1
|
Atee F, Palanisamy SR, Marimuthu M, Thulasy S, Rajasekaran R, Natesan S. Biochemical basis of resistance toward maize insect pests of different feeding guild and their inter-guild interactions. PLANTA 2025; 261:129. [PMID: 40332612 DOI: 10.1007/s00425-025-04697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/13/2025] [Indexed: 05/08/2025]
Abstract
MAIN CONCLUSION Biochemical compounds and signaling molecules act as direct and indirect defenses against maize pests of different guilds and crucial for natural enemies' interactions. Maize (Zea mays L.) is an important multipurpose cereal crop that contributes to global feed and food demands and is persistently under the attack of several pests of different feeding guilds. However, concerns over the drawbacks of extensive pesticide use in natural ecosystems, including health hazards and the need for cost-effective pest control strategies, are growing. Wide opportunities are available to harness native plant resistance and natural enemies for insect pest management. In this context, it is critical to understand the biochemical basis of maize genotype resistance to insects from various feeding guilds as well as their inter-guild interactions. The critical role of various herbivore-induced plant volatiles (HIPVs) in mediating tritrophic interactions between maize plants, insect pests, and their natural enemies should be considered when developing strategies for pest management. This review synthesizes the important maize defense systems against different feeding guild pests, shedding light on recent progress and insights into the long-recognized maize defense compounds. In addition to the tritrophic interactions facilitated by HIPVs in the maize ecosystem, there has also been a focus on examining the impacts of inter-guild interactions resulting from damage caused by pests from varying feeding guilds on indirect defense systems mediated by maize plants.
Collapse
Affiliation(s)
- Feby Atee
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | | | - Murugan Marimuthu
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Srinivasan Thulasy
- Department of Millets, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Ravikesavan Rajasekaran
- Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Senthil Natesan
- Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| |
Collapse
|
2
|
Bassi L, Hennecke J, Albracht C, Solbach MD, Rai A, Pinheiro Alves de Souza Y, Fox A, Zeng M, Döll S, Doan VC, Richter R, Kahl A, Von Sivers L, Winkler L, Eisenhauer N, Meyer ST, van Dam NM, Weigelt A. Plant species richness promotes the decoupling of leaf and root defence traits while species-specific responses in physical and chemical defences are rare. THE NEW PHYTOLOGIST 2025; 246:729-746. [PMID: 40013369 PMCID: PMC11923407 DOI: 10.1111/nph.20434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/13/2025] [Indexed: 02/28/2025]
Abstract
The increased positive impact of plant diversity on ecosystem functioning is often attributed to the accumulation of mutualists and dilution of antagonists in diverse plant communities. While increased plant diversity alters traits related to resource acquisition, it remains unclear whether it reduces defence allocation, whether this reduction differs between roots and leaves, or varies among species. To answer these questions, we assessed the effect of plant species richness, plant species identity and their interaction on the expression of 23 physical and chemical leaf and fine root defence traits of 16 plant species in a 19-yr-old biodiversity experiment. Only leaf mass per area, leaf and root dry matter content and root nitrogen, traits associated with both, resource acquisition and defence, responded consistently to species richness. However, species richness promoted a decoupling of these defences in leaves and fine roots, possibly in response to resource limitations in diverse communities. Species-specific responses were rare and related to chemical defence and mutualist collaboration, likely responding to species-specific antagonists' dilution and mutualists' accumulation. Overall, our study suggests that resource limitation in diverse communities might mediate the relationship between plant defence traits and antagonist dilution.
Collapse
Affiliation(s)
- Leonardo Bassi
- Systematic Botany and Functional Biodiversity, Institute of BiologyLeipzig UniversityLeipzig04103Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzig04103Germany
| | - Justus Hennecke
- Systematic Botany and Functional Biodiversity, Institute of BiologyLeipzig UniversityLeipzig04103Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzig04103Germany
| | - Cynthia Albracht
- Department of Soil EcologyHelmholtz Centre for Environmental Research – UFZHalle06120Germany
- Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdam1098XHThe Netherlands
- Institute for Biosafety in Plant BiotechnologyJulius Kühn‐InstituteQuedlinburg06484Germany
| | | | - Akanksha Rai
- Department of Biogeochemical ProcessesMax Planck Institute for BiogeochemistryJena0774526Germany
| | - Yuri Pinheiro Alves de Souza
- Research Unit Comparative Microbiome AnalysisHelmholtz Zentrum MünchenNeuherberg85764Germany
- TUM School of Life Science, Chair of Environmental MicrobiologyTechnische Universität MünchenFreising85354Germany
| | - Aaron Fox
- TUM School of Life Science, Chair of Environmental MicrobiologyTechnische Universität MünchenFreising85354Germany
- Environment, Soils and Land UseTeagasc, Johnstown Castle, CoWexfordY35HK54Ireland
| | - Ming Zeng
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzig04103Germany
- Institute of BiodiversityUniversity JenaJena07743Germany
- Université de BordeauxINRAE, BFP, UMR 1332Villenave d'Ornon33140France
| | - Stefanie Döll
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzig04103Germany
- Institute of BiodiversityUniversity JenaJena07743Germany
| | - Van Cong Doan
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzig04103Germany
- Institute of BiodiversityUniversity JenaJena07743Germany
- Plant Physiology Unit, Life Sciences and Systems Biology DepartmentUniversity of TurinTorino10123Italy
| | - Ronny Richter
- Systematic Botany and Functional Biodiversity, Institute of BiologyLeipzig UniversityLeipzig04103Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzig04103Germany
| | - Anja Kahl
- Systematic Botany and Functional Biodiversity, Institute of BiologyLeipzig UniversityLeipzig04103Germany
| | - Lea Von Sivers
- Systematic Botany and Functional Biodiversity, Institute of BiologyLeipzig UniversityLeipzig04103Germany
| | - Luise Winkler
- Systematic Botany and Functional Biodiversity, Institute of BiologyLeipzig UniversityLeipzig04103Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzig04103Germany
- Experimental Interaction Ecology, Institute of BiologyLeipzig UniversityLeipzig04103Germany
| | - Sebastian T. Meyer
- Terrestrial Ecology Research Group, School of Life SciencesTechnical University MunichFreisingD‐85354Germany
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzig04103Germany
- Institute of BiodiversityUniversity JenaJena07743Germany
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ)Großbeeren14979Germany
| | - Alexandra Weigelt
- Systematic Botany and Functional Biodiversity, Institute of BiologyLeipzig UniversityLeipzig04103Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzig04103Germany
| |
Collapse
|
3
|
Schneider GF, Beckman NG. Different tools for different trades: contrasts in specialized metabolite chemodiversity and phylogenetic dispersion in fruit, leaves, and roots of the neotropical shrubs Psychotria and Palicourea (Rubiaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 40120124 DOI: 10.1111/plb.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/14/2025] [Indexed: 03/25/2025]
Abstract
Plants produce an astonishingly diverse array of specialized metabolites. A crucial step in understanding the origin of such chemodiversity is describing how chemodiversity manifests across the spatial and ontogenetic scales relevant to plant-biotic interactions. Focusing on 21 sympatric species of Psychotria and Palicourea sensu lato (Rubiaceae), we describe patterns of specialized metabolite diversity across spatial and ontogenetic scales using a combination of field collections, untargeted metabolomics, and ecoinformatics. We compare α, β, and γ diversity of specialized metabolites in expanding leaves, unripe pulp, immature seed, ripe pulp, mature seed, and fine roots. Within species, fruit tissues from across ontogenetic stages had ≥α diversity than leaves, and ≤β diversity than leaves. Pooled across species, fruit tissues and ontogenetic stages had the highest γ diversity of all organs, and fruit tissues and ontogenetic stages combined had a higher incidence of organ-specific mass spectral features than leaves. Roots had ≤α diversity than leaves and the lowest β and γ diversity of all organs. Phylogenetic correlations of chemical distance varied by plant organ and chemical class. Our results describe patterns of specialized metabolite diversity across organs and species and provide support for organ-specific contributions to plant chemodiversity. This study contributes to the growing understanding within plant evolutionary ecology of the biological scales of specialized metabolite diversification. Future studies combining our data on specialized metabolite diversity with biotic interaction data and experiments can test existing hypotheses on the roles of ecological interactions in the evolution of chemodiversity.
Collapse
Affiliation(s)
- G F Schneider
- Department of Biology, Utah State University, Logan, Utah, USA
| | - N G Beckman
- Department of Biology and Ecology Center, Utah State University, Smithsonian Tropical Research Institute, Panama, Republic of Panama
| |
Collapse
|
4
|
Zhang Q, Wang Q, Wyckhuys KAG, Jin S, Lu Y. Salinity stress alters plant-mediated interactions between above- and below-ground herbivores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173687. [PMID: 38830424 DOI: 10.1016/j.scitotenv.2024.173687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024]
Abstract
Below-ground herbivory impacts plant development and often induces systemic responses in plants that affect the performance and feeding behavior of above-ground herbivores. Meanwhile, pest-damaged root tissue can enhance a plant's susceptibility to abiotic stress such as salinity. Yet, the extent to which herbivore-induced plant defenses are modulated by such abiotic stress has rarely been studied. In this study, we examine whether root feeding by larvae of the turnip moth, Agrotis segetum (Lepidoptera: Noctuidae) affects the performance of the above-ground, sap-feeding aphid Aphis gossypii (Hemiptera: Aphididae) on cotton, and assess whether those interactions are modulated by salinity stress. In the absence of salinity stress, A. segetum root feeding does not affect A. gossypii development. On the other hand, under intense salinity stress (i.e., 600 mM NaCl), A. segetum root feeding decreases aphid development time by 16.1 % and enhances fecundity by 72.0 %. Transcriptome, metabolome and bioassay trials showed that root feeding and salinity stress jointly trigger the biosynthesis of amino acids in cotton leaves. Specifically, increased titers of valine in leaf tissue relate to an enhanced performance of A. gossypii. Taken together, salinity stress alters the interaction between above- and below-ground feeders by changing amino acid accumulation. Our findings advance our understanding of how plants cope with concurrent biotic and abiotic stressors, and may help tailor plant protection strategies to varying production contexts.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Qiongqiong Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, People's Republic of China
| | - Kris A G Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China; School of Biological Sciences, University of Queensland, Saint Lucia 4072, Australia; Chrysalis Consulting, Danang 50000, Viet Nam
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| |
Collapse
|
5
|
Ahsan SM, Injamum-Ul-Hoque M, Das AK, Rahman MM, Mollah MMI, Paul NC, Choi HW. Plant-Entomopathogenic Fungi Interaction: Recent Progress and Future Prospects on Endophytism-Mediated Growth Promotion and Biocontrol. PLANTS (BASEL, SWITZERLAND) 2024; 13:1420. [PMID: 38794490 PMCID: PMC11124879 DOI: 10.3390/plants13101420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Entomopathogenic fungi, often acknowledged primarily for their insecticidal properties, fulfill diverse roles within ecosystems. These roles encompass endophytism, antagonism against plant diseases, promotion of the growth of plants, and inhabitation of the rhizosphere, occurring both naturally and upon artificial inoculation, as substantiated by a growing body of contemporary research. Numerous studies have highlighted the beneficial aspects of endophytic colonization. This review aims to systematically organize information concerning the direct (nutrient acquisition and production of phytohormones) and indirect (resistance induction, antibiotic and secondary metabolite production, siderophore production, and mitigation of abiotic and biotic stresses) implications of endophytic colonization. Furthermore, a thorough discussion of these mechanisms is provided. Several challenges, including isolation complexities, classification of novel strains, and the impact of terrestrial location, vegetation type, and anthropogenic reluctance to use fungal entomopathogens, have been recognized as hurdles. However, recent advancements in biotechnology within microbial research hold promising solutions to many of these challenges. Ultimately, the current constraints delineate potential future avenues for leveraging endophytic fungal entomopathogens as dual microbial control agents.
Collapse
Affiliation(s)
- S. M. Ahsan
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea;
| | - Md. Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.I.-U.-H.); (A.K.D.)
| | - Ashim Kumar Das
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.I.-U.-H.); (A.K.D.)
| | - Md. Mezanur Rahman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA;
| | - Md. Mahi Imam Mollah
- Department of Entomology, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh;
| | - Narayan Chandra Paul
- Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Hyong Woo Choi
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea;
- Institute of Cannabis Biotechnology, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
6
|
Costan CA, Godsoe W, Bufford JL, Hulme PE. Comparing the Above and Below-Ground Chemical Defences of Three Rumex Species Between Their Native and Introduced Provenances. J Chem Ecol 2023; 49:276-286. [PMID: 37121960 PMCID: PMC10495513 DOI: 10.1007/s10886-023-01427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
Compared to their native range, non-native plants often experience reduced levels of herbivory in the introduced range. This may result in reduced pressure to produce chemical defences that act against herbivores. We measured the most abundant secondary metabolites found in Rumex spp., namely oxalates, phenols and tannins. To test this hypothesis, we compared native (UK) and introduced (NZ) provenances of three different Rumex species (R. obtusifolius, R. crispus and R. conglomeratus, Polygonaceae) to assess whether any significant differences existed in their levels of chemical defences in either leaves and roots. All three species have previously been shown to support a lower diversity of insect herbivores and experience less herbivory in the introduced range. We further examined leaf herbivory on plants from both provenances when grown together in a common garden experiment in New Zealand to test whether any differences in damage might be consistent with variation in the quantity of chemical defences. We found that two Rumex species (R. obtusifolius and R. crispus) showed no evidence for a reduction in chemical defences, while a third (R. conglomeratus) showed only limited evidence. The common garden experiment revealed that the leaves analysed had low levels of herbivory (~ 0.5%) with no differences in damage between provenances for any of the three study species. Roots tended to have a higher concentration of tannins than shoots, but again showed no difference between the provenances. As such, the findings of this study provide no evidence for lower plant investments in chemical defences, suggesting that other factors explain the success of Rumex spp. in New Zealand.
Collapse
Affiliation(s)
- Cristian-Andrei Costan
- Bio-Protection Research Centre, Lincoln, Canterbury 7647 New Zealand
- Foundation for Arable Research, Templeton, Canterbury 7678 New Zealand
| | - William Godsoe
- Bio-Protection Research Centre, Lincoln, Canterbury 7647 New Zealand
| | - Jennifer L. Bufford
- Bio-Protection Research Centre, Lincoln, Canterbury 7647 New Zealand
- Manaaki Whenua – Landcare Research, Lincoln, Canterbury 7647 New Zealand
| | - Philip E. Hulme
- Bio-Protection Research Centre, Lincoln, Canterbury 7647 New Zealand
| |
Collapse
|
7
|
Kharel B, Rusalepp L, Bhattarai B, Kaasik A, Kupper P, Lutter R, Mänd P, Rohula-Okunev G, Rosenvald K, Tullus A. Effects of air humidity and soil moisture on secondary metabolites in the leaves and roots of Betula pendula of different competitive status. Oecologia 2023:10.1007/s00442-023-05388-9. [PMID: 37246972 DOI: 10.1007/s00442-023-05388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
Plant secondary metabolites (PSMs) defend plants against abiotic stresses, including those caused by climate change and against biotic stresses, such as herbivory and competition. There is a trade-off between allocating available carbon to growth and defence in stressful environments. However, our knowledge about trade-off is limited, especially when abiotic and biotic stresses co-occur. We aimed to understand the combined effect of increasing precipitation and humidity, the tree's competitive status, and canopy position on leaf secondary metabolites (LSMs) and fine root secondary metabolites (RSMs) in Betula pendula. We sampled 8-year-old B. pendula trees growing in the free air humidity manipulation (FAHM) experimental site, where treatments included elevated relative air humidity and elevated soil moisture. A high-performance liquid chromatography-quadrupole-time of flight mass spectrometer (HPLC-qTOF-MS) was used to analyse secondary metabolites. Our results showed accumulation of LSM depends on the canopy position and competitive status. Flavonoids (FLA), dihydroxybenzoic acids (HBA), jasmonates (JA) and terpene glucosides (TG) were higher in the upper canopy, and FLA, monoaryl compounds (MAR) and sesquiterpenoids (ST) were higher in dominant trees. The FAHM treatments had a more distinct effect on RSM than on LSM. The RSMs were lower in elevated air humidity and soil moisture conditions than in control conditions. The RSM content depended on the competitive status and was higher in suppressed trees. Our study suggests that young B. pendula will allocate similar amounts of carbon to constitutive chemical leaf defence, but a lower amount to root defence (per fine root biomass) under higher humidity.
Collapse
Affiliation(s)
- Bikash Kharel
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia.
| | - Linda Rusalepp
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006, Tartu, Estonia
| | - Biplabi Bhattarai
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| | - Ants Kaasik
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| | - Priit Kupper
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| | - Reimo Lutter
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Pille Mänd
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| | - Gristin Rohula-Okunev
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| | - Katrin Rosenvald
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| | - Arvo Tullus
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| |
Collapse
|
8
|
Jia Z, Dong H, Li Y, Zhao X, Jiang L. Morphology of a grass‐feeding white grub
Apogonia cupreoviridis
(Coleoptera: Scarabaeidae: Melolonthinae: Diplotaxini) using scanning electron microscopy. ACTA ZOOL-STOCKHOLM 2023. [DOI: 10.1111/azo.12460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Zhi‐Chao Jia
- Key Laboratory of Economic and Applied Entomology of Liaoning Province, College of Plant Protection Shenyang Agricultural University Shenyang China
| | - Hui Dong
- Key Laboratory of Economic and Applied Entomology of Liaoning Province, College of Plant Protection Shenyang Agricultural University Shenyang China
| | - Yu‐Tao Li
- Key Laboratory of Economic and Applied Entomology of Liaoning Province, College of Plant Protection Shenyang Agricultural University Shenyang China
- Dalian Modern Agricultural Development and Service Center Dalian China
| | - Xiu‐Xiang Zhao
- Key Laboratory of Economic and Applied Entomology of Liaoning Province, College of Plant Protection Shenyang Agricultural University Shenyang China
| | - Lu Jiang
- Key Laboratory of Economic and Applied Entomology of Liaoning Province, College of Plant Protection Shenyang Agricultural University Shenyang China
| |
Collapse
|
9
|
The Course of Mechanical Stress: Types, Perception, and Plant Response. BIOLOGY 2023; 12:biology12020217. [PMID: 36829495 PMCID: PMC9953051 DOI: 10.3390/biology12020217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Mechanical stimuli, together with the corresponding plant perception mechanisms and the finely tuned thigmomorphogenetic response, has been of scientific and practical interest since the mid-17th century. As an emerging field, there are many challenges in the research of mechanical stress. Indeed, studies on different plant species (annual/perennial) and plant organs (stem/root) using different approaches (field, wet lab, and in silico/computational) have delivered insufficient findings that frequently impede the practical application of the acquired knowledge. Accordingly, the current work distils existing mechanical stress knowledge by bringing in side-by-side the research conducted on both stem and roots. First, the various types of mechanical stress encountered by plants are defined. Second, plant perception mechanisms are outlined. Finally, the different strategies employed by the plant stem and roots to counteract the perceived mechanical stresses are summarized, depicting the corresponding morphological, phytohormonal, and molecular characteristics. The comprehensive literature on both perennial (woody) and annual plants was reviewed, considering the potential benefits and drawbacks of the two plant types, which allowed us to highlight current gaps in knowledge as areas of interest for future research.
Collapse
|
10
|
Aguirrebengoa M, Müller C, Hambäck PA, González-Megías A. Density-Dependent Effects of Simultaneous Root and Floral Herbivory on Plant Fitness and Defense. PLANTS (BASEL, SWITZERLAND) 2023; 12:283. [PMID: 36678999 PMCID: PMC9867048 DOI: 10.3390/plants12020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Plants are attacked by multiple herbivores, and depend on a precise regulation of responses to cope with a wide range of antagonists. Simultaneous herbivory can occur in different plant compartments, which may pose a serious threat to plant growth and reproduction. In particular, plants often face co-occurring root and floral herbivory, but few studies have focused on such interactions. Here, we investigated in the field the combined density-dependent effects of root-chewing cebrionid beetle larvae and flower-chewing pierid caterpillars on the fitness and defense of a semiarid Brassicaceae herb. We found that the fitness impact of both herbivore groups was independent and density-dependent. Increasing root herbivore density non-significantly reduced plant fitness, while the relationship between increasing floral herbivore density and the reduction they caused in both seed number and seedling emergence was non-linear. The plant defensive response was non-additive with regard to the different densities of root and floral herbivores; high floral herbivore density provoked compensatory investment in reproduction, and this tolerance response was combined with aboveground chemical defense induction when also root herbivore density was high. Plants may thus prioritize specific trait combinations in response to varying combined below- and aboveground herbivore densities to minimize negative impacts on fitness.
Collapse
Affiliation(s)
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, 33615 Bielefeld, Germany
| | - Peter A. Hambäck
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | | |
Collapse
|
11
|
Chadfield VGA, Hartley SE, Redeker KR. Associational resistance through intercropping reduces yield losses to soil-borne pests and diseases. THE NEW PHYTOLOGIST 2022; 235:2393-2405. [PMID: 35678712 PMCID: PMC9545407 DOI: 10.1111/nph.18302] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/03/2022] [Indexed: 05/07/2023]
Abstract
Associational resistance to herbivore and pathogen attack is a well documented ecological phenomenon and, if applied to agriculture, may reduce impact of pests and diseases on crop yields without recourse to pesticides. The value of associational resistance through intercropping, planting multiple crops alongside each other, as a sustainable control method remains unclear, due to variable outcomes reported in the published literature. We performed a meta-analysis to provide a quantitative assessment of benefits of intercropping for target plant resistance to plant-parasitic nematodes and soil-borne diseases. We found that intercropping reduced damage to focal crops from nematodes by 40% and disease incidence by 55%. Intercropping efficacy varied with biological variables, such as field fertilisation status and intercrop family, and methodology, including whether study samples were potted or in fields. Nematode control using intercropping was sufficient to offset reductions in focal crop yield from intercrop presence, making intercropping a viable agricultural tool. We identify key drivers for underpinning the success of intercropping and indicate areas for future research to improve efficacy. This study also highlights the potential benefits of harnessing ecological knowledge on plant-enemy interactions for improving agricultural and landscape sustainability.
Collapse
Affiliation(s)
| | - Sue E. Hartley
- Department of BiologyUniversity of YorkWentworth WayYorkYO10 5DDUK
| | - Kelly R. Redeker
- Department of BiologyUniversity of YorkWentworth WayYorkYO10 5DDUK
| |
Collapse
|
12
|
Karssemeijer PN, de Kreek KA, Gols R, Neequaye M, Reichelt M, Gershenzon J, van Loon JJA, Dicke M. Specialist root herbivore modulates plant transcriptome and downregulates defensive secondary metabolites in a brassicaceous plant. THE NEW PHYTOLOGIST 2022; 235:2378-2392. [PMID: 35717563 PMCID: PMC9540780 DOI: 10.1111/nph.18324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Plants face attackers aboveground and belowground. Insect root herbivores can lead to severe crop losses, yet the underlying transcriptomic responses have rarely been studied. We studied the dynamics of the transcriptomic response of Brussels sprouts (Brassica oleracea var. gemmifera) primary roots to feeding damage by cabbage root fly larvae (Delia radicum), alone or in combination with aboveground herbivory by cabbage aphids (Brevicoryne brassicae) or diamondback moth caterpillars (Plutella xylostella). This was supplemented with analyses of phytohormones and the main classes of secondary metabolites; aromatic, indole and aliphatic glucosinolates. Root herbivory leads to major transcriptomic rearrangement that is modulated by aboveground feeding caterpillars, but not aphids, through priming soon after root feeding starts. The root herbivore downregulates aliphatic glucosinolates. Knocking out aliphatic glucosinolate biosynthesis with CRISPR-Cas9 results in enhanced performance of the specialist root herbivore, indicating that the herbivore downregulates an effective defence. This study advances our understanding of how plants cope with root herbivory and highlights several novel aspects of insect-plant interactions for future research. Further, our findings may help breeders develop a sustainable solution to a devastating root pest.
Collapse
Affiliation(s)
- Peter N. Karssemeijer
- Laboratory of EntomologyWageningen University and Research6708PBWageningenthe Netherlands
| | - Kris A. de Kreek
- Laboratory of EntomologyWageningen University and Research6708PBWageningenthe Netherlands
| | - Rieta Gols
- Laboratory of EntomologyWageningen University and Research6708PBWageningenthe Netherlands
| | - Mikhaela Neequaye
- John Innes CentreNorwich Research ParkNR4 7UHNorwichUK
- Quadram Institute BioscienceNorwich Research ParkNR4 7UQNorwichUK
| | - Michael Reichelt
- Department of BiochemistryMax‐Planck‐Institute for Chemical Ecology07745JenaGermany
| | - Jonathan Gershenzon
- Department of BiochemistryMax‐Planck‐Institute for Chemical Ecology07745JenaGermany
| | - Joop J. A. van Loon
- Laboratory of EntomologyWageningen University and Research6708PBWageningenthe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University and Research6708PBWageningenthe Netherlands
| |
Collapse
|
13
|
Ye W, Bustos‐Segura C, Degen T, Erb M, Turlings TCJ. Belowground and aboveground herbivory differentially affect the transcriptome in roots and shoots of maize. PLANT DIRECT 2022; 6:e426. [PMID: 35898557 PMCID: PMC9307387 DOI: 10.1002/pld3.426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 05/13/2023]
Abstract
Plants recognize and respond to feeding by herbivorous insects by upregulating their local and systemic defenses. While defense induction by aboveground herbivores has been well studied, far less is known about local and systemic defense responses against attacks by belowground herbivores. Here, we investigated and compared the responses of the maize transcriptome to belowground and aboveground mechanical damage and infestation by two well-adapted herbivores: the soil-dwelling western corn rootworm Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) and the leaf-chewing fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). In responses to both herbivores, maize plants were found to alter local transcription of genes involved in phytohormone signaling, primary and secondary metabolism. Induction by real herbivore damage was considerably stronger and modified the expression of more genes than mechanical damage. Feeding by the corn rootworm had a strong impact on the shoot transcriptome, including the activation of genes involved in defense and development. By contrast, feeding by the fall armyworm induced only few transcriptional changes in the roots. In conclusion, feeding by a leaf chewer and a root feeder differentially affects the local and systemic defense of maize plants. Besides revealing clear differences in how maize plants respond to feeding by these specialized herbivores, this study reveals several novel genes that may play key roles in plant-insect interactions and thus sets the stage for in depth research into the mechanism that can be exploited for improved crop protection. Significance statement Extensive transcriptomic analyses revealed a clear distinction between the gene expression profiles in maize plants upon shoot and root attack, locally as well as distantly from the attacked tissue. This provides detailed insights into the specificity of orchestrated plant defense responses, and the dataset offers a molecular resource for further genetic studies on maize resistance to herbivores and paves the way for novel strategies to enhance maize resistance to pests.
Collapse
Affiliation(s)
- Wenfeng Ye
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Carlos Bustos‐Segura
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Thomas Degen
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Matthias Erb
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | - Ted C. J. Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| |
Collapse
|
14
|
Costan CA, Godsoe WK, Bufford JL, Marris JWM, Hulme PE. Can the enemy release hypothesis explain the success of Rumex (Polygonaceae) species in an introduced range? Biol Invasions 2022. [DOI: 10.1007/s10530-022-02810-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractThe enemy release hypothesis states that introduced plants have a competitive advantage due to their release from co-evolved natural enemies (i.e., herbivores and pathogens), which allows them to spread rapidly in new environments. This hypothesis has received mixed support to date, but previous studies have rarely examined the herbivore community, plant damage, and performance simultaneously and largely ignored below-ground herbivores. We tested for enemy release by conducting large scale field surveys of insect diversity and abundance in both the native (United Kingdom) and introduced (New Zealand) ranges of three dock (Rumex, Polygonaceae) species: R. conglomeratus Murray (clustered dock), R. crispus L. (curly dock) and R. obtusifolius L. (broad-leaved dock). We captured both above- and below-ground insect herbivores, measured herbivore damage, and plant biomass as an indicator for performance. In the introduced range, Rumex plants had a lower diversity of insect herbivores, all insect specialists present in the native range were absent and plants had lower levels of herbivore damage on both roots and leaves. Despite this, only R. crispus had greater fresh weight in the introduced range compared to the native range. This suggests that enemy release, particularly from below-ground herbivores, could be a driver for the success of R. crispus plants in New Zealand, but not for R. conglomeratus and R. obtusifolius.
Collapse
|
15
|
Rusman Q, Hooiveld‐Knoppers S, Dijksterhuis M, Bloem J, Reichelt M, Dicke M, Poelman EH. Flowers prepare thyselves: leaf and root herbivores induce specific changes in floral phytochemistry with consequences for plant interactions with florivores. THE NEW PHYTOLOGIST 2022; 233:2548-2560. [PMID: 34953172 PMCID: PMC9305281 DOI: 10.1111/nph.17931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The phenotypic plasticity of flowering plants in response to herbivore damage to vegetative tissues can affect plant interactions with flower-feeding organisms. Such induced systemic responses are probably regulated by defence-related phytohormones that signal flowers to alter secondary chemistry that affects resistance to florivores. Current knowledge on the effects of damage to vegetative tissues on plant interactions with florivores and the underlying mechanisms is limited. We compared the preference and performance of two florivores on flowering Brassica nigra plants damaged by one of three herbivores feeding from roots or leaves. To investigate the underlying mechanisms, we quantified expression patterns of marker genes for defence-related phytohormonal pathways, and concentrations of phytohormones and glucosinolates in buds and flowers. Florivores displayed contrasting preferences for plants damaged by herbivores feeding on roots and leaves. Chewing florivores performed better on plants damaged by folivores, but worse on plants damaged by the root herbivore. Chewing root and foliar herbivory led to specific induced changes in the phytohormone profile of buds and flowers. This resulted in increased glucosinolate concentrations for leaf-damaged plants, and decreased glucosinolate concentrations for root-damaged plants. The outcome of herbivore-herbivore interactions spanning from vegetative tissues to floral tissues is unique for the inducing root/leaf herbivore and receiving florivore combination.
Collapse
Affiliation(s)
- Quint Rusman
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
- Present address:
Department of Systematic and Evolutionary BotanyUniversity of ZürichZollikerstrasse 1078008ZürichSwitzerland
| | - Sanne Hooiveld‐Knoppers
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Mirjam Dijksterhuis
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Janneke Bloem
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Michael Reichelt
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knöll‐Strasse 807745JenaGermany
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| |
Collapse
|
16
|
Wan J, Yi J, Tao Z, Ren Z, Otieno EO, Tian B, Ding J, Siemann E, Erb M, Huang W. Species specific plant‐mediated effects between herbivores converge at high damage intensity. Ecology 2022; 103:e3647. [PMID: 35072958 PMCID: PMC9285418 DOI: 10.1002/ecy.3647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
Plants are often exposed to multiple herbivores and densities of these attackers (or corresponding damage intensities) often fluctuate greatly in the field. Plant‐mediated interactions vary among herbivore species and with changing feeding intensity, but little is known about how herbivore identity and density interact to determine plant responses and herbivore fitness. Here, we investigated this question using Triadica sebifera (tallow) and two common and abundant specialist insect herbivores, Bikasha collaris (flea beetle) and Heterapoderopsis bicallosicollis (weevil). By manipulating densities of leaf‐feeding adults of these two herbivore species, we tested how variations in the intensity of leaf damage caused by flea beetle or weevil adults affected the performance of root‐feeding flea beetle larvae and evaluated the potential of induced tallow root traits to predict flea beetle larval performance. We found that weevil adults consistently decreased the survival of flea beetle larvae with increasing leaf damage intensities. In contrast, conspecific flea beetle adults increased their larval survival at low damage then decreased larval survival at high damage, resulting in a unimodal pattern. Chemical analyses showed that increasing leaf damage from weevil adults linearly decreased root carbohydrates and increased root tannin, whereas flea beetle adults had opposite effects as weevil adults at low damage and similar effects as them at high damage. Furthermore, across all feeding treatments, flea beetle larval survival correlated positively with concentrations of carbohydrates and negatively with concentration of tannin, suggesting that root primary and secondary metabolism might underlie the observed effects on flea beetle larvae. Our study demonstrates that herbivore identity and density interact to determine systemic plant responses and plant‐mediated effects on herbivores. In particular, effects are species‐specific at low densities, but converge at high densities. These findings emphasize the importance of considering herbivore identity and density simultaneously when investigating factors driving plant‐mediated interactions between herbivores, which advances our understanding of the structure and composition of herbivore communities and terrestrial food webs.
Collapse
Affiliation(s)
- Jinlong Wan
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden Chinese Academy of Sciences Wuhan Hubei China
- Center of Conservation Biology, Core Botanical Gardens Chinese Academy of Sciences Wuhan Hubei China
| | - Jiahui Yi
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden Chinese Academy of Sciences Wuhan Hubei China
- University of Chinese Academy of Sciences Beijing China
| | - Zhibin Tao
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden Chinese Academy of Sciences Wuhan Hubei China
- Center of Conservation Biology, Core Botanical Gardens Chinese Academy of Sciences Wuhan Hubei China
| | - Zhikun Ren
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden Chinese Academy of Sciences Wuhan Hubei China
- University of Chinese Academy of Sciences Beijing China
| | - Evans O. Otieno
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden Chinese Academy of Sciences Wuhan Hubei China
- University of Chinese Academy of Sciences Beijing China
| | - Baoliang Tian
- School of Life Sciences Henan University Kaifeng Henan China
| | - Jianqing Ding
- School of Life Sciences Henan University Kaifeng Henan China
| | - Evan Siemann
- Department of Biosciences Rice University Houston Texas USA
| | - Matthias Erb
- Institute of Plant Sciences University of Bern Bern Switzerland
| | - Wei Huang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden Chinese Academy of Sciences Wuhan Hubei China
- Center of Conservation Biology, Core Botanical Gardens Chinese Academy of Sciences Wuhan Hubei China
| |
Collapse
|
17
|
朱 高. Research Progress on the Effects of Nitrogen Deposition on Plant Pathogens. INTERNATIONAL JOURNAL OF ECOLOGY 2022. [DOI: 10.12677/ije.2022.114064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
18
|
Friman J, Karssemeijer PN, Haller J, de Kreek K, van Loon JJ, Dicke M. Shoot and root insect herbivory change the plant rhizosphere microbiome and affects cabbage-insect interactions through plant-soil feedback. THE NEW PHYTOLOGIST 2021; 232:2475-2490. [PMID: 34537968 PMCID: PMC9291931 DOI: 10.1111/nph.17746] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/09/2021] [Indexed: 05/06/2023]
Abstract
Plant-soil feedback (PSF) may influence plant-insect interactions. Although plant defense differs between shoot and root tissues, few studies have examined root-feeding insect herbivores in a PSF context. We examined here how plant growth and resistance against root-feeding Delia radicum larvae was influenced by PSF. We conditioned soil with cabbage plants that were infested with herbivores that affect D. radicum through plant-mediated effects: leaf-feeding Plutella xylostella caterpillars and Brevicoryne brassicae aphids, root-feeding D. radicum larvae, and/or added rhizobacterium Pseudomonas simiae WCS417r. We analyzed the rhizosphere microbial community, and in a second set of conspecific plants exposed to conditioned soil, we assessed growth, expression of defense-related genes, and D. radicum performance. The rhizosphere microbiome differed mainly between shoot and root herbivory treatments. Addition of Pseudomonas simiae did not influence rhizosphere microbiome composition. Plant shoot biomass, gene expression, and plant resistance against D. radicum larvae was affected by PSF in a treatment-specific manner. Soil conditioning overall reduced plant shoot biomass, Pseudomonas simiae-amended soil causing the largest growth reduction. In conclusion, shoot and root insect herbivores alter the rhizosphere microbiome differently, with consequences for growth and resistance of plants subsequently exposed to conditioned soil.
Collapse
Affiliation(s)
- Julia Friman
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Peter N. Karssemeijer
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Julian Haller
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Kris de Kreek
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Joop J.A. van Loon
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| |
Collapse
|
19
|
Enders L, Begcy K. Unconventional routes to developing insect-resistant crops. MOLECULAR PLANT 2021; 14:1439-1453. [PMID: 34217871 DOI: 10.1016/j.molp.2021.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/26/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Concerns over widespread use of insecticides and heightened insect pest virulence under climate change continue to fuel the need for environmentally safe and sustainable control strategies. However, to develop such strategies, a better understanding of the molecular basis of plant-pest interactions is still needed. Despite decades of research investigating plant-insect interactions, few examples exist where underlying molecular mechanisms are well characterized, and even rarer are cases where this knowledge has been successfully applied to manage harmful agricultural pests. Consequently, the field appears to be static, urgently needing shifts in approaches to identify novel mechanisms by which insects colonize plants and plants avoid insect pressure. In this perspective, we outline necessary steps for advancing holistic methodologies that capture complex plant-insect molecular interactions. We highlight novel and underexploited approaches in plant-insect interaction research as essential routes to translate knowledge of underlying molecular mechanisms into durable pest control strategies, including embracing microbial partnerships, identifying what makes a plant an unsuitable host, capitalizing on tolerance of insect damage, and learning from cases where crop domestication and agronomic practices enhance pest virulence.
Collapse
Affiliation(s)
- Laramy Enders
- Purdue University, Department of Entomology, West Lafayette, IN 47907, USA.
| | - Kevin Begcy
- University of Florida, Environmental Horticulture Department, Gainesville, FL 32611, USA.
| |
Collapse
|
20
|
Endo I, Kobatake M, Tanikawa N, Nakaji T, Ohashi M, Makita N. Anatomical patterns of condensed tannin in fine roots of tree species from a cool-temperate forest. ANNALS OF BOTANY 2021; 128:59-71. [PMID: 33608716 PMCID: PMC8318258 DOI: 10.1093/aob/mcab022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/13/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND AIMS Condensed tannin (CT) is an important compound in plant biological structural defence and for tolerance of herbivory and environmental stress. However, little is known of the role and location of CT within the fine roots of woody plants. To understand the role of CT in fine roots across diverse species of woody dicot, we evaluated the localization of CT that accumulated in root tissue, and examined its relationships with the stele and cortex tissue in cross-sections of roots in 20 tree species forming different microbial symbiotic groups (ectomycorrhiza and arbuscular mycorrhiza). METHODS In a cool-temperate forest in Japan, cross-sections of sampled roots in different branching order classes, namely, first order, second to third order, fourth order, and higher than fourth order (higher order), were measured in terms of the length-based ratios of stele diameter and cortex thickness to root diameter. All root samples were then stained with ρ-dimethylaminocinnamaldehyde solution and we determined the ratio of localized CT accumulation area to the root cross-section area (CT ratio). KEY RESULTS Stele ratio tended to increase with increasing root order, whereas cortex ratio either remained unchanged or decreased with increasing order in all species. The CT ratio was significantly positively correlated to the stele ratio and negatively correlated to the cortex ratio in second- to fourth-order roots across species during the shift from primary to secondary root growth. Ectomycorrhiza-associated species mostly had a higher stele ratio and lower cortex ratio than arbuscular mycorrhiza-associated species across root orders. Compared with arbuscular mycorrhiza species, there was greater accumulation of CT in response to changes in the root order of ectomycorrhiza species. CONCLUSIONS Different development patterns of the stele, cortex and CT accumulation along the transition from root tip to secondary roots could be distinguished between different mycorrhizal associations. The CT in tissues in different mycorrhizal associations could help with root protection in specific branching orders during shifts in stele and cortex development before and during cork layer formation.
Collapse
Affiliation(s)
- Izuki Endo
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, Japan
| | - Miwa Kobatake
- Faculty of Science, Shinshu University, Matsumoto, Nagano, Japan
| | - Natsuko Tanikawa
- Faculty of Science, Shinshu University, Matsumoto, Nagano, Japan
| | - Tatsuro Nakaji
- Uryu Experimental Forest, Hokkaido University, Moshiri, Hokkaido, Japan
| | - Mizue Ohashi
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, Japan
| | - Naoki Makita
- Faculty of Science, Shinshu University, Matsumoto, Nagano, Japan
| |
Collapse
|
21
|
Barnett KL, Johnson SN, Facey SL, Gibson-Forty EVJ, Ochoa-Hueso R, Power SA. Altered precipitation and root herbivory affect the productivity and composition of a mesic grassland. BMC Ecol Evol 2021; 21:145. [PMID: 34266378 PMCID: PMC8283849 DOI: 10.1186/s12862-021-01871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Climate change models predict changes in the amount, frequency and seasonality of precipitation events, all of which have the potential to affect the structure and function of grassland ecosystems. While previous studies have examined plant or herbivore responses to these perturbations, few have examined their interactions; even fewer have included belowground herbivores. Given the ecological, economic and biodiversity value of grasslands, and their importance globally for carbon storage and agriculture, this is an important knowledge gap. To address this, we conducted a precipitation manipulation experiment in a former mesic pasture grassland comprising a mixture of C4 grasses and C3 grasses and forbs, in southeast Australia. Rainfall treatments included a control [ambient], reduced amount [50% ambient] and reduced frequency [ambient rainfall withheld for three weeks, then applied as a single deluge event] manipulations, to simulate predicted changes in both the size and frequency of future rainfall events. In addition, half of all experimental plots were inoculated with adult root herbivores (Scarabaeidae beetles). RESULTS We found strong seasonal dependence in plant community responses to both rainfall and root herbivore treatments. The largest effects were seen in the cool season with lower productivity, cover and diversity in rainfall-manipulated plots, while root herbivore inoculation increased the relative abundance of C3, compared to C4, plants. CONCLUSIONS This study highlights the importance of considering not only the seasonality of plant responses to altered rainfall, but also the important role of interactions between abiotic and biotic drivers of vegetation change when evaluating ecosystem-level responses to future shifts in climatic conditions.
Collapse
Affiliation(s)
- Kirk L Barnett
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Sarah L Facey
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Eleanor V J Gibson-Forty
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Raul Ochoa-Hueso
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.,Department of Biology, University of Cádiz, Avenida República Árabe Saharaui, 11510, Puerto Real, Cádiz, Spain
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
22
|
Bacterial Plant Biostimulants: A Sustainable Way towards Improving Growth, Productivity, and Health of Crops. SUSTAINABILITY 2021. [DOI: 10.3390/su13052856] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review presents a comprehensive and systematic study of the field of bacterial plant biostimulants and considers the fundamental and innovative principles underlying this technology. Plant biostimulants are an important tool for modern agriculture as part of an integrated crop management (ICM) system, helping make agriculture more sustainable and resilient. Plant biostimulants contain substance(s) and/or microorganisms whose function when applied to plants or the rhizosphere is to stimulate natural processes to enhance plant nutrient uptake, nutrient use efficiency, tolerance to abiotic stress, biocontrol, and crop quality. The use of plant biostimulants has gained substantial and significant heed worldwide as an environmentally friendly alternative to sustainable agricultural production. At present, there is an increasing curiosity in industry and researchers about microbial biostimulants, especially bacterial plant biostimulants (BPBs), to improve crop growth and productivity. The BPBs that are based on PGPR (plant growth-promoting rhizobacteria) play plausible roles to promote/stimulate crop plant growth through several mechanisms that include (i) nutrient acquisition by nitrogen (N2) fixation and solubilization of insoluble minerals (P, K, Zn), organic acids and siderophores; (ii) antimicrobial metabolites and various lytic enzymes; (iii) the action of growth regulators and stress-responsive/induced phytohormones; (iv) ameliorating abiotic stress such as drought, high soil salinity, extreme temperatures, oxidative stress, and heavy metals by using different modes of action; and (v) plant defense induction modes. Presented here is a brief review emphasizing the applicability of BPBs as an innovative exertion to fulfill the current food crisis.
Collapse
|
23
|
Hamann E, Blevins C, Franks SJ, Jameel MI, Anderson JT. Climate change alters plant-herbivore interactions. THE NEW PHYTOLOGIST 2021; 229:1894-1910. [PMID: 33111316 DOI: 10.1111/nph.17036] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Plant-herbivore interactions have evolved in response to coevolutionary dynamics, along with selection driven by abiotic conditions. We examine how abiotic factors influence trait expression in both plants and herbivores to evaluate how climate change will alter this long-standing interaction. The paleontological record documents increased herbivory during periods of global warming in the deep past. In phylogenetically corrected meta-analyses, we find that elevated temperatures, CO2 concentrations, drought stress and nutrient conditions directly and indirectly induce greater food consumption by herbivores. Additionally, elevated CO2 delays herbivore development, but increased temperatures accelerate development. For annual plants, higher temperatures, CO2 and drought stress increase foliar herbivory. Our meta-analysis also suggests that greater temperatures and drought may heighten florivory in perennials. Human actions are causing concurrent shifts in CO2 , temperature, precipitation regimes and nitrogen deposition, yet few studies evaluate interactions among these changing conditions. We call for additional multifactorial studies that simultaneously manipulate multiple climatic factors, which will enable us to generate more robust predictions of how climate change could disrupt plant-herbivore interactions. Finally, we consider how shifts in insect and plant phenology and distribution patterns could lead to ecological mismatches, and how these changes may drive future adaptation and coevolution between interacting species.
Collapse
Affiliation(s)
- Elena Hamann
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
- Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - Cameron Blevins
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Steven J Franks
- Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - M Inam Jameel
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
24
|
Saiz-Fernández I, Černý M, Skalák J, Brzobohatý B. Split-root systems: detailed methodology, alternative applications, and implications at leaf proteome level. PLANT METHODS 2021; 17:7. [PMID: 33422104 PMCID: PMC7797125 DOI: 10.1186/s13007-020-00706-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/31/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Split-root systems (SRS) have many applications in plant sciences, but their implementation, depending on the experimental design, can be difficult and time-consuming. Additionally, the system is not exempt from limitations, since the time required for the establishment of the SRS imposes a limit to how early in plant development experiments can be performed. Here, we optimized and explained in detail a method for establishing a SRS in young Arabidopsis thaliana seedlings, both in vitro and in soil. RESULTS We found that the partial de-rooting minimized the recovery time compared to total de-rooting, thus allowing the establishment of the split-root system in younger plants. Analysis of changes in the Arabidopsis leaf proteome following the de-rooting procedure highlighted the distinct metabolic alterations that totally and partially de-rooted plants undergo during the healing process. This system was also validated for its use in drought experiments, as it offers a way to apply water-soluble compounds to plants subjected to drought stress. By growing plants in a split-root system with both halves being water-deprived, it is possible to apply the required compound to one half of the root system, which can be cut from the main plant once the compound has been absorbed, thus minimizing rehydration and maintaining drought conditions. CONCLUSIONS Partial de-rooting is the suggested method for obtaining split-root systems in small plants like Arabidopsis thaliana, as growth parameters, survival rate, and proteomic analysis suggest that is a less stressful procedure than total de-rooting, leading to a final rosette area much closer to that of uncut plants. Additionally, we provide evidence that split root-systems can be used in drought experiments where water-soluble compounds are applied with minimal effects of rehydration.
Collapse
Affiliation(s)
- Iñigo Saiz-Fernández
- Phytophthora Research Centre, Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic.
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
| | - Jan Skalák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
- Functional Genomics & Proteomics of Plants, CEITEC MU, Central European Institute of Technology, Kamenice 5, 625 00, Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
- CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| |
Collapse
|
25
|
Jia ZC, Fang H, Jiang L. Morphological description of the white grub Melolontha incana (Coleoptera: Scarabaeidae: Melolonthinae: Melolonthini). Microsc Res Tech 2020; 84:921-928. [PMID: 33231351 DOI: 10.1002/jemt.23653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 11/10/2022]
Abstract
Melolonthinae are the largest subfamily of Scarabaeidae, considered as serious pests for their larvae attacking plant roots and tubers. The edaphic larvae are difficult to be identified because the study on larval taxonomy is far from satisfactory. In this study, multivoltine white grubs Melolontha incana (Motschulsky, 1853) were investigated using light and scanning electron microscopy, in order to provide more morphological characters for the pest identification. The white grubs are atypical for the epipharynx bearing 14 heli arranged in two rows; the mandible is furnished with a patch of minute granules; the maxilla is equipped with 18 acute stridulatory teeth arranged in line; each femur and tibiotarsus is furnished ventrally with a cluster of fossorial setae. The morphological comparisons with the other melolonthine species were provided. The adaptative relationship between the morphological feature and the multivoltine life history were briefly discussed.
Collapse
Affiliation(s)
- Zhi-Chao Jia
- Key Laboratory of Economic and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Hong Fang
- Key Laboratory of Economic and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Lu Jiang
- Key Laboratory of Economic and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
26
|
Wade RN, Seed P, McLaren E, Wood E, Christin PA, Thompson K, Rees M, Osborne CP. The morphogenesis of fast growth in plants. THE NEW PHYTOLOGIST 2020; 228:1306-1315. [PMID: 32841398 DOI: 10.1111/nph.16892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Growth rate represents a fundamental axis of life history variation. Faster growth associated with C4 photosynthesis and annual life history has evolved multiple times, and the resulting diversity in growth is typically explained via resource acquisition and allocation. However, the underlying changes in morphogenesis remain unknown. We conducted a phylogenetic comparative experiment with 74 grass species, conceptualising morphogenesis as the branching and growth of repeating modules. We aimed to establish whether faster growth in C4 and annual grasses, compared with C3 and perennial grasses, came from the faster growth of individual modules or higher rates of module initiation. Morphogenesis produces fast growth in different ways in grasses using C4 and C3 photosynthesis, and in annual compared with perennial species. C4 grasses grow faster than C3 species through a greater enlargement of shoot modules and quicker secondary branching of roots. However, leaf initiation is slower and there is no change in shoot branching. Conversely, faster growth in annuals than perennials is achieved through greater branching and enlargement of shoots, and possibly faster root branching. The morphogenesis of fast growth depends on ecological context, with C4 grasses tending to promote resource capture under competition, and annuals enhancing branching to increase reproductive potential.
Collapse
Affiliation(s)
- Ruth N Wade
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Patrick Seed
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Eleanor McLaren
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ellie Wood
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Pascal-Antoine Christin
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ken Thompson
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Mark Rees
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Colin P Osborne
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
27
|
Franco ALC, Gherardi LA, Tomasel CM, Andriuzzi WS, Ankrom KE, Bach EM, Guan P, Sala OE, Wall DH. Root herbivory controls the effects of water availability on the partitioning between above‐ and below‐ground grass biomass. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Laureano A. Gherardi
- School of Life Sciences & Global Drylands Center Arizona State University Tempe AZ USA
| | | | - Walter S. Andriuzzi
- Department of Biology Colorado State University Fort Collins CO USA
- Nature Communications, Nature Research Berlin Germany
| | | | | | - Pingting Guan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration School of Environment Northeast Normal University Changchun China
| | - Osvaldo E. Sala
- School of Life Sciences School of Sustainability & Global Drylands Center Arizona State University Tempe AZ USA
| | - Diana H. Wall
- Department of Biology & School of Global Environmental Sustainability Colorado State University Fort Collins CO USA
| |
Collapse
|
28
|
Strock CF, Lynch JP. Root secondary growth: an unexplored component of soil resource acquisition. ANNALS OF BOTANY 2020; 126:205-218. [PMID: 32588876 PMCID: PMC7523590 DOI: 10.1093/aob/mcaa068] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Despite recent progress in elucidating the molecular basis of secondary growth (cambial growth), the functional implications of this developmental process remain poorly understood. Targeted studies exploring how abiotic and biotic factors affect this process, as well as the relevance of secondary growth to fitness of annual dicotyledonous crop species under stress, are almost entirely absent from the literature. Specifically, the physiological role of secondary growth in roots has been completely neglected yet entails a unique array of implications for plant performance that are distinct from secondary growth in shoot tissue. SCOPE Since roots are directly responsible for soil resource capture, understanding of the fitness landscape of root phenotypes is important in both basic and applied plant biology. Interactions between root secondary growth, edaphic conditions and soil resource acquisition may have significant effects on plant fitness. Our intention here is not to provide a comprehensive review of a sparse and disparate literature, but rather to highlight knowledge gaps, propose hypotheses and identify opportunities for novel and agriculturally relevant research pertaining to secondary growth of roots. This viewpoint: (1) summarizes evidence from our own studies and other published work; (2) proposes hypotheses regarding the fitness landscape of secondary growth of roots in annual dicotyledonous species for abiotic and biotic stress; and (3) highlights the importance of directing research efforts to this topic within an agricultural context. CONCLUSIONS Secondary growth of the roots of annual dicots has functional significance with regards to soil resource acquisition and transport, interactions with soil organisms and carbon sequestration. Research on these topics would contribute significantly toward understanding the agronomic value of secondary growth of roots for crop improvement.
Collapse
Affiliation(s)
- Christopher F Strock
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
29
|
Aguirrebengoa M, Menéndez R, Müller C, González‐Megías A. Altered rainfall patterns reduce plant fitness and disrupt interactions between below‐ and aboveground insect herbivores. Ecosphere 2020. [DOI: 10.1002/ecs2.3127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
| | - Rosa Menéndez
- Lancaster Environment Centre Lancaster University Lancaster LAI 4YW UK
| | - Caroline Müller
- Department of Chemical Ecology Bielefeld University Bielefeld 33501 Germany
| | | |
Collapse
|
30
|
Karssemeijer PN, Reichelt M, Gershenzon J, van Loon J, Dicke M. Foliar herbivory by caterpillars and aphids differentially affects phytohormonal signalling in roots and plant defence to a root herbivore. PLANT, CELL & ENVIRONMENT 2020; 43:775-786. [PMID: 31873957 PMCID: PMC7065167 DOI: 10.1111/pce.13707] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 05/22/2023]
Abstract
Plant-mediated interactions are an important force in insect ecology. Through such interactions, herbivores feeding on leaves can affect root feeders. However, the mechanisms regulating the effects of above-ground herbivory on below-ground herbivores are poorly understood. Here, we investigated the performance of cabbage root fly larvae (Delia radicum) on cabbage plants (Brassica oleracea) previously exposed to above ground herbivores belonging to two feeding guilds: leaf chewing diamondback moth caterpillars (Plutella xylostella) or phloem-feeding cabbage aphids (Brevicoryne brassicae). Our study focusses on root-herbivore performance and defence signalling in primary roots by quantifying phytohormones and gene expression. We show that leaf herbivory by caterpillars, but not by aphids, strongly attenuates root herbivore performance. Above-ground herbivory causes changes in primary roots in terms of gene transcripts and metabolites involved in plant defence. Feeding by below-ground herbivores strongly induces the jasmonate pathway in primary roots. Caterpillars feeding on leaves cause a slight induction of the primary root jasmonate pathway and interact with plant defence signalling in response to root herbivores. In conclusion, feeding by a leaf chewer and a phloem feeder differentially affects root-herbivore performance, root-herbivore-induced phytohormonal signalling, and secondary metabolites.
Collapse
Affiliation(s)
| | - Michael Reichelt
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Jonathan Gershenzon
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Joop van Loon
- Laboratory of EntomologyWageningen University and ResearchWageningenThe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
31
|
Touw AJ, Verdecia Mogena A, Maedicke A, Sontowski R, van Dam NM, Tsunoda T. Both Biosynthesis and Transport Are Involved in Glucosinolate Accumulation During Root-Herbivory in Brassica rapa. FRONTIERS IN PLANT SCIENCE 2020; 10:1653. [PMID: 31998341 PMCID: PMC6970201 DOI: 10.3389/fpls.2019.01653] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/22/2019] [Indexed: 05/20/2023]
Abstract
The optimal defense theory predicts that plants invest most energy in those tissues that have the highest value, but are most vulnerable to attacks. In Brassica species, root-herbivory leads to the accumulation of glucosinolates (GSLs) in the taproot, the most valuable belowground plant organ. Accumulation of GSLs can result from local biosynthesis in response to herbivory. In addition, transport from distal tissues by specialized GSL transporter proteins can play a role as well. GSL biosynthesis and transport are both inducible, but the role these processes play in GSL accumulation during root-herbivory is not yet clear. To address this issue, we performed two time-series experiments to study the dynamics of transport and biosynthesis in local and distal tissues of Brassica rapa. We exposed roots of B. rapa to herbivory by the specialist root herbivore Delia radicum for 7 days. During this period, we sampled above- and belowground plant organs 12 h, 24 h, 3 days and 7 days after the start of herbivory. Next, we measured the quantity and composition of GSL profiles together with the expression of genes involved in GSL biosynthesis and transport. We found that both benzyl and indole GSLs accumulate in the taproot during root-herbivory, whereas we did not observe any changes in aliphatic GSL levels. The rise in indole GSL levels coincided with increased local expression of biosynthesis and transporter genes, which suggest that both biosynthesis and GSL transport play a role in the accumulation of GSLs during root herbivory. However, we did not observe a decrease in GSL levels in distal tissues. We therefore hypothesize that GSL transporters help to retain GSLs in the taproot during root-herbivory.
Collapse
Affiliation(s)
- Axel J. Touw
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Arletys Verdecia Mogena
- Research and Development Department, Center for Genetic Engineering and Biotechnology, Camagüey, Cuba
| | - Anne Maedicke
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Rebekka Sontowski
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Nicole M. van Dam
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Tomonori Tsunoda
- Faculty of Agriculture and Life Science, Shinshu University, Kamiina-County, Japan
| |
Collapse
|
32
|
Hoermayer L, Friml J. Targeted cell ablation-based insights into wound healing and restorative patterning. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:124-130. [PMID: 31585333 PMCID: PMC6900583 DOI: 10.1016/j.pbi.2019.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 05/18/2023]
Abstract
Plants as sessile organisms are constantly under attack by herbivores, rough environmental situations, or mechanical pressure. These challenges often lead to the induction of wounds or destruction of already specified and developed tissues. Additionally, wounding makes plants vulnerable to invasion by pathogens, which is why wound signalling often triggers specific defence responses. To stay competitive or, eventually, survive under these circumstances, plants need to regenerate efficiently, which in rigid, tissue migration-incompatible plant tissues requires post-embryonic patterning and organogenesis. Now, several studies used laser-assisted single cell ablation in the Arabidopsis root tip as a minimal wounding proxy. Here, we discuss their findings and put them into context of a broader spectrum of wound signalling, pathogen responses and tissue as well as organ regeneration.
Collapse
Affiliation(s)
- Lukas Hoermayer
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| |
Collapse
|
33
|
Wang G, Hu C, Zhou J, Liu Y, Cai J, Pan C, Wang Y, Wu X, Shi K, Xia X, Zhou Y, Foyer CH, Yu J. Systemic Root-Shoot Signaling Drives Jasmonate-Based Root Defense against Nematodes. Curr Biol 2019; 29:3430-3438.e4. [DOI: 10.1016/j.cub.2019.08.049] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/20/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
|
34
|
Pan Y, Zhao SW, Tang XL, Wang S, Wang X, Zhang XX, Zhou JJ, Xi JH. Transcriptome analysis of maize reveals potential key genes involved in the response to belowground herbivore Holotrichia parallela larvae feeding. Genome 2019; 63:1-12. [PMID: 31533014 DOI: 10.1139/gen-2019-0043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The larvae of Holotrichia parallela, a destructive belowground herbivore, causes tremendous damages to maize plants. However, little is known if there are any defense mechanisms in maize roots to defend themselves against this herbivore. In the current research, we carried out RNA-sequencing to investigate the changes in gene transcription level in maize roots after H. parallela larvae infestation. A total of 644 up-regulated genes and 474 down-regulated genes was found. In addition, Gene ontology (GO) annotation analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed. Weighted gene co-expression network analysis (WGCNA) indicated that peroxidase genes may be the hub genes that regulate maize defenses to H. parallela larvae attack. We also found 105 transcription factors, 44 hormone-related genes, and 62 secondary metabolism-related genes within differentially expressed genes (DEGs). Furthermore, the expression profiles of 12 DEGs from the transcriptome analysis were confirmed by quantitative real-time PCR experiments. This transcriptome analysis provides insights into the molecular mechanisms of the underground defense in maize roots to H. parallela larvae attack and will help to select target genes of maize for defense against belowground herbivory.
Collapse
Affiliation(s)
- Yu Pan
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Shi-Wen Zhao
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Xin-Long Tang
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Shang Wang
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Xiao Wang
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Xin-Xin Zhang
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Jing-Jiang Zhou
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Jing-Hui Xi
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| |
Collapse
|
35
|
Savi T, García González A, Herrera JC, Forneck A. Gas exchange, biomass and non-structural carbohydrates dynamics in vines under combined drought and biotic stress. BMC PLANT BIOLOGY 2019; 19:408. [PMID: 31533621 PMCID: PMC6749654 DOI: 10.1186/s12870-019-2017-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/05/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Intensity of drought stress and pest attacks is forecasted to increase in the near future posing a serious threat to natural and agricultural ecosystems. Knowledge on potential effects of a combined abiotic-biotic stress on whole-plant physiology is lacking. We monitored the water status and carbon metabolism of a vine rootstock with or without scion subjected to water shortening and/or infestation with the sucking insect phylloxera (Daktulosphaira vitifoliae Fitch). We measured non-structural carbohydrates and biomass of different plant organs to assess the stress-induced responses at the root, stem, and leaf level. Effects of watering on root infestation were also addressed. RESULTS Higher root infestation was observed in drought-stressed plants compared to well-watered. The drought had a significant impact on most of the measured functional traits. Phylloxera further influenced vines water and carbon metabolism and enforced the sink strength of the roots by stimulating photosynthates translocation. The insect induced carbon depletion, reprogramed vine development, while preventing biomass compensation. A synergic effect of biotic-abiotic stress could be detected in several physiological and morphological traits. CONCLUSIONS Our results indicate that events of water shortage favour insects' feeding damage and increase the abundance of root nodosities. Root phylloxera infestation imposes a considerable stress to the plants which might exacerbate the negative effects of drought.
Collapse
Affiliation(s)
- Tadeja Savi
- Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Botany, Gregor-Mendel-Straße 33, 1190 Vienna, Austria
- Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Viticulture and Pomology, Konrad Lorenz Strasse 24, A-3430 Tulln, Austria
| | - Almudena García González
- Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Viticulture and Pomology, Konrad Lorenz Strasse 24, A-3430 Tulln, Austria
| | - Jose Carlos Herrera
- Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Viticulture and Pomology, Konrad Lorenz Strasse 24, A-3430 Tulln, Austria
| | - Astrid Forneck
- Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Viticulture and Pomology, Konrad Lorenz Strasse 24, A-3430 Tulln, Austria
| |
Collapse
|
36
|
Rusman Q, Lucas-Barbosa D, Poelman EH, Dicke M. Ecology of Plastic Flowers. TRENDS IN PLANT SCIENCE 2019; 24:725-740. [PMID: 31204246 DOI: 10.1016/j.tplants.2019.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/16/2019] [Accepted: 04/25/2019] [Indexed: 05/20/2023]
Abstract
Plant phenotypic plasticity in response to herbivore attack includes changes in flower traits. Such herbivore-induced changes in flower traits have consequences for interactions with flower visitors. We synthesize here current knowledge on the specificity of herbivore-induced changes in flower traits, the underlying molecular mechanisms, and the ecological consequences for flower-associated communities. Herbivore-induced changes in flower traits seem to be largely herbivore species-specific. The extensive plasticity observed in flowers influences a highly connected web of interactions within the flower-associated community. We argue that the adaptive value of herbivore-induced plant responses and flower plasticity can be fully understood only from a community perspective rather than from pairwise interactions.
Collapse
Affiliation(s)
- Quint Rusman
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands.
| | - Dani Lucas-Barbosa
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
37
|
Hervé MR, Erb M. Distinct defense strategies allow different grassland species to cope with root herbivore attack. Oecologia 2019; 191:127-139. [PMID: 31367912 DOI: 10.1007/s00442-019-04479-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022]
Abstract
Root-feeding insect herbivores are of substantial evolutionary, ecological and economical importance. Plants defend themselves against insect herbivores through a variety of tolerance and resistance strategies. To date, few studies have systematically assessed the prevalence and importance of these strategies for root-herbivore interactions across different plant species. Here, we characterize the defense strategies used by three different grassland species to cope with a generalist root herbivore, the larvae of the European cockchafer Melolontha melolontha. Our results reveal that the different plant species rely on distinct sets of defense strategies. The spotted knapweed (Centaurea stoebe) resists attack by dissuading the larvae through the release of repellent chemicals. White clover (Trifolium repens) does not repel the herbivore, but reduces feeding, most likely through structural defenses and low nutritional quality. Finally, the common dandelion (Taraxacum officinale) allows M. melolontha to feed abundantly but compensates for tissue loss through induced regrowth. Thus, three co-occurring plant species have evolved different solutions to defend themselves against attack by a generalist root herbivore. The different root defense strategies may reflect distinct defense syndromes.
Collapse
Affiliation(s)
- Maxime R Hervé
- University of Rennes, Inra, Agrocampus Ouest, IGEPP, UMR-A 1349, Campus Beaulieu, Avenue du Général Leclerc, 35000, Rennes, France.
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, Switzerland.
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, Switzerland
| |
Collapse
|
38
|
Rusman Q, Poelman EH, Nowrin F, Polder G, Lucas‐Barbosa D. Floral plasticity: Herbivore-species-specific-induced changes in flower traits with contrasting effects on pollinator visitation. PLANT, CELL & ENVIRONMENT 2019; 42:1882-1896. [PMID: 30659631 PMCID: PMC6850075 DOI: 10.1111/pce.13520] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/15/2019] [Indexed: 05/20/2023]
Abstract
Plant phenotypic plasticity in response to antagonists can affect other community members such as mutualists, conferring potential ecological costs associated with inducible plant defence. For flowering plants, induction of defences to deal with herbivores can lead to disruption of plant-pollinator interactions. Current knowledge on the full extent of herbivore-induced changes in flower traits is limited, and we know little about specificity of induction of flower traits and specificity of effect on flower visitors. We exposed flowering Brassica nigra plants to six insect herbivore species and recorded changes in flower traits (flower abundance, morphology, colour, volatile emission, nectar quantity, and pollen quantity and size) and the behaviour of two pollinating insects. Our results show that herbivory can affect multiple flower traits and pollinator behaviour. Most plastic floral traits were flower morphology, colour, the composition of the volatile blend, and nectar production. Herbivore-induced changes in flower traits resulted in positive, negative, or neutral effects on pollinator behaviour. Effects on flower traits and pollinator behaviour were herbivore species-specific. Flowers show extensive plasticity in response to antagonist herbivores, with contrasting effects on mutualist pollinators. Antagonists can potentially act as agents of selection on flower traits and plant reproduction via plant-mediated interactions with mutualists.
Collapse
Affiliation(s)
- Quint Rusman
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| | - Farzana Nowrin
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| | - Gerrit Polder
- Greenhouse HorticultureWageningen University, WageningenThe Netherlands
| | | |
Collapse
|
39
|
Mao Z, Wang Y, McCormack ML, Rowe N, Deng X, Yang X, Xia S, Nespoulous J, Sidle RC, Guo D, Stokes A. Mechanical traits of fine roots as a function of topology and anatomy. ANNALS OF BOTANY 2018; 122:1103-1116. [PMID: 29846521 PMCID: PMC6324743 DOI: 10.1093/aob/mcy076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/19/2018] [Indexed: 05/17/2023]
Abstract
Background and Aims Root mechanical traits, including tensile strength (Tr), tensile strain (εr) and modulus of elasticity (Er), are key functional traits that help characterize plant anchorage and the physical contribution of vegetation to landslides and erosion. The variability in these traits is high among tree fine roots and is poorly understood. Here, we explore the variation in root mechanical traits as well as their underlying links with morphological (diameter), architectural (topological order) and anatomical (stele and cortex sizes) traits. Methods We investigated the four tropical tree species Pometia tomentosa, Barringtonia fusicarpa, Baccaurea ramiflora and Pittosporopsis kerrii in Xishuangbanna, Yunnan, China. For each species, we excavated intact, fresh, fine roots and measured mechanical and anatomical traits for each branching order. Key Results Mechanical traits varied enormously among the four species within a narrow range of diameters (<2 mm): <0.1-65 MPa for Tr, 4-1135 MPa for Er and 0.4-37 % for εr. Across species, Tr and Er were strongly correlated with stele area ratio, which was also better correlated with topological order than with root diameter, especially at interspecific levels. Conclusions Root topological order plays an important role in explaining variability in fine-root mechanical traits due to its reflection of root tissue development. Accounting for topological order when measuring fine-root traits therefore leads to greater empirical understanding of plant functions (e.g. anchorage) within and across species.
Collapse
Affiliation(s)
- Zhun Mao
- AMAP, INRA, CNRS, IRD, CIRAD, University of Montpellier, Montpellier, France
| | - Yan Wang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - M Luke McCormack
- Center of Forest Ecosystem Studies and Qianyanzhou Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research (IGSNRR), Chinese Academy of Sciences (CAS), Beijing, China
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, USA
| | - Nick Rowe
- AMAP, INRA, CNRS, IRD, CIRAD, University of Montpellier, Montpellier, France
| | - Xiaobao Deng
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- Xishuangbanna Station for Tropical Rain Forest Ecosystem Studies, Chinese Ecosystem Research Net, Mengla, Yunnan, China
| | - Xiaodong Yang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Shangwen Xia
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Jérôme Nespoulous
- AMAP, INRA, CNRS, IRD, CIRAD, University of Montpellier, Montpellier, France
| | - Roy C Sidle
- Sustainability Research Centre, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Dali Guo
- Center of Forest Ecosystem Studies and Qianyanzhou Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research (IGSNRR), Chinese Academy of Sciences (CAS), Beijing, China
| | - Alexia Stokes
- AMAP, INRA, CNRS, IRD, CIRAD, University of Montpellier, Montpellier, France
| |
Collapse
|
40
|
Castano-Duque L, Helms A, Ali JG, Luthe DS. Plant Bio-Wars: Maize Protein Networks Reveal Tissue-Specific Defense Strategies in Response to a Root Herbivore. J Chem Ecol 2018; 44:727-745. [PMID: 29926336 DOI: 10.1007/s10886-018-0972-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/17/2018] [Accepted: 05/15/2018] [Indexed: 02/08/2023]
Abstract
In this study we examined global changes in protein expression in both roots and leaves of maize plants attacked by the root herbivore, Western corn rootworm (WCR, Diabrotica virgifera virgifera). The changes in protein expression Are indicative of metabolic changes during WCR feeding that enable the plant to defend itself. This is one of the first studies to look above- and below-ground at global protein expression patterns of maize plants grown in soil and infested with a root herbivore. We used advanced proteomic and network analyses to identify metabolic pathways that contribute to global defenses deployed by the insect resistant maize genotype, Mp708, infested with WCR. Using proteomic analysis, 4878 proteins in roots and leaves were detected and of these 863 showed significant changes of abundance during WCR infestation. Protein abundance patterns were analyzed using hierarchical clustering, protein correlation and protein-protein interaction networks. All three data analysis pipelines showed that proteins such as jasmonic acid biosynthetic enzymes, serine proteases, protease inhibitors, proteins involved in biosynthesis and signaling of ethylene, and enzymes producing reactive oxygen species and isopentenyl pyrophosphate, a precursor for volatile production, were upregulated in roots during WCR infestation. In leaves, highly abundant proteins were involved in signal perception suggesting activation of systemic signaling. We conclude that these protein networks contribute to the overall herbivore defense mechanisms in Mp708. Because the plants were grown in potting mix and not sterilized sand, we found that both microbial and insect defense-related proteins were present in the roots. The presence of the high constitutive levels of reduced ascorbate in roots and benzothiazole in the root volatile profiles suggest a tight tri-trophic interaction among the plant, soil microbiomes and WCR-infested roots suggesting that defenses against insects coexist with defenses against bacteria and fungi due to the interaction between roots and soil microbiota. In this study, which is one of the most complete descriptions of plant responses to root-feeding herbivore, we established an analysis pipeline for proteomics data that includes network biology that can be used with different types of "omics" data from a variety of organisms.
Collapse
Affiliation(s)
- Lina Castano-Duque
- Department of Biology, Duke University, 124 Science Drive, French Science Building, Durham, NC, 27708, USA.
| | - Anjel Helms
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jared Gregory Ali
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Dawn S Luthe
- Department of Plant Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
41
|
Tsunoda T, Grosser K, Dam NM. Locally and systemically induced glucosinolates follow optimal defence allocation theory upon root herbivory. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tomonori Tsunoda
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Department of Biological SciencesTokyo Metropolitan University Hachioji Tokyo Japan
| | - Katharina Grosser
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of BiodiversityFriedrich Schiller University Jena Jena Germany
| | - Nicole M. Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of BiodiversityFriedrich Schiller University Jena Jena Germany
| |
Collapse
|
42
|
Hill EM, Robinson LA, Abdul-Sada A, Vanbergen AJ, Hodge A, Hartley SE. Arbuscular Mycorrhizal Fungi and Plant Chemical Defence: Effects of Colonisation on Aboveground and Belowground Metabolomes. J Chem Ecol 2018; 44:198-208. [PMID: 29392532 PMCID: PMC5843688 DOI: 10.1007/s10886-017-0921-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/08/2017] [Accepted: 12/25/2017] [Indexed: 12/01/2022]
Abstract
Arbuscular mycorrhizal fungal (AMF) colonisation of plant roots is one of the most ancient and widespread interactions in ecology, yet the systemic consequences for plant secondary chemistry remain unclear. We performed the first metabolomic investigation into the impact of AMF colonisation by Rhizophagus irregularis on the chemical defences, spanning above- and below-ground tissues, in its host-plant ragwort (Senecio jacobaea). We used a non-targeted metabolomics approach to profile, and where possible identify, compounds induced by AMF colonisation in both roots and shoots. Metabolomics analyses revealed that 33 compounds were significantly increased in the root tissue of AMF colonised plants, including seven blumenols, plant-derived compounds known to be associated with AMF colonisation. One of these was a novel structure conjugated with a malonyl-sugar and uronic acid moiety, hitherto an unreported combination. Such structural modifications of blumenols could be significant for their previously reported functional roles associated with the establishment and maintenance of AM colonisation. Pyrrolizidine alkaloids (PAs), key anti-herbivore defence compounds in ragwort, dominated the metabolomic profiles of root and shoot extracts. Analyses of the metabolomic profiles revealed an increase in four PAs in roots (but not shoots) of AMF colonised plants, with the potential to protect colonised plants from below-ground organisms.
Collapse
Affiliation(s)
- Elizabeth M Hill
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Lynne A Robinson
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
- Centre for Ecology and Hydrology (CEH), Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
| | - Ali Abdul-Sada
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Adam J Vanbergen
- Centre for Ecology and Hydrology (CEH), Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
| | - Angela Hodge
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Sue E Hartley
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
- York Environment and Sustainability Institute, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
| |
Collapse
|
43
|
Orians CM, Gomez S, Korpita T. Does mycorrhizal status alter herbivore-induced changes in whole-plant resource partitioning? AOB PLANTS 2018; 10:plx071. [PMID: 29340134 PMCID: PMC5761529 DOI: 10.1093/aobpla/plx071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Both mycorrhizae and herbivore damage cause rapid changes in source-sink dynamics within a plant. Mycorrhizae create long-term sinks for carbon within the roots while damage by leaf-chewing herbivores causes temporary whole-plant shifts in carbon and nitrogen allocation. Thus, induced responses to herbivory might depend on the presence or absence of mycorrhizae. We examined the effects of mycorrhizal presence on induced resource partitioning in tomato (Solanum lycopersicon) in response to cues from a specialist herbivore Manduca sexta. Differences in plant size, growth and in the concentrations of carbon-based (soluble sugars and starch) and nitrogen-based (protein and total nitrogen) resources in three tissue types (apex, stem and roots) were quantified. Both mycorrhizae and simulated herbivory altered the concentrations of carbon- and nitrogen-based resources. Mycorrhizae promoted plant growth, altered sugar and starch levels. Simulated herbivory resulted in lower concentrations of most resources (sugar, starch and protein) in the rapidly growing apex tissue, while causing an increase in stem protein. There was only one interactive effect; the effects of simulated herbivory were much stronger on the sugar concentration in the apex of non-mycorrhizal plants. This clearly demonstrates that both mycorrhizal colonization and herbivore cues cause shifts in carbon- and nitrogen-based resources and further shows there is little interference by mycorrhizae on the direction and magnitude of plant responses to herbivory. Overall, our results suggest that herbivore cues, regardless of mycorrhizal status, reduce allocation to the growing apex while inducing protein storage in the stem, a possible mechanism that could increase the tolerance of plants to damage.
Collapse
Affiliation(s)
- Colin M Orians
- Department of Biology, Tufts University, Medford, MA, USA
| | - Sara Gomez
- Department of Biology, Tufts University, Medford, MA, USA
| | | |
Collapse
|
44
|
Rusman Q, Lucas‐Barbosa D, Poelman EH. Dealing with mutualists and antagonists: Specificity of plant‐mediated interactions between herbivores and flower visitors, and consequences for plant fitness. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13035] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Quint Rusman
- Laboratory of EntomologyWageningen University Wageningen The Netherlands
| | - Dani Lucas‐Barbosa
- Laboratory of EntomologyWageningen University Wageningen The Netherlands
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen University Wageningen The Netherlands
| |
Collapse
|
45
|
Rasmann S, Bennett A, Biere A, Karley A, Guerrieri E. Root symbionts: Powerful drivers of plant above- and belowground indirect defenses. INSECT SCIENCE 2017; 24:947-960. [PMID: 28374534 DOI: 10.1111/1744-7917.12464] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/08/2017] [Accepted: 03/15/2017] [Indexed: 05/04/2023]
Abstract
Soil microbial mutualists of plants, including mycorrhizal fungi, non-mycorrhizal fungi and plant growth promoting rhizobacteria, have been typically characterized for increasing nutrient acquisition and plant growth. More recently, soil microbes have also been shown to increase direct plant defense against above- and belowground herbivores. Plants, however, do not only rely on direct defenses when attacked, but they can also recruit pest antagonists such as predators and parasitoids, both above and belowground, mainly via the release of volatile organic compounds (i.e., indirect defenses). In this review, we illustrate the main features and effects of soil microbial mutualists of plants on plant indirect defenses and discuss possible applications within the framework of sustainable crop protection against root- and shoot-feeding arthropod pests. We indicate the main knowledge gaps and the future challenges to be addressed in the study and application of these multifaceted interactions.
Collapse
Affiliation(s)
- Sergio Rasmann
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Alison Bennett
- Department of Ecological Sciences, James Hutton Institute, Dundee, UK
| | - Arjen Biere
- Netherlands Institute of Ecology, Wageningen, the Netherlands
| | - Alison Karley
- Department of Ecological Sciences, James Hutton Institute, Dundee, UK
| | - Emilio Guerrieri
- Institute for Sustainable Plant Protection, National Research Council of Italy, Portici, Italy
| |
Collapse
|
46
|
Heinze J, Joshi J. Plant–soil feedback effects can be masked by aboveground herbivory under natural field conditions. Oecologia 2017; 186:235-246. [DOI: 10.1007/s00442-017-3997-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/28/2017] [Indexed: 12/01/2022]
|
47
|
Wade RN, Karley AJ, Johnson SN, Hartley SE. Impact of predicted precipitation scenarios on multitrophic interactions. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12858] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ruth N. Wade
- University of York Wentworth Way YorkYO10 5DD UK
- The James Hutton Institute Invergowrie DundeeDD2 5DA UK
| | | | - Scott N. Johnson
- Hawkesbury Institute for the Environment Western Sydney University Locked Bag 1797 Penrith NSW2751 Australia
| | | |
Collapse
|
48
|
A Herbivore Tag-and-Trace System Reveals Contact- and Density-Dependent Repellence of a Root Toxin. J Chem Ecol 2017; 43:295-306. [PMID: 28303526 DOI: 10.1007/s10886-017-0830-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/08/2017] [Accepted: 02/21/2017] [Indexed: 01/01/2023]
Abstract
Foraging behavior of root feeding organisms strongly affects plant-environment-interactions and ecosystem processes. However, the impact of plant chemistry on root herbivore movement in the soil is poorly understood. Here, we apply a simple technique to trace the movement of soil-dwelling insects in their habitats without disturbing or restricting their interactions with host plants. We tagged the root feeding larvae of Melolontha melolontha with a copper ring and repeatedly located their position in relation to their preferred host plant, Taraxacum officinale, using a commercial metal detector. This method was validated and used to study the influence of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) on the foraging of M. melolontha. TA-G is stored in the latex of T. officinale and protects the roots from herbivory. Using behavioral arenas with TA-G deficient and control plants, we tested the impact of physical root access and plant distance on the effect of TA-G on M. melolontha. The larvae preferred TA-G deficient plants to control plants, but only when physical root contact was possible and the plants were separated by 5 cm. Melolontha melolontha showed no preference for TA-G deficient plants when the plants were grown 15 cm apart, which may indicate a trade-off between the cost of movement and the benefit of consuming less toxic food. We demonstrate that M. melolontha integrates host plant quality and distance into its foraging patterns and suggest that plant chemistry affects root herbivore behavior in a plant-density dependent manner.
Collapse
|
49
|
Moore BD, Johnson SN. Get Tough, Get Toxic, or Get a Bodyguard: Identifying Candidate Traits Conferring Belowground Resistance to Herbivores in Grasses. FRONTIERS IN PLANT SCIENCE 2017; 7:1925. [PMID: 28105030 PMCID: PMC5214545 DOI: 10.3389/fpls.2016.01925] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/05/2016] [Indexed: 05/11/2023]
Abstract
Grasses (Poaceae) are the fifth-largest plant family by species and their uses for crops, forage, fiber, and fuel make them the most economically important. In grasslands, which broadly-defined cover 40% of the Earth's terrestrial surface outside of Greenland and Antarctica, 40-60% of net primary productivity and 70-98% of invertebrate biomass occurs belowground, providing extensive scope for interactions between roots and rhizosphere invertebrates. Grasses invest 50-70% of fixed carbon into root construction, which suggests roots are high value tissues that should be defended from herbivores, but we know relatively little about such defenses. In this article, we identify candidate grass root defenses, including physical (tough) and chemical (toxic) resistance traits, together with indirect defenses involving recruitment of root herbivores' natural enemies. We draw on relevant literature to establish whether these defenses are present in grasses, and specifically in grass roots, and which herbivores of grasses are affected by these defenses. Physical defenses could include structural macro-molecules such as lignin, cellulose, suberin, and callose in addition to silica and calcium oxalate. Root hairs and rhizosheaths, a structural adaptation unique to grasses, might also play defensive roles. To date, only lignin and silica have been shown to negatively affect root herbivores. In terms of chemical resistance traits, nitrate, oxalic acid, terpenoids, alkaloids, amino acids, cyanogenic glycosides, benzoxazinoids, phenolics, and proteinase inhibitors have the potential to negatively affect grass root herbivores. Several good examples demonstrate the existence of indirect defenses in grass roots, including maize, which can recruit entomopathogenic nematodes (EPNs) via emission of (E)-β-caryophyllene, and similar defenses are likely to be common. In producing this review, we aimed to equip researchers with candidate root defenses for further research.
Collapse
Affiliation(s)
- Ben D Moore
- Hawkesbury Institute for the Environment, Western Sydney University Richmond, NSW, Australia
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University Richmond, NSW, Australia
| |
Collapse
|
50
|
Santamaría ME, Martinez M, Arnaiz A, Ortego F, Grbic V, Diaz I. MATI, a Novel Protein Involved in the Regulation of Herbivore-Associated Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2017; 8:975. [PMID: 28649257 PMCID: PMC5466143 DOI: 10.3389/fpls.2017.00975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The defense response of the plants against herbivores relies on a complex network of interconnected signaling pathways. In this work, we characterized a new key player in the response of Arabidopsis against the two-spotted spider mite Tetranychus urticae, the MATI (Mite Attack Triggered Immunity) gene. This gene was differentially induced in resistant Bla-2 strain relative to susceptible Kon Arabidopsis accessions after mite attack, suggesting a potential role in the control of spider mites. To study the MATI gene function, it has been performed a deep molecular characterization of the gene combined with feeding bioassays using modified Arabidopsis lines and phytophagous arthropods. The MATI gene belongs to a new gene family that had not been previously characterized. Biotic assays showed that it confers a high tolerance not only to T. urticae, but also to the chewing lepidopteran Spodoptera exigua. Biochemical analyses suggest that MATI encodes a protein involved in the accumulation of reducing agents upon herbivore attack to control plant redox homeostasis avoiding oxidative damage and cell death. Besides, molecular analyses demonstrated that MATI is involved in the modulation of different hormonal signaling pathways, affecting the expression of genes involved in biosynthesis and signaling of the jasmonic acid and salicylic acid hormones. The fact that MATI is also involved in defense through the modulation of the levels of photosynthetic pigments highlights the potential of MATI proteins to be exploited as biotechnological tools for pest control.
Collapse
Affiliation(s)
- M. Estrella Santamaría
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
- Department of Biology, The University of Western Ontario, LondonON, Canada
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Ana Arnaiz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Félix Ortego
- Departamento de Biología Medioambiental, Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario, LondonON, Canada
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
- *Correspondence: Isabel Diaz,
| |
Collapse
|