
|
34
|
Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, Adam C, Aki SS, Althoff F, Araki T, Arteaga-Vazquez MA, Balasubrmanian S, Barry K, Bauer D, Boehm CR, Briginshaw L, Caballero-Perez J, Catarino B, Chen F, Chiyoda S, Chovatia M, Davies KM, Delmans M, Demura T, Dierschke T, Dolan L, Dorantes-Acosta AE, Eklund DM, Florent SN, Flores-Sandoval E, Fujiyama A, Fukuzawa H, Galik B, Grimanelli D, Grimwood J, Grossniklaus U, Hamada T, Haseloff J, Hetherington AJ, Higo A, Hirakawa Y, Hundley HN, Ikeda Y, Inoue K, Inoue SI, Ishida S, Jia Q, Kakita M, Kanazawa T, Kawai Y, Kawashima T, Kennedy M, Kinose K, Kinoshita T, Kohara Y, Koide E, Komatsu K, Kopischke S, Kubo M, Kyozuka J, Lagercrantz U, Lin SS, Lindquist E, Lipzen AM, Lu CW, De Luna E, Martienssen RA, Minamino N, Mizutani M, Mizutani M, Mochizuki N, Monte I, Mosher R, Nagasaki H, Nakagami H, Naramoto S, Nishitani K, Ohtani M, Okamoto T, Okumura M, Phillips J, Pollak B, Reinders A, Rövekamp M, Sano R, Sawa S, Schmid MW, Shirakawa M, Solano R, Spunde A, Suetsugu N, Sugano S, Sugiyama A, Sun R, Suzuki Y, Takenaka M, et alBowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, Adam C, Aki SS, Althoff F, Araki T, Arteaga-Vazquez MA, Balasubrmanian S, Barry K, Bauer D, Boehm CR, Briginshaw L, Caballero-Perez J, Catarino B, Chen F, Chiyoda S, Chovatia M, Davies KM, Delmans M, Demura T, Dierschke T, Dolan L, Dorantes-Acosta AE, Eklund DM, Florent SN, Flores-Sandoval E, Fujiyama A, Fukuzawa H, Galik B, Grimanelli D, Grimwood J, Grossniklaus U, Hamada T, Haseloff J, Hetherington AJ, Higo A, Hirakawa Y, Hundley HN, Ikeda Y, Inoue K, Inoue SI, Ishida S, Jia Q, Kakita M, Kanazawa T, Kawai Y, Kawashima T, Kennedy M, Kinose K, Kinoshita T, Kohara Y, Koide E, Komatsu K, Kopischke S, Kubo M, Kyozuka J, Lagercrantz U, Lin SS, Lindquist E, Lipzen AM, Lu CW, De Luna E, Martienssen RA, Minamino N, Mizutani M, Mizutani M, Mochizuki N, Monte I, Mosher R, Nagasaki H, Nakagami H, Naramoto S, Nishitani K, Ohtani M, Okamoto T, Okumura M, Phillips J, Pollak B, Reinders A, Rövekamp M, Sano R, Sawa S, Schmid MW, Shirakawa M, Solano R, Spunde A, Suetsugu N, Sugano S, Sugiyama A, Sun R, Suzuki Y, Takenaka M, Takezawa D, Tomogane H, Tsuzuki M, Ueda T, Umeda M, Ward JM, Watanabe Y, Yazaki K, Yokoyama R, Yoshitake Y, Yotsui I, Zachgo S, Schmutz J. Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell 2017; 171:287-304.e15. [PMID: 28985561 DOI: 10.1016/j.cell.2017.09.030] [Show More Authors] [Citation(s) in RCA: 798] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 04/21/2017] [Accepted: 09/18/2017] [Indexed: 02/01/2023]
Abstract
The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia.
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan.
| | - Jerry Jenkins
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA; HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | | | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yasukazu Nakamura
- National Institute of Genetics, Research Organization of Information and Systems, Yata, Mishima 411-8540, Japan
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Catherine Adam
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Shiori Sugamata Aki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Felix Althoff
- Botany Department, University of Osnabrück, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Mario A Arteaga-Vazquez
- Universidad Veracruzana, INBIOTECA - Instituto de Biotecnología y Ecología Aplicada, Av. de las Culturas Veracruzanas No.101, Colonia Emiliano Zapata, 91090, Xalapa, Veracruz, México
| | | | - Kerrie Barry
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Diane Bauer
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Christian R Boehm
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | - Liam Briginshaw
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Juan Caballero-Perez
- National Laboratory of Genomics for Biodiversity, CINVESTAV-IPN, Km 9.6 Lib. Norte Carr. Irapuato-León, 36821, Irapuato, Guanajuato, México
| | - Bruno Catarino
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Shota Chiyoda
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Mansi Chovatia
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Kevin M Davies
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11-600, Palmerston North, New Zealand
| | - Mihails Delmans
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Tom Dierschke
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia; Botany Department, University of Osnabrück, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Ana E Dorantes-Acosta
- Universidad Veracruzana, INBIOTECA - Instituto de Biotecnología y Ecología Aplicada, Av. de las Culturas Veracruzanas No.101, Colonia Emiliano Zapata, 91090, Xalapa, Veracruz, México
| | - D Magnus Eklund
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia; Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden
| | - Stevie N Florent
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | | | - Asao Fujiyama
- National Institute of Genetics, Research Organization of Information and Systems, Yata, Mishima 411-8540, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Bence Galik
- Bioinformatics & Scientific Computing, Vienna Biocenter Core Facilities (VBCF), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Daniel Grimanelli
- Institut de Recherche pour le Développement (IRD), UMR232, Université de Montpellier, Montpellier 34394, France
| | - Jane Grimwood
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA; HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zürich, Switzerland
| | - Takahiro Hamada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902 Japan
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | | | - Asuka Higo
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yuki Hirakawa
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Hope N Hundley
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama 710-0046, Japan
| | - Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shin-Ichiro Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Sakiko Ishida
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Qidong Jia
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Mitsuru Kakita
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Takehiko Kanazawa
- National Institute for Basic Biology, 38 Nishigounaka, Myodaiji, Okazaki 444-8585, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yosuke Kawai
- Department of Integrative Genomics, Tohoku Medical Bank Organization, Tohoku University, Aoba, Sendai 980-8573, Japan
| | - Tomokazu Kawashima
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Department of Plant and Soil Sciences, University of Kentucky, 321 Plant Science Building, 1405 Veterans Dr., Lexington, KY 40546, USA
| | - Megan Kennedy
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Keita Kinose
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Yuji Kohara
- National Institute of Genetics, Research Organization of Information and Systems, Yata, Mishima 411-8540, Japan
| | - Eri Koide
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Kenji Komatsu
- Department of Bioproduction Technology, Junior College of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Sarah Kopischke
- Botany Department, University of Osnabrück, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Minoru Kubo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Ulf Lagercrantz
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Erika Lindquist
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Anna M Lipzen
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Chia-Wei Lu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Efraín De Luna
- Instituto de Ecología, AC., Red de Biodiversidad y Sistemática, Xalapa, Veracruz, 91000, México
| | | | - Naoki Minamino
- National Institute for Basic Biology, 38 Nishigounaka, Myodaiji, Okazaki 444-8585, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
| | - Miya Mizutani
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | - Isabel Monte
- Department Genética Molecular de Plantas, Centro Nacional de Biotecnologia-CSIC, Universidad Autónoma de Madrid 28049 Madrid. Spain
| | - Rebecca Mosher
- The School of Plant Sciences, The University of Arizona, Tuscon, AZ, USA
| | - Hideki Nagasaki
- National Institute of Genetics, Research Organization of Information and Systems, Yata, Mishima 411-8540, Japan; Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Satoshi Naramoto
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Kazuhiko Nishitani
- Laboratory of Plant Cell Wall Biology, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Masaki Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Jeremy Phillips
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Bernardo Pollak
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | - Anke Reinders
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Moritz Rövekamp
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zürich, Switzerland
| | - Ryosuke Sano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Shinichiro Sawa
- Graduate school of Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto 860-8555, Japan
| | - Marc W Schmid
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zürich, Switzerland
| | - Makoto Shirakawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Roberto Solano
- Department Genética Molecular de Plantas, Centro Nacional de Biotecnologia-CSIC, Universidad Autónoma de Madrid 28049 Madrid. Spain
| | - Alexander Spunde
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Noriyuki Suetsugu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Sumio Sugano
- Department of Computational Biology and Medical Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562 Japan
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Rui Sun
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562 Japan
| | | | - Daisuke Takezawa
- Graduate School of Science and Engineering and Institute for Environmental Science and Technology, Saitama University, Saitama 338-8570, Japan
| | - Hirokazu Tomogane
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Masayuki Tsuzuki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902 Japan
| | - Takashi Ueda
- National Institute for Basic Biology, 38 Nishigounaka, Myodaiji, Okazaki 444-8585, Japan
| | - Masaaki Umeda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - John M Ward
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902 Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Ryusuke Yokoyama
- Laboratory of Plant Cell Wall Biology, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | | | - Izumi Yotsui
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Sabine Zachgo
- Botany Department, University of Osnabrück, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA; HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| |
Collapse
|
35
|
Linde A, Eklund DM, Kubota A, Pederson ERA, Holm K, Gyllenstrand N, Nishihama R, Cronberg N, Muranaka T, Oyama T, Kohchi T, Lagercrantz U. Early evolution of the land plant circadian clock. THE NEW PHYTOLOGIST 2017; 216:576-590. [PMID: 28244104 PMCID: PMC5638080 DOI: 10.1111/nph.14487] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/18/2017] [Indexed: 05/21/2023]
Abstract
While angiosperm clocks can be described as an intricate network of interlocked transcriptional feedback loops, clocks of green algae have been modelled as a loop of only two genes. To investigate the transition from a simple clock in algae to a complex one in angiosperms, we performed an inventory of circadian clock genes in bryophytes and charophytes. Additionally, we performed functional characterization of putative core clock genes in the liverwort Marchantia polymorpha and the hornwort Anthoceros agrestis. Phylogenetic construction was combined with studies of spatiotemporal expression patterns and analysis of M. polymorpha clock gene mutants. Homologues to core clock genes identified in Arabidopsis were found not only in bryophytes but also in charophytes, albeit in fewer copies. Circadian rhythms were detected for most identified genes in M. polymorpha and A. agrestis, and mutant analysis supports a role for putative clock genes in M. polymorpha. Our data are in line with a recent hypothesis that adaptation to terrestrial life occurred earlier than previously expected in the evolutionary history of charophyte algae. Both gene duplication and acquisition of new genes was important in the evolution of the plant circadian clock, but gene loss has also contributed to shaping the clock of bryophytes.
Collapse
Affiliation(s)
- Anna‐Malin Linde
- Department of Plant Ecology and EvolutionEvolutionary Biology CentreUppsala UniversityNorbyvägen 18DSE‐75236UppsalaSweden
- The Linnean Centre for Plant Biology in UppsalaUppsalaSweden
| | - D. Magnus Eklund
- Department of Plant Ecology and EvolutionEvolutionary Biology CentreUppsala UniversityNorbyvägen 18DSE‐75236UppsalaSweden
- The Linnean Centre for Plant Biology in UppsalaUppsalaSweden
| | - Akane Kubota
- Graduate School of BiostudiesKyoto UniversityKyoto606‐8502Japan
| | - Eric R. A. Pederson
- Department of Plant Ecology and EvolutionEvolutionary Biology CentreUppsala UniversityNorbyvägen 18DSE‐75236UppsalaSweden
- The Linnean Centre for Plant Biology in UppsalaUppsalaSweden
| | - Karl Holm
- Department of Plant Ecology and EvolutionEvolutionary Biology CentreUppsala UniversityNorbyvägen 18DSE‐75236UppsalaSweden
- The Linnean Centre for Plant Biology in UppsalaUppsalaSweden
| | - Niclas Gyllenstrand
- Department of Plant Ecology and EvolutionEvolutionary Biology CentreUppsala UniversityNorbyvägen 18DSE‐75236UppsalaSweden
- The Linnean Centre for Plant Biology in UppsalaUppsalaSweden
| | | | - Nils Cronberg
- Department of BiologyLund UniversityEcology BuildingSE‐22362LundSweden
| | | | - Tokitaka Oyama
- Graduate School of ScienceKyoto UniversityKyoto606‐8502Japan
| | - Takayuki Kohchi
- Graduate School of BiostudiesKyoto UniversityKyoto606‐8502Japan
| | - Ulf Lagercrantz
- Department of Plant Ecology and EvolutionEvolutionary Biology CentreUppsala UniversityNorbyvägen 18DSE‐75236UppsalaSweden
- The Linnean Centre for Plant Biology in UppsalaUppsalaSweden
| |
Collapse
|
36
|
Yamada M, Goshima G. Mitotic Spindle Assembly in Land Plants: Molecules and Mechanisms. BIOLOGY 2017; 6:biology6010006. [PMID: 28125061 PMCID: PMC5371999 DOI: 10.3390/biology6010006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/29/2016] [Accepted: 01/08/2017] [Indexed: 11/16/2022]
Abstract
In textbooks, the mitotic spindles of plants are often described separately from those of animals. How do they differ at the molecular and mechanistic levels? In this chapter, we first outline the process of mitotic spindle assembly in animals and land plants. We next discuss the conservation of spindle assembly factors based on database searches. Searches of >100 animal spindle assembly factors showed that the genes involved in this process are well conserved in plants, with the exception of two major missing elements: centrosomal components and subunits/regulators of the cytoplasmic dynein complex. We then describe the spindle and phragmoplast assembly mechanisms based on the data obtained from robust gene loss-of-function analyses using RNA interference (RNAi) or mutant plants. Finally, we discuss future research prospects of plant spindles.
Collapse
Affiliation(s)
- Moé Yamada
- Graduate School of Science, Division of Biological Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Gohta Goshima
- Graduate School of Science, Division of Biological Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
37
|
Buschmann H, Zachgo S. The Evolution of Cell Division: From Streptophyte Algae to Land Plants. TRENDS IN PLANT SCIENCE 2016; 21:872-883. [PMID: 27477927 DOI: 10.1016/j.tplants.2016.07.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/24/2016] [Accepted: 07/04/2016] [Indexed: 05/21/2023]
Abstract
The mechanism of cell division has undergone significant alterations during the evolution from aquatic streptophyte algae to land plants. Two new structures evolved, the cytokinetic phragmoplast and the preprophase band (PPB) of microtubules, whereas the ancestral mechanism of cleavage and the centrosomes disappeared. We map cell biological data onto the recently emerged phylogenetic tree of streptophytes. The tree suggests that, after the establishment of the phragmoplast mechanism, several groups independently lost their centrosomes. Surprisingly, the phragmoplast shows reductions in the Zygnematophyceae (the sister to land plants), many of which returned to cleavage. The PPB by contrast evolved stepwise and, most likely, originated in the algae. The phragmoplast/PPB mechanism established in this way served as a basis for the 3D development of land plants.
Collapse
Affiliation(s)
- Henrik Buschmann
- Osnabrück University, Department of Biology and Chemistry, Barbarastrasse 11, 49076 Osnabrück, Germany.
| | - Sabine Zachgo
- Osnabrück University, Department of Biology and Chemistry, Barbarastrasse 11, 49076 Osnabrück, Germany
| |
Collapse
|
38
|
Kimura S, Kodama Y. Actin-dependence of the chloroplast cold positioning response in the liverwort Marchantia polymorpha L. PeerJ 2016; 4:e2513. [PMID: 27703856 PMCID: PMC5045877 DOI: 10.7717/peerj.2513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/01/2016] [Indexed: 12/22/2022] Open
Abstract
The subcellular positioning of chloroplasts can be changed by alterations in the environment such as light and temperature. For example, in leaf mesophyll cells, chloroplasts localize along anticlinal cell walls under high-intensity light, and along periclinal cell walls under low-intensity light. These types of positioning responses are involved in photosynthetic optimization. In light-mediated chloroplast positioning responses, chloroplasts move to the appropriate positions in an actin-dependent manner, although some exceptions also depend on microtubule. Even under low-intensity light, at low temperature (e.g., 5°C), chloroplasts localize along anticlinal cell walls; this phenomenon is termed chloroplast cold positioning. In this study, we analyzed whether chloroplast cold positioning is dependent on actin filaments and/or microtubules in the liverwort Marchantia polymorpha L. When liverwort cells were treated with drugs for the de-polymerization of actin filaments, chloroplast cold positioning was completely inhibited. In contrast, chloroplast cold positioning was not affected by treatment with a drug for the de-polymerization of microtubules. These observations indicate the actin-dependence of chloroplast cold positioning in M. polymorpha. Actin filaments during the chloroplast cold positioning response were visualized by using fluorescent probes based on fluorescent proteins in living liverwort cells, and thus, their behavior during the chloroplast cold positioning response was documented.
Collapse
Affiliation(s)
- Shun Kimura
- Center for Bioscience Research and Education, Utsunomiya University , Utsunomiya , Tochigi , Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University , Utsunomiya , Tochigi , Japan
| |
Collapse
|